1
|
Jangra S, Potts J, Ghosh A, Seal DR. Genome editing: A novel approach to manage insect vectors of plant viruses. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2024; 174:104189. [PMID: 39341259 DOI: 10.1016/j.ibmb.2024.104189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 09/10/2024] [Accepted: 09/22/2024] [Indexed: 09/30/2024]
Abstract
Insect vectors significantly threaten global agriculture by transmitting numerous plant viruses. Various measures, from conventional insecticides to genetic engineering, are used to mitigate this threat. However, none provide complete resistance. Therefore, researchers are looking for novel control options. In recent years with the advancements in genomic technologies, genomes and transcriptomes of various insect vectors have been generated. However, the lack of knowledge about gene functions hinders the development of novel strategies to restrict virus spread. RNA interference (RNAi) is widely used to elucidate gene functions, but its variable efficacy hampers its use in managing insect vectors and plant viruses. Genome editing has the potential to overcome these challenges and has been extensively used in various insect pest species. This review summarizes the progress and potential of genome editing in plant virus vectors and its application as a functional genomic tool to elucidate virus-vector interactions. We also discuss the major challenges associated with editing genes of interest in insect vectors.
Collapse
Affiliation(s)
- Sumit Jangra
- UF/IFAS Tropical Research and Education Center, Homestead, FL, 33031, USA.
| | - Jesse Potts
- UF/IFAS Tropical Research and Education Center, Homestead, FL, 33031, USA
| | - Amalendu Ghosh
- Advanced Centre for Plant Virology, Division of Plant Pathology, ICAR-Indian Agricultural Research Institute, New Delhi, 110012, India.
| | - Dakshina R Seal
- UF/IFAS Tropical Research and Education Center, Homestead, FL, 33031, USA
| |
Collapse
|
2
|
Fouad N, Granier M, Blanc S, Thébaud G, Urbino C. Demonstration of Insect Vector-Mediated Transfer of a Betasatellite between Two Helper Viruses. Viruses 2024; 16:1420. [PMID: 39339896 PMCID: PMC11436227 DOI: 10.3390/v16091420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 08/31/2024] [Accepted: 09/02/2024] [Indexed: 09/30/2024] Open
Abstract
Begomoviruses, transmitted by the whitefly Bemisia tabaci, pose significant threats to global agriculture due to their severe impact on various crops. Among the satellite molecules associated with begomoviruses, betasatellites play a crucial role in enhancing disease severity and yield losses. The spread and association of these molecules with helper viruses in host plants are thus matters of concern. Here, we focus on the propagation of betasatellites and, more specifically, on their transfer between different helper viruses and hosts through vector transmission. Our results show that the cotton leaf curl Gezira betasatellite (CLCuGeB), initially acquired with its helper virus cotton leaf curl Gezira virus (CLCuGeV) from an okra plant, can be transmitted and assisted by a different helper virus, tomato yellow leaf curl virus (TYLCV), in a different host plant (tomato plant). The new association can be formed whether TYLCV and CLCuGeB encounter each other in a host plant previously infected with TYLCV or in whiteflies having acquired the different components separately. Our findings reveal two pathways by which betasatellites can be transferred between helper viruses and host plants and highlight the ability of betasatellites to spread in begomovirus-infected environments.
Collapse
Affiliation(s)
- Noun Fouad
- PHIM Plant Health Institute, CIRAD, INRAE, Univ Montpellier, Institut Agro, IRD, 34398 Montpellier Cedex 5, France
| | - Martine Granier
- PHIM Plant Health Institute, CIRAD, INRAE, Univ Montpellier, Institut Agro, IRD, 34398 Montpellier Cedex 5, France
| | - Stéphane Blanc
- PHIM Plant Health Institute, CIRAD, INRAE, Univ Montpellier, Institut Agro, IRD, 34398 Montpellier Cedex 5, France
| | - Gaël Thébaud
- PHIM Plant Health Institute, CIRAD, INRAE, Univ Montpellier, Institut Agro, IRD, 34398 Montpellier Cedex 5, France
| | - Cica Urbino
- PHIM Plant Health Institute, CIRAD, INRAE, Univ Montpellier, Institut Agro, IRD, 34398 Montpellier Cedex 5, France
| |
Collapse
|
3
|
Iqbal Z, Masood M, Shafiq M, Briddon RW. Temporal changes in the levels of virus and betasatellite DNA in B. tabaci feeding on CLCuD affected cotton during the growing season. Front Microbiol 2024; 15:1410568. [PMID: 38841073 PMCID: PMC11150673 DOI: 10.3389/fmicb.2024.1410568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Accepted: 05/06/2024] [Indexed: 06/07/2024] Open
Abstract
Cotton, a key source of income for Pakistan, has suffered significantly by cotton leaf curl disease (CLCuD) since 1990. This disease is caused by a complex of phylogenetically-related begomovirus (genus Begomovirus, family Geminiviridae) species and a specific betasatellite (genus Betasatellite, family Tolecusatellitidae), cotton leaf curl Multan betasatellite. Additionally, another DNA satellite called alphasatellite (family Alphasatellitidae), is also frequently associated. All these virus components are vectored by a single species of whitefly (Bemisia tabaci). While many factors affect cotton productivity, including cotton variety, sowing time, and environmental cues such as temperature, humidity, and rainfall, CLCuD is a major biotic constraint. Although the understanding of begomoviruses transmission by whiteflies has advanced significantly over the past three decades, however, the in-field seasonal dynamics of the viruses in the insect vector remained an enigma. This study aimed to assess the levels of virus and betasatellite in whiteflies collected from cotton plants throughout the cotton growing season from 2014 to 2016. Notably, begomovirus levels showed no consistent pattern, with minimal variations, ranging from 0.0017 to 0.0074 ng.μg-1 of the genomic DNA in 2014, 0.0356 to 0.113 ng.μg-1 of the genomic DNA in 2015, and 0.0517 to 0.0791 ng.μg-1 of the genomic DNA in 2016. However, betasatellite levels exhibited a distinct pattern. During 2014 and 2015, it steadily increased throughout the sampling period (May to September). While 2016 showed a similar trend from the start of sampling (July) to September but a decline in October (end of sampling). Such a study has not been conducted previously, and could potentially provide valuable insights about the epidemiology of the virus complex causing CLCuD and possible means of controlling losses due to it.
Collapse
Affiliation(s)
- Zafar Iqbal
- Central Laboratories, King Faisal University, Al-Ahsa, Saudi Arabia
| | - Mariyam Masood
- Department of Zoology, Government College Women University, Faisalabad, Pakistan
| | - Muhammad Shafiq
- Department of Biotechnology, University of Management and Technology, Sialkot Campus, Sialkot, Pakistan
| | - Rob W. Briddon
- Agricultural Biotechnology Division, National Institute for Biotechnology and Genetic Engineering, Faisalabad, Pakistan
| |
Collapse
|
4
|
Kumar M, Ghosh A, Jadon KS, Kaur B, Kakani RK, Solanki RK. Association of a novel begomovirus species with fenugreek yellow vein disease in India. Mol Biol Rep 2023; 50:9203-9211. [PMID: 37776416 DOI: 10.1007/s11033-023-08806-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Accepted: 09/07/2023] [Indexed: 10/02/2023]
Abstract
BACKGROUND Fenugreek (Trigonella foenum-graecum L.) is an annual medicinal and spice crop belonging to the family Fabaceae. The occurrence of a yellow vein disease was recorded in fenugreek in Jodhpur (India) in 2022. The infection of begomoviruses in legume crops results in significant yield loss and major economic loss. The current study reports an association of a novel begomovirus species associated with yellow vein disease in Fenugreek. METHODS AND RESULTS In symptomatic fenugreek plants, geminivirus-like particles were visible under a transmission electron microscope. Further, nucleotide sequence analysis of the rolling circle amplified product revealed 2743 nucleotide DNA-A genome with close relatedness to French bean leaf curl virus (88.21%) and Senna leaf curl virus (87.63%). It was proposed as a new begomovirus species, Fenugreek yellow vein Rajasthan virus. The genome organization suggested the presence of a typical nonanucleotide sequence along with 7 ORFs in DNA-A. A possible recombination event took place in the coat protein (V1) region with Pedilanthus leaf curl virus and Chilli leaf curl virus as major and minor parents. The recombinant virus poses possible threats to several other legume crops. To the best of our knowledge, this is the first report of the association of FeYVRaV with fenugreek yellow vein disease from northwestern India. CONCLUSIONS In conclusion, the presence of a novel begomovirus species associated with yellow vein disease in fenugreek is alarming and needs further studies on its infectivity to prevent its spread to legume crops.
Collapse
Affiliation(s)
- Manish Kumar
- Insect Vector Laboratory, Advanced Centre for Plant Virology, ICAR-Indian Agricultural Research Institute, New Delhi, 110012, India
- Department of Plant Pathology, College of Agricultural & Environmental Sciences, University of Georgia, Tifton, GA, 31793, USA
| | - Amalendu Ghosh
- Insect Vector Laboratory, Advanced Centre for Plant Virology, ICAR-Indian Agricultural Research Institute, New Delhi, 110012, India.
| | - Kuldeep Singh Jadon
- ICAR-Central Arid Zone Research Institute, Jodhpur, Rajasthan, 342003, India.
| | - Baljeet Kaur
- Division of Plant Pathology, TEM Facility, ICAR-Indian Agricultural Research Institute, New Delhi, 110012, India
| | - Rajesh K Kakani
- ICAR-Central Arid Zone Research Institute, Jodhpur, Rajasthan, 342003, India
| | - Ramesh K Solanki
- ICAR-Central Arid Zone Research Institute, Jodhpur, Rajasthan, 342003, India
| |
Collapse
|
5
|
Vignesh S, Renukadevi P, Nagendran K, Senthil N, Kumar RV, SwarnaPriya R, Behera TK, Karthikeyan G. A distinct strain of tomato leaf curl New Delhi virus that causes mosaic disease in ash gourd and other cucurbitaceous crops. Front Microbiol 2023; 14:1268333. [PMID: 37965544 PMCID: PMC10641021 DOI: 10.3389/fmicb.2023.1268333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Accepted: 10/05/2023] [Indexed: 11/16/2023] Open
Abstract
Ash gourd (Benincasa hispida) is a cucurbitaceous crop cultivated as an edible vegetable rich in vitamins, minerals, dietary fibers and antioxidants. In a field survey conducted in the Udumalpet region of Tamil Nadu during 2019, the incidence of mosaic disease on ash gourd crop was observed to be 75%. The DNA-A and DNA-B components of begomovirus genome have been identified as associated with this disease. Both the cloned DNA-A and DNA-B genomic components shared highest pairwise sequence identities with the isolates of tomato leaf curl New Delhi virus (ToLCNDV), a bipartite begomovirus. Recombinant analysis showed that both the components are possibly evolved through intra-species recombination between ToLCNDV isolates. Tomato leaf curl Bangladesh betasatellite (ToLCBB) is not naturally associated with this sample. The results of infectivity studies on ash gourd and other cucurbitaceous crops demonstrates the Koch's postulates, when co-inoculation of DNA-A and DNA-B of ToLCNDV was undertaken. However, the inoculation of non-cognate ToLCBB along with DNA-A and DNA-B enhances the symptom expression and reduces the time taken for symptom development. Thus, Koch's postulates were proved for these virus complexes on cucurbitaceous crops. Furthermore, an enhanced accumulation of DNA-A component was detected in the cucurbits co-inoculated with ToLCNDV and ToLCBB. This report highlights the importance of investigating the spread of these disease complexes with other cucurbitaceous crops in India.
Collapse
Affiliation(s)
- S. Vignesh
- Department of Plant Pathology, Tamil Nadu Agricultural University, Coimbatore, Tamil Nadu, India
| | - P. Renukadevi
- Department of Plant Pathology, Tamil Nadu Agricultural University, Coimbatore, Tamil Nadu, India
| | - K. Nagendran
- Indian Institute of Vegetable Research, Varanasi, Uttar Pradesh, India
| | - N. Senthil
- Department of Biotechnology, Tamil Nadu Agricultural University, Coimbatore, Tamil Nadu, India
| | - R. Vinoth Kumar
- Department of Biotechnology, College of Science and Humanities, SRM Institute of Science and Technology, Chennai, Tamil Nadu, India
| | - R. SwarnaPriya
- Floriculture Research Station, Tamil Nadu Agricultural University, Coimbatore, Tamil Nadu, India
| | | | - G. Karthikeyan
- Department of Plant Pathology, Tamil Nadu Agricultural University, Coimbatore, Tamil Nadu, India
| |
Collapse
|
6
|
Caruso AG, Ragona A, Bertacca S, Montoya MAM, Panno S, Davino S. Development of an In-Field Real-Time LAMP Assay for Rapid Detection of Tomato Leaf Curl New Delhi Virus. PLANTS (BASEL, SWITZERLAND) 2023; 12:1487. [PMID: 37050114 PMCID: PMC10096830 DOI: 10.3390/plants12071487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 03/25/2023] [Accepted: 03/27/2023] [Indexed: 06/19/2023]
Abstract
Tomato leaf curl New Delhi virus (ToLCNDV) represents a threat to economically important horticultural crops. A real-time loop-mediated isothermal amplification (LAMP) assay for in-field ToLCNDV detection was developed, coupled to a rapid sample preparation method, and tested both in field and laboratory conditions on zucchini squash, tomato, and pepper samples. A set of six LAMP primers was designed for specific ToCLNDV detection, targeting a 218-nucleotide sequence within the AV1 gene. The sensitivity, specificity and accuracy of the real-time LAMP assay and comparison with canonical PCR were evaluated. The real-time LAMP assay developed was about one-thousand times more sensitive than the conventional PCR method, detecting a total of 4.41 × 102 genome copies as minimum target; no cross-reactivity was detected with the other geminiviruses used as the outgroup. The rapid sample preparation method allows for a reliable detection with a low reaction delay (≈2-3 min) compared to canonical DNA extraction, providing results in less than 45 min. Lastly, an increase in ToLCNDV-positive sample detection was observed compared to PCR, in particular for asymptomatic plants (85% and 71.6%, respectively). The real-time LAMP assay developed is a rapid, simple, specific, and sensitive technique for ToLCNDV detection, and it can be adopted as a routine test, for both in-field and laboratory conditions.
Collapse
Affiliation(s)
- Andrea Giovanni Caruso
- Department of Agricultural, Food and Forest Sciences (SAAF), University of Palermo, Viale delle Scienze, 90128 Palermo, Italy
| | - Arianna Ragona
- Department of Agricultural, Food and Forest Sciences (SAAF), University of Palermo, Viale delle Scienze, 90128 Palermo, Italy
| | - Sofia Bertacca
- Department of Agricultural, Food and Forest Sciences (SAAF), University of Palermo, Viale delle Scienze, 90128 Palermo, Italy
| | - Mauricio Alejandro Marin Montoya
- Laboratory of Industrial Microbiology, Faculty of Sciences, National University of Colombia, Calle 59A N.° 63-20, Medellín 050034, Colombia
| | - Stefano Panno
- Department of Agricultural, Food and Forest Sciences (SAAF), University of Palermo, Viale delle Scienze, 90128 Palermo, Italy
| | - Salvatore Davino
- Department of Agricultural, Food and Forest Sciences (SAAF), University of Palermo, Viale delle Scienze, 90128 Palermo, Italy
| |
Collapse
|
7
|
Roy B, Venu E, Kumar S, Dubey S, Lakshman D, Mandal B, Sinha P. Leaf Curl Epidemic Risk in Chilli as a Consequence of Vector Migration Rate and Contact Rate Dynamics: A Critical Guide to Management. Viruses 2023; 15:v15040854. [PMID: 37112834 PMCID: PMC10144731 DOI: 10.3390/v15040854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2023] [Revised: 03/14/2023] [Accepted: 03/15/2023] [Indexed: 03/29/2023] Open
Abstract
Chilli is an important commercial crop grown in tropical and subtropical climates. The whitefly-transmitted chilli leaf curl virus (ChiLCV) is a serious threat to chilli cultivation. Vector migration rate and host–vector contact rate, the major drivers involved in the epidemic process, have been pinpointed to link management. The complete interception of migrant vectors immediately after transplantation has been noted to increase the survival time (to remain infection free) of the plants (80%) and thereby delay the epidemic process. The survival time under interception (30 days) has been noted to be nine weeks (p < 0.05), as compared to five weeks, which received a shorter period of interception (14–21 days). Non-significant differences in hazard ratios between 21- and 30-day interceptions helped optimize the cover period to 26 days. Vector feeding rate, estimated as a component of contact rate, is noted to increase until the sixth week with host density and decline subsequently due to plant succulence factor. Correspondence between the peak time of virus transmission or inoculation rate (at 8 weeks) and contact rate (at 6 weeks) suggests that host succulence is of critical importance in host–vector interactions. Infection proportion estimates in inoculated plants at different leaf stages have supported the view that virus transmission potential with plant age decreases, presumably due to modification in contact rate. The hypothesis that migrant vectors and contact rate dynamics are the primary drivers of the epidemic has been proved and translated into rules to guide management strategies.
Collapse
Affiliation(s)
- Buddhadeb Roy
- Division of Plant Pathology, ICAR-Indian Agricultural Research Institute, New Delhi 110012, India
| | - Emmadi Venu
- Division of Plant Pathology, ICAR-Indian Agricultural Research Institute, New Delhi 110012, India
| | - Sathiyaseelan Kumar
- Division of Plant Pathology, ICAR-Indian Agricultural Research Institute, New Delhi 110012, India
| | - Shailja Dubey
- Division of Plant Pathology, ICAR-Indian Agricultural Research Institute, New Delhi 110012, India
| | - Dilip Lakshman
- Sustainable Agricultural Systems Laboratory, USDA-ARS, Beltsville, MD 20705, USA
| | - Bikash Mandal
- Division of Plant Pathology, ICAR-Indian Agricultural Research Institute, New Delhi 110012, India
| | - Parimal Sinha
- Division of Plant Pathology, ICAR-Indian Agricultural Research Institute, New Delhi 110012, India
- Correspondence:
| |
Collapse
|
8
|
Thesnim P, Jangra S, Kumar M, Ghosh A. Effect of silencing Bemisia tabaci TLR3 and TOB1 on fitness and begomovirus transmission. FRONTIERS IN PLANT SCIENCE 2023; 14:1136262. [PMID: 36998692 PMCID: PMC10043976 DOI: 10.3389/fpls.2023.1136262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Accepted: 02/22/2023] [Indexed: 06/19/2023]
Abstract
Bemisia tabaci (Hemiptera: Aleyrodidae) is one of the most important invasive pests worldwide. It infests several vegetables, legumes, fiber, and ornamental crops. Besides causing direct damage by sucking plant sap, B. tabaci is the principal vector of begomoviruses. Chilli leaf curl virus (ChiLCV, Begomovirus) transmitted by B. tabaci is a major constraint in chilli production. B. tabaci genes associated with metabolism, signaling pathways, cellular processes, and organismal systems are highly enriched in response to ChiLCV infection. The previous transcriptome study suggested the association of B. tabaci Toll-like receptor 3 (TLR3) and transducer of erbB2.1 (TOB1) in ChiLCV infection. In the present study, B. tabaci TLR3 and TOB1 were silenced using double-stranded RNA (dsRNA) and the effect on fitness and begomovirus transmission has been reported. Oral delivery of dsRNA at 3 µg/mL reduced the expression of B. tabaci TLR3 and TOB1 by 6.77 and 3.01-fold, respectively. Silencing of TLR3 and TOB1 induced significant mortality in B. tabaci adults compared to untreated control. The ChiLCV copies in B. tabaci significantly reduced post-exposure to TLR3 and TOB1 dsRNAs. The ability of B. tabaci to transmit ChiLCV also declined post-silencing TLR3 and TOB1. This is the first-ever report of silencing B. tabaci TLR3 and TOB1 to induce mortality and impair virus transmission ability in B. tabaci. B. tabaci TLR3 and TOB1 would be novel genetic targets to manage B. tabaci and restrict the spread of begomovirus.
Collapse
Affiliation(s)
- Pathukandathil Thesnim
- Insect Vector Laboratory, Advanced Centre for Plant Virology, ICAR-Indian Agricultural Research Institute, New Delhi, India
- Division of Entomology, ICAR-Indian Agricultural Research Institute, New Delhi, India
| | - Sumit Jangra
- Insect Vector Laboratory, Advanced Centre for Plant Virology, ICAR-Indian Agricultural Research Institute, New Delhi, India
| | - Manish Kumar
- Insect Vector Laboratory, Advanced Centre for Plant Virology, ICAR-Indian Agricultural Research Institute, New Delhi, India
| | - Amalendu Ghosh
- Insect Vector Laboratory, Advanced Centre for Plant Virology, ICAR-Indian Agricultural Research Institute, New Delhi, India
| |
Collapse
|
9
|
Quadros AFF, Ferro CG, de Rezende RR, Godinho MT, Xavier CAD, Nogueira AM, Alfenas-Zerbini P, Zerbini FM. Begomovirus populations in single plants are complex and may include both well-adapted and poorly-adapted viruses. Virus Res 2023; 323:198969. [PMID: 36257487 PMCID: PMC10194161 DOI: 10.1016/j.virusres.2022.198969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 10/10/2022] [Accepted: 10/13/2022] [Indexed: 11/05/2022]
Abstract
Begomoviruses (single-stranded DNA plant viruses transmitted by whiteflies) are economically important pathogens causing epidemics worldwide. Tomato-infecting begomoviruses emerged in Brazil in the 1990's following the introduction of Bemisia tabaci Middle East-Asia Minor 1. It is believed that these viruses evolved from indigenous viruses infecting non-cultivated hosts. However, tomato-infecting viruses are rarely found in non-cultivated hosts, and vice-versa. It is possible that viral populations in a given host are composed primarily of viruses which are well adapted to this host, but also include a small proportion of poorly adapted viruses. Following transfer to a new host, the composition of the viral population would shift rapidly, with the viruses which are better adapted to the new host becoming predominant. To test this hypothesis, we collected tomato and Sida plants growing next to each other at two locations in 2014 and 2018. Total DNA was extracted from tomato and Sida samples from each location and year and used as a template for high-throughput sequencing. Reads were mapped following a highly stringent set of criteria. For the 2014 samples, >98% of the Sida reads mapped to Sida micrantha mosaic virus (SiMMV), but 0.1% of the reads mapped to tomato severe rugose virus (ToSRV). Conversely, >99% of the tomato reads mapped to ToSRV, with 0.18% mapping to SiMMV. For the 2018 samples, 41% of the Sida reads mapped to three Sida-adapted viruses and 0.1% of the reads mapped to ToSRV, while 99.9% of the tomato reads mapped to ToSRV. These results are consistent with the hypothesis that viral populations in a single plant are composed primarily of the virus that is better adapted to the host but also include a small proportion of viruses that are poorly adapted.
Collapse
Affiliation(s)
- Ayane F F Quadros
- Dep. de Fitopatologia, Universidade Federal de Viçosa, Viçosa, MG, 36570-900, Brazil
| | - Camila G Ferro
- Dep. de Fitopatologia, Universidade Federal de Viçosa, Viçosa, MG, 36570-900, Brazil
| | - Rafael R de Rezende
- Dep. de Microbiologia, Universidade Federal de Viçosa, Viçosa, MG, 36570-900, Brazil
| | - Márcio T Godinho
- Dep. de Fitopatologia, Universidade Federal de Viçosa, Viçosa, MG, 36570-900, Brazil
| | - César A D Xavier
- Dep. de Fitopatologia, Universidade Federal de Viçosa, Viçosa, MG, 36570-900, Brazil
| | - Angélica M Nogueira
- Dep. de Fitopatologia, Universidade Federal de Viçosa, Viçosa, MG, 36570-900, Brazil
| | - P Alfenas-Zerbini
- Dep. de Microbiologia, Universidade Federal de Viçosa, Viçosa, MG, 36570-900, Brazil
| | - F Murilo Zerbini
- Dep. de Fitopatologia, Universidade Federal de Viçosa, Viçosa, MG, 36570-900, Brazil.
| |
Collapse
|
10
|
McLaughlin AA, Hanley-Bowdoin L, Kennedy GG, Jacobson AL. Vector acquisition and co-inoculation of two plant viruses influences transmission, infection, and replication in new hosts. Sci Rep 2022; 12:20355. [PMID: 36437281 PMCID: PMC9701672 DOI: 10.1038/s41598-022-24880-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2022] [Accepted: 11/22/2022] [Indexed: 11/28/2022] Open
Abstract
This study investigated the role of vector acquisition and transmission on the propagation of single and co-infections of tomato yellow leaf curl virus (TYLCV,) and tomato mottle virus (ToMoV) (Family: Geminiviridae, Genus: Begomovirus) by the whitefly vector Bemisia tabaci MEAM1 (Gennadius) in tomato. The aim of this research was to determine if the manner in which viruses are co-acquired and co-transmitted changes the probability of acquisition, transmission and new host infections. Whiteflies acquired virus by feeding on singly infected plants, co-infected plants, or by sequential feeding on singly infected plants. Viral titers were also quantified by qPCR in vector cohorts, in artificial diet, and plants after exposure to viruliferous vectors. Differences in transmission, infection status of plants, and titers of TYLCV and ToMoV were observed among treatments. All vector cohorts acquired both viruses, but co-acquisition/co-inoculation generally reduced transmission of both viruses as single and mixed infections. Co-inoculation of viruses by the vector also altered virus accumulation in plants regardless of whether one or both viruses were propagated in new hosts. These findings highlight the complex nature of vector-virus-plant interactions that influence the spread and replication of viruses as single and co-infections.
Collapse
Affiliation(s)
- Autumn A McLaughlin
- Department of Entomology and Plant Pathology, Auburn University, Auburn, AL, 36849, USA
| | - Linda Hanley-Bowdoin
- Department of Plant and Microbial Biology, North Carolina State University, Raleigh, NC, 27695, USA
| | - George G Kennedy
- Department of Entomology and Plant Pathology, North Carolina State University, Raleigh, NC, 27695, USA
| | - Alana L Jacobson
- Department of Entomology and Plant Pathology, Auburn University, Auburn, AL, 36849, USA.
| |
Collapse
|
11
|
Farooq T, Lin Q, She X, Chen T, Tang Y, He Z. Comparative transcriptome profiling reveals a network of differentially expressed genes in Asia II 7 and MEAM1 whitefly cryptic species in response to early infection of Cotton leaf curl Multan virus. Front Microbiol 2022; 13:1004513. [PMID: 36267190 PMCID: PMC9577181 DOI: 10.3389/fmicb.2022.1004513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Accepted: 09/21/2022] [Indexed: 11/13/2022] Open
Abstract
Cotton leaf curl Multan virus (CLCuMuV) is a whitefly-vectored begomovirus that poses ramping threat to several economically important crops worldwide. The differential transmission of CLCuMuV by its vector Bemisia tabaci mainly relies on the type of whitefly cryptic species. However, the molecular responses among different whitefly cryptic species in response to early CLCuMuV infection remain elusive. Here, we compared early-stage transcriptomic profiles of Asia II 7 and MEAM1 cryptic species infected by CLCuMuV. Results of Illumina sequencing revealed that after 6 and 12 h of CLCuMuV acquisition, 153 and 141 genes among viruliferous (VF) Asia II 7, while 445 and 347 genes among VF MEAM 1 whiteflies were differentially expressed compared with aviruliferous (AVF) whiteflies. The most abundant groups of differentially expressed genes (DEGs) among Asia II 7 and MEAM1 were associated with HTH-1 and zf-C2H2 classes of transcription factors (TFs), respectively. Notably, in contrast to Asia II 7, MEAM1 cryptic species displayed higher transcriptional variations with elevated immune-related responses following CLCuMuV infection. Among both cryptic species, we identified several highly responsive candidate DEGs associated with antiviral innate immunity (alpha glucosidase, LSM14-like protein B and phosphoenolpyruvate carboxykinase), lysosome (GPI-anchored protein 58) and autophagy/phagosome pathways (sequestosome-1, cathepsin F-like protease), spliceosome (heat shock protein 70), detoxification (cytochrome P450 4C1), cGMP-PKG signaling pathway (myosin heavy chain), carbohydrate metabolism (alpha-glucosidase), biological transport (mitochondrial phosphate carrier) and protein absorption and digestion (cuticle protein 8). Further validation of RNA-seq results showed that 23 of 28 selected genes exhibited concordant expression both in RT-qPCR and RNA-seq. Our findings provide vital mechanistic insights into begomovirus-whitefly interactions to understand the dynamics of differential begomovirus transmission by different whitefly cryptic species and reveal novel molecular targets for sustainable management of insect-transmitted plant viruses.
Collapse
Affiliation(s)
| | | | | | | | - Yafei Tang
- Plant Protection Research Institute and Guangdong Provincial Key Laboratory of High Technology for Plant Protection, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| | - Zifu He
- Plant Protection Research Institute and Guangdong Provincial Key Laboratory of High Technology for Plant Protection, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| |
Collapse
|
12
|
Rapid and zero-cost DNA extraction from soft-bodied insects for routine PCR-based applications. PLoS One 2022; 17:e0271312. [PMID: 35839213 PMCID: PMC9286237 DOI: 10.1371/journal.pone.0271312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Accepted: 06/28/2022] [Indexed: 11/30/2022] Open
Abstract
Nucleic acid extraction is the first and foremost step in molecular biology studies. Extraction of DNA from small, soft-bodied insects is often time-consuming and costly. A fast, easy, and cost-effective DNA extraction method with greater yield and purity of DNA would aid in the rapid diagnostics, screening of large populations, and other routine PCR-based applications. The present study evaluated and standardized a rapid and zero-cost DNA extraction from soft-bodied small insects for routine molecular studies. Five rapid DNA extraction methods viz. extraction in sterile distilled water (SDW), 1X phosphate-buffered saline (PBS, pH 7.4), 1.4 M sodium chloride (NaCl), 20 mM ethylenediaminetetraacetic acid (EDTA, pH 8.0), and elution from blotted nitrocellulose membrane (NCM) were compared with standard CTAB extraction buffer and DNeasy® Blood and Tissue Kit methods. The average yield, purity, storage stability, time, and cost of extraction were assessed for all the methods and compared. A method of DNA extraction by simply crushing the soft-bodied insects in SDW was ideal in terms of yield, purity, storability, and performing routine PCR-based applications including detection of pathogens from vector species. The extraction could be accomplished in 2.5 min only with zero-reagent cost. The method would be useful in rapid molecular diagnostics and screening large populations of soft-bodied insects.
Collapse
|
13
|
Nekkanti A, Chakraborty P, Ghosh A, Iquebal MA, Jaiswal S, Baranwal VK. Transcriptomic Changes of Bemisia tabaci Asia II 1 Induced by Chilli Leaf Curl Virus Trigger Infection and Circulation in Its Vector. Front Microbiol 2022; 13:890807. [PMID: 35572639 PMCID: PMC9096263 DOI: 10.3389/fmicb.2022.890807] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2022] [Accepted: 03/25/2022] [Indexed: 11/24/2022] Open
Abstract
Bemisia tabaci (Hemiptera: Aleyrodidae) is a highly efficient vector in the spread of chilli leaf curl virus (ChiLCV, Begomovirus) which is a major constraint in the production of chilli in South Asia. Transcriptome analysis of B. tabaci post-6 h acquisition of ChiLCV showed differential expression of 80 (29 upregulated and 51 downregulated) genes. The maximum number of DEGs are categorized under the biological processes category followed by cellular components and molecular functions. KEGG analysis of DEGs showed that the genes are involved in the functions like metabolism, signaling pathways, cellular processes, and organismal systems. The expression of highly expressed 20 genes post-ChiLCV acquisition was validated in RT-qPCR. DEGs such as cytosolic carboxypeptidase 3, dual-specificity protein phosphatase 10, 15, dynein axonemal heavy chain 17, fasciclin 2, inhibin beta chain, replication factor A protein 1, and Tob1 were found enriched and favored the virus infection and circulation in B. tabaci. The present study provides an improved understanding of the networks of molecular interactions between B. tabaci and ChiLCV. The candidate genes of B. tabaci involved in ChiLCV transmission would be novel targets for the management of the B. tabaci-begomovirus complex.
Collapse
Affiliation(s)
- Aarthi Nekkanti
- Advanced Centre for Plant Virology, Indian Agricultural Research Institute, New Delhi, India.,Division of Entomology, Indian Agricultural Research Institute, New Delhi, India
| | - Prosenjit Chakraborty
- Advanced Centre for Plant Virology, Indian Agricultural Research Institute, New Delhi, India
| | - Amalendu Ghosh
- Advanced Centre for Plant Virology, Indian Agricultural Research Institute, New Delhi, India
| | - Mir Asif Iquebal
- Centre for Agricultural Bioinformatics, Indian Agricultural Statistics Research Institute, New Delhi, India
| | - Sarika Jaiswal
- Centre for Agricultural Bioinformatics, Indian Agricultural Statistics Research Institute, New Delhi, India
| | - Virendra Kumar Baranwal
- Advanced Centre for Plant Virology, Indian Agricultural Research Institute, New Delhi, India
| |
Collapse
|
14
|
Barman M, Samanta S, Chakraborty S, Samanta A, Tarafdar J. Copy number variation of two begomovirus acquired and inoculated by different cryptic species of whitefly, Bemisia tabaci in Okra. PLoS One 2022; 17:e0265991. [PMID: 35353870 PMCID: PMC8966996 DOI: 10.1371/journal.pone.0265991] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Accepted: 03/12/2022] [Indexed: 11/18/2022] Open
Abstract
The whitefly, B.tabaci is a major pest of agricultural crops which transmits begomovirus in a species-specific manner. Yellow vein mosaic disease (YVMD) and okra leaf curl disease (OLCD) caused by distinct begomovirus are a major limitation to production of okra in India. In this framework the present investigation reports, for the first time, comparative study of begomovirus species viz. yellow vein mosaic virus (YVMV) and okra enation leaf curl virus (OELCuV) ingested and egested by two cryptic species (Asia I and Asia II 5) of B.tabaci at different time interval using detached leaf assay. A gradual increase of both virus copies were observed with increased feeding exposure in Asia I and Asia II 5. Both the genetic groups of whitefly could acquire the viruses within just 5 minutes of active feeding however, a significant amount of variation was noted in virus uptake by the both. At 24 hours of active feeding Asia II 5 acquired more of YVMV whereas, Asia I ingested more OELCuV. Similarly, the genetic group acquiring higher titre of virus egested higher amount during inoculation period. On the whole, it can be presumed that Asia I is a more effective transmitter of OELCuV whereas, Asia II 5 of YVMV further suggesting increased risk of virus pandemics (both YVMV and OELCuV) in regions where Asia I and Asia II 5 is dominant.
Collapse
Affiliation(s)
- Mritunjoy Barman
- Department of Agricultural Entomology, B.C.K.V, Mohanpur, West Bengal, India
| | - Snigdha Samanta
- Department of Agricultural Entomology, B.C.K.V, Mohanpur, West Bengal, India
| | | | - Arunava Samanta
- Department of Agricultural Entomology, B.C.K.V, Mohanpur, West Bengal, India
| | - Jayanta Tarafdar
- Department of Plant Pathology, B.C.K.V, Nadia, West Bengal, India
- Directorate of Research, B.C.K.V, Kalyani, India
- * E-mail:
| |
Collapse
|
15
|
Chakraborty P, Ghosh A. Topical Spray of dsRNA Induces Mortality and Inhibits Chilli Leaf Curl Virus Transmission by Bemisia tabaci Asia II 1. Cells 2022; 11:cells11050833. [PMID: 35269455 PMCID: PMC8909865 DOI: 10.3390/cells11050833] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Revised: 02/13/2022] [Accepted: 02/18/2022] [Indexed: 01/09/2023] Open
Abstract
Chilli leaf curl virus (ChiLCV; genus: Begomovirus), transmitted by Bemisia tabaci (Gennadius) (Hemiptera: Aleyrodidae) in a persistent-circulative manner, is a major constraint in chilli production. The present study demonstrates for the first time that a topical spray of naked double-stranded RNA (dsRNA) on chilli plants causes mortality and inability to acquire and transmit ChiLCV in B. tabaci. dsRNA targeting heat shock protein 70 (hsp70) and fasciclin 2 (fas2) of B. tabaci Asia II 1 was first assessed under controlled conditions through oral delivery. Hsp70 and fas2 dsRNA resulted in up to 82.22% and 72% mortality of B. tabaci and around 12.4- and 8.5-fold decreases in mRNA levels, respectively, 24 h post-ingestion. ChiLCV copies in hsp70 dsRNA-fed B. tabaci steadily decreased with an increase in dsRNA concentration and were undetectable at a higher concentration of dsRNA. However, ChiLCV copies significantly increased in fas2 dsRNA-fed B. tabaci. Transmission of ChiLCV by B. tabaci was completely inhibited post-24 h feeding on hsp70 dsRNA at 3 μg/mL. Naked hsp70 dsRNA was topically sprayed on ChiLCV-infected chilli plants like an insecticide. 67.77% mortality of B. tabaci, 4.6-fold downregulation of hsp70 mRNA, and 1.34 × 1015-fold decreased ChiLCV copies in B. tabaci were recorded when adults were exposed to the dsRNA-treated plants under semi-field conditions. Foliar application of naked dsRNA reduced the ChiLCV transmission by 75% without any visible symptoms in the inoculated plants. A total of 2 consecutive sprays of dsRNA provided significant protection to B. tabaci for up to 20 days under semi-field conditions.
Collapse
|