1
|
Mykhailova O, Brandon-Coatham M, Hemmatibardehshahi S, Yazdanbakhsh M, Olafson C, Yi QL, Kanias T, Acker JP. Donor age contributes more to the rheological properties of stored red blood cells than donor sex and biological age distribution. Blood Adv 2025; 9:673-686. [PMID: 39504562 DOI: 10.1182/bloodadvances.2024014475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Revised: 10/07/2024] [Accepted: 10/26/2024] [Indexed: 11/08/2024] Open
Abstract
ABSTRACT The quality of stored red cell concentrates (RCCs) has been linked to the biological age distribution of red blood cell (RBC) subpopulations. Teenage male RCCs contain higher proportions of biologically old RBCs, with poorer quality. This study sought to assess the contribution of donor sex and age on the deformability characteristics of RBC subpopulations in stored RCCs. On days 5, 14, 28, and 42 of hypothermic storage, RCCs from healthy teenage male (n = 15), senior male (n = 15), teenage female (n = 15), and senior female (n = 15) donors were biologically age profiled. The deformability of the resulting young RBCs and old RBCs (O-RBCs) was assessed using ektacytometry. Over storage, donor age was the biggest factor influencing the rheology of RBC subpopulations. Teenage male RCCs had the largest reduction in Ohyper (osmolality in the hypertonic region corresponding to 50% of the maximum RBC elongation [EImax]). The strongest correlations between Ohyper and mean corpuscular hemoglobin content (R2 > 0.5) were witnessed with O-RBCs from senior donors, and to a lesser extent with teenage males. Teen O-RBCs, particularly from males, had higher elongation indices, both under isotonic conditions and in the presence of an increasing osmotic gradient. Teen RBCs, regardless of biological age, were discovered to be more rigid (higher shear stress required to reach half the EImax). Donor variation in the age distribution of RBC subpopulations and its downstream effect on deformability serves as further evidence that factors beyond storage could potentially affect RCC quality and transfusion outcomes.
Collapse
Affiliation(s)
- Olga Mykhailova
- Innovation and Portfolio Management, Canadian Blood Services, Edmonton, AB, Canada
| | | | - Sanaz Hemmatibardehshahi
- Innovation and Portfolio Management, Canadian Blood Services, Edmonton, AB, Canada
- Department of Laboratory Medicine and Pathology, University of Alberta, Edmonton, AB, Canada
| | - Mahsa Yazdanbakhsh
- Innovation and Portfolio Management, Canadian Blood Services, Edmonton, AB, Canada
- Department of Laboratory Medicine and Pathology, University of Alberta, Edmonton, AB, Canada
| | - Carly Olafson
- Innovation and Portfolio Management, Canadian Blood Services, Edmonton, AB, Canada
| | - Qi-Long Yi
- Canadian Blood Services, Ottawa, ON, Canada
| | | | - Jason P Acker
- Innovation and Portfolio Management, Canadian Blood Services, Edmonton, AB, Canada
- Department of Laboratory Medicine and Pathology, University of Alberta, Edmonton, AB, Canada
| |
Collapse
|
2
|
Sarkar T, Vignesh SR, Kumar Sundaravadivelu P, Thummer RP, Satpati P, Chatterjee S. De Novo Design of Tryptophan Containing Broad-Spectrum Cationic Antimicrobial Octapeptides. ChemMedChem 2025; 20:e202400566. [PMID: 39402809 DOI: 10.1002/cmdc.202400566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 10/07/2024] [Indexed: 11/14/2024]
Abstract
With the advent of antibiotic resistant organisms, development of alternate classes of molecules other than antibiotics to combat microbial infections, have become extremely important. In this context, antimicrobial peptides have taken center stage of antimicrobial therapeutic research. In this work, we have reported two cationic antimicrobial octapeptides WRL and LWRF, with broad spectrum antimicrobial activities against several strains of ESKAPE pathogens. Both the peptides were membrane associative and induced microbial cell death through membranolysis, being selective towards microbial membranes over mammalian membranes. The AMPs were unstructured in water, adopting partial helical conformation in the presence of microbial membrane mimics. Electrostatic interaction formed the primary basis of peptide-membrane interactions. WRL was more potent, salt tolerant and faster acting of the two AMPs, owing to the presence of two tryptophan residues against that of one in LWRF. Increased tryptophan number in WRL enhanced its membrane association ability, resulting in higher antimicrobial potency but lower selectivity. This experimental and computational work, established that an optimum number of tryptophan residues and their position was critical for obtaining high antimicrobial potency and selectivity simultaneously in the designed cationic AMPs. Understanding the peptide membrane interactions in atomistic details can lead to development of better antimicrobial therapeutics in future.
Collapse
Affiliation(s)
- Tanumoy Sarkar
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati, Assam, 781039, India
| | - S R Vignesh
- Department of Bioscience and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, Assam, 781039, India
| | - Pradeep Kumar Sundaravadivelu
- Department of Bioscience and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, Assam, 781039, India
| | - Rajkumar P Thummer
- Department of Bioscience and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, Assam, 781039, India
| | - Priyadarshi Satpati
- Department of Bioscience and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, Assam, 781039, India
| | - Sunanda Chatterjee
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati, Assam, 781039, India
| |
Collapse
|
3
|
Tran LNT, González-Fernández C, Gomez-Pastora J. Impact of Different Red Blood Cell Storage Solutions and Conditions on Cell Function and Viability: A Systematic Review. Biomolecules 2024; 14:813. [PMID: 39062526 PMCID: PMC11274915 DOI: 10.3390/biom14070813] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2024] [Revised: 07/01/2024] [Accepted: 07/05/2024] [Indexed: 07/28/2024] Open
Abstract
Red blood cell (RBC) storage solutions have evolved significantly over the past decades to optimize the preservation of cell viability and functionality during hypothermic storage. This comprehensive review provides an in-depth analysis of the effects of various storage solutions and conditions on critical RBC parameters during refrigerated preservation. A wide range of solutions, from basic formulations such as phosphate-buffered saline (PBS), to advanced additive solutions (ASs), like AS-7 and phosphate, adenine, glucose, guanosine, saline, and mannitol (PAGGSM), are systematically compared in terms of their ability to maintain key indicators of RBC integrity, including adenosine triphosphate (ATP) levels, morphology, and hemolysis. Optimal RBC storage requires a delicate balance of pH buffering, metabolic support, oxidative damage prevention, and osmotic regulation. While the latest alkaline solutions enable up to 8 weeks of storage, some degree of metabolic and morphological deterioration remains inevitable. The impacts of critical storage conditions, such as the holding temperature, oxygenation, anticoagulants, irradiation, and processing methods, on the accumulation of storage lesions are also thoroughly investigated. Personalized RBC storage solutions, tailored to individual donor characteristics, represent a promising avenue for minimizing storage lesions and enhancing transfusion outcomes. Further research integrating omics profiling with customized preservation media is necessary to maximize post-transfusion RBC survival and functions. The continued optimization of RBC storage practices will not only enhance transfusion efficacy but also enable blood banking to better meet evolving clinical needs.
Collapse
Affiliation(s)
- Linh Nguyen T. Tran
- Department of Chemical Engineering, Texas Tech University, Lubbock, TX 79409, USA; (L.N.T.T.); (C.G.-F.)
| | - Cristina González-Fernández
- Department of Chemical Engineering, Texas Tech University, Lubbock, TX 79409, USA; (L.N.T.T.); (C.G.-F.)
- Chemical and Biomolecular Engineering Department, Universidad de Cantabria, Avda. Los Castros, s/n, 39005 Santander, Spain
| | - Jenifer Gomez-Pastora
- Department of Chemical Engineering, Texas Tech University, Lubbock, TX 79409, USA; (L.N.T.T.); (C.G.-F.)
| |
Collapse
|
4
|
Recktenwald SM, Rashidi Y, Graham I, Arratia PE, Del Giudice F, Wagner C. Morphology, repulsion, and ordering of red blood cells in viscoelastic flows under confinement. SOFT MATTER 2024; 20:4950-4963. [PMID: 38873747 DOI: 10.1039/d4sm00446a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2024]
Abstract
Red blood cells (RBC), the primary carriers of oxygen in the body, play a crucial role across several biomedical applications, while also being an essential model system of a deformable object in the microfluidics and soft matter fields. However, RBC behavior in viscoelastic liquids, which holds promise in enhancing microfluidic diagnostic applications, remains poorly studied. We here show that using viscoelastic polymer solutions as a suspending carrier causes changes in the clustering and shape of flowing RBC in microfluidic flows when compared to a standard Newtonian suspending liquid. Additionally, when the local RBC concentration increases to a point where hydrodynamic interactions take place, we observe the formation of equally-spaced RBC structures, resembling the viscoelasticity-driven ordered particles observed previously in the literature, thus providing the first experimental evidence of viscoelasticity-driven cell ordering. The observed RBC ordering, unaffected by polymer molecular architecture, persists as long as the surrounding medium exhibits shear-thinning, viscoelastic properties. Complementary numerical simulations reveal that viscoelasticity-induced repulsion between RBCs leads to equidistant structures, with shear-thinning modulating this effect. Our results open the way for the development of new biomedical technologies based on the use of viscoelastic liquids while also clarifying fundamental aspects related to multibody hydrodynamic interactions in viscoelastic microfluidic flows.
Collapse
Affiliation(s)
- Steffen M Recktenwald
- Dynamics of Fluids, Department of Experimental Physics, Saarland University, 66123 Saarbrücken, Germany.
- Micro/Bio/Nanofluidics Unit, Okinawa Institute of Science and Technology Graduate University, 1919-1 Tancha, Onna-son, Okinawa 904-0495, Japan
| | - Yazdan Rashidi
- Dynamics of Fluids, Department of Experimental Physics, Saarland University, 66123 Saarbrücken, Germany.
| | - Ian Graham
- Department of Mechanical Engineering and Applied Mechanics, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Paulo E Arratia
- Department of Mechanical Engineering and Applied Mechanics, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Francesco Del Giudice
- Complex Fluid Research Group, Department of Chemical Engineering, Faculty of Science and Engineering, Swansea University, Swansea SA1 8EN, UK
| | - Christian Wagner
- Dynamics of Fluids, Department of Experimental Physics, Saarland University, 66123 Saarbrücken, Germany.
- Physics and Materials Science Research Unit, University of Luxembourg, L-1511 Luxembourg, Luxembourg
| |
Collapse
|
5
|
Tüfekçi M, Hamarat S, Çalışkan TD, Özgüzar HF, Meydan AE, Göçmen JS, Evren E, Gökçe Mİ, Goktas H. Long-term antifouling surfaces for urinary catheters. J Mater Chem B 2024; 12:5711-5721. [PMID: 38758163 DOI: 10.1039/d4tb00311j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/18/2024]
Abstract
The presence of a variety of bacteria is an inevitable/indispensable part of human life. In particular, for patients, the existence and spreading of bacteria lead to prolonged treatment period with many more complications. The widespread use of urinary catheters is one of the main causes for the prevalence of infections. The necessity of long-term use of indwelling catheters is unavoidable in terms of the development of bacteriuria and blockage. As is known, since a permanent solution to this problem has not yet been found, research and development activities continue actively. Herein, polyethylene glycol (PEG)-like thin films were synthesized by a custom designed plasma enhanced chemical vapor deposition (PE-CVD) method and the long-term effect of antifouling properties of PEG-like coated catheters was investigated against Escherichia coli and Proteus mirabilis. The contact angle measurements have revealed the increase of wettability with the increase of plasma exposure time. The antifouling activity of surface-coated catheters was analyzed against the Gram-negative/positive bacteria over a long-term period (up to 30 days). The results revealed that PE-CVD coated PEG-like thin films are highly capable of eliminating bacterial attachment on surfaces with relatively reduced protein attachment without having any toxic effect. Previous statements were supported with SEM, XPS, FTIR spectroscopy, and contact angle analysis.
Collapse
Affiliation(s)
- Mustafa Tüfekçi
- Department of Biomedical Engineering, Ankara University, Golbasi, Turkey.
| | - Sena Hamarat
- Department of Biomedical Engineering, Ankara University, Golbasi, Turkey.
| | | | - Hatice Ferda Özgüzar
- Plasma Aided Biomedical Research Group (pabmed) Biomedical Engineering Division, Graduate School of Engineering and Science, TOBB university of Economics and Technology, Ankara, 06560, Turkey
- Department of Materials Engineering, Biomaterials and Tissue Engineering Research Group, KU Leuven, Leuven, 3000, Belgium
| | - Ahmet Ersin Meydan
- Department of Molecular Medicine, Graduate School of Health Sciences, TOBB University of Economics and Technology, Ankara, 06560, Turkey
| | - Julide Sedef Göçmen
- Department of Medical Microbiology, Faculty of Medicine, TOBB University of Economics and Technology, Ankara, 06560, Turkey
| | - Ebru Evren
- Department of Medical Microbiology, Ankara University School of Medicine, Turkey
| | | | - Hilal Goktas
- Department of Biomedical Engineering, Ankara University, Golbasi, Turkey.
| |
Collapse
|
6
|
Mykhailova O, Brandon-Coatham M, Phan C, Yazdanbakhsh M, Olafson C, Yi QL, Kanias T, Acker JP. Red cell concentrates from teen male donors contain poor-quality biologically older cells. Vox Sang 2024; 119:417-427. [PMID: 38418415 DOI: 10.1111/vox.13602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Revised: 01/27/2024] [Accepted: 01/31/2024] [Indexed: 03/01/2024]
Abstract
BACKGROUND AND OBJECTIVES Donor factors influence the quality characteristics of red cell concentrates (RCCs) and the lesions that develop in these heterogeneous blood products during hypothermic storage. Teen male donors' RCCs contain elevated levels of biologically old red blood cells (RBCs). The aim of this study was to interrogate the quality of units of different donor ages and sexes to unravel the complex interplay between donor characteristics, long-term cold storage and, for the first time, RBC biological age. MATERIALS AND METHODS RCCs from teen males, teen females, senior males and senior females were density-separated into less-dense/young (Y-RBCs) and dense/old RBCs (O-RBCs) throughout hypothermic storage for testing. The unseparated and density-separated cells were tested for haematological parameters, stress (oxidative and osmotic) haemolysis and oxygen affinity (p50). RESULTS The O-RBCs obtained from teen donor samples, particularly males, had smaller mean corpuscular volumes and higher mean corpuscular haemoglobin concentrations. While biological age did not significantly affect oxygen affinity, biologically aged O-RBCs from stored RCCs exhibited increased oxidative haemolysis and decreased osmotic fragility, with teenage male RCCs exhibiting the highest propensity to haemolyse. CONCLUSION Previously, donor age and sex were shown to have an impact on the biological age distribution of RBCs within RCCs. Herein, we demonstrated that RBC biological age, particularly O-RBCs, which are found more prevalently in male teens, to be a driving factor of several aspects of poor blood product quality. This study emphasizes that donor factors should continue to be considered for their potential impacts on transfusion outcomes.
Collapse
Affiliation(s)
- Olga Mykhailova
- Innovation and Portfolio Management, Canadian Blood Services, Edmonton, Alberta, Canada
| | | | - Celina Phan
- Department of Laboratory Medicine and Pathology, University of Alberta, Edmonton, Alberta, Canada
| | - Mahsa Yazdanbakhsh
- Department of Laboratory Medicine and Pathology, University of Alberta, Edmonton, Alberta, Canada
| | - Carly Olafson
- Innovation and Portfolio Management, Canadian Blood Services, Edmonton, Alberta, Canada
| | - Qi-Long Yi
- Canadian Blood Services, Ottawa, Ontario, Canada
| | - Tamir Kanias
- Vitalant Research Institute, Denver, Colorado, USA
| | - Jason P Acker
- Innovation and Portfolio Management, Canadian Blood Services, Edmonton, Alberta, Canada
- Department of Laboratory Medicine and Pathology, University of Alberta, Edmonton, Alberta, Canada
| |
Collapse
|
7
|
Anilkumar V, Priyanka A, Ranjith S, Safeena AS, Nair RP, Bhatt A. Optimization of Formaldehyde Fixative Concentration for Individual Blood Cells to Develop a Stabilized Blood Control for Automated Hematology Analyzers. Indian J Hematol Blood Transfus 2024; 40:315-323. [PMID: 38708165 PMCID: PMC11065838 DOI: 10.1007/s12288-023-01708-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Accepted: 10/04/2023] [Indexed: 05/07/2024] Open
Abstract
In a modern haematology laboratory, the complete and differential counts of blood are performed using complex haematology auto analyzers. In order to ensure the accuracy and reliability of test results, various regulatory authorities have prescribed the use of stabilized blood controls. The major pitfalls of these blood controls are their short shelf life. This could be due to the fact that they are prepared by a common cocktail of fixatives which acts on the discrete cells in various ways and would result in either under-fixation or over-fixation of various cells. Thus, in the present study, we have explored and optimized fixative and buffering for individual cells to achieve stable blood control. Blood cells were isolated using the centrifugation technique and were fixed individually with different concentrations of formaldehyde. After fixation, cells were pooled. Analysis of cell count was done till six months. Cells were also analysed morphologically to see the effect of fixation and storage on cell morphology. In the present study we compared the effect of the concentration of formaldehyde fixative for individual cells in the blood and their role in enhancing the shelf life and maintaining the morphology of the cells when suspended in plasma or suitable buffers post-fixation. It was observed that WBCs can be better fixed with 3 and 3.5% formaldehyde in a buffered solution, whereas RBCs and Platelets can be optimally fixed with 2.5% formaldehyde in a buffered solution.
Collapse
Affiliation(s)
- V. Anilkumar
- Division of Thrombosis Research, Biomedical Technology Wing, Sree Chitra Tirunal Institute for Medical Sciences and Technology, Thiruvananthapuram, Kerala 695012 India
| | - A. Priyanka
- Division of Thrombosis Research, Biomedical Technology Wing, Sree Chitra Tirunal Institute for Medical Sciences and Technology, Thiruvananthapuram, Kerala 695012 India
| | - S. Ranjith
- Division of Thrombosis Research, Biomedical Technology Wing, Sree Chitra Tirunal Institute for Medical Sciences and Technology, Thiruvananthapuram, Kerala 695012 India
| | - A. S. Safeena
- Division of Thrombosis Research, Biomedical Technology Wing, Sree Chitra Tirunal Institute for Medical Sciences and Technology, Thiruvananthapuram, Kerala 695012 India
| | - Renjith P. Nair
- Division of Thrombosis Research, Biomedical Technology Wing, Sree Chitra Tirunal Institute for Medical Sciences and Technology, Thiruvananthapuram, Kerala 695012 India
| | - Anugya Bhatt
- Division of Thrombosis Research, Biomedical Technology Wing, Sree Chitra Tirunal Institute for Medical Sciences and Technology, Thiruvananthapuram, Kerala 695012 India
| |
Collapse
|
8
|
Vieira WA, Kitamura GH, Figueiredo de Almeida R, de Almeida JFA, Gomes BPFA, Ferraz CCR, Marciano MA, de-Jesus-Soares A. Effect of EDTA Activation on Blood Clot Structure in Regenerative Endodontics: A Scanning Electron Microscopy Study. J Endod 2024; 50:173-180. [PMID: 38049083 DOI: 10.1016/j.joen.2023.11.015] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 11/26/2023] [Accepted: 11/27/2023] [Indexed: 12/06/2023]
Abstract
INTRODUCTION EDTA plays a crucial role in regenerative endodontic therapy (RET) because of its significant biological effects. However, EDTA is also recognized as the preferred anticoagulant for hematologic tests. Thus, this study aimed to assess the influence of different EDTA activation techniques on the morphology of blood clots after conditioning the root canal dentin. METHODS Forty extracted human teeth were prepared to simulate immature teeth and divided into the following 5 groups: (1) saline solution (negative control), (2) EDTA 17% + saline solution (CNI), (3) CNI + ultrasonic activation, (4) CNI + Easy clean activation, and (5) CNI + XP-endo Finisher activation. After irrigation, the roots were cleaved, and the root canals were filled with human blood to clot formation. The morphology and density of erythrocytes, platelets, and the fibrin network were observed using a scanning electron microscope. The fibrin network density was classified using a 4-point scale. Data were analyzed using the Friedman test and the Kruskal-Wallis test with Bonferroni adjustment (α = 5%). RESULTS All groups exhibited consistent blood clot morphology characterized by a high density of erythrocytes, platelets, and white blood cells throughout the entire length of the root canal. The negative control group showed statistically significant high scores of fibrin density compared with the CNI group in all root thirds (P < .05). However, there was no statistical difference in the scores for the fibrin network density between the groups irrigated with EDTA with and without activation (P > .05). CONCLUSIONS EDTA may impair the fibrin network formation compared with the saline group. However, EDTA activation did not significantly change the effects on the blood clot in contact with the conditioned intraradicular dentin.
Collapse
Affiliation(s)
- Walbert A Vieira
- Division of Endodontics, Department of Restorative Dentistry, Piracicaba Dental School, Universidade Estadual de Campinas, Piracicaba, São Paulo, Brazil.
| | - Giovanna H Kitamura
- Division of Endodontics, Department of Restorative Dentistry, Piracicaba Dental School, Universidade Estadual de Campinas, Piracicaba, São Paulo, Brazil
| | - Rodolfo Figueiredo de Almeida
- Division of Endodontics, Department of Restorative Dentistry, Piracicaba Dental School, Universidade Estadual de Campinas, Piracicaba, São Paulo, Brazil
| | - José Flávio A de Almeida
- Division of Endodontics, Department of Restorative Dentistry, Piracicaba Dental School, Universidade Estadual de Campinas, Piracicaba, São Paulo, Brazil
| | - Brenda P F A Gomes
- Division of Endodontics, Department of Restorative Dentistry, Piracicaba Dental School, Universidade Estadual de Campinas, Piracicaba, São Paulo, Brazil
| | - Caio Cézar R Ferraz
- Division of Endodontics, Department of Restorative Dentistry, Piracicaba Dental School, Universidade Estadual de Campinas, Piracicaba, São Paulo, Brazil
| | - Marina A Marciano
- Division of Endodontics, Department of Restorative Dentistry, Piracicaba Dental School, Universidade Estadual de Campinas, Piracicaba, São Paulo, Brazil
| | - Adriana de-Jesus-Soares
- Division of Endodontics, Department of Restorative Dentistry, Piracicaba Dental School, Universidade Estadual de Campinas, Piracicaba, São Paulo, Brazil
| |
Collapse
|
9
|
Melczer M, Jiménez Lamana J, Justo-Vega A, Hanser O, Ndaw S, Lobinski R. Multielement analysis of single red blood cells by single cell - inductively coupled plasma tandem mass spectrometry. Talanta 2024; 267:125226. [PMID: 37742394 DOI: 10.1016/j.talanta.2023.125226] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 08/23/2023] [Accepted: 09/19/2023] [Indexed: 09/26/2023]
Abstract
A method for the analysis of essential metals (Fe, Cu, Mg, and Zn) and non-metals (P, S) in single red blood cells was developed by single cell (SC)-ICP-MS. The use of a triple quadrupole configuration (MS/MS) enabled an effective elimination of polyatomic interferences, which affect the accuracy of ICP-MS analysis using a single quadrupole mass analyzer. Fixation with glutaraldehyde for at least 90 days was developed to improve the quantification of elements in a single red blood cell. The experimental conditions were optimized while special attention was paid to the residence time of analytes in the plasma. Addition of a surfactant (0.05% (v/v) Tween80®) improved quantification of elements in fixed red blood cells. The detection limits obtained by SC-ICP-MS/MS were lower than for ICP-MS, especially for S and P (3 fg and 1.7 fg. cell-1 instead of 163 and 6.3 fg. cell-1, respectively).
Collapse
Affiliation(s)
- Mathieu Melczer
- French Research and Safety Institute for the Prevention of Occupational Accidents and Diseases (INRS), Toxicology and Biomonitoring Division, 1 Rue Morvan, F-54519, Vandoeuvre les Nancy, France.
| | - Javier Jiménez Lamana
- Universite de Pau et des Pays de l'Adour, E2S UPPA, CNRS, Institute of Analytical and Physical Chemistry for Environment and Materials (IPREM-UMR5254), 64053, Pau, France
| | - Ana Justo-Vega
- Universite de Pau et des Pays de l'Adour, E2S UPPA, CNRS, Institute of Analytical and Physical Chemistry for Environment and Materials (IPREM-UMR5254), 64053, Pau, France; Group of Trace Elements, Spectroscopy and Speciation (GETEE), Materials Institute (iMATUS), Department of Analytical Chemistry, Nutrition and Bromatology, Faculty of Chemistry, University of Santiago de Compostela, Avda das Ciencias, s/n, 15782, Santiago de Compostela, Spain
| | - Ogier Hanser
- French Research and Safety Institute for the Prevention of Occupational Accidents and Diseases (INRS), Toxicology and Biomonitoring Division, 1 Rue Morvan, F-54519, Vandoeuvre les Nancy, France
| | - Sophie Ndaw
- French Research and Safety Institute for the Prevention of Occupational Accidents and Diseases (INRS), Toxicology and Biomonitoring Division, 1 Rue Morvan, F-54519, Vandoeuvre les Nancy, France
| | - Ryszard Lobinski
- Universite de Pau et des Pays de l'Adour, E2S UPPA, CNRS, Institute of Analytical and Physical Chemistry for Environment and Materials (IPREM-UMR5254), 64053, Pau, France; Chair of Analytical Chemistry, Faculty of Chemistry, Warsaw University of Technology, ul. Noakowskiego 3, 00-664, Warswawa, Poland
| |
Collapse
|
10
|
Shao M, Liu R, Li C, Sun Y, Zhong Z, Lu F, Zhou J, Zhong MC. Deformability of mouse erythrocytes in different diluents measured using optical tweezers. SOFT MATTER 2023; 19:7955-7962. [PMID: 37817638 DOI: 10.1039/d3sm00923h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/12/2023]
Abstract
Optical tweezers are widely used to measure the mechanical properties of erythrocytes, which is crucial to the study of pathology and clinical diagnosis of disease. During the measurement, the blood sample is diluted and suspended in an exogenous physiological fluid, which may affect the elastic properties of the cells in vitro. Here, we investigate the effect of different diluents on the elastic properties of mouse erythrocytes by quantitatively evaluating their elastic constants using optical tweezers. The diluents are plasma extracted from mouse blood, veterinary blood diluent (V-52D), Dulbecco's modified Eagle's medium (DMEM), phosphate-buffered saline (PBS), and normal saline (NS). To create an environment that closely resembles in vivo conditions, the experiment is performed at 36.5 °C. The results show that the spring constant of mouse erythrocytes in plasma is 6.23 ± 0.41 μN m-1. The elasticity of mouse erythrocytes in V-52D and DMEM is 8.21 ± 0.91 and 6.95 ± 0.85 μN m-1, which are higher than that in plasma extracted from blood, whereas, the elasticity in PBS and NS is 4.23 ± 0.85 and 4.68 ± 0.79 μN m-1, which are less than that in plasma extracted from blood. At last, we observe the size and circularity of erythrocytes in different diluents, and consider that the erythrocyte diameter and circularity may affect cell deformability. Our results provide a reference of the diluent choice for measuring the mechanical properties of erythrocytes in vitro.
Collapse
Affiliation(s)
- Meng Shao
- Anhui Province Key Laboratory of Measuring Theory and Precision Instrument, School of Instrument Science and Optoelectronics Engineering, Hefei University of Technology, Hefei 230009, China.
| | - Rui Liu
- School of Biomedical Engineering, Anhui Medical University, Hefei, 230032, China.
| | - Changxu Li
- School of Biomedical Engineering, Anhui Medical University, Hefei, 230032, China.
| | - Yue Sun
- School of Biomedical Engineering, Anhui Medical University, Hefei, 230032, China.
| | - Zhensheng Zhong
- School of Biomedical Engineering, Anhui Medical University, Hefei, 230032, China.
| | - Fengya Lu
- School of Biomedical Engineering, Anhui Medical University, Hefei, 230032, China.
| | - Jinhua Zhou
- School of Biomedical Engineering, Anhui Medical University, Hefei, 230032, China.
| | - Min-Cheng Zhong
- Anhui Province Key Laboratory of Measuring Theory and Precision Instrument, School of Instrument Science and Optoelectronics Engineering, Hefei University of Technology, Hefei 230009, China.
| |
Collapse
|
11
|
Van Moll L, Wouters M, De Smet J, De Vooght L, Delputte P, Van Der Borght M, Cos P. In-depth biological characterization of two black soldier fly anti- Pseudomonas peptides reveals LPS-binding and immunomodulating effects. mSphere 2023; 8:e0045423. [PMID: 37800918 PMCID: PMC10597467 DOI: 10.1128/msphere.00454-23] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Accepted: 08/22/2023] [Indexed: 10/07/2023] Open
Abstract
As effector molecules of the innate immune system, antimicrobial peptides (AMPs) have gathered substantial interest as a potential future generation of antibiotics. Here, we demonstrate the anti-Pseudomonas activity and lipopolysaccharide (LPS)-binding ability of HC1 and HC10, two cecropin peptides from the black soldier fly (Hermetia Illucens). Both peptides are active against a wide range of Pseudomonas aeruginosa strains, including drug-resistant clinical isolates. Moreover, HC1 and HC10 can bind to lipid A, the toxic center of LPS and reduce the LPS-induced nitric oxide and cytokine production in murine macrophage cells. This suggests that the peptide-LPS binding can also lower the strong inflammatory response associated with P. aeruginosa infections. As the activity of AMPs is often influenced by the presence of salts, we studied the LPS-binding activity of HC1 and HC10 in physiological salt concentrations, revealing a strong decrease in activity. Our research confirmed the early potential of HC1 and HC10 as starting points for anti-Pseudomonas drugs, as well as the need for structural or formulation optimization before further preclinical development can be considered. IMPORTANCE The high mortality and morbidity associated with Pseudomonas aeruginosa infections remain an ongoing challenge in clinical practice that requires urgent action. P. aeruginosa mostly infects immunocompromised individuals, and its prevalence is especially high in urgent care hospital settings. Lipopolysaccharides (LPSs) are outer membrane structures that are responsible for inducing the innate immune cascade upon infection. P. aeruginosa LPS can cause local excessive inflammation, or spread systemically throughout the body, leading to multi-organ failure and septic shock. As antimicrobial resistance rates in P. aeruginosa infections are rising, the research and development of new antimicrobial agents remain indispensable. Especially, antimicrobials that can both kill the bacteria themselves and neutralize their toxins are of great interest in P. aeruginosa research to develop as the next generation of drugs.
Collapse
Affiliation(s)
- Laurence Van Moll
- Laboratory of Microbiology, Parasitology and Hygiene (LMPH), Faculty of Pharmaceutical, Biomedical and Veterinary Sciences, University of Antwerp, Antwerp, Belgium
- Department of Microbial and Molecular Systems (M2S), Research Group for Insect Production and Processing (IP&P), KU Leuven, Campus Geel, Geel, Belgium
| | - Milan Wouters
- Laboratory of Microbiology, Parasitology and Hygiene (LMPH), Faculty of Pharmaceutical, Biomedical and Veterinary Sciences, University of Antwerp, Antwerp, Belgium
| | - Jeroen De Smet
- Department of Microbial and Molecular Systems (M2S), Research Group for Insect Production and Processing (IP&P), KU Leuven, Campus Geel, Geel, Belgium
| | - Linda De Vooght
- Laboratory of Microbiology, Parasitology and Hygiene (LMPH), Faculty of Pharmaceutical, Biomedical and Veterinary Sciences, University of Antwerp, Antwerp, Belgium
| | - Peter Delputte
- Laboratory of Microbiology, Parasitology and Hygiene (LMPH), Faculty of Pharmaceutical, Biomedical and Veterinary Sciences, University of Antwerp, Antwerp, Belgium
| | - Mik Van Der Borght
- Department of Microbial and Molecular Systems (M2S), Research Group for Insect Production and Processing (IP&P), KU Leuven, Campus Geel, Geel, Belgium
| | - Paul Cos
- Laboratory of Microbiology, Parasitology and Hygiene (LMPH), Faculty of Pharmaceutical, Biomedical and Veterinary Sciences, University of Antwerp, Antwerp, Belgium
| |
Collapse
|
12
|
Kang S, Zhou R, Brelen M, Mak HK, Lin Y, So PTC, Yaqoob Z. Mapping nanoscale topographic features in thick tissues with speckle diffraction tomography. LIGHT, SCIENCE & APPLICATIONS 2023; 12:200. [PMID: 37607903 PMCID: PMC10444882 DOI: 10.1038/s41377-023-01240-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 07/11/2023] [Accepted: 07/19/2023] [Indexed: 08/24/2023]
Abstract
Resolving three-dimensional morphological features in thick specimens remains a significant challenge for label-free imaging. We report a new speckle diffraction tomography (SDT) approach that can image thick biological specimens with ~500 nm lateral resolution and ~1 μm axial resolution in a reflection geometry. In SDT, multiple-scattering background is rejected through spatiotemporal gating provided by dynamic speckle-field interferometry, while depth-resolved refractive index maps are reconstructed by developing a comprehensive inverse-scattering model that also considers specimen-induced aberrations. Benefiting from the high-resolution and full-field quantitative imaging capabilities of SDT, we successfully imaged red blood cells and quantified their membrane fluctuations behind a turbid medium with a thickness of 2.8 scattering mean-free paths. Most importantly, we performed volumetric imaging of cornea inside an ex vivo rat eye and quantified its optical properties, including the mapping of nanoscale topographic features of Dua's and Descemet's membranes that had not been previously visualized.
Collapse
Affiliation(s)
- Sungsam Kang
- Laser Biomedical Research Center, G. R. Harrison Spectroscopy Laboratory, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Renjie Zhou
- Department of Biomedical Engineering, The Chinese University of Hong Kong, Hong Kong, China.
| | - Marten Brelen
- Department of Ophthalmology and Visual Sciences, The Chinese University of Hong Kong, Hong Kong, China
| | - Heather K Mak
- Department of Ophthalmology and Visual Sciences, The Chinese University of Hong Kong, Hong Kong, China
| | - Yuechuan Lin
- Laser Biomedical Research Center, G. R. Harrison Spectroscopy Laboratory, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Peter T C So
- Laser Biomedical Research Center, G. R. Harrison Spectroscopy Laboratory, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Zahid Yaqoob
- Laser Biomedical Research Center, G. R. Harrison Spectroscopy Laboratory, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA.
- Department of Biomedical Engineering, Boston University, Boston, MA, 02215, USA.
| |
Collapse
|
13
|
Ruzycka-Ayoush M, Nowicka AM, Kowalczyk A, Gluchowska A, Targonska A, Mosieniak G, Sobczak K, Donten M, Grudzinski IP. Exosomes derived from lung cancer cells: Isolation, characterization, and stability studies. Eur J Pharm Sci 2023; 181:106369. [PMID: 36572357 DOI: 10.1016/j.ejps.2022.106369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 12/15/2022] [Accepted: 12/23/2022] [Indexed: 12/25/2022]
Abstract
Recent advances in nanomedicine have paved the way for developing targeted drug delivery systems. Nanoscale exosomes are present in almost every body fluid and represent a novel mechanism of intercellular communication. Because of their membrane origin, they easily fuse with cells, acting as a natural delivery system and maintaining the bioactivity and immunotolerance of cells. To develop a reconstitutable exosome-based drug candidate for clinical applications, quality assurance by preserving its physical and biological properties during storage is necessary. Therefore, this study aimed to determine the best storage conditions for exosomes derived from lung cancer cells (A549). This study established that the phosphate-buffered saline buffer enriched with 25 mM trehalose is an optimal cryoprotectant for A549-derived exosomes stored at -80°C. Under these conditions, the concentration, size distribution, zeta potential, and total cargo protein levels of the preserved exosomes remained constant.
Collapse
Affiliation(s)
- Monika Ruzycka-Ayoush
- Faculty of Pharmacy, Medical University of Warsaw, Banacha 1, Warsaw 02-097, Poland.
| | - Anna M Nowicka
- Faculty of Chemistry, University of Warsaw, Pasteura 1, Warsaw 02-093, Poland
| | - Agata Kowalczyk
- Faculty of Chemistry, University of Warsaw, Pasteura 1, Warsaw 02-093, Poland
| | - Agata Gluchowska
- Laboratory of Molecular Bases of Ageing, Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warsaw, Poland
| | - Alicja Targonska
- Laboratory of Molecular Bases of Ageing, Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warsaw, Poland
| | - Grazyna Mosieniak
- Laboratory of Molecular Bases of Ageing, Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warsaw, Poland
| | - Kamil Sobczak
- Faculty of Chemistry, Biological and Chemical Research Centre, University of Warsaw, Zwirki i Wigury 101, Warsaw 02-089, Poland
| | - Mikolaj Donten
- Faculty of Chemistry, University of Warsaw, Pasteura 1, Warsaw 02-093, Poland
| | | |
Collapse
|
14
|
Interspecies Diversity of Osmotic Gradient Deformability of Red Blood Cells in Human and Seven Vertebrate Animal Species. Cells 2022; 11:cells11081351. [PMID: 35456029 PMCID: PMC9026962 DOI: 10.3390/cells11081351] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2022] [Revised: 04/07/2022] [Accepted: 04/13/2022] [Indexed: 11/24/2022] Open
Abstract
Plasma and blood osmolality values show interspecies differences and are strictly regulated. The effect of these factors also has an influence on microrheological parameters, such as red blood cell (RBC) deformability and aggregation. However, little is known about the interspecies differences in RBC deformability at various blood osmolality levels (osmotic gradient RBC deformability). Our aim was to conduct a descriptive–comparative study on RBC osmotic gradient deformability in several vertebrate species and human blood. Blood samples were taken from healthy volunteers, dogs, cats, pigs, sheep, rabbits, rats, and mice, to measure hematological parameters, as well as conventional and osmotic gradient RBC deformability. Analyzing the elongation index (EI)–osmolality curves, we found the highest maximal EI values (EI max) in human, dog, and rabbit samples. The lowest EI max values were seen in sheep and cat samples, in addition to a characteristic leftward shift of the elongation index–osmolality curves. We found significant differences in the hyperosmolar region. A correlation of mean corpuscular volume and mean corpuscular hemoglobin concentration with osmoscan parameters was found. Osmotic gradient deformability provides further information for better exploration of microrheological diversity between species and may help to better understand the alterations caused by osmolality changes in various disorders.
Collapse
|