1
|
Kobayashi M, Yamaguchi S, Kusano S, Kumagai S, Ito T. Non-thermal atmospheric-pressure plasma exposure as a practical method for improvement of Brassica juncea seed germination. J Biotechnol 2024; 392:103-108. [PMID: 38944385 DOI: 10.1016/j.jbiotec.2024.06.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 06/24/2024] [Accepted: 06/26/2024] [Indexed: 07/01/2024]
Abstract
Here we report that non-thermal atmospheric-pressure plasma exposure can improve Brassica juncea (leaf mustard) seed germination rate from 50 % to 98 %. The commercially relevant germination rate was achieved by plasma exposure for only 10 minutes and the effect sustains at least for one month under an appropriate storage condition. Improved germination by plasma exposure was also observed for Brassica rapa subsp. pekinensis (Chinese cabbage) seeds. The plasma device used is simple. No pure gas flow system is necessary and it is easy to handle. A large number of seeds can be treated by simply scaling up the device. Plasma exposure can be a practical method for improving seed germination of crop plants important for agriculture.
Collapse
Affiliation(s)
- Mime Kobayashi
- Division of Biological Science, Graduate School of Science and Technology, Nara Institute of Science and Technology, Ikoma, Nara 630-0192, Japan; Department of Physics, Faculty of Medicine, Osaka Medical and Pharmaceutical University, Takatsuki, Osaka 569-8686, Japan.
| | - Sho Yamaguchi
- Takii & Company, Limited, Shimogyo-ku, Kyoto 600-8243, Japan
| | - Shintaro Kusano
- Takii & Company, Limited, Shimogyo-ku, Kyoto 600-8243, Japan
| | - Shinya Kumagai
- Department of Electrical and Electronic Engineering, Meijo University, Tempaku-ku, Nagoya 468-8502, Japan
| | - Toshiro Ito
- Division of Biological Science, Graduate School of Science and Technology, Nara Institute of Science and Technology, Ikoma, Nara 630-0192, Japan
| |
Collapse
|
2
|
Nakazawa K, Toyoda H, Manaka T, Orita K, Hirakawa Y, Saito K, Iio R, Shimatani A, Ban Y, Yao H, Otsuki R, Torii Y, Oh JS, Shirafuji T, Nakamura H. In vivo study on the repair of rat Achilles tendon injury treated with non-thermal atmospheric-pressure helium microplasma jet. PLoS One 2024; 19:e0301216. [PMID: 38743641 PMCID: PMC11093389 DOI: 10.1371/journal.pone.0301216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Accepted: 03/12/2024] [Indexed: 05/16/2024] Open
Abstract
Non-thermal atmospheric-pressure plasma (NTAPP) has been widely studied for clinical applications, e.g., disinfection, wound healing, cancer therapy, hemostasis, and bone regeneration. It is being revealed that the physical and chemical actions of plasma have enabled these clinical applications. Based on our previous report regarding plasma-stimulated bone regeneration, this study focused on Achilles tendon repair by NTAPP. This is the first study to reveal that exposure to NTAPP can accelerate Achilles tendon repair using a well-established Achilles tendon injury rat model. Histological evaluation using the Stoll's and histological scores showed a significant improvement at 2 and 4 weeks, with type I collagen content being substantial at the early time point of 2 weeks post-surgery. Notably, the replacement of type III collagen with type I collagen occurred more frequently in the plasma-treated groups at the early stage of repair. Tensile strength test results showed that the maximum breaking strength in the plasma-treated group at two weeks was significantly higher than that in the untreated group. Overall, our results indicate that a single event of NTAPP treatment during the surgery can contribute to an early recovery of an injured tendon.
Collapse
Affiliation(s)
- Katusmasa Nakazawa
- Department of Orthopedic Surgery, Graduate School of Medicine, Osaka City University, Abeno, Osaka, Japan
| | - Hiromitsu Toyoda
- Department of Orthopedic Surgery, Graduate School of Medicine, Osaka City University, Abeno, Osaka, Japan
- Department of Orthopedic Surgery, Graduate School of Medicine, Osaka Metropolitan University, Abeno, Osaka, Japan
| | - Tomoya Manaka
- Department of Orthopedic Surgery, Graduate School of Medicine, Osaka Metropolitan University, Abeno, Osaka, Japan
| | - Kumi Orita
- Department of Orthopedic Surgery, Graduate School of Medicine, Osaka Metropolitan University, Abeno, Osaka, Japan
| | | | - Kosuke Saito
- Department of Orthopedic Surgery, Graduate School of Medicine, Osaka City University, Abeno, Osaka, Japan
| | - Ryosuke Iio
- Department of Orthopedic Surgery, Graduate School of Medicine, Osaka City University, Abeno, Osaka, Japan
| | | | - Yoshitaka Ban
- Department of Orthopedic Surgery, Graduate School of Medicine, Osaka City University, Abeno, Osaka, Japan
| | - Hana Yao
- Department of Orthopedic Surgery, Graduate School of Medicine, Osaka Metropolitan University, Abeno, Osaka, Japan
| | - Ryosuke Otsuki
- Department of Physics and Electronics, Graduate School of Engineering, Osaka Metropolitan University, Sumiyoshi, Osakas, Japan
| | - Yamato Torii
- Department of Physics and Electronics, Graduate School of Engineering, Osaka Metropolitan University, Sumiyoshi, Osakas, Japan
| | - Jun-Seok Oh
- Department of Physics and Electronics, Graduate School of Engineering, Osaka Metropolitan University, Sumiyoshi, Osakas, Japan
| | - Tatsuru Shirafuji
- Department of Physics and Electronics, Graduate School of Engineering, Osaka Metropolitan University, Sumiyoshi, Osakas, Japan
| | - Hiroaki Nakamura
- Department of Orthopedic Surgery, Graduate School of Medicine, Osaka City University, Abeno, Osaka, Japan
- Department of Orthopedic Surgery, Graduate School of Medicine, Osaka Metropolitan University, Abeno, Osaka, Japan
| |
Collapse
|
3
|
Takajo T, Nagahama H, Zuinen K, Tsuchida K, Okino A, Anzai K. Evaluation of cold atmospheric pressure plasma irradiation of water as a method of singlet oxygen generation. J Clin Biochem Nutr 2023; 73:9-15. [PMID: 37534089 PMCID: PMC10390813 DOI: 10.3164/jcbn.22-111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Accepted: 12/16/2022] [Indexed: 08/04/2023] Open
Abstract
We used cold atmospheric pressure plasma jet to examine in detail 1O2 generation in water. ESR with 2,2,5,5-tetramethyl-3-pyrroline-3-carboxamide, a secondary amine probe, was used for the detection of 1O2. Nitroxide radical formation was detected after cold atmospheric pressure plasma jet irradiation of a 2,2,5,5-tetramethyl-3-pyrroline-3-carboxamide solution. An 1O2 scavenger/quencher inhibited the ESR signal intensity induced by cold atmospheric pressure plasma jet irradiation, but this inhibition was not 100%. As 2,2,5,5-tetramethyl-3-pyrroline-3-carboxamide reacts with oxidizing species other than 1O2, it was assumed that the signal intensity inhibited by NaN3 corresponds to only the nitroxide radical generated by 1O2. The concentration of 1O2 produced by cold atmospheric pressure plasma jet irradiation for 60 s was estimated at 8 μM. When this 1O2 generation was compared to methods of 1O2 generation like rose bengal photoirradiation and 4-methyl-1,4-etheno-2,3-benzodioxin-1(4H)-propanoic acid (endoperoxide) thermal decomposition, 1O2 generation was found to be, in decreasing order, rose bengal photoirradiation ≥ cold atmospheric pressure plasma jet > endoperoxide thermal decomposition. Cold atmospheric pressure plasma jet is presumed to not specifically generate 1O2, but can be used to mimic states of oxidative stress involving multiple ROS.
Collapse
Affiliation(s)
- Tokuko Takajo
- Faculty of Pharmaceutical Sciences, Nihon Pharmaceutical University, 10281 Komuro, Ina-machi, Kitaadachi-gun, Saitama 362-0806, Japan
| | - Hiroki Nagahama
- Faculty of Pharmaceutical Sciences, Nihon Pharmaceutical University, 10281 Komuro, Ina-machi, Kitaadachi-gun, Saitama 362-0806, Japan
| | - Katsuya Zuinen
- Faculty of Pharmaceutical Sciences, Nihon Pharmaceutical University, 10281 Komuro, Ina-machi, Kitaadachi-gun, Saitama 362-0806, Japan
| | - Kazunori Tsuchida
- Faculty of Pharmaceutical Sciences, Nihon Pharmaceutical University, 10281 Komuro, Ina-machi, Kitaadachi-gun, Saitama 362-0806, Japan
| | - Akitoshi Okino
- Laboratory for Future Interdisciplinary Research of Science and Technology, Institute of Innovative Research, Tokyo Institute of Technology, 4259 Nagatsuta, Midori-ku, Yokohama 226-8502, Japan
| | - Kazunori Anzai
- Faculty of Pharmaceutical Sciences, Nihon Pharmaceutical University, 10281 Komuro, Ina-machi, Kitaadachi-gun, Saitama 362-0806, Japan
| |
Collapse
|
4
|
Shaw P, Vanraes P, Kumar N, Bogaerts A. Possible Synergies of Nanomaterial-Assisted Tissue Regeneration in Plasma Medicine: Mechanisms and Safety Concerns. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:3397. [PMID: 36234523 PMCID: PMC9565759 DOI: 10.3390/nano12193397] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 09/05/2022] [Accepted: 09/06/2022] [Indexed: 06/16/2023]
Abstract
Cold atmospheric plasma and nanomedicine originally emerged as individual domains, but are increasingly applied in combination with each other. Most research is performed in the context of cancer treatment, with only little focus yet on the possible synergies. Many questions remain on the potential of this promising hybrid technology, particularly regarding regenerative medicine and tissue engineering. In this perspective article, we therefore start from the fundamental mechanisms in the individual technologies, in order to envision possible synergies for wound healing and tissue recovery, as well as research strategies to discover and optimize them. Among these strategies, we demonstrate how cold plasmas and nanomaterials can enhance each other's strengths and overcome each other's limitations. The parallels with cancer research, biotechnology and plasma surface modification further serve as inspiration for the envisioned synergies in tissue regeneration. The discovery and optimization of synergies may also be realized based on a profound understanding of the underlying redox- and field-related biological processes. Finally, we emphasize the toxicity concerns in plasma and nanomedicine, which may be partly remediated by their combination, but also partly amplified. A widespread use of standardized protocols and materials is therefore strongly recommended, to ensure both a fast and safe clinical implementation.
Collapse
Affiliation(s)
- Priyanka Shaw
- Research Group PLASMANT, Department of Chemistry, University of Antwerp, 2610 Antwerp, Belgium
| | - Patrick Vanraes
- Research Group PLASMANT, Department of Chemistry, University of Antwerp, 2610 Antwerp, Belgium
| | - Naresh Kumar
- Department of Medical Devices, National Institute of Pharmaceutical Education and Research, Guwahati 781125, Assam, India
| | - Annemie Bogaerts
- Research Group PLASMANT, Department of Chemistry, University of Antwerp, 2610 Antwerp, Belgium
| |
Collapse
|
5
|
Modulation of Inflammatory Responses by a Non-Invasive Physical Plasma Jet during Gingival Wound Healing. Cells 2022; 11:cells11172740. [PMID: 36078148 PMCID: PMC9454534 DOI: 10.3390/cells11172740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2022] [Revised: 08/22/2022] [Accepted: 08/29/2022] [Indexed: 11/17/2022] Open
Abstract
Gingival wound healing plays an important role in the treatment of a variety of inflammatory diseases. In some cases, however, wound healing is delayed by various endogenous or exogenous factors. In recent years, non-invasive physical plasma (NIPP), a highly reactive gas, has become the focus of research, because of its anti-inflammatory and wound healing-promoting efficacy. So far, since NIPP application has been poorly elucidated in dentistry, the aim of this study was to further investigate the effect of NIPP on various molecules associated with inflammation and wound healing in gingival cells. Human gingival fibroblasts (HGF) and human gingival keratinocytes (HGK) were treated with NIPP at different application times. Cell viability and cell morphology were assessed using DAPI/phalloidin staining. Cyclooxygenase (COX)2; tumour necrosis factor (TNF); CC Motif Chemokine Ligand (CCL)2; and interleukin (IL)1B, IL6 and IL8 were analysed at the mRNA and protein level by a real-time PCR and ELISA. NIPP did not cause any damage to the cells. Furthermore, NIPP led to a downregulation of proinflammatory molecules. Our study shows that NIPP application does not damage the gingival tissue and that the promotion of wound healing is also due to an anti-inflammatory component.
Collapse
|