1
|
Sivakumaran D, Jenum S, Markussen DL, Serigstad S, Srivastava A, Saghaug CS, Ulvestad E, Knoop ST, Grewal HMS. Protein and transcriptional biomarker profiling may inform treatment strategies in lower respiratory tract infections by indicating bacterial-viral differentiation. Microbiol Spectr 2024; 12:e0283123. [PMID: 39269158 PMCID: PMC11448388 DOI: 10.1128/spectrum.02831-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Accepted: 08/16/2024] [Indexed: 09/15/2024] Open
Abstract
Lower respiratory tract infections (LRTIs) remain a significant global cause of infectious disease-related mortality. Accurate discrimination between acute bacterial and viral LRTIs is crucial for optimal patient care, prevention of unnecessary antibiotic prescriptions, and resource allocation. Plasma samples from LRTI patients with bacterial (n = 36), viral (n = 27; excluding SARS-CoV-2), SARS-CoV-2 (n = 22), and mixed bacterial-viral (n = 38) etiology were analyzed for protein profiling. Whole-blood RNA samples from a subset of patients (bacterial, n = 8; viral, n = 8; and SARS-CoV-2, n = 8) were analyzed for transcriptional profiling. Lasso regression modeling identified a seven-protein signature (CRP, IL4, IL9, IP10, MIP1α, MIP1β, and TNFα) that discriminated between patients with bacterial (n = 36) vs viral (n = 27) infections with an area under the curve (AUC) of 0.98. When comparing patients with bacterial and mixed bacterial-viral infections (antibiotics clinically justified; n = 74) vs patients with viral and SARS-CoV-2 infections (antibiotics clinically not justified; n = 49), a 10-protein signature (CRP, bFGF, eotaxin, IFNγ, IL1β, IL7, IP10, MIP1α, MIP1β, and TNFα) with an AUC of 0.94 was identified. The transcriptional profiling analysis identified 232 differentially expressed genes distinguishing bacterial (n = 8) from viral and SARS-CoV-2 (n = 16) etiology. Protein-protein interaction enrichment analysis identified 20 genes that could be useful in the differentiation between bacterial and viral infections. Finally, we examined the performance of selected published gene signatures for bacterial-viral differentiation in our gene set, yielding promising results. Further validation of both protein and gene signatures in diverse clinical settings is warranted to establish their potential to guide the treatment of acute LRTIs. IMPORTANCE Accurate differentiation between bacterial and viral lower respiratory tract infections (LRTIs) is vital for effective patient care and resource allocation. This study investigated specific protein signatures and gene expression patterns in plasma and blood samples from LRTI patients that distinguished bacterial and viral infections. The identified signatures can inform the design of point-of-care tests that can aid healthcare providers in making informed decisions about antibiotic prescriptions in order to reduce unnecessary use, thereby contributing to reduced side effects and antibiotic resistance. Furthermore, the potential for faster and more accurate diagnoses for improved patient management in acute LRTIs is compelling.
Collapse
Affiliation(s)
- Dhanasekaran Sivakumaran
- Department of Clinical Science, Bergen Integrated Diagnostic Stewardship Cluster, University of Bergen, Bergen, Norway
| | - Synne Jenum
- Department of Clinical Science, Bergen Integrated Diagnostic Stewardship Cluster, University of Bergen, Bergen, Norway
- Department of Infectious Diseases, Oslo University Hospital, Oslo, Norway
| | - Dagfinn Lunde Markussen
- Department of Clinical Science, Bergen Integrated Diagnostic Stewardship Cluster, University of Bergen, Bergen, Norway
- Emergency Care Clinic, Haukeland University Hospital, Bergen, Norway
- Department of Microbiology, Haukeland University Hospital, Bergen, Norway
| | - Sondre Serigstad
- Emergency Care Clinic, Haukeland University Hospital, Bergen, Norway
- Department of Clinical Medicine, University of Bergen, Bergen, Norway
| | - Aashish Srivastava
- Genome Core-Facility, Clinical Laboratory (K2), Haukeland University Hospital, University of Bergen, Bergen, Norway
| | - Christina Skår Saghaug
- Department of Clinical Science, Bergen Integrated Diagnostic Stewardship Cluster, University of Bergen, Bergen, Norway
- Department of Microbiology, Haukeland University Hospital, Bergen, Norway
| | - Elling Ulvestad
- Department of Clinical Science, Bergen Integrated Diagnostic Stewardship Cluster, University of Bergen, Bergen, Norway
- Department of Microbiology, Haukeland University Hospital, Bergen, Norway
| | - Siri Tandberg Knoop
- Department of Clinical Science, Bergen Integrated Diagnostic Stewardship Cluster, University of Bergen, Bergen, Norway
- Department of Microbiology, Haukeland University Hospital, Bergen, Norway
| | - Harleen M S Grewal
- Department of Clinical Science, Bergen Integrated Diagnostic Stewardship Cluster, University of Bergen, Bergen, Norway
- Department of Microbiology, Haukeland University Hospital, Bergen, Norway
| |
Collapse
|
2
|
Mariappan V, Adla D, Jangili S, Ranganadin P, Green SR, Mohammed S, Mutheneni SR, Pillai AB. Understanding COVID-19 outcome: Exploring the prognostic value of soluble biomarkers indicative of endothelial impairment. Cytokine 2024; 180:156673. [PMID: 38857562 DOI: 10.1016/j.cyto.2024.156673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2024] [Revised: 05/20/2024] [Accepted: 06/05/2024] [Indexed: 06/12/2024]
Abstract
Host proteins released by the activated endothelial cells during SARS-CoV-2 infection are implicated to be involved in coagulation and endothelial dysfunction. However, the underlying mechanism that governs the vascular dysfunction and disease severity in COVID-19 remains obscure. The study evaluated the serum levels of Bradykinin, Kallikrein, SERPIN A, and IL-18 in COVID-19 (N-42 with 20 moderate and 22 severe) patients compared to healthy controls (HC: N-10) using ELISA at the day of admission (DOA) and day 7 post-admission. The efficacy of the protein levels in predicting disease severity was further determined using machine learning models. The levels of bradykinins and SERPIN A were higher (P ≤ 0.001) in both severe and moderate cases on day 7 post-admission compared to DOA. All the soluble proteins studied were found to elevated (P ≤ 0.01) in severe compared to moderate in day 7 and were positively correlated (P ≤ 0.001) with D-dimer, a marker for coagulation. ROC analysis identified that SERPIN A, IL-18, and bradykinin could predict the clinical condition of COVID-19 with AUC values of 1, 0.979, and 1, respectively. Among the models trained using univariate model analysis, SERPIN A emerged as a strong prognostic biomarker for COVID-19 disease severity. The serum levels of SERPIN A in conjunction with the coagulation marker D-dimer, serve as a predictive indicator for COVID-19 clinical outcomes. However, studies are required to ascertain the role of these markers in disease virulence.
Collapse
Affiliation(s)
- Vignesh Mariappan
- Mahatma Gandhi Medical Advanced Research Institute (MGMARI), Sri Balaji Vidyapeeth (Deemed to be University), Puducherry 607 402, India.
| | - Deepthi Adla
- Applied Biology Division, CSIR-Indian Institute of Chemical Technology (CSIR-IICT), Tarnaka, Hyderabad 500 007, Telangana, India.
| | - Shraddha Jangili
- Applied Biology Division, CSIR-Indian Institute of Chemical Technology (CSIR-IICT), Tarnaka, Hyderabad 500 007, Telangana, India.
| | - Pajanivel Ranganadin
- Department of Pulmonary Medicine, Mahatma Gandhi Medical College and Research Institute (MGMCRI), Sri Balaji Vidyapeeth (Deemed to be University), Puducherry 607 402, India.
| | - Siva Ranaganthan Green
- Department of General Medicine, Mahatma Gandhi Medical College and Research Institute (MGMCRI), Sri Balaji Vidyapeeth (Deemed to be University), Puducherry 607 402, India.
| | - Salma Mohammed
- Mahatma Gandhi Medical Advanced Research Institute (MGMARI), Sri Balaji Vidyapeeth (Deemed to be University), Puducherry 607 402, India.
| | - Srinivasa Rao Mutheneni
- Applied Biology Division, CSIR-Indian Institute of Chemical Technology (CSIR-IICT), Tarnaka, Hyderabad 500 007, Telangana, India.
| | - Agieshkumar Balakrishna Pillai
- Mahatma Gandhi Medical Advanced Research Institute (MGMARI), Sri Balaji Vidyapeeth (Deemed to be University), Puducherry 607 402, India.
| |
Collapse
|
3
|
Hayashi K, Koyama D, Hamazaki Y, Kamiyama T, Yamada S, Furukawa M, Tanino Y, Shibata Y, Ikezoe T. Syndecan-1 as a prognostic biomarker in COVID-19 patients: a retrospective study of a Japanese cohort. Thromb J 2024; 22:52. [PMID: 38907229 PMCID: PMC11191303 DOI: 10.1186/s12959-024-00619-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Accepted: 06/09/2024] [Indexed: 06/23/2024] Open
Abstract
BACKGROUND The coronavirus disease 2019 (COVID-19) pandemic, caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has had a profound global impact, with millions of confirmed cases and deaths worldwide. While most cases are mild, a subset progresses to severe respiratory complications and death, with factors such as thromboembolism, age, and underlying health conditions increasing the risk. Vascular endothelial damage has been implicated in severe outcomes, but specific biomarkers remain elusive. This study investigated syndecan-1 (SDC-1), a marker of endothelial damage, as a potential prognostic factor for COVID-19, focusing on the Japanese population, which is known for its aging demographics and high prevalence of comorbidities. METHODS A multicenter retrospective study of COVID-19 patients in Fukushima Prefecture in Japan who were admitted between February 2020 and August 2021 was conducted. SDC-1 levels were measured along with other clinical and laboratory parameters. Outcomes including thrombosis, 28-day survival, and disease severity were assessed, and disease severity was categorized according to established guidelines. RESULTS SDC-1 levels were correlated with disease severity. Patients who died from COVID-19 had greater SDC-1 levels than survivors, and the area under the receiver operating characteristic curve (AUC) analysis suggested the potential of the SDC-1 level as a predictor of mortality (AUC 0.714). K‒M analysis also revealed a significant difference in survival based on an SDC-1 cutoff of 10.65 ng/mL. DISCUSSION This study suggested that SDC-1 may serve as a valuable biomarker for assessing COVID-19 severity and predicting mortality within 28 days of hospitalization, particularly in the Japanese population. However, further investigations are required to assess longitudinal changes in SDC-1 levels, validate its predictive value for long-term survival, and consider its applicability to new viral variants. CONCLUSIONS SDC-1 is emerging as a potential biomarker for assessing the severity and life expectancy of COVID-19 in the Japanese population, offering promise for improved risk stratification and patient management in the ongoing fight against the virus.
Collapse
Affiliation(s)
- Kiyohito Hayashi
- Department of Hematology, Fukushima Medical University, Fukushima, Fukushima, 960-1295, Japan
| | - Daisuke Koyama
- Department of Hematology, Fukushima Medical University, Fukushima, Fukushima, 960-1295, Japan
| | - Yoichi Hamazaki
- Department of Hematology, Iwaki City Medical Center, Iwaki, Fukushima, Japan
| | - Takamichi Kamiyama
- Department of Pediatric Surgery, Iwaki City Medical Center, Iwaki, Fukushima, Japan
| | - Shingo Yamada
- R&D Center, Shino-Test Corporation, Sagamihara, Kanagawa, Japan
| | - Miki Furukawa
- Division of Hematology, Kita-Fukushima Medical Center, Date, Fukushima, Japan
| | - Yoshinori Tanino
- Department of Pulmonary Medicine, Fukushima Medical University, Fukushima, Fukushima, Japan
| | - Yoko Shibata
- Department of Pulmonary Medicine, Fukushima Medical University, Fukushima, Fukushima, Japan
| | - Takayuki Ikezoe
- Department of Hematology, Fukushima Medical University, Fukushima, Fukushima, 960-1295, Japan.
| |
Collapse
|
4
|
Mahesh DN, Sreelatha B, Vinoth S, Nancy S. Clinical profile of children with influenza like illness during pre-monsoon at coastal Karaikal, Puducherry, India. Bioinformation 2024; 20:252-257. [PMID: 38712005 PMCID: PMC11069598 DOI: 10.6026/973206300200252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 03/31/2024] [Accepted: 03/31/2024] [Indexed: 05/08/2024] Open
Abstract
Influenza infections in developing countries are under reported and WHO estimates that nearly 99% of influenza deaths worldwide occur in children under-five years of age in Asian and African countries. Consequently, this study aims to analyze the use of clinical profile and easily available laboratory parameters to aid identification of the possible viral etiology in the setting of pre-monsoon ILI. A cross-sectional study was carried out for three months among children with ILI attending fever clinic of a tertiary care hospital in Karaikal, South India. In the study population the prevalence of ILI was highest in the age group four to five years followed by school aged children. Adolescents were affected the least. Influenza B was most common virus causing ILI in this region, followed by covid-19 infection. Laboratory parameters depicted a significantly high ESR in COVID-19 infected ILI children. They also exhibited leucopenia and normal platelet counts. Clinical symptoms and laboratory parameters which are easily available and cheaper can be used in resource poor settings of healthcare to identify possible influenza and COVID-19 infected children amongst cases presenting with ILI.
Collapse
Affiliation(s)
- Dande Naga Mahesh
- Department of Paediatrics, Vinayaka Mission's Medical College and Hospital, Vinayaka Mission's Research Foundation - Deemed to be University (VMRF-DU), Karaikal, Puducherry, India
| | - B Sreelatha
- Department of Paediatrics, Vinayaka Mission's Medical College and Hospital, Vinayaka Mission's Research Foundation - Deemed to be University (VMRF-DU), Karaikal, Puducherry, India
| | - S Vinoth
- Department of Paediatrics, Vinayaka Mission's Medical College and Hospital, Vinayaka Mission's Research Foundation - Deemed to be University (VMRF-DU), Karaikal, Puducherry, India
| | - S Nancy
- Department of Community Medicine, Vinayaka Mission's Medical College and Hospital, Vinayaka Mission's Research Foundation - Deemed to be University (VMRF-DU), Karaikal, Puducherry, India
| |
Collapse
|
5
|
Domingues KZA, Cobre AF, Lazo REL, Amaral LS, Ferreira LM, Tonin FS, Pontarolo R. Systematic review and evidence gap mapping of biomarkers associated with neurological manifestations in patients with COVID-19. J Neurol 2024; 271:1-23. [PMID: 38015300 DOI: 10.1007/s00415-023-12090-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 10/27/2023] [Accepted: 10/29/2023] [Indexed: 11/29/2023]
Abstract
OBJECTIVE This study aimed to synthesize the existing evidence on biomarkers related to coronavirus disease 2019 (COVID-19) patients who presented neurological events. METHODS A systematic review of observational studies (any design) following PRISMA (Preferred Reporting Items for Systematic Reviews and Meta-Analyses) guidelines and the Cochrane Collaboration recommendations was performed (PROSPERO: CRD42021266995). Searches were conducted in PubMed and Scopus (updated April 2023). The methodological quality of nonrandomized studies was assessed using the Newcastle‒Ottawa Scale (NOS). An evidence gap map was built considering the reported biomarkers and NOS results. RESULTS Nine specific markers of glial activation and neuronal injury were mapped from 35 studies published between 2020 and 2023. A total of 2,237 adult patients were evaluated in the included studies, especially during the acute phase of COVID-19. Neurofilament light chain (NfL) and glial fibrillary acidic protein (GFAP) biomarkers were the most frequently assessed (n = 27 studies, 77%, and n = 14 studies, 40%, respectively). Although these biomarkers were found to be correlated with disease severity and worse outcomes in the acute phase in several studies (p < 0.05), they were not necessarily associated with neurological events. Overall, 12 studies (34%) were judged as having low methodological quality, 9 (26%) had moderate quality, and 9 (26%) had high quality. CONCLUSIONS Different neurological biomarkers in neurosymptomatic COVID-19 patients were identified in observational studies. Although the evidence is still scarce and conflicting for some biomarkers, well-designed longitudinal studies should further explore the pathophysiological role of NfL, GFAP, and tau protein and their potential use for COVID-19 diagnosis and management.
Collapse
Affiliation(s)
- K Z A Domingues
- Programa de Pós-Graduação em Ciências Farmacêuticas, Universidade Federal do Paraná, Curitiba, PR, 80210-170, Brazil
| | - A F Cobre
- Programa de Pós-Graduação em Ciências Farmacêuticas, Universidade Federal do Paraná, Curitiba, PR, 80210-170, Brazil
| | - R E L Lazo
- Programa de Pós-Graduação em Ciências Farmacêuticas, Universidade Federal do Paraná, Curitiba, PR, 80210-170, Brazil
| | - L S Amaral
- Programa de Pós-Graduação em Ciências Farmacêuticas, Universidade Federal do Paraná, Curitiba, PR, 80210-170, Brazil
| | - L M Ferreira
- Programa de Pós-Graduação em Ciências Farmacêuticas, Universidade Federal do Paraná, Curitiba, PR, 80210-170, Brazil
| | - F S Tonin
- H&TRC- Health & Technology Research Center, ESTeSL, Escola Superior de Tecnologia da Saúde, Instituto Politécnico de Lisboa, 1990-096, Lisbon, Portugal
| | - R Pontarolo
- Programa de Pós-Graduação em Ciências Farmacêuticas, Universidade Federal do Paraná, Curitiba, PR, 80210-170, Brazil.
| |
Collapse
|
6
|
Kato CD, Nsubuga J, Niyonzima N, Kitibwa A, Matovu E, Othieno E, Ssebugere P, Tumwine AA, Namayanja M. Immunological and biochemical biomarker alterations among SARS-COV-2 patients with varying disease phenotypes in Uganda. BMC Infect Dis 2023; 23:857. [PMID: 38057707 DOI: 10.1186/s12879-023-08854-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Accepted: 11/29/2023] [Indexed: 12/08/2023] Open
Abstract
Every novel infection requires an assessment of the host response coupled with identification of unique biomarkers for predicting disease pathogenesis, treatment targets and diagnostic utility. Studies have exposed dysregulated inflammatory response induced by the novel severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) as significant predictor or cause of disease severity/prognosis and death. This study evaluated inflammatory biomarkers induced by SARS-CoV-2 in plasma of patients with varying disease phenotypes and healthy controls with prognostic or therapeutic potential. We stratified SARS-CoV-2 plasma samples based on disease status (asymptomatic, mild, severe, and healthy controls), as diagnosed by RT-PCR SARS-CoV-2. We used a solid phase sandwich and competitive Enzyme-Linked Immunosorbent Assay (ELISA) to measure levels of panels of immunological (IFN-γ, TNF-α, IL-6, and IL-10) and biochemical markers (Ferritin, Procalcitonin, C-Reactive Protein, Angiotensin II, Homocysteine, and D-dimer). Biomarker levels were compared across SARS-CoV-2 disease stratification. Plasma IFN-γ, TNF-α, IL-6, and IL-10 levels were significantly (P < 0.05) elevated in the severe SARS-CoV-2 patients as compared to mild, asymptomatic, and healthy controls. Ferritin, Homocysteine, and D-dimer plasma levels were significantly elevated in severe cases over asymptomatic and healthy controls. Plasma C-reactive protein and Angiotensin II levels were significantly (P < 0.05) higher in mild than severe cases and healthy controls. Plasma Procalcitonin levels were significantly higher in asymptomatic than in mild, severe cases and healthy controls. Our study demonstrates the role of host inflammatory biomarkers in modulating the pathogenesis of COVID-19. The study proposes a number of potential biomarkers that could be explored as SARS-CoV-2 treatment targets and possible prognostic predictors for a severe outcome. The comprehensive analysis of prognostic biomarkers may contribute to the evidence-based management of COVID-19 patients.
Collapse
Affiliation(s)
- Charles Drago Kato
- School of Bio-security, Biotechnical & Laboratory Sciences, College of Veterinary Medicine, Animal Resources & Bio-security, Makerere University, P.O Box 7062, Kampala, Uganda.
| | - Julius Nsubuga
- School of Bio-security, Biotechnical & Laboratory Sciences, College of Veterinary Medicine, Animal Resources & Bio-security, Makerere University, P.O Box 7062, Kampala, Uganda.
| | | | - Annah Kitibwa
- School of Bio-security, Biotechnical & Laboratory Sciences, College of Veterinary Medicine, Animal Resources & Bio-security, Makerere University, P.O Box 7062, Kampala, Uganda
| | - Enock Matovu
- School of Bio-security, Biotechnical & Laboratory Sciences, College of Veterinary Medicine, Animal Resources & Bio-security, Makerere University, P.O Box 7062, Kampala, Uganda
| | - Emmanuel Othieno
- Department of Pathology, Soroti University, P.O. Box 211, Soroti, Uganda
| | - Patrick Ssebugere
- Department of Chemistry, College of Natural Sciences, Makerere University, P.O Box 7062, Kampala, Uganda
| | - Amanda Agnes Tumwine
- School of Bio-security, Biotechnical & Laboratory Sciences, College of Veterinary Medicine, Animal Resources & Bio-security, Makerere University, P.O Box 7062, Kampala, Uganda
| | - Monica Namayanja
- School of Bio-security, Biotechnical & Laboratory Sciences, College of Veterinary Medicine, Animal Resources & Bio-security, Makerere University, P.O Box 7062, Kampala, Uganda
| |
Collapse
|
7
|
Najimi N, Zahednasab H, Farahmand M, Fouladvand A, Talei GR, Bouzari B, Khanizadeh S, Karampoor S. Exploring the role of tryptophanyl-tRNA synthetase and associations with inflammatory markers and clinical outcomes in COVID-19 patients: A case-control study. Microb Pathog 2023; 183:106300. [PMID: 37567323 DOI: 10.1016/j.micpath.2023.106300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 08/04/2023] [Accepted: 08/09/2023] [Indexed: 08/13/2023]
Abstract
Tryptophanyl-tRNA synthetase (WRS) is a critical enzyme involved in protein synthesis, responsible for charging tRNA with the essential amino acid tryptophan. Recent studies have highlighted its novel role in stimulating innate immunity against bacterial and viral infections. However, the significance of WRS in severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection remains elusive. In this study, we aimed to investigate the complex interplay between WRS, inflammatory markers, Toll-like receptor-4 (TLR-4), and clinical outcomes in coronavirus disease 19 (COVID-19) patients. A case-control investigation comprised 127 COVID-19 patients, carefully classified as severe or moderate upon admission, and 112 healthy individuals as a comparative group. Blood samples were meticulously collected before treatment initiation, and WRS, interleukin-6 (IL-6), and C-reactive protein (CRP) concentrations were quantified using a well-established commercial ELISA kit. Peripheral blood mononuclear cells (PBMCs) were isolated from the blood samples, and RNA was extracted for cDNA synthesis. Semi-quantitative real-time polymerase chain reaction (PCR) was employed to assess the relative expression of TLR-4. COVID-19 patients exhibited elevated levels of WRS, IL-6, CRP, and TLR-4 expression compared to healthy individuals, with the severe group displaying significantly higher levels than the moderate group. Notably, severe patients demonstrated substantial fluctuations in CRP, IL-6, and WRS levels over time, a pattern not observed in their moderate counterparts. Although no significant distinctions were observed in the dynamic alterations of WRS, IL-6, CRP, and TLR-4 expression between deceased and surviving patients, a trend emerged indicating higher IL-6_1 levels in deceased patients and elevated lactate dehydrogenase (LDH) levels in severe patients who succumbed to the disease. This pioneering research highlights the dynamic alterations of WRS in COVID-19 patients, providing valuable insights into the correlation between WRS, inflammatory markers, and disease severity within this population. Understanding the role of WRS in SARS-CoV-2 infection may open new avenues for therapeutic interventions targeting innate immunity to combat COVID-19.
Collapse
Affiliation(s)
- Nastaran Najimi
- Department of Virology, Faculty of Medicine, Lorestan University of Medical Sciences, Khorramabad, Iran
| | - Hamid Zahednasab
- Institute of Biochemistry and Biophysics, University of Tehran, Tehran, Iran
| | - Mohammad Farahmand
- Research Center for Emergency and Disaster Resilience, Red Crescent Society of the Islamic Republic of Iran, Tehran, Iran
| | - Ali Fouladvand
- Hepatitis Research Center, Department of Pediatrics, Shahid Rahimi Hospital, Lorestan University of Medical Sciences, Khorramabad, Iran
| | - Gholam Reza Talei
- Department of Virology, Faculty of Medicine, Lorestan University of Medical Sciences, Khorramabad, Iran
| | - Behnaz Bouzari
- Department of Pathology, Firouzgar Hospital, Iran University of Medical Sciences, Tehran, Iran
| | - Sayyad Khanizadeh
- Hepatitis Research Center, Department of Virology, Faculty of Medicine, Lorestan University of Medical Sciences, Khorramabad, Iran.
| | - Sajad Karampoor
- Gastrointestinal and Liver Diseases Research Center, Iran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
8
|
Andrejkovits ÁV, Huțanu A, Susányi EJ, Negrea V, Văsieșiu AM. The Prognostic Utility of Cytokines in Hospitalized COVID-19 Patients. J Crit Care Med (Targu Mures) 2023; 9:208-217. [PMID: 37969879 PMCID: PMC10644278 DOI: 10.2478/jccm-2023-0025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2023] [Accepted: 09/14/2023] [Indexed: 11/17/2023] Open
Abstract
Introduction The severity of COVID-19 relies on several factors, but the overproduction of pro-inflammatory cytokines remains a central mechanism. The aim of this study was to investigate the predictive utility of interleukin (IL)-6, IL-8, IL-10, IL-12, tumor necrosis factor alpha (TNF-α), and interferon gamma (IFN-γ) measurement in patients with COVID-19. Material and Methods We prospectively enrolled 181 adult patients with COVID-19 admitted to the 1st Infectious Disease County Hospital Târgu Mureș from December 2020 to September 2021. Serum cytokine levels were measured and correlated with disease severity, need for oxygen therapy, intensive care unit (ICU) transfer, and outcome. Results We found significantly higher serum levels of IL-6, IL-8, and IL-10 in patients with severe COVID-19 and in those with a fatal outcome. The logistic regression analysis showed a significant predictive value for IL-8 regarding disease severity, and for IL6 and IL-10 regarding ICU transfer and fatal outcome. Conclusions Serum levels of IL-6, IL-8, and IL-10 were significantly increased in patients with COVID-19, but their predictive value regarding disease severity and the need for oxygen therapy was poor. We found IL-6 and IL-10 to have a good predictive performance regarding ICU transfer and fatal outcome.
Collapse
Affiliation(s)
- Ákos Vince Andrejkovits
- Doctoral School of Medicine and Pharmacy, I.O.S.U.D., George Emil Palade University of Medicine, Pharmacy, Science, and Technology of Targu Mures, Romania
| | - Adina Huțanu
- Department of Laboratory Medicine, George Emil Palade University of Medicine, Pharmacy, Science, and Technology of Targu Mures, Romania
- Center for Advanced Medical and Pharmaceutical Research, Targu Mures, Romania
| | - Ervin József Susányi
- First Infectious Disease Clinic of Targu Mureș, Mureș County Clinical Hospital, Romania
| | - Valentina Negrea
- Doctoral School of Medicine and Pharmacy, I.O.S.U.D., George Emil Palade University of Medicine, Pharmacy, Science, and Technology of Targu Mures, Romania
- Department of Infectious Disease, George Emil Palade University of Medicine, Pharmacy, Science, and Technology of Targu Mures, Romania
| | - Anca Meda Văsieșiu
- First Infectious Disease Clinic of Targu Mureș, Mureș County Clinical Hospital, Romania
- Department of Infectious Disease, George Emil Palade University of Medicine, Pharmacy, Science, and Technology of Targu Mures, Romania
| |
Collapse
|
9
|
Griggs E, Trageser K, Naughton S, Yang EJ, Mathew B, Van Hyfte G, Hellmers L, Jette N, Estill M, Shen L, Fischer T, Pasinetti GM. Recapitulation of pathophysiological features of AD in SARS-CoV-2-infected subjects. eLife 2023; 12:e86333. [PMID: 37417740 PMCID: PMC10361716 DOI: 10.7554/elife.86333] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Accepted: 06/22/2023] [Indexed: 07/08/2023] Open
Abstract
Infection with the etiological agent of COVID-19, SARS-CoV-2, appears capable of impacting cognition in some patients with post-acute sequelae of SARS-CoV-2 (PASC). To evaluate neuropathophysiological consequences of SARS-CoV-2 infection, we examine transcriptional and cellular signatures in the Brodmann area 9 (BA9) of the frontal cortex and the hippocampal formation (HF) in SARS-CoV-2, Alzheimer's disease (AD), and SARS-CoV-2-infected AD individuals compared to age- and gender-matched neurological cases. Here, we show similar alterations of neuroinflammation and blood-brain barrier integrity in SARS-CoV-2, AD, and SARS-CoV-2-infected AD individuals. Distribution of microglial changes reflected by the increase in Iba-1 reveals nodular morphological alterations in SARS-CoV-2-infected AD individuals. Similarly, HIF-1α is significantly upregulated in the context of SARS-CoV-2 infection in the same brain regions regardless of AD status. The finding may help in informing decision-making regarding therapeutic treatments in patients with neuro-PASC, especially those at increased risk of developing AD.
Collapse
Affiliation(s)
- Elizabeth Griggs
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, United States
| | - Kyle Trageser
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, United States
| | - Sean Naughton
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, United States
| | - Eun-Jeong Yang
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, United States
| | - Brian Mathew
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, United States
| | - Grace Van Hyfte
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, United States
| | - Linh Hellmers
- Tulane National Primate Research Center, Covington, United States
| | - Nathalie Jette
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, United States
| | - Molly Estill
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, United States
| | - Li Shen
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, United States
| | - Tracy Fischer
- Tulane National Primate Research Center, Covington, United States
- Department of Microbiology and Immunology, Tulane University School of Medicine, New Orleans, United States
| | - Giulio Maria Pasinetti
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, United States
- Geriatric Research, Education and Clinical Center, James J. Peters Veterans Affairs Medical Center, New York, United States
| |
Collapse
|
10
|
Cusato J, Manca A, Palermiti A, Mula J, Costanzo M, Antonucci M, Chiara F, De Vivo ED, Maiese D, Ferrara M, Bonora S, Di Perri G, D’Avolio A, Calcagno A. COVID-19: Focusing on the Link between Inflammation, Vitamin D, MAPK Pathway and Oxidative Stress Genetics. Antioxidants (Basel) 2023; 12:1133. [PMID: 37237997 PMCID: PMC10215473 DOI: 10.3390/antiox12051133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 05/17/2023] [Accepted: 05/17/2023] [Indexed: 05/28/2023] Open
Abstract
An uncontrolled inflammatory response during SARS-CoV-2 infection has been highlighted in several studies. This seems to be due to pro-inflammatory cytokines whose production could be regulated by vitamin D, ROS production or mitogen-activated protein kinase (MAPK). Several genetic studies are present in the literature concerning genetic influences on COVID-19 characteristics, but there are few data on oxidative stress, vitamin D, MAPK and inflammation-related factors, considering gender and age. Therefore, the aim of this study was to evaluate the role of single nucleotide polymorphisms in these pathways, clarifying their impact in affecting COVID-19-related clinical features. Genetic polymorphisms were evaluated through real-time PCR. We prospectively enrolled 160 individuals: 139 patients were positive for SARS-CoV-2 detection. We detected different genetic variants able to affect the symptoms and oxygenation. Furthermore, two sub-analyses were performed considering gender and age, showing a different impact of polymorphisms according to these characteristics. This is the first study highlighting a possible contribution of genetic variants of these pathways in affecting COVID-19 clinical features. This may be relevant in order to clarify the COVID-19 etiopathogenesis and to understand the possible genetic contribution for further SARS infections.
Collapse
Affiliation(s)
- Jessica Cusato
- Laboratory of Clinical Pharmacology and Pharmacogenetics, Department of Medical Sciences, University of Turin, Amedeo di Savoia Hospital, Corso Svizzera, 164, 10149 Turin, Italy
| | - Alessandra Manca
- Laboratory of Clinical Pharmacology and Pharmacogenetics, Department of Medical Sciences, University of Turin, Amedeo di Savoia Hospital, Corso Svizzera, 164, 10149 Turin, Italy
| | - Alice Palermiti
- Laboratory of Clinical Pharmacology and Pharmacogenetics, Department of Medical Sciences, University of Turin, Amedeo di Savoia Hospital, Corso Svizzera, 164, 10149 Turin, Italy
| | - Jacopo Mula
- Laboratory of Clinical Pharmacology and Pharmacogenetics, Department of Medical Sciences, University of Turin, Amedeo di Savoia Hospital, Corso Svizzera, 164, 10149 Turin, Italy
| | - Martina Costanzo
- Laboratory of Clinical Pharmacology and Pharmacogenetics, Department of Medical Sciences, University of Turin, Amedeo di Savoia Hospital, Corso Svizzera, 164, 10149 Turin, Italy
| | - Miriam Antonucci
- ASL Città di Torino, Amedeo di Savoia Hospital, 10149 Turin, Italy
| | - Francesco Chiara
- Laboratory of Clinical Pharmacology S.Luigi A.O.U., Department of Clinical and Biological Sciences, University of Turin, Regione Gonzole, Orbassano, 10043 Turin, Italy
| | - Elisa Delia De Vivo
- Laboratory of Clinical Pharmacology and Pharmacogenetics, Department of Medical Sciences, University of Turin, Amedeo di Savoia Hospital, Corso Svizzera, 164, 10149 Turin, Italy
| | - Domenico Maiese
- Laboratory of Clinical Pharmacology and Pharmacogenetics, Department of Medical Sciences, University of Turin, Amedeo di Savoia Hospital, Corso Svizzera, 164, 10149 Turin, Italy
| | - Micol Ferrara
- ASL Città di Torino, Amedeo di Savoia Hospital, 10149 Turin, Italy
| | - Stefano Bonora
- Unit of Infectious Diseases, Department of Medical Sciences, University of Turin, Amedeo di Savoia Hospital, 10149 Turin, Italy
| | - Giovanni Di Perri
- Unit of Infectious Diseases, Department of Medical Sciences, University of Turin, Amedeo di Savoia Hospital, 10149 Turin, Italy
| | - Antonio D’Avolio
- Laboratory of Clinical Pharmacology and Pharmacogenetics, Department of Medical Sciences, University of Turin, Amedeo di Savoia Hospital, Corso Svizzera, 164, 10149 Turin, Italy
| | - Andrea Calcagno
- Unit of Infectious Diseases, Department of Medical Sciences, University of Turin, Amedeo di Savoia Hospital, 10149 Turin, Italy
| |
Collapse
|
11
|
Bianconi V, Mannarino MR, Ramondino F, Fusaro J, Giglioni F, Braca M, Ricciutelli F, Lombardini R, Paltriccia R, Greco A, Lega IC, Pirro M. Lipoprotein(a) Does Not Predict Thrombotic Events and In-Hospital Outcomes in Patients with COVID-19. J Clin Med 2023; 12:3543. [PMID: 37240653 PMCID: PMC10218794 DOI: 10.3390/jcm12103543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 05/10/2023] [Accepted: 05/15/2023] [Indexed: 05/28/2023] Open
Abstract
The prothrombotic and proinflammatory properties of lipoprotein(a) (Lp(a)) have been hypothesized to play a role in the pathogenesis of severe COVID-19; however, the prognostic impact of Lp(a) on the clinical course of COVID-19 remains controversial. This study aimed to investigate whether Lp(a) may be associated with biomarkers of thrombo-inflammation and the occurrence of thrombotic events or adverse clinical outcomes in patients hospitalized for COVID-19. We consecutively enrolled a cohort of patients hospitalized for COVID-19 and collected blood samples for Lp(a) assessment at hospital admission. A prothrombotic state was evaluated through D-dimer levels, whereas a proinflammatory state was evaluated through C-reactive protein (CRP), procalcitonin, and white blood cell (WBC) levels. Thrombotic events were marked by the diagnosis of deep or superficial vein thrombosis (DVT or SVT), pulmonary embolism (PE), stroke, transient ischemic attack (TIA), acute coronary syndrome (ACS), and critical limb ischemia (CLI). The composite clinical end point of intensive care unit (ICU) admission/in-hospital death was used to evaluate adverse clinical outcomes. Among 564 patients (290 (51%) men, mean age of 74 ± 17 years) the median Lp(a) value at hospital admission was 13 (10-27) mg/dL. During hospitalization, 64 (11%) patients were diagnosed with at least one thrombotic event and 83 (15%) patients met the composite clinical end point. Lp(a), as either a continuous or categorical variable, was not associated with D-dimer, CRP, procalcitonin, and WBC levels (p > 0.05 for all correlation analyses). In addition, Lp(a) was not associated with a risk of thrombotic events (p > 0.05 for multi-adjusted odds ratios) nor with a risk of adverse clinical outcomes (p > 0.05 for multi-adjusted hazard ratios). In conclusion, Lp(a) does not influence biomarkers of plasma thrombotic activity and systemic inflammation nor has any impact on thrombotic events and adverse clinical outcomes in patients hospitalized for COVID-19.
Collapse
Affiliation(s)
- Vanessa Bianconi
- Unit of Internal Medicine, Department of Medicine and Surgery, University of Perugia, 06129 Perugia, Italy; (F.R.); (J.F.); (F.G.); (M.B.); (F.R.); (R.L.); (R.P.); (A.G.); (M.P.)
| | - Massimo R. Mannarino
- Women’s College Research Institute, Women’s College Hospital, Toronto, ON M5G 1N8, Canada; (M.R.M.); (I.C.L.)
| | - Federica Ramondino
- Unit of Internal Medicine, Department of Medicine and Surgery, University of Perugia, 06129 Perugia, Italy; (F.R.); (J.F.); (F.G.); (M.B.); (F.R.); (R.L.); (R.P.); (A.G.); (M.P.)
| | - Jessica Fusaro
- Unit of Internal Medicine, Department of Medicine and Surgery, University of Perugia, 06129 Perugia, Italy; (F.R.); (J.F.); (F.G.); (M.B.); (F.R.); (R.L.); (R.P.); (A.G.); (M.P.)
| | - Francesco Giglioni
- Unit of Internal Medicine, Department of Medicine and Surgery, University of Perugia, 06129 Perugia, Italy; (F.R.); (J.F.); (F.G.); (M.B.); (F.R.); (R.L.); (R.P.); (A.G.); (M.P.)
| | - Marco Braca
- Unit of Internal Medicine, Department of Medicine and Surgery, University of Perugia, 06129 Perugia, Italy; (F.R.); (J.F.); (F.G.); (M.B.); (F.R.); (R.L.); (R.P.); (A.G.); (M.P.)
| | - Federica Ricciutelli
- Unit of Internal Medicine, Department of Medicine and Surgery, University of Perugia, 06129 Perugia, Italy; (F.R.); (J.F.); (F.G.); (M.B.); (F.R.); (R.L.); (R.P.); (A.G.); (M.P.)
| | - Rita Lombardini
- Unit of Internal Medicine, Department of Medicine and Surgery, University of Perugia, 06129 Perugia, Italy; (F.R.); (J.F.); (F.G.); (M.B.); (F.R.); (R.L.); (R.P.); (A.G.); (M.P.)
| | - Rita Paltriccia
- Unit of Internal Medicine, Department of Medicine and Surgery, University of Perugia, 06129 Perugia, Italy; (F.R.); (J.F.); (F.G.); (M.B.); (F.R.); (R.L.); (R.P.); (A.G.); (M.P.)
| | - Alessia Greco
- Unit of Internal Medicine, Department of Medicine and Surgery, University of Perugia, 06129 Perugia, Italy; (F.R.); (J.F.); (F.G.); (M.B.); (F.R.); (R.L.); (R.P.); (A.G.); (M.P.)
| | - Iliana C. Lega
- Women’s College Research Institute, Women’s College Hospital, Toronto, ON M5G 1N8, Canada; (M.R.M.); (I.C.L.)
| | - Matteo Pirro
- Unit of Internal Medicine, Department of Medicine and Surgery, University of Perugia, 06129 Perugia, Italy; (F.R.); (J.F.); (F.G.); (M.B.); (F.R.); (R.L.); (R.P.); (A.G.); (M.P.)
| |
Collapse
|
12
|
Abstract
OBJECTIVE Interindividual variability in the clinical progression of COVID-19 may be explained by host genetics. Emerging literature supports a potential inherited predisposition to severe forms of COVID-19. Demographic and inflammatory characteristics of COVID-19 suggest that acquired hematologic mutations leading to clonal hematopoiesis (CH) may further increase vulnerability to adverse sequelae. This review summarizes the available literature examining genetic predispositions to severe COVID-19 and describes how these findings could eventually be used to improve its clinical management. DATA SOURCES A PubMed literature search was performed. STUDY SELECTION Studies examining the significance of inherited genetic variation or acquired CH mutations in severe COVID-19 were selected for inclusion. DATA EXTRACTION Relevant genetic association data and aspects of study design were qualitatively assessed and narratively synthesized. DATA SYNTHESIS Genetic variants affecting inflammatory responses may increase susceptibility to severe COVID-19. Genome-wide association studies and candidate gene approaches have identified a list of inherited mutations, which likely alter cytokine and interferon secretion, and lung-specific mechanisms of immunity in COVID-19. The potential role of CH in COVID-19 is more uncertain at present; however, the available evidence suggests that the various types of acquired mutations and their differential influence on immune cell function must be carefully considered. CONCLUSIONS The current literature supports the hypothesis that host genetic factors affect vulnerability to severe COVID-19. Further research is required to confirm the full scope of relevant variants and the causal mechanisms underlying these associations. Clinical approaches, which consider the genetic basis of interindividual variability in COVID-19 and potentially other causes of critical illness, could optimize hospital resource allocation, predict responsiveness to treatment, identify more efficacious drug targets, and ultimately improve outcomes.
Collapse
|
13
|
Gao CA, Pickens CI, Morales-Nebreda L, Wunderink RG. Clinical Features of COVID-19 and Differentiation from Other Causes of CAP. Semin Respir Crit Care Med 2023; 44:8-20. [PMID: 36646082 DOI: 10.1055/s-0042-1759889] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Community-acquired pneumonia (CAP) is a significant cause of morbidity and mortality, one of the most common reasons for infection-related death worldwide. Causes of CAP include numerous viral, bacterial, and fungal pathogens, though frequently no specific organism is found. Beginning in 2019, the COVID-19 pandemic has caused incredible morbidity and mortality. COVID-19 has many features typical of CAP such as fever, respiratory distress, and cough, and can be difficult to distinguish from other types of CAP. Here, we highlight unique clinical features of COVID-19 pneumonia such as olfactory and gustatory dysfunction, lymphopenia, and distinct imaging appearance.
Collapse
Affiliation(s)
- Catherine A Gao
- Division of Pulmonary and Critical Care, Northwestern University Feinberg School of Medicine, Chicago, Illinois
| | - Chiagozie I Pickens
- Division of Pulmonary and Critical Care, Northwestern University Feinberg School of Medicine, Chicago, Illinois
| | - Luisa Morales-Nebreda
- Division of Pulmonary and Critical Care, Northwestern University Feinberg School of Medicine, Chicago, Illinois
| | - Richard G Wunderink
- Division of Pulmonary and Critical Care, Northwestern University Feinberg School of Medicine, Chicago, Illinois
| |
Collapse
|
14
|
Lei H. A two-gene marker for the two-tiered innate immune response in COVID-19 patients. PLoS One 2023; 18:e0280392. [PMID: 36649304 PMCID: PMC9844909 DOI: 10.1371/journal.pone.0280392] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Accepted: 12/28/2022] [Indexed: 01/18/2023] Open
Abstract
For coronavirus disease 2019 (COVID-19), a pandemic disease characterized by strong immune dysregulation in severe patients, convenient and efficient monitoring of the host immune response is critical. Human hosts respond to viral and bacterial infections in different ways, the former is characterized by the activation of interferon stimulated genes (ISGs) such as IFI27, while the latter is characterized by the activation of anti-bacterial associated genes (ABGs) such as S100A12. This two-tiered innate immune response has not been examined in COVID-19. In this study, the activation patterns of this two-tiered innate immune response represented by IFI27 and S100A12 were explored based on 1421 samples from 17 transcriptome datasets derived from the blood of COVID-19 patients and relevant controls. It was found that IFI27 activation occurred in most of the symptomatic patients and displayed no correlation with disease severity, while S100A12 activation was more restricted to patients under severe and critical conditions with a stepwise activation pattern. In addition, most of the S100A12 activation was accompanied by IFI27 activation. Furthermore, the activation of IFI27 was most pronounced within the first week of symptom onset, but generally waned after 2-3 weeks. On the other hand, the activation of S100A12 displayed no apparent correlation with disease duration and could last for several months in certain patients. These features of the two-tiered innate immune response can further our understanding on the disease mechanism of COVID-19 and may have implications to the clinical triage. Development of a convenient two-gene protocol for the routine serial monitoring of this two-tiered immune response will be a valuable addition to the existing laboratory tests.
Collapse
Affiliation(s)
- Hongxing Lei
- CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences, and China National Center for Bioinformation, Beijing, China
- Cunji Medical School, University of Chinese Academy of Sciences, Beijing, China
- Center of Alzheimer’s Disease, Beijing Institute for Brain Disorders, Beijing, China
| |
Collapse
|
15
|
Punzalan FER, Aherrera JAM, de Paz-Silava SLM, Mondragon AV, Malundo AFG, Tan JJE, Tantengco OAG, Quebral EPB, Uy MNAR, Lintao RCV, Dela Rosa JGL, Mercado MEP, Avenilla KC, Poblete JB, Albay AB, David-Wang AS, Alejandria MM. Utility of laboratory and immune biomarkers in predicting disease progression and mortality among patients with moderate to severe COVID-19 disease at a Philippine tertiary hospital. Front Immunol 2023; 14:1123497. [PMID: 36926338 PMCID: PMC10011458 DOI: 10.3389/fimmu.2023.1123497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Accepted: 02/14/2023] [Indexed: 03/08/2023] Open
Abstract
Purpose This study was performed to determine the clinical biomarkers and cytokines that may be associated with disease progression and in-hospital mortality in a cohort of hospitalized patients with RT-PCR confirmed moderate to severe COVID-19 infection from October 2020 to September 2021, during the first wave of COVID-19 pandemic before the advent of vaccination. Patients and methods Clinical profile was obtained from the medical records. Laboratory parameters (complete blood count [CBC], albumin, LDH, CRP, ferritin, D-dimer, and procalcitonin) and serum concentrations of cytokines (IL-1β, IL-2, IL-4, IL-6, IL-8, IL-10, IL-18, IFN-γ, IP-10, TNF-α) were measured on Days 0-3, 4-10, 11-14 and beyond Day 14 from the onset of illness. Regression analysis was done to determine the association of the clinical laboratory biomarkers and cytokines with the primary outcomes of disease progression and mortality. ROC curves were generated to determine the predictive performance of the cytokines. Results We included 400 hospitalized patients with COVID-19 infection, 69% had severe to critical COVID-19 on admission. Disease progression occurred in 139 (35%) patients, while 18% of the total cohort died (73 out of 400). High D-dimer >1 µg/mL (RR 3.5 95%CI 1.83-6.69), elevated LDH >359.5 U/L (RR 1.85 95%CI 1.05-3.25), lymphopenia (RR 1.91 95%CI 1.14-3.19), and hypoalbuminemia (RR 2.67, 95%CI 1.05-6.78) were significantly associated with disease progression. High D-dimer (RR 3.95, 95%CI 1.62-9.61) and high LDH (RR 5.43, 95%CI 2.39-12.37) were also significantly associated with increased risk of in-hospital mortality. Nonsurvivors had significantly higher IP-10 levels at 0 to 3, 4 to 10, and 11 to 14 days from illness onset (p<0.01), IL-6 levels at 0 to 3 days of illness (p=0.03) and IL-18 levels at days 11-14 of illness (p<0.001) compared to survivors. IP-10 had the best predictive performance for disease progression at days 0-3 (AUC 0.81, 95%CI: 0.68-0.95), followed by IL-6 at 11-14 days of illness (AUC 0.67, 95%CI: 0.61-0.73). IP-10 predicted mortality at 11-14 days of illness (AUC 0.77, 95%CI: 0.70-0.84), and IL-6 beyond 14 days of illness (AUC 0.75, 95%CI: 0.68-0.82). Conclusion Elevated D-dimer, elevated LDH, lymphopenia and hypoalbuminemia are prognostic markers of disease progression. High IP-10 and IL-6 within the 14 days of illness herald disease progression. Additionally, elevated D-dimer and LDH, high IP-10, IL-6 and IL-18 were also associated with mortality. Timely utilization of these biomarkers can guide clinical monitoring and management decisions for COVID-19 patients in the Philippines.
Collapse
Affiliation(s)
- Felix Eduardo R Punzalan
- Department of Medicine, Philippine General Hospital, University of the Philippines Manila, Manila, Philippines.,College of Medicine, University of the Philippines Manila, Manila, Philippines
| | - Jaime Alfonso M Aherrera
- Department of Medicine, Philippine General Hospital, University of the Philippines Manila, Manila, Philippines.,College of Medicine, University of the Philippines Manila, Manila, Philippines
| | | | - Alric V Mondragon
- Department of Medicine, Philippine General Hospital, University of the Philippines Manila, Manila, Philippines.,College of Medicine, University of the Philippines Manila, Manila, Philippines
| | - Anna Flor G Malundo
- Department of Medicine, Philippine General Hospital, University of the Philippines Manila, Manila, Philippines.,College of Medicine, University of the Philippines Manila, Manila, Philippines
| | - Joanne Jennifer E Tan
- Department of Medicine, Philippine General Hospital, University of the Philippines Manila, Manila, Philippines.,College of Medicine, University of the Philippines Manila, Manila, Philippines
| | - Ourlad Alzeus G Tantengco
- Department of Physiology, College of Medicine, University of the Philippines Manila, Manila, Philippines.,Department of Biology, College of Science, De La Salle University, Manila, Philippines
| | | | - Mary Nadine Alessandra R Uy
- Department of Medicine, Philippine General Hospital, University of the Philippines Manila, Manila, Philippines.,College of Medicine, University of the Philippines Manila, Manila, Philippines
| | - Ryan C V Lintao
- College of Medicine, University of the Philippines Manila, Manila, Philippines
| | | | - Maria Elizabeth P Mercado
- Department of Clinical Epidemiology, Faculty of Medicine and Surgery, University of Santo Tomas, Manila, Philippines
| | | | - Jonnel B Poblete
- Department of Medicine, Philippine General Hospital, University of the Philippines Manila, Manila, Philippines
| | - Albert B Albay
- Department of Medicine, Philippine General Hospital, University of the Philippines Manila, Manila, Philippines.,College of Medicine, University of the Philippines Manila, Manila, Philippines
| | - Aileen S David-Wang
- Department of Medicine, Philippine General Hospital, University of the Philippines Manila, Manila, Philippines.,College of Medicine, University of the Philippines Manila, Manila, Philippines
| | - Marissa M Alejandria
- Department of Medicine, Philippine General Hospital, University of the Philippines Manila, Manila, Philippines.,College of Medicine, University of the Philippines Manila, Manila, Philippines.,Institute of Clinical Epidemiology, National Institutes of Health, University of the Philippines Manila, Manila, Philippines
| |
Collapse
|
16
|
Cicchitto G, Cardillo L, Sequino D, Sabatini P, Adamo L, Marchitiello R, Viscardi M, Cozzolino L, Cavallera A, Bocchino M, Sanduzzi Zamparelli A, Ferrigno F, de Carlo E, de Martinis C, Fusco G. Effectiveness of Sotrovimab in the Omicron Storm Time: A Case Series. Viruses 2022; 15:102. [PMID: 36680143 PMCID: PMC9864548 DOI: 10.3390/v15010102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 12/28/2022] [Accepted: 12/29/2022] [Indexed: 01/01/2023] Open
Abstract
Neutralizing monoclonal antibodies (mAbs) for pre- and post-exposure prophylaxis of Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) are largely used to prevent the progression of the disease by blocking viral attachment, host cell entry, and infectivity. Sotrovimab, like other available mAbs, has been developed against the receptor binding Domain of the Spike (S) glycoprotein of the virus. Nevertheless, the latest Omicron variant has shown marked mutations within the S gene, thus opening the question of the efficacy of these neutralizing molecules towards this novel variant. In the present observational study, we describe the effects of Sotrovimab in the treatment of 15 fully vaccinated patients, infected by SARS-CoV-2 Omicron sub-variants, who were selected on the basis of factors widely considered to affect a worse prognosis: immune suppression (n = 12) and/or chronic kidney disease (n = 5) with evidence of interstitial pneumonia in nine patients. The effectiveness of Sotrovimab in the treatment of severe cases of COVID-19 was demonstrated by the regression of symptoms (mean 5.7 days), no need of hospitalisation, improvement of general health conditions and viral clearance within 30 days in all patients. In conclusion, although loss or reduction of mAbs neutralizing activity against the Omicron variant have been described, Sotrovimab has clinically proven to be a safe and useful treatment for patients with high risk of progression to severe COVID-19 infected by Omicron sub-variants.
Collapse
Affiliation(s)
- Gaetano Cicchitto
- COVID-19 Hospital “M. Scarlato”, Department of Pneumology, 84018 Salerno, Italy
| | - Lorena Cardillo
- Istituto Zooprofilattico Sperimentale del Mezzogiorno, Via Salute 2, 80055 Naples, Italy
| | - Davide Sequino
- Department of Clinical Medicine and Surgery, Section of Respiratory Disease Federico II University Hospital, 80055 Naples, Italy
| | - Paola Sabatini
- Umberto I” Hospital, Unit of Virology and Microbiology, Nocera Inferiore, 84018 Salerno, Italy
| | - Luisa Adamo
- Umberto I” Hospital, Unit of Virology and Microbiology, Nocera Inferiore, 84018 Salerno, Italy
| | - Rosita Marchitiello
- COVID-19 Hospital “M. Scarlato”, Unit of Clinical Pathology Laboratory, 84018 Salerno, Italy
| | - Maurizio Viscardi
- Istituto Zooprofilattico Sperimentale del Mezzogiorno, Via Salute 2, 80055 Naples, Italy
| | - Loredana Cozzolino
- Istituto Zooprofilattico Sperimentale del Mezzogiorno, Via Salute 2, 80055 Naples, Italy
| | | | - Marialuisa Bocchino
- Department of Clinical Medicine and Surgery, Section of Respiratory Disease Federico II University Hospital, 80055 Naples, Italy
| | - Alessandro Sanduzzi Zamparelli
- Department of Clinical Medicine and Surgery, Section of Respiratory Disease Federico II University Hospital, 80055 Naples, Italy
| | - Francesco Ferrigno
- COVID-19 Hospital “M. Scarlato”, Department of Pneumology, 84018 Salerno, Italy
| | - Esterina de Carlo
- Istituto Zooprofilattico Sperimentale del Mezzogiorno, Via Salute 2, 80055 Naples, Italy
| | - Claudio de Martinis
- Istituto Zooprofilattico Sperimentale del Mezzogiorno, Via Salute 2, 80055 Naples, Italy
| | - Giovanna Fusco
- Istituto Zooprofilattico Sperimentale del Mezzogiorno, Via Salute 2, 80055 Naples, Italy
| |
Collapse
|
17
|
Griggs E, Trageser K, Naughton S, Yang EJ, Mathew B, Van Hyfte G, Hellmers L, Jette N, Estill M, Shen L, Fischer T, Pasinetti GM. Molecular and cellular similarities in the brain of SARS-CoV-2 and Alzheimer's disease individuals. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2022:2022.11.23.517706. [PMID: 36451886 PMCID: PMC9709800 DOI: 10.1101/2022.11.23.517706] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
UNLABELLED Infection with the etiological agent of COVID-19, SARS-CoV-2, appears capable of impacting cognition, which some patients with Post-acute Sequelae of SARS-CoV-2 (PASC). To evaluate neuro-pathophysiological consequences of SARS-CoV-2 infection, we examine transcriptional and cellular signatures in the Broadman area 9 (BA9) of the frontal cortex and the hippocampal formation (HF) in SARS-CoV-2, Alzheimer's disease (AD) and SARS-CoV-2 infected AD individuals, compared to age- and gender-matched neurological cases. Here we show similar alterations of neuroinflammation and blood-brain barrier integrity in SARS-CoV-2, AD, and SARS-CoV-2 infected AD individuals. Distribution of microglial changes reflected by the increase of Iba-1 reveal nodular morphological alterations in SARS-CoV-2 infected AD individuals. Similarly, HIF-1α is significantly upregulated in the context of SARS-CoV-2 infection in the same brain regions regardless of AD status. The finding may help to inform decision-making regarding therapeutic treatments in patients with neuro-PASC, especially those at increased risk of developing AD. TEASER SARS-CoV-2 and Alzheimer's disease share similar neuroinflammatory processes, which may help explain neuro-PASC.
Collapse
|
18
|
Sharifi H, Hsu J. COVID-19 Pneumonia: Clinical Manifestations. Clin Chest Med 2022; 44:227-237. [PMID: 37085216 PMCID: PMC9682061 DOI: 10.1016/j.ccm.2022.11.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Coronavirus disease-2019 (COVID-19) pneumonia has diverse clinical manifestations, which have shifted throughout the pandemic. Formal classifications include presymptomatic infection and mild, moderate, severe, and critical illness. Social risk factors are numerous, with Black, Hispanic, and Native American populations in the United States having suffered disproportionately. Biological risk factors such as age, sex, underlying comorbid burden, and certain laboratory metrics can assist the clinician in triage and management. Guidelines for classifying radiographic findings have been proposed and may assist in prognosis. In this article, we review the risk factors, clinical course, complications, and imaging findings of COVID-19 pneumonia.
Collapse
Affiliation(s)
- Husham Sharifi
- Division of Pulmonary, Allergy, and Critical Care Medicine, Stanford University, 300 Pasteur Drive, Stanford, CA 94305, USA.
| | - Joe Hsu
- Division of Pulmonary, Allergy, and Critical Care Medicine, Stanford University, 300 Pasteur Drive, Stanford, CA 94305, USA
| |
Collapse
|
19
|
Pál K, Molnar AA, Huțanu A, Szederjesi J, Branea I, Timár Á, Dobreanu M. Inflammatory Biomarkers Associated with In-Hospital Mortality in Critical COVID-19 Patients. Int J Mol Sci 2022; 23:ijms231810423. [PMID: 36142336 PMCID: PMC9499352 DOI: 10.3390/ijms231810423] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 09/02/2022] [Accepted: 09/06/2022] [Indexed: 01/08/2023] Open
Abstract
The COVID-19 pandemic poses global healthcare challenges due to its unpredictable clinical course. The aim of this study is to identify inflammatory biomarkers and other routine laboratory parameters associated with in-hospital mortality in critical COVID-19 patients. We performed a retrospective observational study on 117 critical COVID-19 patients. Following descriptive statistical analysis of the survivor and non-survivor groups, optimal cut-off levels for the statistically significant parameters were determined using the ROC method, and the corresponding Kaplan-Meier survival curves were calculated. The inflammatory parameters that present statistically significant differences between survivors and non-survivors are IL-6 (p = 0.0004, cut-off = 27.68 pg/mL), CRP (p = 0.027, cut-off = 68.15 mg/L) and IL-6/Ly ratio (p = 0.0003, cut-off = 50.39). Additionally, other statistically significant markers are creatinine (p = 0.031, cut-off = 0.83 mg/dL), urea (p = 0.0002, cut-off = 55.85 mg/dL), AST (p = 0.0209, cut-off = 44.15 U/L), INR (p = 0.0055, cut-off = 1.075), WBC (p = 0.0223, cut-off = 11.68 × 109/L) and pH (p = 0.0055, cut-off = 7.455). A survival analysis demonstrated significantly higher in-hospital mortality rates of patients with values of IL-6, IL-6/Ly, AST, INR, and pH exceeding previously mentioned thresholds. In our study, IL-6 and IL-6/Ly have a predictive value for the mortality of critically-ill patients diagnosed with COVID-19. The integration of these parameters with AST, INR and pH could contribute to a prognostic score for the risk stratification of critical patients, reducing healthcare costs and facilitating clinical decision-making.
Collapse
Affiliation(s)
- Krisztina Pál
- Department of Laboratory Medicine, Emergency Clinical County Hospital, 540136 Targu Mures, Romania
- M2 Department, George Emil Palade University of Medicine, Pharmacy, Science, and Technology of Targu Mures, 540142 Targu Mures, Romania
| | - Anca Alexandra Molnar
- Department of Laboratory Medicine, Emergency Clinical County Hospital, 540136 Targu Mures, Romania
- M2 Department, George Emil Palade University of Medicine, Pharmacy, Science, and Technology of Targu Mures, 540142 Targu Mures, Romania
| | - Adina Huțanu
- Department of Laboratory Medicine, Emergency Clinical County Hospital, 540136 Targu Mures, Romania
- Department of Laboratory Medicine, George Emil Palade University of Medicine, Pharmacy, Science, and Technology of Targu Mures, 540142 Targu Mures, Romania
- Correspondence:
| | - János Szederjesi
- Department of Anesthesiology and Intensive Care, George Emil Palade University of Medicine, Pharmacy, Science, and Technology of Targu Mures, 540142 Targu Mures, Romania
- Department of Anesthesiology and Intensive Care, Emergency Clinical County Hospital, 540136 Targu Mures, Romania
| | - Ionuț Branea
- Department of Anesthesiology and Intensive Care, Emergency Clinical County Hospital, 540136 Targu Mures, Romania
| | - Ágota Timár
- Department of Anesthesiology and Intensive Care, George Emil Palade University of Medicine, Pharmacy, Science, and Technology of Targu Mures, 540142 Targu Mures, Romania
- Department of Anesthesiology and Intensive Care, Emergency Clinical County Hospital, 540136 Targu Mures, Romania
| | - Minodora Dobreanu
- Department of Laboratory Medicine, Emergency Clinical County Hospital, 540136 Targu Mures, Romania
- Department of Laboratory Medicine, George Emil Palade University of Medicine, Pharmacy, Science, and Technology of Targu Mures, 540142 Targu Mures, Romania
- Center for Advanced Medical and Pharmaceutical Research, George Emil Palade University of Medicine, Pharmacy, Science, and Technology of Targu Mures, 540136 Targu Mures, Romania
| |
Collapse
|