1
|
Villalobos-Segura MDC, Rico-Chávez O, Suzán G, Chaves A. Influence of Host and Landscape-Associated Factors in the Infection and Transmission of Pathogens: The Case of Directly Transmitted Virus in Mammals. Vet Med Sci 2025; 11:e70160. [PMID: 39692054 DOI: 10.1002/vms3.70160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Revised: 11/19/2024] [Accepted: 11/29/2024] [Indexed: 12/19/2024] Open
Abstract
BACKGROUND Among pathogens associated with mammals, numerous viruses with a direct transmission route impact human, domestic and wild species health. Host and landscape factors affect viral infection and transmission dynamics of these viruses, along with barriers to host dispersal and gene exchange. However, studies show biases toward certain locations, hosts and detected pathogens, with regional variations in similar host-virus associations. METHODS Using a systematic review, in two electronic repositories for articles published until December 2022, we analysed the available information on host- and landscape-associated factors influencing the infection and transmission of directly transmitted viruses in mammals. RESULTS In the analysis, about 50% of papers examined either host traits, landscape composition or configuration measures, while approximately 24% combined host and landscape-associated factors. Additionally, approximately 17% of the articles included climatic data and 30% integrated factors related to anthropogenic impact, as these variables have a role in host density, distribution and virus persistence. The most significant and frequent host traits used as predictor variables were sex, age, body weight, host density and species identity. Land cover was the most evaluated landscape attribute, while some explored configuration variables like edge density and fragmentation indexes. Finally, temperature, precipitation and features such as human population density and human footprint index were also typically measured and found impactful. CONCLUSION Given the many contributions host- and landscape-related factors have in pathogen dynamics, this systematic study contributes to a better knowledge of host-virus dynamics and the identification of variables and gaps that can be used for disease prevention.
Collapse
Affiliation(s)
- María Del Carmen Villalobos-Segura
- Laboratorio de Ecología de Enfermedades y Una Salud, Facultad de Medicina Veterinaria y Zootecnia, Universidad Nacional Autónoma de México, México City, México
| | - Oscar Rico-Chávez
- Laboratorio de Ecología de Enfermedades y Una Salud, Facultad de Medicina Veterinaria y Zootecnia, Universidad Nacional Autónoma de México, México City, México
| | - Gerardo Suzán
- Laboratorio de Ecología de Enfermedades y Una Salud, Facultad de Medicina Veterinaria y Zootecnia, Universidad Nacional Autónoma de México, México City, México
| | - Andrea Chaves
- Escuela de Biología, Universidad de Costa Rica, San José, Costa Rica
| |
Collapse
|
2
|
Batan D, Tseropoulos G, Kirkpatrick BE, Bera K, Khang A, Weiser-Evans M, Anseth KS. PTEN Regulates Myofibroblast Activation in Valvular Interstitial Cells based on Subcellular Localization. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.30.601424. [PMID: 39005262 PMCID: PMC11244890 DOI: 10.1101/2024.06.30.601424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/16/2024]
Abstract
Aortic valve stenosis (AVS) is characterized by altered mechanics of the valve leaflets, which disrupts blood flow through the aorta and can cause left ventricle hypotrophy. These changes in the valve tissue result in activation of resident valvular interstitial cells (VICs) into myofibroblasts, which have increased levels of αSMA in their stress fibers. The persistence of VIC myofibroblast activation is a hallmark of AVS. In recent years, the tumor suppressor gene phosphatase and tensin homolog (PTEN) has emerged as an important player in the regulation of fibrosis in various tissues (e.g., lung, skin), which motivated us to investigate PTEN as a potential protective factor against matrix-induced myofibroblast activation in VICs. In aortic valve samples from humans, we found high levels of PTEN in healthy tissue and low levels of PTEN in diseased tissue. Then, using pharmacological inducers to treat VIC cultures, we observed PTEN overexpression prevented stiffness-induced myofibroblast activation, whereas genetic and pharmacological inhibition of PTEN further activated myofibroblasts. We also observed increased nuclear PTEN localization in VICs cultured on stiff matrices, and nuclear PTEN also correlated with smaller nuclei, altered expression of histones and a quiescent fibroblast phenotype. Together, these results suggest that PTEN not only suppresses VIC activation, but functions to promote quiescence, and could serve as a potential pharmacological target for the treatment of AVS.
Collapse
|
3
|
Zhang S, Chai R, Hu Y, Joka FR, Wu X, Wang H, Wang X. Unveiling the spatial distribution and transboundary pathways of FMD serotype O in Western China and its bordering countries. PLoS One 2024; 19:e0306746. [PMID: 39150924 PMCID: PMC11329131 DOI: 10.1371/journal.pone.0306746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Accepted: 06/21/2024] [Indexed: 08/18/2024] Open
Abstract
Foot-and-mouth disease (FMD) is a severe, highly contagious viral disease of livestock that has a significant economic impact on domestic animals and threatens wildlife survival in China and border countries. However, effective surveillance and prevention of this disease is often incomplete and unattainable due to the cost, the great diversity of wildlife hosts, the changing range and dynamics, and the diversity of FMDV. In this study, we used predictive models to reveal the spread and risk of FMD in anticipation of identifying key nodes to control its spread. For the first time, the spatial distribution of FMD serotype O was predicted in western China and border countries using a niche model, which is a combination of eco-geographic, human, topographic, and vegetation variables. The transboundary least-cost pathways (LCPs) model for ungulates in the study area were also calculated. Our study indicates that FMD serotype O survival is seasonal at low altitudes (March and June) and more sensitive to temperature differences at high altitudes. FMD serotype O risk was higher in Central Asian countries and both were highly correlated with the population variables. Ten LCPs were obtained representing Pakistan, Kazakhstan, Kyrgyzstan, and China.
Collapse
Affiliation(s)
- Shuang Zhang
- Center of Conservation Medicine & Ecological Safety, Northeast Forestry University, Harbin, Heilongjiang Province, P. R. China
- The Key Laboratory of Wildlife Diseases and Biosecurity Management, Harbin, Heilongjiang Province, P. R. China
| | - Rong Chai
- Center of Conservation Medicine & Ecological Safety, Northeast Forestry University, Harbin, Heilongjiang Province, P. R. China
- The Key Laboratory of Wildlife Diseases and Biosecurity Management, Harbin, Heilongjiang Province, P. R. China
| | - Yezhi Hu
- Center of Conservation Medicine & Ecological Safety, Northeast Forestry University, Harbin, Heilongjiang Province, P. R. China
- The Key Laboratory of Wildlife Diseases and Biosecurity Management, Harbin, Heilongjiang Province, P. R. China
| | | | - Xiaodong Wu
- China Animal Health and Epidemiology Center, Qingdao, Shandong Province, P. R. China
| | - Haoning Wang
- School of Geography and Tourism, Harbin University, Harbin, Heilongjiang Province, P. R. China
- Heilongjiang Cold Region Wetland Ecology and Environment Research Key Laboratory, Harbin University, Harbin, Heilongjiang Province, P. R. China
| | - Xiaolong Wang
- Center of Conservation Medicine & Ecological Safety, Northeast Forestry University, Harbin, Heilongjiang Province, P. R. China
- The Key Laboratory of Wildlife Diseases and Biosecurity Management, Harbin, Heilongjiang Province, P. R. China
| |
Collapse
|
4
|
Pan J, Villalan AK, Ni G, Wu R, Sui S, Wu X, Wang X. Assessing eco-geographic influences on COVID-19 transmission: a global analysis. Sci Rep 2024; 14:11728. [PMID: 38777817 PMCID: PMC11111805 DOI: 10.1038/s41598-024-62300-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Accepted: 05/15/2024] [Indexed: 05/25/2024] Open
Abstract
COVID-19 has been massively transmitted for almost 3 years, and its multiple variants have caused serious health problems and an economic crisis. Our goal was to identify the influencing factors that reduce the threshold of disease transmission and to analyze the epidemiological patterns of COVID-19. This study served as an early assessment of the epidemiological characteristics of COVID-19 using the MaxEnt species distribution algorithm using the maximum entropy model. The transmission of COVID-19 was evaluated based on human factors and environmental variables, including climate, terrain and vegetation, along with COVID-19 daily confirmed case location data. The results of the SDM model indicate that population density was the major factor influencing the spread of COVID-19. Altitude, land cover and climatic factor showed low impact. We identified a set of practical, high-resolution, multi-factor-based maximum entropy ecological niche risk prediction systems to assess the transmission risk of the COVID-19 epidemic globally. This study provided a comprehensive analysis of various factors influencing the transmission of COVID-19, incorporating both human and environmental variables. These findings emphasize the role of different types of influencing variables in disease transmission, which could have implications for global health regulations and preparedness strategies for future outbreaks.
Collapse
Affiliation(s)
- Jing Pan
- Key Laboratory for Wildlife Diseases and Bio-Security Management of Heilongjiang Province, Heilongjiang Province, Harbin, 150040, People's Republic of China
- College of Wildlife and Protected Area, Northeast Forestry University, Heilongjiang Province, Harbin, 150040, People's Republic of China
| | - Arivizhivendhan Kannan Villalan
- Key Laboratory for Wildlife Diseases and Bio-Security Management of Heilongjiang Province, Heilongjiang Province, Harbin, 150040, People's Republic of China
- College of Wildlife and Protected Area, Northeast Forestry University, Heilongjiang Province, Harbin, 150040, People's Republic of China
| | - Guanying Ni
- HaiXi Animal Disease Control Center, Qinghai Province, Delingha, 817099, People's Republic of China
| | - Renna Wu
- HaiXi Animal Disease Control Center, Qinghai Province, Delingha, 817099, People's Republic of China
| | - ShiFeng Sui
- Zhaoyuan Forest Resources Monitoring and Protection Service Center, Shandong Province, Zhaoyuan, 265400, People's Republic of China
| | - Xiaodong Wu
- China Animal Health and Epidemiology Center, Shandong Province, Qingdao, 266032, People's Republic of China.
| | - XiaoLong Wang
- Key Laboratory for Wildlife Diseases and Bio-Security Management of Heilongjiang Province, Heilongjiang Province, Harbin, 150040, People's Republic of China.
- College of Wildlife and Protected Area, Northeast Forestry University, Heilongjiang Province, Harbin, 150040, People's Republic of China.
| |
Collapse
|
5
|
Han X, Gao S, Xin Q, Yang M, Bi Y, Jiang F, Zeng Z, Kan W, Wang T, Chen Q, Chen Z. Spatial risk of Haemaphysalis longicornis borne Dabieshan tick virus (DBTV) in China. J Med Virol 2024; 96:e29373. [PMID: 38235541 DOI: 10.1002/jmv.29373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 12/06/2023] [Accepted: 12/25/2023] [Indexed: 01/19/2024]
Abstract
The uncertainty and unknowability of emerging infectious diseases have caused many major public health and security incidents in recent years. As a new tick-borne disease, Dabieshan tick virus (DBTV) necessitate systematic epidemiological and spatial distribution analysis. In this study, tick samples from Liaoning Province were collected and used to evaluate distribution of DBTV in ticks. Outbreak points of DBTV and the records of the vector Haemaphysalis longicornis in China were collected and used to establish a prediction model using niche model combined with environmental factors. We found that H. longicornis and DBTV were widely distributed in Liaoning Province. The risk analysis results showed that the DBTV in the eastern provinces of China has a high risk, and the risk is greatly influenced by elevation, land cover, and meteorological factors. The risk geographical area predicted by the model is significantly larger than the detected positive areas, indicating that the etiological survey is seriously insufficient. This study provided molecular and important epidemiological evidence for etiological ecology of DBTV. The predicted high-risk areas indicated the insufficient monitoring and risk evaluation and the necessity of future monitoring and control work.
Collapse
Affiliation(s)
- Xiaohu Han
- Key Laboratory of Livestock Infectious Diseases, Ministry of Education, Shenyang Agricultural University, Shenyang, Liaoning, People's Republic of China
| | - Shan Gao
- Department of Epidemiology, School of Public Health, Sun Yat-Sen University, Guangzhou, Guangdong, People's Republic of China
| | - Qing Xin
- Key Laboratory of Livestock Infectious Diseases, Ministry of Education, Shenyang Agricultural University, Shenyang, Liaoning, People's Republic of China
| | - Mingwei Yang
- Department of Epidemiology, School of Public Health, Sun Yat-Sen University, Guangzhou, Guangdong, People's Republic of China
| | - Yudan Bi
- Key Laboratory of Livestock Infectious Diseases, Ministry of Education, Shenyang Agricultural University, Shenyang, Liaoning, People's Republic of China
| | - Feng Jiang
- Key Laboratory of Livestock Infectious Diseases, Ministry of Education, Shenyang Agricultural University, Shenyang, Liaoning, People's Republic of China
| | - Zan Zeng
- Department of Vascular Surgery, The First Affiliated Hospital of the Navy Medical University, Shanghai, People's Republic of China
| | - Wei Kan
- Animal Disease Prevention and Control Center in Qinghai Province, Xining, People's Republic of China
| | - Tongyao Wang
- Key Laboratory of Livestock Infectious Diseases, Ministry of Education, Shenyang Agricultural University, Shenyang, Liaoning, People's Republic of China
| | - Qijun Chen
- Key Laboratory of Livestock Infectious Diseases, Ministry of Education, Shenyang Agricultural University, Shenyang, Liaoning, People's Republic of China
| | - Zeliang Chen
- Key Laboratory of Livestock Infectious Diseases, Ministry of Education, Shenyang Agricultural University, Shenyang, Liaoning, People's Republic of China
- Department of Epidemiology, School of Public Health, Sun Yat-Sen University, Guangzhou, Guangdong, People's Republic of China
- Innovative Institute of Zoonoses, Inner Mongolia Minzu University, Tongliao, People's Republic of China
| |
Collapse
|
6
|
YAO Z, ZHAI Y, WANG X, WANG H. Estimating the spatial distribution of African swine fever outbreak in China
by combining four regional-level spatial models. J Vet Med Sci 2023; 85:1330-1340. [PMID: 37899237 PMCID: PMC10788172 DOI: 10.1292/jvms.23-0146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Accepted: 10/09/2023] [Indexed: 10/31/2023] Open
Abstract
The outbreaks of African Swine Fever (ASF) in China are ongoing, and the inadequate management of the pig supply chain is criticized. In the past four years, a series of preventive and control measures have been supplied national wide, while the outbreaks have not been terminated. This suggests the existing animal disease management at the district level may not be appropriate to control ASF under the current situation of the ASF outbreak in China. It is urgent to further describe real distribution areas of ASF in China. In this study, we combined four regional-scale models to predict the risk distribution of ASF in mainland China and identify risk factors related to ASF outbreaks. The results showed that the four regional-scale models were more accurate in predicting the ASF outbreaks than the nationwide scale model. The four regional-scale models identified the potential risk factors associated with ASF outbreaks, such as population density, pig density, land cover, temperature, and elevation factors. Moreover, seven clusters with high potential risk of ASF outbreaks were identified. Then, based on the results, we proposed more suitable prevention and control plans for ASF, which can assist the implementation of transport management policies within and between risk clusters.
Collapse
Affiliation(s)
- ZhenFei YAO
- Center of Conservation Medicine and Ecological Safety,
Northeast Forestry University, Heilongjiang, P.R. China
- College of Wildlife and Protected Area, Northeast
Forestry University, Heilongjiang, P.R. China
| | - YuJia ZHAI
- Center of Conservation Medicine and Ecological Safety,
Northeast Forestry University, Heilongjiang, P.R. China
- College of Wildlife and Protected Area, Northeast
Forestry University, Heilongjiang, P.R. China
| | - XiaoLong WANG
- Center of Conservation Medicine and Ecological Safety,
Northeast Forestry University, Heilongjiang, P.R. China
- College of Wildlife and Protected Area, Northeast
Forestry University, Heilongjiang, P.R. China
| | - HaoNing WANG
- School of Geography and Tourism, Harbin University,
Heilongjiang, P.R. China
| |
Collapse
|
7
|
Hu B, Han S, He H. Effect of epidemic diseases on wild animal conservation. Integr Zool 2023; 18:963-980. [PMID: 37202360 DOI: 10.1111/1749-4877.12720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Under the background of global species extinction, the impact of epidemic diseases on wild animal protection is increasingly prominent. Here, we review and synthesize the literature on this topic, and discuss the relationship between diseases and biodiversity. Diseases usually reduce species diversity by decreasing or extinction of species populations, but also accelerate species evolution and promote species diversity. At the same time, species diversity can regulate disease outbreaks through dilution or amplification effects. The synergistic effect of human activities and global change is emphasized, which further aggravates the complex relationship between biodiversity and diseases. Finally, we emphasize the importance of active surveillance of wild animal diseases, which can protect wild animals from potential diseases, maintain population size and genetic variation, and reduce the damage of diseases to the balance of the whole ecosystem and human health. Therefore, we suggest that a background survey of wild animal populations and their pathogens should be carried out to assess the impact of potential outbreaks on the population or species level. The mechanism of dilution and amplification effect between species diversity and diseases of wild animals should be further studied to provide a theoretical basis and technical support for human intervention measures to change biodiversity. Most importantly, we should closely combine the protection of wild animals with the establishment of an active surveillance, prevention, and control system for wild animal epidemics, in an effort to achieve a win-win situation between wild animal protection and disease control.
Collapse
Affiliation(s)
- Bin Hu
- National Research Center for Wildlife-Borne Diseases, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Shuyi Han
- National Research Center for Wildlife-Borne Diseases, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Hongxuan He
- National Research Center for Wildlife-Borne Diseases, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
8
|
Gao S, Peng R, Zeng Z, Zhai J, Yang M, Liu X, Sharav T, Chen Z. Risk transboundary transmission areas and driving factors of brucellosis along the borders between China and Mongolia. Travel Med Infect Dis 2023; 56:102648. [PMID: 37813322 DOI: 10.1016/j.tmaid.2023.102648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 09/26/2023] [Accepted: 10/01/2023] [Indexed: 10/11/2023]
Abstract
OBJECTIVE Brucellosis is a common and neglected zoonotic infectious disease worldwide caused by Brucella. However, transboundary transmissions among countries, particularly those with high incidences, are seldom investigated. In the present study, by taking China and Mongolia as examples, we aim to identify transboundary transmission risk and driving factors of brucellosis along borders. METHODS 167 brucellosis outbreak locations along the border between China and Mongolia were collected. Wildlife distribution and cross-border activities were mapped. Maximum entropy approach modeling was conducted to predict the potential risk of prevalence of brucellosis with meteorological factors, geographical environment, economic development, living habits et al. The accuracy of the models was assessed by the area under the receiver operating characteristic (ROC) curve (AUC), Kappa test, and correctly classified instances (CCI). RESULTS The spatial model performed excellent predictive performance with the predictor variables of soils, pastures, goat density, mean precipitation of the wettest month, temperature seasonality, and population density, which with the contribution and permutation important in 27.2 %, 31.9; 23.3 %, 6.8; 18.0 %, 17.2; 11.2 %, 18.1; 10. 3 %, 15.2; 10.0 %, 10.8. The calculated AUC, SD, Kappa, and CCI are 0.870, 0.001, 0.882, and 0.883, respectively. The distribution map of brucellosis showed high-risk areas along the borders. CONCLUSIONS Our study identified high-risk areas and the driving effect of brucellosis along the borders between China and Mongolia. Moreover, there is the possibility of cross-border wildlife activities in high-risk areas, which increases the risk of cross-border brucellosis transmission. The funding provides clues for cooperative prevention and control of brucellosis by reducing transboundary transmission.
Collapse
Affiliation(s)
- Shan Gao
- Department of Epidemiology, School of Public Health, Sun Yat-sen University, Guangzhou, Guangdong Province, 510275, PR China
| | - Ruihao Peng
- Department of Epidemiology, School of Public Health, Sun Yat-sen University, Guangzhou, Guangdong Province, 510275, PR China
| | - Zan Zeng
- Department of Vascular Surgery, the First Affiliated Hospital of the Navy Medical University, Shanghai, 200433, PR China
| | - Jingbo Zhai
- Key Laboratory of Zoonose Prevention and Control at Universities of Inner Mongolia Autonomous Region, Innovative Institute of Zoonoses, Inner Mongolia Minzu University, Tongliao, 028000, PR China
| | - Mingwei Yang
- Department of Epidemiology, School of Public Health, Sun Yat-sen University, Guangzhou, Guangdong Province, 510275, PR China
| | - Xinrui Liu
- Department of Epidemiology, School of Public Health, Sun Yat-sen University, Guangzhou, Guangdong Province, 510275, PR China
| | - Tumenjargal Sharav
- Department of Infectious Diseases and Public Health, School of Veterinary Medicine, Mongolian University of Life Science, Khan-Uul District, Zaisan, 17042, Ulaanbaatar, Mongolia.
| | - Zeliang Chen
- Department of Epidemiology, School of Public Health, Sun Yat-sen University, Guangzhou, Guangdong Province, 510275, PR China; Key Laboratory of Zoonose Prevention and Control at Universities of Inner Mongolia Autonomous Region, Innovative Institute of Zoonoses, Inner Mongolia Minzu University, Tongliao, 028000, PR China.
| |
Collapse
|
9
|
Arotolu TE, Wang H, Lv J, Shi K, van Gils H, Huang L, Wang X. Modeling the environmental suitability for Bacillus anthracis in the Qinghai Lake Basin, China. PLoS One 2022; 17:e0275261. [PMID: 36240150 PMCID: PMC9565420 DOI: 10.1371/journal.pone.0275261] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2021] [Accepted: 09/13/2022] [Indexed: 11/29/2022] Open
Abstract
Bacillus anthracis is a gram-positive, rod-shaped and endospore-forming bacterium that causes anthrax, a deadly disease to livestock and, occasionally, to humans. The spores are extremely hardy and may remain viable for many years in soil. Previous studies have identified East Qinghai and neighbouring Gansu in northwest China as a potential source of anthrax infection. This study was carried out to identify conditions and areas in the Qinghai Lake basin that are environmentally suitable for B. anthracis distribution. Anthrax occurrence data from 2005-2016 and environmental variables were spatially modeled by a maximum entropy algorithm to evaluate the contribution of the variables to the distribution of B. anthracis. Principal Component Analysis and Variance Inflation Analysis were adopted to limit the number of environmental variables and minimize multicollinearity. Model performance was evaluated using AUC (area under the curve) ROC (receiver operating characteristics) curves. The three variables that contributed most to the suitability model for B. anthracis are a relatively high annual mean temperature of -2 to 0°C, (53%), soil type classified as; cambisols and kastanozems (35%), and a high human population density of 40 individuals per km2 (12%). The resulting distribution map identifies the permanently inhabited rim of the Qinghai Lake as highly suitable for B. anthracis. Our environmental suitability map and the identified variables provide the nature reserve managers and animal health authorities readily available information to devise both surveillance strategy and control strategy (administration of vaccine to livestock) in B. anthracis suitable regions to abate future epidemics.
Collapse
Affiliation(s)
- Temitope Emmanuel Arotolu
- Center of Conservation Medicine & Ecological Safety, Northeast Forestry University, Harbin, Heilongjiang Province, P. R. China
- Key Laboratory of Wildlife Diseases and Biosecurity Management, Harbin, Heilongjiang Province, P. R. China
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin, Heilongjiang Province, P. R. China
| | - HaoNing Wang
- School of Geography and Tourism, Harbin University, Harbin, Heilongjiang Province, P. R. China
| | - JiaNing Lv
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin, Heilongjiang Province, P. R. China
| | - Kun Shi
- Wildlife Institute, Beijing Forestry University, Beijing, Beijing, P. R. China
| | - Hein van Gils
- Center of Conservation Medicine & Ecological Safety, Northeast Forestry University, Harbin, Heilongjiang Province, P. R. China
- Key Laboratory of Wildlife Diseases and Biosecurity Management, Harbin, Heilongjiang Province, P. R. China
| | - LiYa Huang
- Changbai Mountain Academy of Sciences, Antu, Jilin Province, P. R. China
| | - XiaoLong Wang
- Center of Conservation Medicine & Ecological Safety, Northeast Forestry University, Harbin, Heilongjiang Province, P. R. China
- Key Laboratory of Wildlife Diseases and Biosecurity Management, Harbin, Heilongjiang Province, P. R. China
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin, Heilongjiang Province, P. R. China
- * E-mail:
| |
Collapse
|
10
|
Arotolu TE, Wang H, Lv J, Kun S, Huang L, Wang X. Environmental suitability of Yersinia pestis and the spatial dynamics of plague in the Qinghai Lake region, China. VET MED-CZECH 2022; 67:569-578. [PMID: 38623480 PMCID: PMC11016303 DOI: 10.17221/81/2021-vetmed] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Accepted: 09/06/2022] [Indexed: 04/17/2024] Open
Abstract
Plague, a highly infectious disease caused by Yersinia pestis, has killed millions of people in history and is still active in the natural foci of the world nowadays. Understanding the spatiotemporal patterns of plague outbreaks in history is critically important, as it may help facilitate the prevention and control for potential future outbreaks. This study's objective was to estimate the effect of the topography, vegetation, climate, and other environmental factors on the Y. pestis ecological niche. A maximum entropy algorithm spatially modelled plague occurrence data from 2004-2018 and the environmental variables to evaluate the contribution of the variables to the distribution of Y. pestis. Our results found that the average minimum temperature in September (-8 °C to +5 °C) and the sheep population density (250 sheep per km2) were influential in characterising the niche. The rim of Qinghai Lake showed more favourable conditions for Y. pestis presence than other areas within the study area. Identifying various factors will assist any future modelling efforts. Our suitability map identifies hotspots and will help public health officials in resource allocation in their quest to abate future plague outbreaks.
Collapse
Affiliation(s)
- Temitope Emmanuel Arotolu
- Center of Conservation Medicine & Ecological Safety, Northeast Forestry University, Harbin, Heilongjiang Province, P. R. China
- Key Laboratory of Wildlife Diseases and Biosecurity Management, Harbin, Heilongjiang Province, P. R. China
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin, Heilongjiang Province, P. R. China
| | - HaoNing Wang
- School of Geography and Tourism, Harbin University, Harbin, Heilongjiang Province, P. R. China
| | - JiaNing Lv
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin, Heilongjiang Province, P. R. China
| | - Shi Kun
- Wildlife Institute, Beijing Forestry University, Beijing, P. R. China
| | - LiYa Huang
- Changbai Mountain Academy of Sciences, Antu, Jilin Province, P. R. China
| | - XiaoLong Wang
- Center of Conservation Medicine & Ecological Safety, Northeast Forestry University, Harbin, Heilongjiang Province, P. R. China
- Key Laboratory of Wildlife Diseases and Biosecurity Management, Harbin, Heilongjiang Province, P. R. China
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin, Heilongjiang Province, P. R. China
| |
Collapse
|
11
|
Spatial modeling and ecological suitability of monkeypox disease in Southern Nigeria. PLoS One 2022; 17:e0274325. [PMID: 36126054 PMCID: PMC9488772 DOI: 10.1371/journal.pone.0274325] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Accepted: 08/25/2022] [Indexed: 11/27/2022] Open
Abstract
The reemergence of monkeypoxvirus (MPXV) in 2017 after about 39 years of no reported cases in Nigeria, and the recent incidence in countries such as the United States of America, United Kingdom, Singapore, and Israel which have been reportedly linked with travelers from Africa, have heightened concern that MPXV may have emerged to occupy the vacant ecological and immunological niche created by the extinct smallpox virus. This study was carried out to identify environmental conditions and areas that are environmentally suitable (risky areas) for MPXV in southern Nigeria. One hundred and sixteen (116) spatially unique MPXV occurrence data from 2017–2021 and corresponding environmental variables were spatially modeled by a maximum entropy algorithm to evaluate the contribution of the variables to the distribution of the viral disease. A variance inflation analysis was adopted to limit the number of environmental variables and minimize multicollinearity. The five variables that contributed to the suitability model for MPXV disease are precipitation of driest quarter (47%), elevation (26%), human population density (17%), minimum temperature in December (7%), and maximum temperature in March (3%). For validation, our model had a high AUC value of 0.92 and standard deviation of 0.009 indicating that it had excellent ability to predict the suitable areas for monkeypox disease. Categorized risk classes across southern states was also identified. A total of eight states were predicted to be at high risk of monkeypox outbreak occurrence. These findings can guide policymakers in resources allocation and distribution to effectively implement targeted control measures for MPXV outbreaks in southern Nigeria.
Collapse
|
12
|
Peste des Petits Ruminants in Central and Eastern Asia/West Eurasia: Epidemiological Situation and Status of Control and Eradication Activities after the First Phase of the PPR Global Eradication Programme (2017–2021). Animals (Basel) 2022; 12:ani12162030. [PMID: 36009619 PMCID: PMC9404448 DOI: 10.3390/ani12162030] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 07/21/2022] [Accepted: 08/04/2022] [Indexed: 11/16/2022] Open
Abstract
Simple Summary Peste des petits ruminants (PPR) is a highly contagious viral disease of domestic and wild small ruminants. The disease is endemic to large parts of Africa, the Middle East and Asia and causes severe socioeconomic losses, especially in developing countries reliant on small ruminant value chains. Currently, PPR is the only animal disease targeted by the Global Eradication Programme (PPR GEP), which aims to eradicate the disease by 2030. Following the end of the first five-year phase of the PPR GEP, the goal of this review is to provide an update on the status of the eradication progress in one of the nine regions targeted for coordinated action in the PPR Global Control and Eradication Strategy, denominated Central Asia/West Eurasia. In addition to the original nine countries, regional meetings and activities have involved four additional countries based on shared epidemiological features, which are also reviewed here. The considered area spans from Eastern Europe to East Asia and features remarkable variability in terms of both PPR presence and enacted control efforts. The achievements and constraints encountered at regional and national levels are discussed, thus providing useful data for tailoring the next steps of the eradication programme to the peculiarities of the region. Abstract Peste des petits ruminants (PPR) is a highly contagious infectious disease of small ruminants caused by peste des petits ruminants virus (PPRV). PPR poses a significant threat to sheep and goat systems in over 65 endemic countries across Africa, the Middle East and Asia. It is also responsible for devastating outbreaks in susceptible wildlife, threatening biodiversity. For these reasons, PPR is the target of the Global Eradication Programme (PPR GEP), launched in 2016, which is aimed at eradicating the disease by 2030. The end of the first five-year phase of the PPR GEP (2017–2021) provides an ideal opportunity to assess the status of the stepwise control and eradication process. This review analyses 13 countries belonging to Eastern Europe, Transcaucasia, and Central and East Asia. Substantial heterogeneity is apparent in terms of PPR presence and control strategies implemented by different countries. Within this region, one country is officially recognised as PPR-free, seven countries have never reported PPR, and two have had no outbreaks in the last five years. Therefore, there is real potential for countries in this region to move forward in a coordinated manner to secure official PPR freedom status and thus reap the trade and socioeconomic benefits of PPR eradication.
Collapse
|
13
|
Urbanization and Habitat Characteristics Associated with the Occurrence of Peste des Petits Ruminants in Africa. SUSTAINABILITY 2022. [DOI: 10.3390/su14158978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
As a highly contagious viral disease, peste des petits ruminants (PPR) can cause severe socio-economic impacts in developing countries due to its threat to sheep and goat production. Previous studies have identified several risk factors for PPR at the individual or herd level. However, only a few studies explored the impacts of landscape factors on PPR risk, particularly at a regional scale. Moreover, risk factor analyses in Africa usually focused on sub-Saharan Africa while neglecting northern Africa. Based on regional occurrence data during 2006–2018, we here explored and compared the risk factors, with a focus on factors related to ruminant habitats, for the occurrence of PPR in sub-Saharan and northern Africa. Our results demonstrated different risk factors in the two regions. Specifically, habitat fragmentation was negatively correlated with PPR occurrence in sub-Saharan Africa, while positively correlated with PPR occurrence in northern Africa. Moreover, urbanization showed a positive association with PPR occurrence in sub-Saharan Africa. Our study is among the first, to our knowledge, to compare the risk factors for PPR in sub-Saharan and northern Africa and contributes to a better understanding of the effects of habitat characteristics on PPR occurrence at a regional scale.
Collapse
|
14
|
Predicting the possibility of African horse sickness (AHS) introduction into China using spatial risk analysis and habitat connectivity of Culicoides. Sci Rep 2022; 12:3910. [PMID: 35273211 PMCID: PMC8913660 DOI: 10.1038/s41598-022-07512-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Accepted: 02/14/2022] [Indexed: 12/04/2022] Open
Abstract
African horse sickness (AHS) is a devastating equine infectious disease. On 17 March 2020, it first appeared in Thailand and threatened all the South-East Asia equine industry security. Therefore, it is imperative to carry out risk warnings of the AHS in China. The maximum entropy algorithm was used to model AHS and Culicoides separately by using climate and non-climate variables. The least cost path (LCP) method was used to analyze the habitat connectivity of Culicoides with the reclassified land cover and altitude as cost factors. The models showed the mean area under the curve as 0.918 and 0.964 for AHS and Culicoides. The prediction result map shows that there is a high risk area in the southern part of China while the habitats of the Culicoides are connected to each other. Therefore, the risk of introducing AHS into China is high and control of the border area should be strengthened immediately.
Collapse
|