1
|
Saeedi-Moghaddam F, Mohammaditabar M, Mozhgani SH. Bovine leukemia virus (BLV) and risk of breast cancer; a systematic review and meta-analysis. Retrovirology 2024; 21:20. [PMID: 39623467 PMCID: PMC11613672 DOI: 10.1186/s12977-024-00653-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2024] [Accepted: 11/03/2024] [Indexed: 12/06/2024] Open
Abstract
BACKGROUND The role of viruses in the development of breast cancer has been a subject of debate and extensive research over the past few decades. Several studies have examined the association between Bovine leukemia virus (BLV) infection and the risk of developing breast cancer; however, their findings have yielded inconsistent results. To address this uncertainty, the purpose of the present study was to conduct a systematic review and meta-analysis to determine any potential association between BLV and breast cancer. METHODS The literature search was performed by finding related articles from PubMed, Web of Science, Scopus, EMBASE, and ScienceDirect databases. Statistical analysis was conducted using the meta package in R Studio and Review Manager 5.1. The I2 test was used to assess between-study heterogeneity. The Mantel-Haenszel method calculated the pooled odds ratio and its 95% confidence interval. Studies were divided into subgroups for comparison. RESULTS The literature search identified a total of 17 studies that were deemed suitable for inclusion in the systematic review. Out of these 17 studies, 12 were used in the subsequent meta-analysis. Combining the data from these eligible studies, we calculated the pooled multi-factor adjusted odds ratio (OR) and a 95% confidence interval (CI). Considering the heterogeneity observed across the studies, the result obtained using the fixed effects model was 2.12 (1.77, 2.54). However, upon removing the six studies that contributed significantly to the heterogeneity, the pooled OR with a 95% CI was recalculated to be 3.92 (2.98, 5.16). CONCLUSION The result of this study suggests that BLV infection is statistically associated with Breast cancer.
Collapse
Affiliation(s)
| | | | - Sayed-Hamidreza Mozhgani
- Department of Microbiology and Virology, School of Medicine, Alborz University of Medical Sciences, Karaj, Iran.
- Non-communicable Disease Research Center, Alborz University of Medical Sciences, Karaj, Iran.
| |
Collapse
|
2
|
Brantley KD, Tamimi RM. The association between infectious agents and breast cancer: a review of the epidemiologic evidence. Breast Cancer Res Treat 2024; 207:235-252. [PMID: 38971906 DOI: 10.1007/s10549-024-07388-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Accepted: 05/22/2024] [Indexed: 07/08/2024]
Abstract
PURPOSE Several viruses have been casually linked to human cancers, including cervical, nasopharyngeal, liver, sarcoma, and Merkel cell carcinomas. However, the etiologic contribution of viral infections to breast cancer, the number one incident cancer among women worldwide, is not well established. Among studies exploring associations of viruses with breast cancer, potential linkages have been identified between breast cancer and five viruses: beta retrovirus, (i.e., mouse mammary tumor virus), human papillomavirus, Epstein Barr virus. bovine leukemia virus, and human cytomegalovirus. METHODS In this review, we provide a comprehensive evaluation of epidemiological ecologic, case-control, case-only, and cohort studies investigating these associations. We discuss results from several existing reviews and meta-analyses, evaluate epidemiological studies published in the past five years, and assess the relationship between these viruses and breast tumor clinicopathological factors. RESULTS The strongest epidemiological evidence for a viral role in breast cancer exists for MMTV and HPV, though limitations include lack of prospective studies for MMTV and potential detection bias in HPV studies. Viral detection challenges have limited studies of EBV and HCMV. Fewer studies have evaluated BLV, and though it has been associated with higher risk of breast cancer, sample sizes are quite small. CONCLUSION: While epidemiologic evidence exists for an association between these five viruses and breast cancer, various methodological issues and lack of prospective studies preclude robust conclusions. Future research should prioritize establishing a temporal relationship between infection and disease, minimizing misclassification of detection assays, and further exploring the influence of co-infections.
Collapse
Affiliation(s)
- Kristen D Brantley
- Department of Epidemiology, Harvard TH Chan School of Public Health, Boston, MS, USA.
| | - Rulla M Tamimi
- Department of Population Health Sciences, Weill Cornell Medicine, New York, USA
| |
Collapse
|
3
|
Mendoza W, Isaza JP, López L, López-Herrera A, Gutiérrez LA. Bovine Leukemia Virus molecular detection and associated factors among dairy herd workers in Antioquia, Colombia. Acta Trop 2024; 256:107253. [PMID: 38782108 DOI: 10.1016/j.actatropica.2024.107253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 03/18/2024] [Accepted: 05/15/2024] [Indexed: 05/25/2024]
Abstract
The Bovine Leukemia Virus (BLV) affects mainly cattle, is transmitted by exposure to contaminated biological fluids, and generates lymphomas in 5 % of infected animals. The zoonotic potential of BLV has been studied, and it is currently unknown if it circulates in human workers on dairy herds in Antioquia. Objective: To determine the frequency of BLV detection, the genotypes of the virus, and the factors associated with its detection in workers for dairy herds in Antioquia, Colombia. Through a cross-sectional study in 51 dairy herds, 164 adults were recruited. A peripheral blood sample was collected from each participant for molecular detection of the BLV env and tax genes, and associated factors were explored through bivariate and multivariate mixed Poisson model analyses. The analysis showed that 82 % (134/164) of the participants were men, with an average age of 40. Using qPCR, the constitutive gene GAPDH was amplified to evaluate the presence of amplification inhibitors in the DNA samples. Using nested PCR, the amplification of the env viral gene was obtained in 13 % (22/164) of the total samples analyzed, while all the samples tested negative for tax. The amplicons of the env gene were sequenced, and the identity compatible with BLV was verified by BLAST analysis (NCBI). Using molecular phylogeny analysis, based on maximum likelihood and haplotype network analysis, it was identified that BLV genotype 1 is present in the evaluated population. 16 % (26/164) of the participants reported having ever had an accident with surgical material during work with cattle; this variable was associated with BLV positivity even after adjusting for other variables (PRa =2.70, 95 % CI= 1.01- 7.21). Considering that other studies have reported the circulation of BLV genotype 1 in cattle from this same region and the present report in humans from dairy herds, the results suggest a possible zoonotic transmission of BLV genotype 1 in Antioquia, reinforcing the need to continue investigating to determine the potential role of this virus as an etiological agent of disease in livestock farmers in the department.
Collapse
Affiliation(s)
- Willington Mendoza
- Grupo Biología de Sistemas, Escuela de Ciencias de la Salud, Facultad de Medicina, Universidad Pontificia Bolivariana. Medellín, Colombia
| | - Juan Pablo Isaza
- Grupo Biología de Sistemas, Escuela de Ciencias de la Salud, Facultad de Medicina, Universidad Pontificia Bolivariana. Medellín, Colombia
| | - Lucelly López
- Grupo de Investigación en Salud Pública, Escuela de Ciencias de la Salud, Facultad de Medicina, Universidad Pontificia Bolivariana. Medellín, Colombia
| | - Albeiro López-Herrera
- Grupo de Investigación Biodiversidad y Genética Molecular (BIOGEM), Universidad Nacional de Colombia Sede Medellín, Colombia
| | - Lina A Gutiérrez
- Grupo Biología de Sistemas, Escuela de Ciencias de la Salud, Facultad de Medicina, Universidad Pontificia Bolivariana. Medellín, Colombia.
| |
Collapse
|
4
|
Rossi C, Inzani FS, Cesari S, Rizzo G, Paulli M, Pedrazzoli P, Lasagna A, Lucioni M. The Role of Oncogenic Viruses in the Pathogenesis of Sporadic Breast Cancer: A Comprehensive Review of the Current Literature. Pathogens 2024; 13:451. [PMID: 38921749 PMCID: PMC11206847 DOI: 10.3390/pathogens13060451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 05/23/2024] [Accepted: 05/24/2024] [Indexed: 06/27/2024] Open
Abstract
Breast cancer is the most common malignancy in the female sex; although recent therapies have significantly changed the natural history of this cancer, it remains a significant challenge. In the past decade, evidence has been put forward that some oncogenic viruses may play a role in the development of sporadic breast cancer; however, data are scattered and mostly reported as sparse case series or small case-control studies. In this review, we organize and report current evidence regarding the role of high-risk human papillomavirus, mouse mammary tumor virus, Epstein-Barr virus, cytomegalovirus, bovine leukemia virus, human polyomavirus 2, and Merkel cell polyomavirus in the pathogenesis of breast cancer.
Collapse
Affiliation(s)
- Chiara Rossi
- Section of Anatomic Pathology, Cerba HealthCare Lombardia, 20139 Milan, Italy
| | - Frediano Socrate Inzani
- Department of Molecular Medicine, Unit of Anatomic Pathology, University of Pavia, IRCCS San Matteo Hospital Foundation, 27100 Pavia, Italy
| | - Stefania Cesari
- Department of Molecular Medicine, Unit of Anatomic Pathology, University of Pavia, IRCCS San Matteo Hospital Foundation, 27100 Pavia, Italy
| | - Gianpiero Rizzo
- Unit of Medical Oncology, IRCCS San Matteo Hospital Foundation, 27100 Pavia, Italy
| | - Marco Paulli
- Department of Molecular Medicine, Unit of Anatomic Pathology, University of Pavia, IRCCS San Matteo Hospital Foundation, 27100 Pavia, Italy
| | - Paolo Pedrazzoli
- Unit of Medical Oncology, IRCCS San Matteo Hospital Foundation, 27100 Pavia, Italy
| | - Angioletta Lasagna
- Unit of Medical Oncology, IRCCS San Matteo Hospital Foundation, 27100 Pavia, Italy
| | - Marco Lucioni
- Department of Molecular Medicine, Unit of Anatomic Pathology, University of Pavia, IRCCS San Matteo Hospital Foundation, 27100 Pavia, Italy
| |
Collapse
|
5
|
Lv G, Wang J, Lian S, Wang H, Wu R. The Global Epidemiology of Bovine Leukemia Virus: Current Trends and Future Implications. Animals (Basel) 2024; 14:297. [PMID: 38254466 PMCID: PMC10812804 DOI: 10.3390/ani14020297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 01/02/2024] [Accepted: 01/11/2024] [Indexed: 01/24/2024] Open
Abstract
Bovine leukemia virus (BLV) is a retrovirus that causes enzootic bovine leucosis (EBL), which is the most significant neoplastic disease in cattle. Although EBL has been successfully eradicated in most European countries, infections continue to rise in Argentina, Brazil, Canada, Japan, and the United States. BLV imposes a substantial economic burden on the cattle industry, particularly in dairy farming, as it leads to a decline in animal production performance and increases the risk of disease. Moreover, trade restrictions on diseased animals and products between countries and regions further exacerbate the problem. Recent studies have also identified fragments of BLV nucleic acid in human breast cancer tissues, raising concerns for public health. Due to the absence of an effective vaccine, controlling the disease is challenging. Therefore, it is crucial to accurately detect and diagnose BLV at an early stage to control its spread and minimize economic losses. This review provides a comprehensive examination of BLV, encompassing its genomic structure, epidemiology, modes of transmission, clinical symptoms, detection methods, hazards, and control strategies. The aim is to provide strategic information for future BLV research.
Collapse
Affiliation(s)
- Guanxin Lv
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing 163319, China; (G.L.); (J.W.); (S.L.)
- Heilongjiang Provincial Key Laboratory of Prevention and Control of Bovine Diseases, Daqing 163319, China
- China Key Laboratory of Bovine Disease Control in Northeast China, Ministry of Agriculture and Rural Affairs, Daqing 163319, China
| | - Jianfa Wang
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing 163319, China; (G.L.); (J.W.); (S.L.)
- Heilongjiang Provincial Key Laboratory of Prevention and Control of Bovine Diseases, Daqing 163319, China
- China Key Laboratory of Bovine Disease Control in Northeast China, Ministry of Agriculture and Rural Affairs, Daqing 163319, China
| | - Shuai Lian
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing 163319, China; (G.L.); (J.W.); (S.L.)
- Heilongjiang Provincial Key Laboratory of Prevention and Control of Bovine Diseases, Daqing 163319, China
- China Key Laboratory of Bovine Disease Control in Northeast China, Ministry of Agriculture and Rural Affairs, Daqing 163319, China
| | - Hai Wang
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing 163319, China; (G.L.); (J.W.); (S.L.)
- Heilongjiang Provincial Key Laboratory of Prevention and Control of Bovine Diseases, Daqing 163319, China
- China Key Laboratory of Bovine Disease Control in Northeast China, Ministry of Agriculture and Rural Affairs, Daqing 163319, China
| | - Rui Wu
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing 163319, China; (G.L.); (J.W.); (S.L.)
- Heilongjiang Provincial Key Laboratory of Prevention and Control of Bovine Diseases, Daqing 163319, China
- China Key Laboratory of Bovine Disease Control in Northeast China, Ministry of Agriculture and Rural Affairs, Daqing 163319, China
- College of Biology and Agriculture, Jiamusi University, Jiamusi 154007, China
| |
Collapse
|
6
|
Pereira JG, Silva CDA, Silva LD, Lima CAA, do Rosário CJRM, Silva EMC, Oliveira MDSC, Ribeiro LSDS, Santos HP, Abreu-Silva AL, Melo FA. Diagnosis and phylogenetic analysis of bovine leukemia virus in dairy cattle in northeastern Brazil. Front Vet Sci 2023; 9:1080994. [PMID: 36713884 PMCID: PMC9880491 DOI: 10.3389/fvets.2022.1080994] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Accepted: 12/28/2022] [Indexed: 01/15/2023] Open
Abstract
Enzootic bovine leukosis (EBL) is a chronic viral disease of wide distribution in cattle herds and may take several years for the first manifestation of clinical signs. Most animals do not present clinical signs. However, the economic losses are underestimated due to this disease. Thus, this work aimed to detect and characterize BLV in dairy cattle in the Maranhão state, northeastern Brazil. Blood samples were collected from 176 animals from 8 municipalities in the southeastern state of Maranhão. Bovine blood samples were subjected to DNA extraction and molecular diagnosis using nested PCR assays for BLV, targeting gp51 gene. Positive samples were then sequenced and then subjected to phylogenetic inferences. BLV DNA was detected in 16 cattle (16/176, 9.09%) in 4 municipalities. Phylogenetic analyzes showed that the sequence obtained clustered in a clade containing BLV sequences classified as genotype 6, with a high degree of support. Our data shows BLV occurrence in the Northeast of Brazil and the identification of genotype 6 in this region. These findings contribute to the molecular epidemiology of this agent in Brazil.
Collapse
|
7
|
Olaya-Galán NN, Blume S, Tong K, Shen H, Gutierrez MF, Buehring GC. In vitro Susceptibility of Human Cell Lines Infection by Bovine Leukemia Virus. Front Microbiol 2022; 13:793348. [PMID: 35359744 PMCID: PMC8964291 DOI: 10.3389/fmicb.2022.793348] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Accepted: 01/28/2022] [Indexed: 12/17/2022] Open
Abstract
Evidence of the presence of bovine leukemia virus (BLV) in human beings and its association with breast cancer has been published in the literature, proposing it as a zoonotic infection. However, not enough evidence exists about transmission pathways nor biological mechanisms in human beings. This study was aimed at gathering experimental evidence about susceptibility of human cell lines to BLV infection. Malignant and non-malignant human cell lines were co-cultured with BLV-infected FLK cells using a cell-to-cell model of infection. Infected human cell lines were harvested and cultured for 3 to 6 months to determine stability of infection. BLV detection was performed through liquid-phase PCR and visualized through in situ PCR. Seven out of nine cell lines were susceptible to BLV infection as determined by at least one positive liquid-phase PCR result in the 3-month culture period. iSLK and MCF7 cell lines were able to produce a stable infection throughout the 3-month period, with both cytoplasmic and/or nuclear BLV-DNA visualized by IS-PCR. Our results support experimental evidence of BLV infection in humans by demonstrating the susceptibility of human cells to BLV infection, supporting the hypothesis of a natural transmission from cattle to humans.
Collapse
Affiliation(s)
- Nury N Olaya-Galán
- Ph.D. Program in Biomedical and Biological Sciences, School of Medicine and Human Health, Universidad del Rosario, Bogotá, Colombia.,Grupo de Enfermedades Infecciosas, Laboratorio de Virología, Departamento de Microbiología, Pontificia Universidad Javeriana, Bogotá, Colombia
| | - Skyler Blume
- School of Public Health, University of California, Berkeley, Berkeley, CA, United States
| | - Kan Tong
- School of Public Health, University of California, Berkeley, Berkeley, CA, United States
| | - HuaMin Shen
- School of Public Health, University of California, Berkeley, Berkeley, CA, United States
| | - Maria F Gutierrez
- Grupo de Enfermedades Infecciosas, Laboratorio de Virología, Departamento de Microbiología, Pontificia Universidad Javeriana, Bogotá, Colombia
| | - Gertrude C Buehring
- School of Public Health, University of California, Berkeley, Berkeley, CA, United States
| |
Collapse
|
8
|
Marawan MA, Alouffi A, El Tokhy S, Badawy S, Shirani I, Dawood A, Guo A, Almutairi MM, Alshammari FA, Selim A. Bovine Leukaemia Virus: Current Epidemiological Circumstance and Future Prospective. Viruses 2021; 13:v13112167. [PMID: 34834973 PMCID: PMC8618541 DOI: 10.3390/v13112167] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2021] [Revised: 10/23/2021] [Accepted: 10/24/2021] [Indexed: 11/23/2022] Open
Abstract
Bovine leukaemia virus (BLV) is a deltaretrovirus that is closely related to human T-cell leukaemia virus types 1 and 2 (HTLV-1 and -2). It causes enzootic bovine leukosis (EBL), which is the most important neoplastic disease in cattle. Most BLV-infected cattle are asymptomatic, which potentiates extremely high shedding rates of the virus in many cattle populations. Approximately 30% of them show persistent lymphocytosis that has various clinical outcomes; only a small proportion of animals (less than 5%) exhibit signs of EBL. BLV causes major economic losses in the cattle industry, especially in dairy farms. Direct costs are due to a decrease in animal productivity and in cow longevity; indirect costs are caused by restrictions that are placed on the import of animals and animal products from infected areas. Most European regions have implemented an efficient eradication programme, yet BLV prevalence remains high worldwide. Control of the disease is not feasible because there is no effective vaccine against it. Therefore, detection and early diagnosis of the disease are essential in order to diminish its spreading and the economic losses it causes. This review comprises an overview of bovine leukosis, which highlights the epidemiology of the disease, diagnostic tests that are used and effective control strategies.
Collapse
Affiliation(s)
- Marawan A. Marawan
- The State Key Laboratory of Agricultural Microbiology, Huazhong Agriculture University, Wuhan 430070, China; (I.S.); (A.D.)
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China
- Department of Animal Medicine (Infectious Diseases), Faculty of Veterinary Medicine, Benha University, Toukh 13736, Egypt;
- Correspondence: (M.A.M.); (A.G.); (A.S.)
| | - Abdulaziz Alouffi
- King Abdulaziz City for Science and Technology, Riyadh 12354, Saudi Arabia;
- The Chair of Vaccines Research for Infectious Diseases, King Saud University, Riyadh 11495, Saudi Arabia;
| | - Suleiman El Tokhy
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Tanta University, Tanta 31111, Egypt;
| | - Sara Badawy
- Department of Pathology, Faculty of Veterinary Medicine, Benha University, Toukh 13736, Egypt;
- Natural Reference Laboratory of Veterinary Drug Residues (HZAU), MAO Key Laboratory for Detection of Veterinary Drug Residues Huazhong Agricultural University, Wuhan 430070, China
| | - Ihsanullah Shirani
- The State Key Laboratory of Agricultural Microbiology, Huazhong Agriculture University, Wuhan 430070, China; (I.S.); (A.D.)
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China
- Para-Clinic Department, Faculty of Veterinary Medicine, Jalalabad 2601, Afghanistan
| | - Ali Dawood
- The State Key Laboratory of Agricultural Microbiology, Huazhong Agriculture University, Wuhan 430070, China; (I.S.); (A.D.)
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China
- Infectious Diseases, Medicine Department, Faculty of Veterinary Medicine, University of Sadat City, Sadat City 32897, Egypt
| | - Aizhen Guo
- The State Key Laboratory of Agricultural Microbiology, Huazhong Agriculture University, Wuhan 430070, China; (I.S.); (A.D.)
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China
- Hubei International Scientific and Technological Cooperation Base of Veterinary Epidemiology, Huazhong Agricultural University, Wuhan 430070, China
- Correspondence: (M.A.M.); (A.G.); (A.S.)
| | - Mashal M. Almutairi
- The Chair of Vaccines Research for Infectious Diseases, King Saud University, Riyadh 11495, Saudi Arabia;
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 22334, Saudi Arabia
| | - Fahdah Ayed Alshammari
- College of Sciences and Literature Microbiology, Nothern Border University, Arar 73211, Saudi Arabia;
| | - Abdelfattah Selim
- Department of Animal Medicine (Infectious Diseases), Faculty of Veterinary Medicine, Benha University, Toukh 13736, Egypt;
- Correspondence: (M.A.M.); (A.G.); (A.S.)
| |
Collapse
|