1
|
Zhang P, Wang T, Yao Z, Li J, Wang Q, Xue Y, Jiang Y, Li Q, Li L, Qi Z, Niu J. Fine mapping of leaf delayed virescence gene dv4 in Triticum aestivum. Gene 2024; 910:148277. [PMID: 38364974 DOI: 10.1016/j.gene.2024.148277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Revised: 01/26/2024] [Accepted: 02/08/2024] [Indexed: 02/18/2024]
Abstract
Wheat (Triticum aestivum L.) is one of the most important crops worldwide, and its yield affects national food security. Wheat leaves are key photosynthetic organs where carbohydrates are synthesized for grain yield. Leaf colour mutants are ideal germplasm resources for molecular genetic studies of wheat chloroplast development, chlorophyll synthesis and photosynthesis. We obtained a wheat mutant delayed virescence 4 (dv4) from cultivar Guomai 301. The leaves of mutant dv4 were pale yellow at the seedling stage, golden yellow at the turning green stage, and they started to turn green at the jointing stage. Genetic analysis demonstrated that the yellow-leaf phenotype was controlled by a single recessive gene named as dv4. Gene dv4 was fine mapped in a 1.46 Mb region on chromosome 7DS by SSR and dCAPS marker assays. Three putative candidate genes were identified in this region. Because no leaf colour genes have been reported on wheat chromosome arm 7DS previously, dv4 is a novel leaf colour gene. The result facilitates map-based cloning of dv4 and provides information for the construction of a high-photosynthetic efficiency ideotype for improving wheat yield.
Collapse
Affiliation(s)
- Peipei Zhang
- Henan Technology Innovation Centre of Wheat / National Key Laboratory of Wheat and Maize Crop Science, Henan Agricultural University, Zhengzhou 450046, China
| | - Ting Wang
- Henan Technology Innovation Centre of Wheat / National Key Laboratory of Wheat and Maize Crop Science, Henan Agricultural University, Zhengzhou 450046, China
| | - Ziping Yao
- Henan Technology Innovation Centre of Wheat / National Key Laboratory of Wheat and Maize Crop Science, Henan Agricultural University, Zhengzhou 450046, China
| | - Junchang Li
- Henan Technology Innovation Centre of Wheat / National Key Laboratory of Wheat and Maize Crop Science, Henan Agricultural University, Zhengzhou 450046, China
| | - Qi Wang
- Henan Technology Innovation Centre of Wheat / National Key Laboratory of Wheat and Maize Crop Science, Henan Agricultural University, Zhengzhou 450046, China
| | - Ying Xue
- Henan Technology Innovation Centre of Wheat / National Key Laboratory of Wheat and Maize Crop Science, Henan Agricultural University, Zhengzhou 450046, China
| | - Yumei Jiang
- Henan Technology Innovation Centre of Wheat / National Key Laboratory of Wheat and Maize Crop Science, Henan Agricultural University, Zhengzhou 450046, China
| | - Qiaoyun Li
- Henan Technology Innovation Centre of Wheat / National Key Laboratory of Wheat and Maize Crop Science, Henan Agricultural University, Zhengzhou 450046, China
| | - Lei Li
- Henan Technology Innovation Centre of Wheat / National Key Laboratory of Wheat and Maize Crop Science, Henan Agricultural University, Zhengzhou 450046, China
| | - Zengjun Qi
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, China
| | - Jishan Niu
- Henan Technology Innovation Centre of Wheat / National Key Laboratory of Wheat and Maize Crop Science, Henan Agricultural University, Zhengzhou 450046, China.
| |
Collapse
|
2
|
Ali S, Bukhari DA, Rehman A. Call for biotechnological approach to degrade plastic in the era of COVID-19 pandemic. Saudi J Biol Sci 2023; 30:103583. [PMID: 36748033 PMCID: PMC9893805 DOI: 10.1016/j.sjbs.2023.103583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Revised: 01/09/2023] [Accepted: 01/29/2023] [Indexed: 02/05/2023] Open
Abstract
Plastic pollution is a global issue and has become a major concern since Coronavirus disease (COVID)-19. In developing nations, landfilling and illegal waste disposal are typical ways to dispose of COVID-19-infected material. These technologies worsen plastic pollution and other human and animal health problems. Plastic degrades in light and heat, generating hazardous primary and secondary micro-plastic. Certain bacteria can degrade artificial polymers using genes, enzymes, and metabolic pathways. Microorganisms including bacteria degrade petrochemical plastics slowly. High molecular weight, strong chemical bonds, and excessive hydrophobicity reduce plastic biodegradation. There is not enough study on genes, enzymes, and bacteria-plastic interactions. Synthetic biology, metabolic engineering, and bioinformatics methods have been created to biodegrade synthetic polymers. This review will focus on how microorganisms' degrading capacity can be increased using recent biotechnological techniques.
Collapse
Key Words
- BHET, bis(2-hydroxyethyl
- Bacteria
- COVID-19
- COVID-19, Coronavirus disease-19
- FTIR, Fourier-transform infrared
- HDPE, High-density polyethene
- LDPE, Low-density polyethene
- MHET, Mono(2-hydroxyethyl
- MP, Microplastics
- Microorganisms
- NP, Nanoplastics
- PE, Polyethene
- PES, Polyethylene succinate
- PET, Polyethylene terephthalate
- PP, Polypropylene
- PPE, Personal protective equipment
- PS, Polystyrene
- PVC, Polyvinyl chloride
- Plastic degradation
- Plastic pollution
- TCA, Tricarboxylic acid
- TPA, Terephthalic acid
Collapse
Affiliation(s)
- Shakir Ali
- Department of Zoology, Government College University, Lahore, Pakistan
| | - Dilara A. Bukhari
- Department of Zoology, Government College University, Lahore, Pakistan
| | - Abdul Rehman
- Institute of Microbiology and Molecular Genetics, University of the Punjab, New Campus, Lahore 54590, Pakistan
| |
Collapse
|