1
|
Kapel-Reguła A, Duś-Ilnicka I, Radwan-Oczko M. Relevance of Saliva Analyses in Terms of Etiological Factors, Biomarkers, and Indicators of Disease Course in Patients with Multiple Sclerosis-A Review. Int J Mol Sci 2024; 25:12559. [PMID: 39684271 DOI: 10.3390/ijms252312559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Revised: 11/04/2024] [Accepted: 11/11/2024] [Indexed: 12/18/2024] Open
Abstract
Multiple sclerosis (MS) is a demyelinating, progressive, and neurodegenerative disease. The cause of this condition remains unknown. Diagnosing and monitoring the course of this disease requires the use of time-consuming, costly, and invasive methods such as magnetic resonance imaging and cerebrospinal fluid analysis. To date, no specific diagnostic tests for MS are available. The purpose of this publication is to answer the question of whether saliva, as a mirror of oral and general health and easily obtainable test material, can be a significant source of information on etiological factors, biomarkers, and indicators of disease progression and whether analysis of substances in saliva is sensitive enough to replace plasma, urine, or cerebrospinal fluid. For this purpose, a systematic search of databases was conducted: PubMed, Google Scholar, and Embase.
Collapse
Affiliation(s)
| | - Irena Duś-Ilnicka
- Oral Pathology Department, Faculty of Dentistry, Wroclaw Medical University, 50-425 Wrocław, Poland
| | - Małgorzata Radwan-Oczko
- Oral Pathology Department, Faculty of Dentistry, Wroclaw Medical University, 50-425 Wrocław, Poland
| |
Collapse
|
2
|
Kis-György R, Körtési T, Anicka A, Nagy-Grócz G. The Connection Between the Oral Microbiota and the Kynurenine Pathway: Insights into Oral and Certain Systemic Disorders. Curr Issues Mol Biol 2024; 46:12641-12657. [PMID: 39590344 PMCID: PMC11593024 DOI: 10.3390/cimb46110750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2024] [Revised: 11/02/2024] [Accepted: 11/05/2024] [Indexed: 11/28/2024] Open
Abstract
The oral microbiome, comprising bacteria, fungi, viruses, and protozoa, is essential for maintaining both oral and systemic health. This complex ecosystem includes over 700 bacterial species, such as Streptococcus mutans, which contributes to dental caries through acid production that demineralizes tooth enamel. Fungi like Candida and pathogens such as Porphyromonas gingivalis are also significant, as they can lead to periodontal diseases through inflammation and destruction of tooth-supporting structures. Dysbiosis, or microbial imbalance, is a key factor in the development of these oral diseases. Understanding the composition and functions of the oral microbiome is vital for creating targeted therapies for these conditions. Additionally, the kynurenine pathway, which processes the amino acid tryptophan, plays a crucial role in immune regulation, neuroprotection, and inflammation. Oral bacteria can metabolize tryptophan, influencing the production of kynurenine, kynurenic acid, and quinolinic acid, thereby affecting the kynurenine system. The balance of microbial species in the oral cavity can impact tryptophan levels and its metabolites. This narrative review aims to explore the relationship between the oral microbiome, oral diseases, and the kynurenine system in relation to certain systemic diseases.
Collapse
Affiliation(s)
- Rita Kis-György
- Section of Health Behaviour and Health Promotion, Faculty of Health Sciences and Social Studies, University of Szeged, Temesvári krt. 31., H-6726 Szeged, Hungary;
- Doctoral School of Interdisciplinary Medicine, University of Szeged, Szőkefalvi–Nagy Béla u. 4/B, H-6720 Szeged, Hungary
| | - Tamás Körtési
- Department of Theoretical Health Sciences and Health Management, Faculty of Health Sciences and Social Studies, University of Szeged, Temesvári krt. 31., H-6726 Szeged, Hungary;
- Preventive Health Sciences Research Group, Incubation Competence Centre of the Centre of Excellence for Interdisciplinary Research, Development and Innovation of the University of Szeged, H-6720 Szeged, Hungary
- HUN-REN-SZTE Neuroscience Research Group, Hungarian Research Network, Danube Neuroscience Research Laboratory, University of Szeged (HUN-REN-SZTE), Tisza Lajos krt. 113, H-6725 Szeged, Hungary
| | - Alexandra Anicka
- Department of Obstetrics and Gynecology, Semmelweis University, Üllői Út 78/A, H-1182 Budapest, Hungary;
| | - Gábor Nagy-Grócz
- Department of Theoretical Health Sciences and Health Management, Faculty of Health Sciences and Social Studies, University of Szeged, Temesvári krt. 31., H-6726 Szeged, Hungary;
- Preventive Health Sciences Research Group, Incubation Competence Centre of the Centre of Excellence for Interdisciplinary Research, Development and Innovation of the University of Szeged, H-6720 Szeged, Hungary
| |
Collapse
|
3
|
Kato Y, Takamura M, Wada K, Usuda H, Abe S, Mitaki S, Nagai A. Fusobacterium in oral bacterial flora relates with asymptomatic brain lesions. Heliyon 2024; 10:e39277. [PMID: 39640678 PMCID: PMC11620239 DOI: 10.1016/j.heliyon.2024.e39277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 10/02/2024] [Accepted: 10/10/2024] [Indexed: 12/07/2024] Open
Abstract
Background Specific bacterial species in the oral cavity contribute to cerebral hemorrhage and microbleeds. The relationship between oral bacterial flora and asymptomatic brain lesions (ABL) remains unclear. This study aimed to investigate this relationship in a healthy Japanese cohort. Methods This cross-sectional study included participants who underwent health examinations at our Brain Dock facility between October 2020 and March 2021. The oral microbiomes of participants with and without ABL were compared using magnetic resonance imaging. To extensively assess the oral bacterial flora, the differences in genes and species compositions between the ABL and noBL (without brain lesions) groups were statistically evaluated via extensive analysis using 16S rRNA gene-based cloning. Results Among 143 patients, 48.3 % had ABL. In the univariate analyses, Fusobacterium and Leptotrichia were associated with ABL (P = 0.017 and P < 0.001, respectively). In the adjusted models, Fusobacterium was associated with ABL (P = 0.006). In an intergroup comparison of seven Fusobacterium species, F. nucleatum, F. naviforme, and F. canifelinum were associated with ABL (P < 0.001, P = 0.002, P < 0.001). Conclusions The elevation of Fusobacterium in the ABL indicates the importance of the microbiome in the oral cavity as a factor in inducing cerebral small-vessel disease in healthy individuals, whose preventive approach might have an impact on therapeutic applications.
Collapse
Affiliation(s)
- Yoshie Kato
- Department of Neurology, Shimane University Faculty of Medicine, Japan
| | - Masahiro Takamura
- Department of Neurology, Shimane University Faculty of Medicine, Japan
| | - Koichiro Wada
- Department of Pharmacology, Shimane University Faculty of Medicine, Japan
| | - Haruki Usuda
- Department of Pharmacology, Shimane University Faculty of Medicine, Japan
| | - Satoshi Abe
- Department of Neurology, Shimane University Faculty of Medicine, Japan
| | - Shingo Mitaki
- Department of Neurology, Shimane University Faculty of Medicine, Japan
| | - Atsushi Nagai
- Department of Neurology, Shimane University Faculty of Medicine, Japan
| |
Collapse
|
4
|
Jameie M, Ahli B, Ghadir S, Azami M, Amanollahi M, Ebadi R, Rafati A, Naser Moghadasi A. The hidden link: How oral and respiratory microbiomes affect multiple sclerosis. Mult Scler Relat Disord 2024; 88:105742. [PMID: 38964239 DOI: 10.1016/j.msard.2024.105742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Revised: 06/16/2024] [Accepted: 06/20/2024] [Indexed: 07/06/2024]
Abstract
BACKGROUND Extensive research has explored the role of gut microbiota in multiple sclerosis (MS). However, the impact of microbial communities in the oral cavity and respiratory tract on MS is an emerging area of investigation. PURPOSE We aimed to review the current literature related to the nasal, oral, and lung microbiota in people with MS (PwMS). METHODS We conducted a narrative review of clinical and preclinical original studies on PubMed that explored the relationship between the bacterial or viral composition of the nasal, lung, and oral microbiota and MS. Additionally, to find relevant studies not retrieved initially, we also searched for references in related review papers, as well as the references cited within the included studies. RESULTS AND CONCLUSIONS Thirteen studies were meticulously reviewed in three sections; oral microbiota (n = 8), nasal microbiota (n = 3), and lung microbiota (n = 2), highlighting considerable alterations in the oral and respiratory microbiome of PwMS compared to healthy controls (HCs). Genera like Aggregatibacter and Streptococcus were less abundant in the oral microbiota of PwMS compared to HCs, while Staphylococcus, Leptotrichia, Fusobacterium, and Bacteroides showed increased abundance in PwMS. Additionally, the presence of specific bacteria, including Streptococcus sanguinis, within the oral microbiota was suggested to influence Epstein-Barr virus reactivation, a well-established risk factor for MS. Studies related to the nasal microbiome indicated elevated levels of specific Staphylococcus aureus toxins, as well as nasal glial cell infection with human herpes virus (HHV)-6 in PwMS. Emerging research on lung microbiome in animal models demonstrated that manipulating the lung microbiome towards lipopolysaccharide-producing bacteria might suppress MS symptoms. These findings open avenues for potential therapeutic strategies. However, further research is crucial to fully understand the complex interactions between the microbiome and MS. This will help identify the most effective timing, bacterial strains, and modulation techniques.
Collapse
Affiliation(s)
- Melika Jameie
- Neuroscience Research Center, Iran University of Medical Sciences, Tehran, Iran; Iranian Center of Neurological Research, Neuroscience Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Bahareh Ahli
- School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Sara Ghadir
- Student Research Committee, Babol University of Medical Sciences, Babol, Iran
| | - Mobin Azami
- Student Research Committee, Kurdistan University of Medical Sciences, Sanandaj, Iran
| | - Mobina Amanollahi
- School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Reza Ebadi
- School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Ali Rafati
- School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Abdorreza Naser Moghadasi
- Multiple Sclerosis Research Center, Neuroscience Institute, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
5
|
Olejnik P, Buczma K, Cudnoch-Jędrzejewska A, Kasarełło K. Involvement of gut microbiota in multiple sclerosis-review of a new pathophysiological hypothesis and potential treatment target. Immunol Res 2024; 72:554-565. [PMID: 38446328 DOI: 10.1007/s12026-024-09471-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Accepted: 02/29/2024] [Indexed: 03/07/2024]
Abstract
Multiple sclerosis (MS) is a chronic inflammatory disease that leads to demyelination and damage to the central nervous system. It is well known, the significance of the involvement and influence of the immune system in the development and course of MS. Nowadays, more and more studies are demonstrating that an important factor that affects the action of the immune system is the gut microbiota. Changes in the composition and interrelationships in the gut microbiota have a significant impact on the course of MS. Dysbiosis affects the disease course mainly by influencing the immune system directly but also by modifying the secreted metabolites and increasing mucosal permeability. The essential metabolites affecting the course of MS are short-chain fatty acids, which alter pro- and anti-inflammatory responses in the immune system but also increase the permeability of the intestinal wall and the blood-brain barrier. Dietary modification alone can have a significant impact on MS. Based on these interactions, new treatments for MS are being developed, including probiotics administration, supplementation of bacterial metabolites, fecal microbiota transplantation, and dietary changes. Further studies may serve to develop new drugs and therapeutic approaches for MS.
Collapse
Affiliation(s)
- Piotr Olejnik
- Chair and Department of Experimental and Clinical Physiology, Laboratory of Centre for Preclinical Research, Medical University of Warsaw, Warsaw, Poland
| | - Kasper Buczma
- Chair and Department of Experimental and Clinical Physiology, Laboratory of Centre for Preclinical Research, Medical University of Warsaw, Warsaw, Poland
| | - Agnieszka Cudnoch-Jędrzejewska
- Chair and Department of Experimental and Clinical Physiology, Laboratory of Centre for Preclinical Research, Medical University of Warsaw, Warsaw, Poland
| | - Kaja Kasarełło
- Chair and Department of Experimental and Clinical Physiology, Laboratory of Centre for Preclinical Research, Medical University of Warsaw, Warsaw, Poland.
| |
Collapse
|
6
|
Boussamet L, Montassier E, Mathé C, Garcia A, Morille J, Shah S, Dugast E, Wiertlewski S, Gourdel M, Bang C, Stürner KH, Masson D, Nicot AB, Vince N, Laplaud DA, Feinstein DL, Berthelot L. Investigating the metabolite signature of an altered oral microbiota as a discriminant factor for multiple sclerosis: a pilot study. Sci Rep 2024; 14:7786. [PMID: 38565581 PMCID: PMC10987558 DOI: 10.1038/s41598-024-57949-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Accepted: 03/23/2024] [Indexed: 04/04/2024] Open
Abstract
In multiple sclerosis (MS), alterations of the gut microbiota lead to inflammation. However, the role of other microbiomes in the body in MS has not been fully elucidated. In a pilot case-controlled study, we carried out simultaneous characterization of faecal and oral microbiota and conducted an in-depth analysis of bacterial alterations associated with MS. Using 16S rRNA sequencing and metabolic inference tools, we compared the oral/faecal microbiota and bacterial metabolism pathways in French MS patients (n = 14) and healthy volunteers (HV, n = 21). A classification model based on metabolite flux balance was established and validated in an independent German cohort (MS n = 12, HV n = 38). Our analysis revealed decreases in diversity indices and oral/faecal compartmentalization, the depletion of commensal bacteria (Aggregatibacter and Streptococcus in saliva and Coprobacter and Roseburia in faeces) and enrichment of inflammation-associated bacteria in MS patients (Leptotrichia and Fusobacterium in saliva and Enterobacteriaceae and Actinomyces in faeces). Several microbial pathways were also altered (the polyamine pathway and remodelling of bacterial surface antigens and energetic metabolism) while flux balance analysis revealed associated alterations in metabolite production in MS (nitrogen and nucleoside). Based on this analysis, we identified a specific oral metabolite signature in MS patients, that could discriminate MS patients from HV and rheumatoid arthritis patients. This signature allowed us to create and validate a discrimination model on an independent cohort, which reached a specificity of 92%. Overall, the oral and faecal microbiomes were altered in MS patients. This pilot study highlights the need to study the oral microbiota and oral health implications in patients with autoimmune diseases on a larger scale and suggests that knowledge of the salivary microbiome could help guide the identification of new pathogenic mechanisms associated with the microbiota in MS patients.
Collapse
Affiliation(s)
- Léo Boussamet
- Nantes Université, Inserm, CHU de Nantes, CR2TI (Center for Research On Transplantation and Translational Immunology), 30 Bd Jean Monnet, 44000, Nantes, France
| | - Emmanuel Montassier
- Nantes Université, Inserm, CHU de Nantes, CR2TI (Center for Research On Transplantation and Translational Immunology), 30 Bd Jean Monnet, 44000, Nantes, France
- Emergency Department, Nantes Hospital, Nantes, France
| | - Camille Mathé
- Nantes Université, Inserm, CHU de Nantes, CR2TI (Center for Research On Transplantation and Translational Immunology), 30 Bd Jean Monnet, 44000, Nantes, France
| | - Alexandra Garcia
- Nantes Université, Inserm, CHU de Nantes, CR2TI (Center for Research On Transplantation and Translational Immunology), 30 Bd Jean Monnet, 44000, Nantes, France
| | - Jérémy Morille
- Nantes Université, Inserm, CHU de Nantes, CR2TI (Center for Research On Transplantation and Translational Immunology), 30 Bd Jean Monnet, 44000, Nantes, France
| | - Sita Shah
- Nantes Université, Inserm, CHU de Nantes, CR2TI (Center for Research On Transplantation and Translational Immunology), 30 Bd Jean Monnet, 44000, Nantes, France
| | - Emilie Dugast
- Nantes Université, Inserm, CHU de Nantes, CR2TI (Center for Research On Transplantation and Translational Immunology), 30 Bd Jean Monnet, 44000, Nantes, France
| | - Sandrine Wiertlewski
- Nantes Université, Inserm, CHU de Nantes, CR2TI (Center for Research On Transplantation and Translational Immunology), 30 Bd Jean Monnet, 44000, Nantes, France
- Neurology Department, Nantes Hospital, Nantes, France
| | | | - Corinna Bang
- Institute of Clinical Molecular Biology, Christian Albrechts University of Kiel, Kiel, Germany
| | - Klarissa H Stürner
- Department of Neurology, University Hospital Schleswig-Holstein, Kiel, Germany
| | - Damien Masson
- Clinical Biochemistry Department, Nantes Hospital, Nantes, France
| | - Arnaud B Nicot
- Nantes Université, Inserm, CHU de Nantes, CR2TI (Center for Research On Transplantation and Translational Immunology), 30 Bd Jean Monnet, 44000, Nantes, France
| | - Nicolas Vince
- Nantes Université, Inserm, CHU de Nantes, CR2TI (Center for Research On Transplantation and Translational Immunology), 30 Bd Jean Monnet, 44000, Nantes, France
| | - David-Axel Laplaud
- Nantes Université, Inserm, CHU de Nantes, CR2TI (Center for Research On Transplantation and Translational Immunology), 30 Bd Jean Monnet, 44000, Nantes, France
- Neurology Department, Nantes Hospital, Nantes, France
| | - Douglas L Feinstein
- Jesse Brown VA Medical Center, 835 South Wolcott Ave, MC513, E720, Chicago, IL, 60612, USA.
- Department of Anesthesiology, University of Illinois, Chicago, IL, USA.
| | - Laureline Berthelot
- Nantes Université, Inserm, CHU de Nantes, CR2TI (Center for Research On Transplantation and Translational Immunology), 30 Bd Jean Monnet, 44000, Nantes, France.
| |
Collapse
|
7
|
Kazemi R, Yazdanpanah E, Esmaeili SA, Yousefi B, Baharlou R, Haghmorad D. Thymoquinone improves experimental autoimmune encephalomyelitis by regulating both pro-inflammatory and anti-inflammatory cytokines. Mol Biol Rep 2024; 51:256. [PMID: 38302802 DOI: 10.1007/s11033-023-09148-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Accepted: 12/13/2023] [Indexed: 02/03/2024]
Abstract
Introduction Multiple sclerosis (MS) is an autoimmune condition marked by inflammation and the loss of myelin in the central nervous system (CNS). The aim of this research was to understand how Thymoquinone regulate the molecular and cellular processes involved in controlling experimental autoimmune encephalomyelitis (EAE), which is an animal model often used to study MS. Methods Female C57BL/6 mice were split into different groups receiving different doses (low, medium, and high) of Thymoquinone simultaneously with EAE induction. Clinical scores and other measurements were observed daily throughout the 25-day post immunization. We assessed lymphocyte infiltration and demyelination in the spinal cord through histological staining, analyzed T-cell profiles using ELISA, and quantified the expression levels of transcription factors in the CNS using Real-time PCR. Results Thymoquinone prevented the development of EAE. Histological experiments revealed only a small degree of leukocyte infiltration into the CNS. Thymoquinone resulted in a notable reduction in the generation of IFN-γ, IL-17, and IL-6, while simultaneously increasing the production of IL-4, IL-10, and TGF-β in Th2 and Treg cells. Results from Real-time PCR suggested Treatment with Thymoquinone decreased the expression of T-bet and ROR-γt while increasing the expression of Foxp3 and GATA3. Conclusion These findings showed that Thymoquinone could decrease both disease incidence and severity.
Collapse
Affiliation(s)
- Roya Kazemi
- Department of Immunology, School of Medicine, Semnan University of Medical Sciences, Semnan, Iran
| | - Esmaeil Yazdanpanah
- Immunology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | | | - Bahman Yousefi
- Department of Immunology, School of Medicine, Semnan University of Medical Sciences, Semnan, Iran
- Cancer Research Center, Semnan University of Medical Sciences, Semnan, Iran
| | - Rasoul Baharlou
- Department of Immunology, School of Medicine, Semnan University of Medical Sciences, Semnan, Iran
- Cancer Research Center, Semnan University of Medical Sciences, Semnan, Iran
| | - Dariush Haghmorad
- Department of Immunology, School of Medicine, Semnan University of Medical Sciences, Semnan, Iran.
- Cancer Research Center, Semnan University of Medical Sciences, Semnan, Iran.
| |
Collapse
|
8
|
Wu E, Cheng M, Zhang X, Wu T, Sheng S, Sheng M, Wei L, Zhang L, Shao W. Exploration of potential shared gene signatures between periodontitis and multiple sclerosis. BMC Oral Health 2024; 24:75. [PMID: 38218802 PMCID: PMC10788039 DOI: 10.1186/s12903-023-03846-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Accepted: 12/31/2023] [Indexed: 01/15/2024] Open
Abstract
BACKGROUND Although periodontitis has previously been reported to be linked with multiple sclerosis (MS), but the molecular mechanisms and pathological interactions between the two remain unclear. This study aims to explore potential crosstalk genes and pathways between periodontitis and MS. METHODS Periodontitis and MS data were obtained from the Gene Expression Omnibus (GEO) database. Shared genes were identified by differential expression analysis and weighted gene co-expression network analysis (WGCNA). Then, enrichment analysis for the shared genes was carried out by multiple methods. The least absolute shrinkage and selection operator (LASSO) regression was used to obtain potential shared diagnostic genes. Furthermore, the expression profile of 28 immune cells in periodontitis and MS was examined using single-sample GSEA (ssGSEA). Finally, real-time quantitative fluorescent PCR (qRT-PCR) and immune histochemical staining were employed to validate Hub gene expressions in periodontitis and MS samples. RESULTS FAM46C, SLC7A7, LY96, CFI, DDIT4L, CD14, C5AR1, and IGJ genes were the shared genes between periodontitis, and MS. GO analysis revealed that the shared genes exhibited the greatest enrichment in response to molecules of bacterial origin. LASSO analysis indicated that CFI, DDIT4L, and FAM46C were the most effective shared diagnostic biomarkers for periodontitis and MS, which were further validated by qPCR and immunohistochemical staining. ssGSEA analysis revealed that T and B cells significantly influence the development of MS and periodontitis. CONCLUSIONS FAM46C, SLC7A7, LY96, CFI, DDIT4L, CD14, C5AR1, and IGJ were the most important crosstalk genes between periodontitis, and MS. Further studies found that CFI, DDIT4L, and FAM46C were potential biomarkers in periodontitis and MS.
Collapse
Affiliation(s)
- Erli Wu
- College & Hospital of Stomatology, Key Lab. of Oral Diseases Research of Anhui Province, Anhui Medical University, Hefei, 230032, China
| | - Ming Cheng
- College & Hospital of Stomatology, Key Lab. of Oral Diseases Research of Anhui Province, Anhui Medical University, Hefei, 230032, China
| | - Xinjing Zhang
- College & Hospital of Stomatology, Key Lab. of Oral Diseases Research of Anhui Province, Anhui Medical University, Hefei, 230032, China
| | - Tiangang Wu
- College & Hospital of Stomatology, Key Lab. of Oral Diseases Research of Anhui Province, Anhui Medical University, Hefei, 230032, China
| | - Shuyan Sheng
- First Clinical Medical College (First Affiliated Hospital), Anhui Medical University, Hefei, 230032, China
| | - Mengfei Sheng
- Department of Microbiology and Parasitology, Anhui Provincial Laboratory of Pathogen Biology, School of Basic Medical Sciences, Anhui Medical University, Hefei, Anhui, China
| | - Ling Wei
- The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, 230022, China
| | - Lei Zhang
- College & Hospital of Stomatology, Key Lab. of Oral Diseases Research of Anhui Province, Anhui Medical University, Hefei, 230032, China.
- Department of Periodontology, Anhui Stomatology Hospital affiliated to Anhui Medical University, Hefei, 230032, China.
| | - Wei Shao
- College & Hospital of Stomatology, Key Lab. of Oral Diseases Research of Anhui Province, Anhui Medical University, Hefei, 230032, China.
- Department of Microbiology and Parasitology, Anhui Provincial Laboratory of Pathogen Biology, School of Basic Medical Sciences, Anhui Medical University, Hefei, Anhui, China.
| |
Collapse
|
9
|
Turner TA, Lehman P, Ghimire S, Shahi SK, Mangalam A. Game of microbes: the battle within - gut microbiota and multiple sclerosis. Gut Microbes 2024; 16:2387794. [PMID: 39114974 PMCID: PMC11313001 DOI: 10.1080/19490976.2024.2387794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 06/03/2024] [Accepted: 07/30/2024] [Indexed: 08/11/2024] Open
Abstract
Multiple sclerosis (MS) is a chronic and progressive autoimmune disease of the central nervous system (CNS), with both genetic and environmental factors contributing to the pathobiology of the disease. While human leukocyte antigen (HLA) genes have emerged as the strongest genetic factor, consensus on environmental risk factors are lacking. Recently, trillions of microbes residing in our gut (microbiome) have emerged as a potential environmental factor linked with the pathobiology of MS as PwMS show gut microbial dysbiosis (altered gut microbiome). Thus, there has been a strong emphasis on understanding the factors (host and environmental) regulating the composition of the gut microbiota and the mechanism(s) through which gut microbes contribute to MS disease, especially through immune system modulation. A better understanding of these interactions will help harness the enormous potential of the gut microbiota as a therapeutic approach to treating MS.
Collapse
Affiliation(s)
- Ti-Ara Turner
- Interdisciplinary Graduate Program in Immunology, University of Iowa, Iowa City, IA, USA
- Iowa City VA Health Care System, Iowa City, IA, USA
| | - Peter Lehman
- Iowa City VA Health Care System, Iowa City, IA, USA
- Experimental Pathology Graduate Program, University of Iowa, Iowa City, IA, USA
| | - Sudeep Ghimire
- Iowa City VA Health Care System, Iowa City, IA, USA
- Department of Pathology, Carver College of Medicine, University of Iowa, Iowa City, IA, USA
| | - Shailesh K. Shahi
- Iowa City VA Health Care System, Iowa City, IA, USA
- Department of Pathology, Carver College of Medicine, University of Iowa, Iowa City, IA, USA
| | - Ashutosh Mangalam
- Interdisciplinary Graduate Program in Immunology, University of Iowa, Iowa City, IA, USA
- Iowa City VA Health Care System, Iowa City, IA, USA
- Experimental Pathology Graduate Program, University of Iowa, Iowa City, IA, USA
- Department of Pathology, Carver College of Medicine, University of Iowa, Iowa City, IA, USA
| |
Collapse
|
10
|
Dunalska A, Saramak K, Szejko N. The Role of Gut Microbiome in the Pathogenesis of Multiple Sclerosis and Related Disorders. Cells 2023; 12:1760. [PMID: 37443793 PMCID: PMC10341087 DOI: 10.3390/cells12131760] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 06/15/2023] [Accepted: 06/21/2023] [Indexed: 07/15/2023] Open
Abstract
Multiple sclerosis (MS) is a chronic, progressive neuroinflammatory disease with a complex pathophysiological background. A variety of diverse factors have been attributed to the propagation of inflammation and neurodegeneration in MS, mainly genetic, immunological, and environmental factors such as vitamin D deficiency, infections, or hormonal disbalance. Recently, the importance of the gut-brain axis for the development of many neurological conditions, including stroke, movement disorders, and neuroinflammatory disorders, has been postulated. The purpose of our paper was to summarize current evidence confirming the role of the gut microbiome in the pathophysiology of MS and related disorders, such as neuromyelitis optica spectrum disorder (NMO-SD). For this aim, we conducted a systematic review of the literature listed in the following databases: Medline, Pubmed, and Scopus, and were able to identify several studies demonstrating the involvement of the gut microbiome in the pathophysiology of MS and NMO-SD. It seems that the most relevant bacteria for the pathophysiology of MS are those belonging to Pseudomonas, Mycoplasma, Haemophilus, Blautia, Dorea, Faecalibacterium, Methanobrevibacter, Akkermansia, and Desulfovibrionaceae genera, while Clostridium perfringens and Streptoccocus have been demonstrated to play a role in the pathophysiology of NMO-SD. Following this line of evidence, there is also some preliminary data supporting the use of probiotics or other agents affecting the microbiome that could potentially have a beneficial effect on MS/NMO-SD symptoms and prognosis. The topic of the gut microbiome in the pathophysiology of MS is therefore relevant since it could be used as a biomarker of disease development and progression as well as a potential disease-modifying therapy.
Collapse
Affiliation(s)
- Anna Dunalska
- Department of Neurology, Medical University of Warsaw, 02-097 Warsaw, Poland;
| | - Kamila Saramak
- Department of Neurology, Hochzirl Hospital, 6170 Hochzirl, Austria;
| | - Natalia Szejko
- Department of Clinical Neurosciences, University of Calgary, Calgary, AB T2N 1N4, Canada
- Department of Bioethics, Medical University of Warsaw, 02-091 Warsaw, Poland
| |
Collapse
|
11
|
Huang X, Huang X, Huang Y, Zheng J, Lu Y, Mai Z, Zhao X, Cui L, Huang S. The oral microbiome in autoimmune diseases: friend or foe? J Transl Med 2023; 21:211. [PMID: 36949458 PMCID: PMC10031900 DOI: 10.1186/s12967-023-03995-x] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Accepted: 02/15/2023] [Indexed: 03/24/2023] Open
Abstract
The human body is colonized by abundant and diverse microorganisms, collectively known as the microbiome. The oral cavity has more than 700 species of bacteria and consists of unique microbiome niches on mucosal surfaces, on tooth hard tissue, and in saliva. The homeostatic balance between the oral microbiota and the immune system plays an indispensable role in maintaining the well-being and health status of the human host. Growing evidence has demonstrated that oral microbiota dysbiosis is actively involved in regulating the initiation and progression of an array of autoimmune diseases.Oral microbiota dysbiosis is driven by multiple factors, such as host genetic factors, dietary habits, stress, smoking, administration of antibiotics, tissue injury and infection. The dysregulation in the oral microbiome plays a crucial role in triggering and promoting autoimmune diseases via several mechanisms, including microbial translocation, molecular mimicry, autoantigen overproduction, and amplification of autoimmune responses by cytokines. Good oral hygiene behaviors, low carbohydrate diets, healthy lifestyles, usage of prebiotics, probiotics or synbiotics, oral microbiota transplantation and nanomedicine-based therapeutics are promising avenues for maintaining a balanced oral microbiome and treating oral microbiota-mediated autoimmune diseases. Thus, a comprehensive understanding of the relationship between oral microbiota dysbiosis and autoimmune diseases is critical for providing novel insights into the development of oral microbiota-based therapeutic approaches for combating these refractory diseases.
Collapse
Affiliation(s)
- Xiaoyan Huang
- Department of Preventive Dentistry, Stomatological Hospital, School of Stomatology, Southern Medical University, Haizhu District, No.366 Jiangnan Da Dao Nan, Guangzhou, 510280, China
| | - Xiangyu Huang
- Department of Endodontics, Stomatological Hospital, School of Stomatology, Southern Medical University, Haizhu District, No.366 Jiangnan Da Dao Nan, Guangzhou, 510280, China
| | - Yi Huang
- Department of Preventive Dentistry, Stomatological Hospital, School of Stomatology, Southern Medical University, Haizhu District, No.366 Jiangnan Da Dao Nan, Guangzhou, 510280, China
| | - Jiarong Zheng
- Department of Dentistry, The First Affiliated Hospital, Sun Yat-Sen University, Zhongshan 2nd Road, Guangzhou, 510080, China
| | - Ye Lu
- Department of Oral and Maxillofacial Surgery, Stomatological Hospital, School of Stomatology, Southern Medical University, Haizhu District, Guangzhou, 510280, China
| | - Zizhao Mai
- Department of Dentistry, The First Affiliated Hospital, Sun Yat-Sen University, Zhongshan 2nd Road, Guangzhou, 510080, China
| | - Xinyuan Zhao
- Department of Endodontics, Stomatological Hospital, School of Stomatology, Southern Medical University, Haizhu District, No.366 Jiangnan Da Dao Nan, Guangzhou, 510280, China.
| | - Li Cui
- Department of Oral and Maxillofacial Surgery, Stomatological Hospital, School of Stomatology, Southern Medical University, Haizhu District, Guangzhou, 510280, China.
- Division of Oral Biology and Medicine, School of Dentistry, University of California, Los Angeles, CA, 90095, USA.
| | - Shaohong Huang
- Department of Preventive Dentistry, Stomatological Hospital, School of Stomatology, Southern Medical University, Haizhu District, No.366 Jiangnan Da Dao Nan, Guangzhou, 510280, China.
| |
Collapse
|
12
|
Kapoor B, Gulati M, Gupta R, Singla RK. Microbiota dysbiosis and myasthenia gravis: Do all roads lead to Rome? Autoimmun Rev 2023; 22:103313. [PMID: 36918089 DOI: 10.1016/j.autrev.2023.103313] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Accepted: 03/09/2023] [Indexed: 03/14/2023]
Abstract
Dysregulated immune system with a failure to recognize self from non-self-antigens is one of the common pathogeneses seen in autoimmune diseases. The complex interplay of genetic and environmental factors is important for the occurrence and development of the disease. Among the environmental factors, disturbed gut microbiota (gut dysbiosis) has recently attracted particular attention, especially with advancement in human microbiome research. Although the alterations in microbiota have been seen in various autoimmune diseases, including those of nervous system, there is paucity of information on neuromuscular system diseases. Myasthenia gravis (MG) is one such rare autoimmune disease of neuromuscular junction, and is caused by generation of pathogenic autoantibodies to components of the postsynaptic muscle endplate. In the recent years, accumulating evidences have endorsed the key role of host microbiota, particularly those of gut, in the pathogenesis of MG. Differential microbiota composition, characterized by increased abundance of Fusobacteria, Bacteroidetes, and Proteobacteria, and decreased abundance of Actinobacteria and Firmicutes, has been seen in MG patients in comparison to healthy subjects. Disturbance of microbiota composition, particularly reduced ratio of Firmicutes/Bacteroidetes, alter the gut permeability, subsequently triggering the immunological response. Resultant reduction in levels of short chain fatty acids (SCFAs) is another factor contributing to the immunological response in MG patients. Modulation of gut microbiota via intervention of probiotics, prebiotics, synbiotics, postbiotics (metabiotics), and fecal microbiota transplantation (FMT) is considered to be the futuristic approach for the management of MG. This review summarizes the role of gut microbiota and their metabolites (postbiotics) in the progression of MG. Also, various bacteriotherapeutic approaches involving gut microbiota are discussed for the prevention of MG progression.
Collapse
Affiliation(s)
- Bhupinder Kapoor
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab, India.
| | - Monica Gulati
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab, India; Faculty of Health, Australian Research Centre in Complementary and Integrative Medicine, University of Technology Sydney, NSW 2007, Australia.
| | - Reena Gupta
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab, India
| | - Rajeev K Singla
- Institutes for Systems Genetics, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Xinchuan Road, 2222, Chengdu, Sichuan, China; iGlobal Research and Publishing Foundation, New Delhi, India
| |
Collapse
|
13
|
Schirò G, Iacono S, Balistreri CR. The Role of Human Microbiota in Myasthenia Gravis: A Narrative Review. Neurol Int 2023; 15:392-404. [PMID: 36976669 PMCID: PMC10053295 DOI: 10.3390/neurolint15010026] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 03/05/2023] [Accepted: 03/07/2023] [Indexed: 03/15/2023] Open
Abstract
Myasthenia gravis (MG) is an autoimmune neuromuscular disease characterized by fluctuating weakness of the skeletal muscles. Although antibodies against the neuromuscular junction components are recognized, the MG pathogenesis remains unclear, even if with a well-known multifactorial character. However, the perturbations of human microbiota have been recently suggested to contribute to MG pathogenesis and clinical course. Accordingly, some products derived from commensal flora have been demonstrated to have anti-inflammatory effects, while other have been shown to possess pro-inflammatory properties. In addition, patients with MG when compared with age-matched controls showed a distinctive composition in the oral and gut microbiota, with a typical increase in Streptococcus and Bacteroides and a reduction in Clostridia as well as short-chain fatty acid reduction. Moreover, restoring the gut microbiota perturbation has been evidenced after the administration of probiotics followed by an improvement of symptoms in MG cases. To highlight the role of the oral and gut microbiota in MG pathogenesis and clinical course, here, the current evidence has been summarized and reviewed.
Collapse
Affiliation(s)
- Giuseppe Schirò
- Neurology Unit, Department of Biomedicine, Neuroscience and Advanced Diagnostics (BiND), University of Palermo, 90127 Palermo, Italy
| | - Salvatore Iacono
- Neurology Unit, Department of Biomedicine, Neuroscience and Advanced Diagnostics (BiND), University of Palermo, 90127 Palermo, Italy
- Correspondence:
| | - Carmela Rita Balistreri
- Cellular and Molecular Laboratory, Department of Biomedicine, Neuroscience and Advanced Diagnostics (BiND), University of Palermo, 90127 Palermo, Italy
| |
Collapse
|
14
|
Zhou LJ, Lin WZ, Liu T, Chen BY, Meng XQ, Li YL, Du LJ, Liu Y, Qian YC, Zhu YQ, Duan SZ. Oral Pathobionts Promote MS-like Symptoms in Mice. J Dent Res 2023; 102:217-226. [PMID: 36266965 DOI: 10.1177/00220345221128202] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
Dysbiotic oral microbiota has been associated with multiple sclerosis. However, the role and mechanism of oral microbiota in the development of multiple sclerosis are still elusive. Here, we demonstrated that ligature-induced periodontitis (LIP) aggravated experimental autoimmune encephalomyelitis (EAE) in mice, and this was likely dependent on the expansion of T helper 17 (Th17) cells. LIP increased the splenic richness of Enterobacter sp., which was able to induce the expansion of splenic Th17 cells and aggravate EAE in mice. LIP also led to enrichment of Erysipelotrichaceae sp. in the gut and increased Th17 cells in the large intestinal lamina propria of EAE mice. Fecal microbiota transplantation from EAE mice with LIP also promoted EAE symptoms. In conclusion, periodontitis exacerbates EAE, likely through ectopic colonization of oral pathobionts and expansion of Th17 cells.
Collapse
Affiliation(s)
- L-J Zhou
- Department of General Dentistry, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Laboratory of Oral Microbiota and Systemic Diseases, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,National Center for Stomatology; National Clinical Research Center for Oral Diseases; Shanghai Key Laboratory of Stomatology, Shanghai, China
| | - W-Z Lin
- Department of General Dentistry, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Laboratory of Oral Microbiota and Systemic Diseases, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,National Center for Stomatology; National Clinical Research Center for Oral Diseases; Shanghai Key Laboratory of Stomatology, Shanghai, China
| | - T Liu
- Laboratory of Oral Microbiota and Systemic Diseases, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,National Center for Stomatology; National Clinical Research Center for Oral Diseases; Shanghai Key Laboratory of Stomatology, Shanghai, China
| | - B-Y Chen
- Laboratory of Oral Microbiota and Systemic Diseases, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,National Center for Stomatology; National Clinical Research Center for Oral Diseases; Shanghai Key Laboratory of Stomatology, Shanghai, China
| | - X-Q Meng
- Laboratory of Oral Microbiota and Systemic Diseases, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,National Center for Stomatology; National Clinical Research Center for Oral Diseases; Shanghai Key Laboratory of Stomatology, Shanghai, China
| | - Y-L Li
- Laboratory of Oral Microbiota and Systemic Diseases, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,National Center for Stomatology; National Clinical Research Center for Oral Diseases; Shanghai Key Laboratory of Stomatology, Shanghai, China
| | - L-J Du
- Laboratory of Oral Microbiota and Systemic Diseases, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,National Center for Stomatology; National Clinical Research Center for Oral Diseases; Shanghai Key Laboratory of Stomatology, Shanghai, China
| | - Y Liu
- Laboratory of Oral Microbiota and Systemic Diseases, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,National Center for Stomatology; National Clinical Research Center for Oral Diseases; Shanghai Key Laboratory of Stomatology, Shanghai, China
| | - Y-C Qian
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Y-Q Zhu
- Department of General Dentistry, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,National Center for Stomatology; National Clinical Research Center for Oral Diseases; Shanghai Key Laboratory of Stomatology, Shanghai, China
| | - S-Z Duan
- Laboratory of Oral Microbiota and Systemic Diseases, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,National Center for Stomatology; National Clinical Research Center for Oral Diseases; Shanghai Key Laboratory of Stomatology, Shanghai, China
| |
Collapse
|
15
|
周 陆, 陈 柏, 李 雨, 段 胜. [Oral Microbiome and Systemic Diseases]. SICHUAN DA XUE XUE BAO. YI XUE BAN = JOURNAL OF SICHUAN UNIVERSITY. MEDICAL SCIENCE EDITION 2023; 54:1-6. [PMID: 36647635 PMCID: PMC10409018 DOI: 10.12182/20230160504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Indexed: 01/18/2023]
Abstract
As one of the most diverse microbial communities within the human body, the oral microbiome is an important component that contributes to the maintenance of human health. The microbial composition of different sites in the oral cavity varies significantly and a dynamic equilibrium is maintained through communications with the environment and oral and distal organs of the host. It has been reported that there is significant correlation between dysbiotic oral microbiome and the occurrence or progression of a variety of systemic diseases. In this review, we summarized recent advances in research on the relationship between oral microbiome and systemic health, focusing on the interaction and pathological mechanisms between oral microbiome and systemic health and hoping to provide new avenues for the early prevention and clinical diagnosis and treatment of systemic diseases.
Collapse
Affiliation(s)
- 陆军 周
- 上海交通大学口腔医学院 国家口腔疾病临床医学研究中心 上海市口腔医学重点实验室 上海市口腔医学研究所 上海交通大学医学院附属第九人民医院 口腔微生态与系统性疾病实验室 (上海 200011)Laboratory of Oral Microbiota and Systemic Diseases, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, National Clinical Research Center for Oral Diseases; Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, Shanghai 200011, China
| | - 柏延 陈
- 上海交通大学口腔医学院 国家口腔疾病临床医学研究中心 上海市口腔医学重点实验室 上海市口腔医学研究所 上海交通大学医学院附属第九人民医院 口腔微生态与系统性疾病实验室 (上海 200011)Laboratory of Oral Microbiota and Systemic Diseases, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, National Clinical Research Center for Oral Diseases; Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, Shanghai 200011, China
| | - 雨霖 李
- 上海交通大学口腔医学院 国家口腔疾病临床医学研究中心 上海市口腔医学重点实验室 上海市口腔医学研究所 上海交通大学医学院附属第九人民医院 口腔微生态与系统性疾病实验室 (上海 200011)Laboratory of Oral Microbiota and Systemic Diseases, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, National Clinical Research Center for Oral Diseases; Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, Shanghai 200011, China
| | - 胜仲 段
- 上海交通大学口腔医学院 国家口腔疾病临床医学研究中心 上海市口腔医学重点实验室 上海市口腔医学研究所 上海交通大学医学院附属第九人民医院 口腔微生态与系统性疾病实验室 (上海 200011)Laboratory of Oral Microbiota and Systemic Diseases, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, National Clinical Research Center for Oral Diseases; Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, Shanghai 200011, China
| |
Collapse
|
16
|
Application of Fluorescence In Situ Hybridization (FISH) in Oral Microbial Detection. Pathogens 2022; 11:pathogens11121450. [PMID: 36558784 PMCID: PMC9788346 DOI: 10.3390/pathogens11121450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 11/26/2022] [Accepted: 11/29/2022] [Indexed: 12/02/2022] Open
Abstract
Varieties of microorganisms reside in the oral cavity contributing to the occurrence and development of microbes associated with oral diseases; however, the distribution and in situ abundance in the biofilm are still unclear. In order to promote the understanding of the ecosystem of oral microbiota and the diagnosis of oral diseases, it is necessary to monitor and compare the oral microorganisms from different niches of the oral cavity in situ. The fluorescence in situ hybridization (FISH) has proven to be a powerful tool for representing the status of oral microorganisms in the oral cavity. FISH is one of the most routinely used cytochemical techniques for genetic detection, identification, and localization by a fluorescently labeled nucleic acid probe, which can hybridize with targeted nucleic acid sequences. It has the advantages of rapidity, safety, high sensitivity, and specificity. FISH allows the identification and quantification of different oral microorganisms simultaneously. It can also visualize microorganisms by combining with other molecular biology technologies to represent the distribution of each microbial community in the oral biofilm. In this review, we summarized and discussed the development of FISH technology and the application of FISH in oral disease diagnosis and oral ecosystem research, highlighted its advantages in oral microbiology, listed the existing problems, and provided suggestions for future development..
Collapse
|
17
|
Liu F, Sheng J, Hu L, Zhang B, Guo W, Wang Y, Gu Y, Jiang P, Lin H, Lydia B, Sun Y, Tang Y, Gu C, Wei S, Zhai Q, Chen W, Feng N. Salivary microbiome in chronic kidney disease: what is its connection to diabetes, hypertension, and immunity? J Transl Med 2022; 20:387. [PMID: 36059002 PMCID: PMC9441058 DOI: 10.1186/s12967-022-03602-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Accepted: 08/19/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The association between oral dysbiosis and chronic kidney disease (CKD) has gained increasing attention in recent years. Diabetes and hypertension are the most common conditions in CKD. However, a case-control study with matched confounding variables on the salivary microbiome in CKD and the influence of diabetes and hypertension on the microbiome has never been reported. METHODS In our study, we compared the salivary microbiome profile between patients with CKD and healthy controls (HC) using 16S ribosomal DNA sequencing and examine its association with diabetes, hypertension, and immunity. RESULTS We observed that the bacterial community was skewed in the saliva of CKD, with increased Lautropia and Pseudomonas, and decreased Actinomyces, Prevotella, Prevotella 7, and Trichococcus. No difference in the bacterial community between the CKD patients complicated with and without diabetes, and between those with and without hypertension. Prevotella 7 declined in CKD patients with/without hypertension with respect to HC, while Pseudomonas increased in CKD patients with/without hypertension. Pseudomonas was negatively associated with immunoglobin G in CKD patients. Both CKD patients with positive and negative antistreptolysin O had declined Prevotella 7 and Trichococcus compared to HC, whereas increased Pseudomonas. CONCLUSIONS Our study identifies a distinct bacterial saliva microbiome in CKD patients characterized by alteration in composition. We unravel here that the co-occurrence diseases of diabetes and hypertension are not associated with specific bacterial alterations, suggesting that bacterial dysbiosis in saliva plays a role in renal damage regardless of the occurrence of diabetes and hypertension.
Collapse
Affiliation(s)
- Fengping Liu
- Wuxi School of Medicine, Jiangnan University, Wuxi, 214122, Jiangsu, China
| | - Jiayi Sheng
- Department of Urology, Wuxi No.2 People's Hospital, Affiliated Wuxi Second Hospital of Nanjing Medical University, Wuxi, 214000, Jiangsu, China
| | - Lei Hu
- Department of Urology, Wuxi No.2 People's Hospital, Affiliated Wuxi Second Hospital of Nanjing Medical University, Wuxi, 214000, Jiangsu, China
| | - Bin Zhang
- Department of Urology, the First Affiliated Hospital of Soochow University, Suzhou, 215006, Jiangsu, China
| | - Wei Guo
- Department of Urology, Wuxi No.2 People's Hospital, Affiliated Wuxi Second Hospital of Nanjing Medical University, Wuxi, 214000, Jiangsu, China
| | - Yang Wang
- Department of Urology, Wuxi No.2 People's Hospital, Affiliated Wuxi Second Hospital of Nanjing Medical University, Wuxi, 214000, Jiangsu, China
| | - Yifeng Gu
- Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, School of Medicine, The First Affiliated Hospital, Zhejiang University, Hangzhou, 310003, Zhejiang, China
| | - Peng Jiang
- Department of Urology, Wuxi No.2 People's Hospital, Affiliated Wuxi Second Hospital of Nanjing Medical University, Wuxi, 214000, Jiangsu, China
| | - Hao Lin
- Department of Urology, Wuxi No.2 People's Hospital, Affiliated Wuxi Second Hospital of Nanjing Medical University, Wuxi, 214000, Jiangsu, China
| | - Brako Lydia
- Wuxi School of Medicine, Jiangnan University, Wuxi, 214122, Jiangsu, China
| | - Yifan Sun
- Department of Urology, Wuxi No.2 People's Hospital, Affiliated Wuxi Second Hospital of Nanjing Medical University, Wuxi, 214000, Jiangsu, China
| | - Yifan Tang
- Department of Urology, Wuxi No.2 People's Hospital, Affiliated Wuxi Second Hospital of Nanjing Medical University, Wuxi, 214000, Jiangsu, China
| | - Chaoqun Gu
- School of Medicine, Nantong University, Nantong, 226019, Jiangsu, China
| | - Shichao Wei
- School of Medicine, Nantong University, Nantong, 226019, Jiangsu, China
| | - Qixiao Zhai
- State Key Laboratory of Food Science and Technology and School of Food Science and Technology, Jiangnan University, Wuxi, 214122, China.
| | - Weiguo Chen
- Department of Urology, the First Affiliated Hospital of Soochow University, Suzhou, 215006, Jiangsu, China.
| | - Ninghan Feng
- Department of Urology, Wuxi No.2 People's Hospital, Affiliated Wuxi Second Hospital of Nanjing Medical University, Wuxi, 214000, Jiangsu, China.
| |
Collapse
|
18
|
Zheng S, Pan L, Hou J, Liao A, Hou Y, Yu G, Li X, Yuan Y, Dong Y, Zhao P, Zhang J, Hu Z, Hui M, Cao J, Huang JH. The role of wheat embryo globulin nutrients in improving cognitive dysfunction in AD rats. Food Funct 2022; 13:9856-9867. [PMID: 36047913 DOI: 10.1039/d2fo00815g] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Neuroinflammation and intestinal microbiota cause pathological progression of Alzheimer's disease (AD), leading to neurodegeneration and cognitive decline. This study investigates the effects of wheat embryo globulin nutrient (WEGN) on depression, neuroinflammation, and intestinal microbial disorder caused by AD and its protective mechanism on cognitive impairment. Results demonstrated that rats in the WEGN group have lower feed intake but higher body weight than those in the control group. Notably, rats in the WEGN group have a higher number of cross grids and uprights and a smaller amount of fecal particles than those in the control group. Biochemical examinations revealed that rats in the WEGN group had lower expression of interleukin-1β, interleukin-6, and tumor necrosis factor α in hippocampus tissue and the expression of genes and proteins related to the TLR4/MyD88/NF-κB signaling pathway in AD rats was down-regulated compared to those in the control group. The 16S rRNA gene sequencing results demonstrated that WEGN treatment inhibits the increase of Erysipelotrichaceae, Erysipelatoclostridium, Erysipelotrichaceae, Corynebacterium, and Frisingicoccus, and the reduction of Lactobacillus in AD rats. WEGN has potential value as a practical food in alleviating neuroinflammation-related diseases such as AD.
Collapse
Affiliation(s)
- Shuainan Zheng
- Henan Provincial Key Laboratory of Biological Processing and Nutritional Function of Wheat, School of Biological Engineering, Henan University of Technology, Zhengzhou 450001, PR China.
| | - Long Pan
- Henan Provincial Key Laboratory of Biological Processing and Nutritional Function of Wheat, School of Biological Engineering, Henan University of Technology, Zhengzhou 450001, PR China.
| | - Jianguang Hou
- Workstation of Zhongyuan Scholars of Henan Province, Henan Yangshao Liquor Co., Ltd., Mianchi Xian, 472400, PR China
| | - Aimei Liao
- Henan Provincial Key Laboratory of Biological Processing and Nutritional Function of Wheat, School of Biological Engineering, Henan University of Technology, Zhengzhou 450001, PR China.
| | - Yinchen Hou
- College of Food and Biological Engineering, Henan University of Animal Husbandry and Economy, Zhengzhou 450044, PR China
| | - Guanghai Yu
- Henan Provincial Key Laboratory of Biological Processing and Nutritional Function of Wheat, School of Biological Engineering, Henan University of Technology, Zhengzhou 450001, PR China.
| | - Xiaoxiao Li
- Henan Provincial Key Laboratory of Biological Processing and Nutritional Function of Wheat, School of Biological Engineering, Henan University of Technology, Zhengzhou 450001, PR China.
| | - Yongjian Yuan
- Henan Provincial Key Laboratory of Biological Processing and Nutritional Function of Wheat, School of Biological Engineering, Henan University of Technology, Zhengzhou 450001, PR China.
| | - Yuqi Dong
- Henan Provincial Key Laboratory of Biological Processing and Nutritional Function of Wheat, School of Biological Engineering, Henan University of Technology, Zhengzhou 450001, PR China.
| | - Penghui Zhao
- Henan Provincial Key Laboratory of Biological Processing and Nutritional Function of Wheat, School of Biological Engineering, Henan University of Technology, Zhengzhou 450001, PR China.
| | - Jie Zhang
- Henan Provincial Key Laboratory of Biological Processing and Nutritional Function of Wheat, School of Biological Engineering, Henan University of Technology, Zhengzhou 450001, PR China.
| | - Zheyuan Hu
- Henan Provincial Key Laboratory of Biological Processing and Nutritional Function of Wheat, School of Biological Engineering, Henan University of Technology, Zhengzhou 450001, PR China.
| | - Ming Hui
- Henan Provincial Key Laboratory of Biological Processing and Nutritional Function of Wheat, School of Biological Engineering, Henan University of Technology, Zhengzhou 450001, PR China.
| | - Jian Cao
- Henan Provincial Key Laboratory of Biological Processing and Nutritional Function of Wheat, School of Biological Engineering, Henan University of Technology, Zhengzhou 450001, PR China.
| | - Ji-Hong Huang
- Henan Provincial Key Laboratory of Biological Processing and Nutritional Function of Wheat, School of Biological Engineering, Henan University of Technology, Zhengzhou 450001, PR China. .,School of Food and Pharmacy, Xuchang University, Xuchang 461000, PR China.,State Key Laboratory of Crop Stress Adaptation and Improvement, College of Agriculture, Henan University, Kaifeng 475004, China.
| |
Collapse
|
19
|
Huang C, Gao F, Zhou H, Zhang L, Shang D, Ji Y, Duan Z. Oral Microbiota Profile in a Group of Anti-AChR Antibody–Positive Myasthenia Gravis Patients. Front Neurol 2022; 13:938360. [PMID: 35873770 PMCID: PMC9301194 DOI: 10.3389/fneur.2022.938360] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2022] [Accepted: 06/08/2022] [Indexed: 11/13/2022] Open
Abstract
Myasthenia gravis (MG) is an autoimmune disorder caused by autoantibodies directed against the postsynaptic membrane at the neuromuscular junction. Perturbation of gut microbiota is thought to contribute to the development of MG, as reflected by fecal metabolomic signatures in humans, but there have been few studies on the relationship between oral microbiota profile and MG. The current study evaluated the correlation between oral microbiota composition and diversity and anti-acetylcholinereceptor (AChR) antibody–positive MG by comparing oral microbiota communities of patients (n = 20) and healthy controls (HCs; n = 20) by 16S rRNA gene sequencing. Principal coordinate analysis and Adonis analysis revealed significant differences in oral microflora profile between the twogroups. Compared to HCs, the abundance of the phyla Firmicutes and Actinobacteria and genera Streptococcus, Rothia, and Lachnoanerobaculum was significantly increased whereas that of phyla Proteobacteria and Spirochaetotaand genera Neisseria, Haemophilus, and Treponema was significantly decreased in MG patients. The Kyoto Encyclopedia of Genes and Genomes pathway analysis showed that the biosynthesis of ansamycins and amino acid metabolism pathways were altered in MG. These results indicate that oral microbiota composition is perturbed in patients with anti-AChR antibody–positive MG, providing new potential avenues for targeted therapeutic interventions.
Collapse
Affiliation(s)
- Chao Huang
- Department of Neurology, Luoyang Central Hospital Affiliated to Zhengzhou University, Luoyang Cerebrovascular Disease (Stroke) Clinical Medical Research Center, Regional Medical Center for Neurological Diseases of Henan Province, Luoyang, China
| | - Feng Gao
- Department of Neuroimmunology, Henan Institute of Medical and Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, China
| | - Haitao Zhou
- Department of Neurology, Luoyang Central Hospital Affiliated to Zhengzhou University, Luoyang Cerebrovascular Disease (Stroke) Clinical Medical Research Center, Regional Medical Center for Neurological Diseases of Henan Province, Luoyang, China
| | - Li Zhang
- Department of Neurology, Luoyang Central Hospital Affiliated to Zhengzhou University, Luoyang Cerebrovascular Disease (Stroke) Clinical Medical Research Center, Regional Medical Center for Neurological Diseases of Henan Province, Luoyang, China
| | - Dandan Shang
- Department of Neurology, Luoyang Central Hospital Affiliated to Zhengzhou University, Luoyang Cerebrovascular Disease (Stroke) Clinical Medical Research Center, Regional Medical Center for Neurological Diseases of Henan Province, Luoyang, China
| | - Ying Ji
- Department of Neurology, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Zhihui Duan
- Department of Neurology, Luoyang Central Hospital Affiliated to Zhengzhou University, Luoyang Cerebrovascular Disease (Stroke) Clinical Medical Research Center, Regional Medical Center for Neurological Diseases of Henan Province, Luoyang, China
- *Correspondence: Zhihui Duan
| |
Collapse
|