1
|
Chang-Rabley E, van Zelm MC, Ricotta EE, Edwards ESJ. An Overview of the Strategies to Boost SARS-CoV-2-Specific Immunity in People with Inborn Errors of Immunity. Vaccines (Basel) 2024; 12:675. [PMID: 38932404 PMCID: PMC11209597 DOI: 10.3390/vaccines12060675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 06/09/2024] [Accepted: 06/12/2024] [Indexed: 06/28/2024] Open
Abstract
The SARS-CoV-2 pandemic has heightened concerns about immunological protection, especially for individuals with inborn errors of immunity (IEI). While COVID-19 vaccines elicit strong immune responses in healthy individuals, their effectiveness in IEI patients remains unclear, particularly against new viral variants and vaccine formulations. This uncertainty has led to anxiety, prolonged self-isolation, and repeated vaccinations with uncertain benefits among IEI patients. Despite some level of immune response from vaccination, the definition of protective immunity in IEI individuals is still unknown. Given their susceptibility to severe COVID-19, strategies such as immunoglobulin replacement therapy (IgRT) and monoclonal antibodies have been employed to provide passive immunity, and protection against both current and emerging variants. This review examines the efficacy of COVID-19 vaccines and antibody-based therapies in IEI patients, their capacity to recognize viral variants, and the necessary advances required for the ongoing protection of people with IEIs.
Collapse
Affiliation(s)
- Emma Chang-Rabley
- The Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Menno C. van Zelm
- Allergy and Clinical Immunology Laboratory, Department of Immunology, Central Clinical School, Monash University, Melbourne, VIC 3800, Australia
- The Jeffrey Modell Diagnostic and Research Centre for Primary Immunodeficiencies in Melbourne, Melbourne, VIC 3000, Australia
- Department of Immunology, Erasmus MC, University Medical Center, 3015 GD Rotterdam, The Netherlands
| | - Emily E. Ricotta
- The Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
- Department of Preventive Medicine and Biostatistics, Uniform Services University of the Health Sciences, Bethesda, MD 20814, USA
| | - Emily S. J. Edwards
- Allergy and Clinical Immunology Laboratory, Department of Immunology, Central Clinical School, Monash University, Melbourne, VIC 3800, Australia
- The Jeffrey Modell Diagnostic and Research Centre for Primary Immunodeficiencies in Melbourne, Melbourne, VIC 3000, Australia
| |
Collapse
|
2
|
Yunoki M, Kubota-Koketsu R, Imada T, Furuyama K, Sasaki T, Ohashi S, Shioda T. Changes in Anti-SARS-CoV-2 Antibody Titers of Pooled Plasma Derived From Donors in Japan: A Potential Tool for Mass-Immunity Evaluation. J Infect Dis 2023; 228:889-894. [PMID: 37224513 DOI: 10.1093/infdis/jiad178] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 05/05/2023] [Accepted: 05/18/2023] [Indexed: 05/26/2023] Open
Abstract
The anti-spike (S), anti-nucleocapsid (N), and neutralizing activities of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) of pooled plasma derived from donors in Japan from January 2021 to April 2022 were evaluated. Anti-S titers and neutralizing activities showed a wave-like trend affected by daily vaccinations and/or the number of reported cases of SARS-CoV-2 infections, whereas anti-N titers remained at negative levels. These results suggest that anti-S and neutralizing titers would fluctuate in pooled plasma in the future. Pooled plasma may be potentially used for mass-immunity evaluation, and titer estimation in intravenous immunoglobulin, a derivative of pooled plasma.
Collapse
Affiliation(s)
- Mikihiro Yunoki
- Research and Development Division, Japan Blood Products Organization, Tokyo, Japan
- Department of Viral Infections, Research Institute for Microbial Diseases, Osaka University, Suita, Japan
| | - Ritsuko Kubota-Koketsu
- Department of Viral Infections, Research Institute for Microbial Diseases, Osaka University, Suita, Japan
| | - Teruaki Imada
- Research and Development Division, Japan Blood Products Organization, Tokyo, Japan
| | - Kazuhiro Furuyama
- Manufacturing Division, Japan Blood Products Organization, Tokyo, Japan
| | - Takahiro Sasaki
- Manufacturing Division, Japan Blood Products Organization, Tokyo, Japan
| | - Shinichi Ohashi
- Manufacturing Division, Japan Blood Products Organization, Tokyo, Japan
| | - Tatsuo Shioda
- Department of Viral Infections, Research Institute for Microbial Diseases, Osaka University, Suita, Japan
| |
Collapse
|
3
|
Jaki L, Weigang S, Kern L, Kramme S, Wrobel AG, Grawitz AB, Nawrath P, Martin SR, Dähne T, Beer J, Disch M, Kolb P, Gutbrod L, Reuter S, Warnatz K, Schwemmle M, Gamblin SJ, Neumann-Haefelin E, Schnepf D, Welte T, Kochs G, Huzly D, Panning M, Fuchs J. Total escape of SARS-CoV-2 from dual monoclonal antibody therapy in an immunocompromised patient. Nat Commun 2023; 14:1999. [PMID: 37037847 PMCID: PMC10085998 DOI: 10.1038/s41467-023-37591-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Accepted: 03/22/2023] [Indexed: 04/12/2023] Open
Abstract
Monoclonal antibodies (mAbs) directed against the spike of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) are effective therapeutic options to combat infections in high-risk patients. Here, we report the adaptation of SARS-CoV-2 to the mAb cocktail REGN-COV in a kidney transplant patient with hypogammaglobulinemia. Following mAb treatment, the patient did not clear the infection. During viral persistence, SARS-CoV-2 acquired three novel spike mutations. Neutralization and mouse protection analyses demonstrate a complete viral escape from REGN-COV at the expense of ACE-2 binding. Final clearance of the virus occurred upon reduction of the immunosuppressive regimen and total IgG substitution. Serology suggests that the development of highly neutralizing IgM rather than IgG substitution aids clearance. Our findings emphasise that selection pressure by mAbs on SARS-CoV-2 can lead to development of escape variants in immunocompromised patients. Thus, modification of immunosuppressive therapy, if possible, might be preferable to control and clearance of the viral infection.
Collapse
Affiliation(s)
- Lena Jaki
- Institute of Virology, Freiburg University Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Sebastian Weigang
- Institute of Virology, Freiburg University Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Lisa Kern
- Institute of Virology, Freiburg University Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Stefanie Kramme
- Institute for Infection Prevention and Hospital Epidemiology, Freiburg University Medical Center, University of Freiburg, Freiburg, Germany
| | - Antoni G Wrobel
- The Structural Biology of Disease Processes Laboratory, The Francis Crick Institute, London, UK
| | - Andrea B Grawitz
- Institute for Clinical Chemistry and Laboratory Medicine, Freiburg University Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Philipp Nawrath
- The Structural Biology of Disease Processes Laboratory, The Francis Crick Institute, London, UK
| | - Stephen R Martin
- The Structural Biology of Disease Processes Laboratory, The Francis Crick Institute, London, UK
| | - Theo Dähne
- Institute of Virology, Freiburg University Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Julius Beer
- Institute of Virology, Freiburg University Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Miriam Disch
- Institute of Virology, Freiburg University Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Philipp Kolb
- Institute of Virology, Freiburg University Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Lisa Gutbrod
- Institute of Virology, Freiburg University Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Sandra Reuter
- Institute for Infection Prevention and Hospital Epidemiology, Freiburg University Medical Center, University of Freiburg, Freiburg, Germany
| | - Klaus Warnatz
- Department of Rheumatology and Clinical Immunology, Freiburg University Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Center for Chronic Immunodeficiency (CCI), Freiburg University Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Martin Schwemmle
- Institute of Virology, Freiburg University Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Steven J Gamblin
- The Structural Biology of Disease Processes Laboratory, The Francis Crick Institute, London, UK
| | - Elke Neumann-Haefelin
- Renal Division, Department of Medicine, Freiburg University Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Daniel Schnepf
- Institute of Virology, Freiburg University Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Thomas Welte
- Renal Division, Department of Medicine, Freiburg University Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland
| | - Georg Kochs
- Institute of Virology, Freiburg University Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Daniela Huzly
- Institute of Virology, Freiburg University Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Marcus Panning
- Institute of Virology, Freiburg University Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany.
| | - Jonas Fuchs
- Institute of Virology, Freiburg University Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany.
| |
Collapse
|
4
|
Panagiotides NG, Zimprich F, Machold K, Schlager O, Müller M, Ertl S, Löffler-Stastka H, Koppensteiner R, Wadowski PP. A Case of Autoimmune Small Fiber Neuropathy as Possible Post COVID Sequelae. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2023; 20:4918. [PMID: 36981826 PMCID: PMC10049708 DOI: 10.3390/ijerph20064918] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/04/2023] [Revised: 03/06/2023] [Accepted: 03/08/2023] [Indexed: 06/18/2023]
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection is reported to induce and augment autoimmune processes. Moreover, postinfectious effects of coronavirus disease 2019 (COVID-19) are still poorly understood and often resemble symptoms of the acute infection phase. A patient with swollen extremities was presented to the Department of Angiology at the Medical University of Vienna with complaints of muscle and joint pain, paresthesia, and arterial hypertension with intense headache. Prior to these complaints, she had been suffering from various symptoms since November 2020, following a SARS-CoV-2 infection in the same month. These included recurrent sore throat, heartburn, dizziness, and headache. Paresthesia and muscle and joint pain started in temporal relation to a human papillomavirus (HPV) vaccination. Since the patient was suffering from severe pain, intensive pain management was performed. Skin and nerve biopsies revealed autoimmune small fiber neuropathy. The patient's condition could be related to COVID-19, as her first symptoms began in temporal relation to the SARS-CoV-2 infection. Furthermore, in the disease course, antinuclear (ANA) and anti-Ro antibodies, as well as anti-cyclic citrullinated peptide (anti-CCP) antibodies, could be detected. Together with the symptoms of xerophthalmia and pharyngeal dryness, primary Sjögren's syndrome was diagnosed. In conclusion, though biopsy results could not distinguish a cause of the disease, SARS-CoV-2 infection can be discussed as a likely trigger for the patient's autoimmune reactions.
Collapse
Affiliation(s)
- Noel G. Panagiotides
- Division of Angiology, Department of Internal Medicine II, Medical University of Vienna, 1090 Vienna, Austria; (N.G.P.); (O.S.); (M.M.); (S.E.); (R.K.)
- Division of Cardiology, Department of Internal Medicine II, Medical University of Vienna, 1090 Vienna, Austria
| | - Fritz Zimprich
- Department of Neurology, Medical University of Vienna, 1090 Vienna, Austria;
| | - Klaus Machold
- Division of Rheumatology, Department of Internal Medicine III, Medical University of Vienna, 1090 Vienna, Austria;
| | - Oliver Schlager
- Division of Angiology, Department of Internal Medicine II, Medical University of Vienna, 1090 Vienna, Austria; (N.G.P.); (O.S.); (M.M.); (S.E.); (R.K.)
| | - Markus Müller
- Division of Angiology, Department of Internal Medicine II, Medical University of Vienna, 1090 Vienna, Austria; (N.G.P.); (O.S.); (M.M.); (S.E.); (R.K.)
| | - Sebastian Ertl
- Division of Angiology, Department of Internal Medicine II, Medical University of Vienna, 1090 Vienna, Austria; (N.G.P.); (O.S.); (M.M.); (S.E.); (R.K.)
- Division of Internal Medicine II, Klinikum Wels-Grieskirchen, 4600 Wels-Grieskirchen, Austria
| | | | - Renate Koppensteiner
- Division of Angiology, Department of Internal Medicine II, Medical University of Vienna, 1090 Vienna, Austria; (N.G.P.); (O.S.); (M.M.); (S.E.); (R.K.)
| | - Patricia P. Wadowski
- Division of Angiology, Department of Internal Medicine II, Medical University of Vienna, 1090 Vienna, Austria; (N.G.P.); (O.S.); (M.M.); (S.E.); (R.K.)
| |
Collapse
|
5
|
Focosi D, Franchini M. Polyclonal immunoglobulins for COVID-19 pre-exposure prophylaxis in immunocompromised patients. Transfus Apher Sci 2023:103648. [PMID: 36759280 PMCID: PMC9886389 DOI: 10.1016/j.transci.2023.103648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Accepted: 01/28/2023] [Indexed: 02/01/2023]
Abstract
Immunocompromised patients remain at high risk of COVID-19 morbidity and mortality. After recent Omicron sublineages gained full resistance to Evusheld™, they are left without effective pre-exposure prophylaxis. We review here arguments to support the growing role of regular immunoglobulin (IG) infusions at protecting against COVID-19. Since there is evidence for neutralizing antibody titers approaching the ones seen in hyperimmune sera, and since some categories of patients at risk for COVID-19 progression are already under preexposure prophylaxis with IG, this cost-effective strategy should be urgently investigated in randomized clinical trials. Surveys of anti-Spike antibody levels in current plasma donations are urgent to forecast the potency of future IG batches.
Collapse
Affiliation(s)
- Daniele Focosi
- North-Western Tuscany Blood Bank, Pisa University Hospital, 56100 Pisa, Italy.
| | - Massimo Franchini
- Division of Hematology and Transfusion Medicine, Carlo Poma Hospital, 46100 Mantua, Italy.
| |
Collapse
|
6
|
Walter JE, Ziegler JB, Ballow M, Cunningham-Rundles C. Advances and Challenges of the Decade: The Ever-Changing Clinical and Genetic Landscape of Immunodeficiency. THE JOURNAL OF ALLERGY AND CLINICAL IMMUNOLOGY. IN PRACTICE 2023; 11:107-115. [PMID: 36610755 DOI: 10.1016/j.jaip.2022.11.007] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 11/15/2022] [Accepted: 11/15/2022] [Indexed: 01/06/2023]
Abstract
In the past 10 years, we have witnessed major advances in clinical immunology. Newborn screening for severe combined immunodeficiency has become universal in the United States and screening programs are being extended to severe combined immunodeficiency and other inborn errors of immunity globally. Early genetic testing is becoming the norm for many of our patients and allows for informed selection of targeted therapies including biologics repurposed from other specialties. During the COVID-19 pandemic, our understanding of essential immune responses expanded and the discovery of immune gene defects continued. Immunoglobulin products, the backbone of protection for antibody deficiency syndromes, came into use to minimize side effects. New polyclonal and monoclonal antibody products emerged with increasing options to manage respiratory viral agents such as SARS-CoV-2 and respiratory syncytial virus. Against these advances, we still face major challenges. Atypical is becoming typical as phenotypes of distinct genetic disease overlap whereas the clinical spectrum of the same genetic defect widens. Therefore, clinical judgment needs to be paired with repeated deep immune phenotyping and upfront genetic testing, as technologies rapidly evolve, and clinical disease often progresses with age. Managing patients with organ damage resulting from immune dysregulation poses a special major clinical challenge and management often lacks standardization, from autoimmune cytopenias, granulomatous interstitial lung disease, enteropathy, and liver disease to endocrine, rheumatologic, and neurologic complications. Clinical, translational, and basic science networks will continue to advance the field; however, cross-talk and education with practicing allergists/immunologists are essential to keep up with the ever-changing clinical and genetic landscape of inborn errors of immunity.
Collapse
Affiliation(s)
- Jolan E Walter
- Division of Pediatric Allergy and Immunology, University of South Florida at Johns Hopkins All Children's Hospital, St Petersburg, Fla; Division of Allergy and Immunology, Massachusetts General Hospital for Children, Boston, Mass.
| | - John B Ziegler
- School of Women's and Children's Health, UNSW Sydney, Sydney, New South Wales, Australia; Department of Immunology and Infectious Diseases, Sydney Children's Hospital, Randwick, New South Wales, Australia
| | - Mark Ballow
- Department of Pediatrics, Division of Allergy and Immunology, University of South Florida at Johns Hopkins All Children's Hospital, St Petersburg, Fla
| | | |
Collapse
|
7
|
Miller AL, Rider NL, Pyles RB, Judy B, Xie X, Shi PY, Ksiazek TG. The arrival of SARS-CoV-2-neutralizing antibodies in a currently available commercial immunoglobulin. J Allergy Clin Immunol 2022; 149:1958-1959. [PMID: 35465974 PMCID: PMC9023086 DOI: 10.1016/j.jaci.2022.03.026] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 03/25/2022] [Accepted: 03/31/2022] [Indexed: 11/28/2022]
Affiliation(s)
- Aaron L Miller
- Assay Development Service Division, Galveston National Laboratory, University of Texas Medical Branch, Galveston, Tex; Department of Pediatrics, University of Texas Medical Branch, Galveston, Tex.
| | - Nicholas L Rider
- Division of Immunology, Allergy and Retrovirology, William T. Shearer Center for Immunobiology, Texas Children's Hospital, Houston, Tex
| | - Richard B Pyles
- Assay Development Service Division, Galveston National Laboratory, University of Texas Medical Branch, Galveston, Tex; Department of Pediatrics, University of Texas Medical Branch, Galveston, Tex
| | - Barbara Judy
- Department of Pathology, University of Texas Medical Branch, Galveston, Tex
| | - Xuping Xie
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, Tex
| | - Pei-Yong Shi
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, Tex
| | - Thomas G Ksiazek
- Department of Pathology, University of Texas Medical Branch, Galveston, Tex
| |
Collapse
|
8
|
Focosi D, Franchini M. Passive immunotherapies for COVID-19: The subtle line between standard and hyperimmune immunoglobulins is getting invisible. Rev Med Virol 2022; 32:e2341. [PMID: 35275607 DOI: 10.1002/rmv.2341] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Daniele Focosi
- North-Western Tuscany Blood Bank, Pisa University Hospital, Pisa, Italy
| | - Massimo Franchini
- Department of Hematology and Transfusion Medicine, Carlo Poma Hospital, Mantua, Italy
| |
Collapse
|