1
|
Telemaco Contreras Colmenares M, de Oliveira Matos A, Henrique Dos Santos Dantas P, Rodrigues do Carmo Neto J, Silva-Sales M, Sales-Campos H. Unveiling the impact of TREM-2 + Macrophages in metabolic disorders. Cell Immunol 2024; 405-406:104882. [PMID: 39369473 DOI: 10.1016/j.cellimm.2024.104882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Accepted: 10/01/2024] [Indexed: 10/08/2024]
Abstract
The Triggering Receptor Expressed on Myeloid cells 2 (TREM-2) has been widely known by its anti-inflammatory activity. It can be activated in response to microbes and tissue damage, leading to phagocytosis, autophagy, cell polarization and migration, counter inflammation, and tissue repair. So far, the receptor has been largely explored in neurodegenerative disorders, however, a growing number of studies have been investigating its contribution in different pathological conditions, including metabolic diseases, in which (resident) macrophages play a crucial role. In this regard, TREM-2 + macrophages have been implicated in the onset and development of obesity, atherosclerosis, and fibrotic liver disease. These macrophages can be detected in the brain, white adipose tissue, liver, and vascular endothelium. In this review we discuss how different murine models have been demonstrating the ability of such cells to contribute to tissue and body homeostasis by phagocytosing cellular debris and lipid structures, besides contributing to lipid homeostasis in metabolic diseases. Therefore, understanding the role of TREM-2 in metabolic disorders is crucial to expand our current knowledge concerning their immunopathology as well as to foster the development of more targeted therapies to treat such conditions.
Collapse
Affiliation(s)
| | - Amanda de Oliveira Matos
- Institute of Tropical Pathology and Public Health, Universidade Federal de Goiás, Goiânia, Brazil.
| | | | | | - Marcelle Silva-Sales
- Institute of Tropical Pathology and Public Health, Universidade Federal de Goiás, Goiânia, Brazil.
| | | |
Collapse
|
2
|
Moon BR, Park JE, Han JS. HM-chromanone attenuates obesity and adipose tissue inflammation by downregulating SREBP-1c and NF-κb pathway in high-fat diet-fed mice. Arch Physiol Biochem 2024:1-9. [PMID: 39359053 DOI: 10.1080/13813455.2024.2399554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 06/25/2024] [Accepted: 08/28/2024] [Indexed: 10/04/2024]
Abstract
Background: Obese adipose tissue produces various pro-inflammatory cytokines that are major contributors to adipose tissue inflammation. Objective: The present study aimed to determine the effects of HM-chromanone (HMC) against obesity and adipose tissue inflammation in high-fat diet-fed mice. Materials and methods: Twenty-four C57BL/6J male mice were divided into three groups: ND (normal diet), HFD (high-fat diet), and HFD + HMC. The ND group was fed a normal diet, whereas the HFD and HFD + HMC groups were fed a high-fat diet. After 10 weeks of feeding, the animals were orally administered the treatments daily for 9 weeks. The ND and HFD group received distilled water as treatment. The HFD+HMC group was treated with HM-chromaone (50 mg/kg). Results: HM-chromanone administration decreased body weight, fat mass, and adipocyte diameter. HM-chromanone also improved plasma lipid profiles, decreased leptin levels, and increased adiponectin levels. The inhibiting effect of HM-chromanone on SREBP-1c, PPARγ, C/EBPα, and FAS decreased adipogenesis, thereby alleviating lipid accumulation. Furthermore, HM-chromanone administration exhibited a reduction in macrophage infiltration and the expression of pro-inflammatory cytokines. HM-chromanone suppressed the phosphorylation of IκBα and NF-κB, leading to the inhibition of iNOS and COX2 expressions, resulting in decreased inflammation in adipose tissue. Discussion and conclusion: These results highlight the anti-obesity and anti-inflammatory properties of HM-chromanone, achieved through the downregulation of the SREBP-1c and NF-κB pathway in high-fat diet-fed mice.
Collapse
Affiliation(s)
- Bo Ra Moon
- Department of Food Science and Nutrition, Kimchi Research Institute, Pusan National University, Busan, Republic of Korea
| | - Jae Eun Park
- Department of Food Science and Nutrition, Kimchi Research Institute, Pusan National University, Busan, Republic of Korea
| | - Ji Sook Han
- Department of Food Science and Nutrition, Kimchi Research Institute, Pusan National University, Busan, Republic of Korea
| |
Collapse
|
3
|
So J, Strobel O, Wann J, Kim K, Paul A, Acri DJ, Dabin LC, Peng G, Kim J, Roh HC. Robust single nucleus RNA sequencing reveals depot-specific cell population dynamics in adipose tissue remodeling during obesity. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.08.588525. [PMID: 38645263 PMCID: PMC11030456 DOI: 10.1101/2024.04.08.588525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/23/2024]
Abstract
Single nucleus RNA sequencing (snRNA-seq), an alternative to single cell RNA sequencing (scRNA-seq), encounters technical challenges in obtaining high-quality nuclei and RNA, persistently hindering its applications. Here, we present a robust technique for isolating nuclei across various tissue types, remarkably enhancing snRNA-seq data quality. Employing this approach, we comprehensively characterize the depot-dependent cellular dynamics of various cell types underlying adipose tissue remodeling during obesity. By integrating bulk nuclear RNA-seq from adipocyte nuclei of different sizes, we identify distinct adipocyte subpopulations categorized by size and functionality. These subpopulations follow two divergent trajectories, adaptive and pathological, with their prevalence varying by depot. Specifically, we identify a key molecular feature of dysfunctional hypertrophic adipocytes, a global shutdown in gene expression, along with elevated stress and inflammatory responses. Furthermore, our differential gene expression analysis reveals distinct contributions of adipocyte subpopulations to the overall pathophysiology of adipose tissue. Our study establishes a robust snRNA-seq method, providing novel insights into the biological processes involved in adipose tissue remodeling during obesity, with broader applicability across diverse biological systems.
Collapse
Affiliation(s)
- Jisun So
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Olivia Strobel
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Jamie Wann
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Kyungchan Kim
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Avishek Paul
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Dominic J. Acri
- Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Luke C. Dabin
- Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Gang Peng
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Jungsu Kim
- Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Hyun Cheol Roh
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| |
Collapse
|
4
|
Tate AR, Rao GHR. Inflammation: Is It a Healer, Confounder, or a Promoter of Cardiometabolic Risks? Biomolecules 2024; 14:948. [PMID: 39199336 PMCID: PMC11352362 DOI: 10.3390/biom14080948] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 07/30/2024] [Accepted: 07/31/2024] [Indexed: 09/01/2024] Open
Abstract
Inflammation is the body's non-specific response to injury or infection. It is a natural defense mechanism that helps to maintain homeostasis and promotes tissue repair. However, excessive inflammation can lead to cellular, tissue, or organ dysfunction, as well as contribute to the development of acute vascular events and diseases like Crohn's disease, psoriasis, obesity, diabetes, and cancer. The initial response to injury involves the activation of platelets and coagulation mechanisms to stop bleeding. This is followed by the recruitment of immune cells and the release of cytokines to promote tissue repair. Over time, the injured tissue undergoes remodeling and returns to its pre-injury state. Inflammation is characterized by the activation of inflammatory signaling pathways involving cytokines, chemokines, and growth factors. Mast cells play a role in initiating inflammatory responses. Pattern recognition receptors (PRRs) such as Toll-like receptors (TLRs) and nucleotide-binding domain (NOD)-like receptors (NLRs) are involved in the activation of these inflammatory pathways. Inflammasomes, which are cytoplasmic complexes, also contribute to inflammation by activating cytokines. Inflammation can also be triggered by factors like dietary components and the composition of the gut microbiota. Dysregulation of the gut microbiome can lead to excessive inflammation and contribute to diseases like atherosclerosis and irritable bowel syndrome (IBS). The immune system and gut-associated lymphoid tissue (GALT) play crucial roles in the inflammatory response and the development of conditions like colorectal cancer. Anti-inflammatory therapy can play a significant role in reducing or inducing the remission of inflammatory diseases such as Crohn's disease and ulcerative colitis. The fetal origin of adult diseases theory suggests that conditions during fetal development, such as low birth weight and maternal obesity, can influence the risk of cardiometabolic diseases later in life. All of the known risk factors associated with cardiometabolic diseases such as hypertension, excess weight, obesity, type-2 diabetes, and vascular diseases are accompanied by chronic low-grade inflammation. Inflammation seems to have a role in precipitating even acute vascular events such as heart attacks and stroke. Common markers of inflammation associated with cardiometabolic disease include interleukin (IL)-1β, IL-6, tumor necrosis factor (TNF-α), C-reactive protein (CRP), and soluble TNF receptors such as sTNFR1 and sTNFR2. These markers serve as indicators of systemic inflammation. However, these markers are not disease-specific but provide an insight into the overall chronic inflammatory status. In fact, inflammation has been identified as a potential target for future treatments to reduce or reverse the risk of atherosclerosis-related complications. The regulation of inflammation is complex, and further research is needed to better understand its mechanisms and develop strategies for managing inflammatory disorders. In summary, inflammation is a natural response to injury or infection, but excessive or prolonged inflammation can lead to the progression of various diseases. Understanding the underlying mechanisms of inflammation is important for developing treatments and preventive measures for inflammatory disorders.
Collapse
Affiliation(s)
- Amit R. Tate
- South Asian Society on Atherosclerosis and Thrombosis (SASAT), Minneapolis, MN 55455, USA;
| | - Gundu H. R. Rao
- Laboratory Medicine, and Pathology, Thrombosis Research, Lillehei Heart Institute, University of Minnesota, Minneapolis, MN 55455, USA
| |
Collapse
|
5
|
Kim JY, Jang S, Song HJ, Lee S, Cheon S, Seo EJ, Choi YH, Kim SH. Sargassum horneri extract fermented by Lactiplantibacillus pentosus SH803 mediates adipocyte metabolism in 3T3-L1 preadipocytes by regulating oxidative damage and inflammation. Sci Rep 2024; 14:15064. [PMID: 38956395 PMCID: PMC11220060 DOI: 10.1038/s41598-024-65956-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2024] [Accepted: 06/25/2024] [Indexed: 07/04/2024] Open
Abstract
Sargassum horneri (S. horneri), a brown seaweed excessively proliferating along Asian coastlines, are damaging marine ecosystems. Thus, this study aimed to enhance nutritional value of S. horneri through lactic acid bacteria fermentation to increase S. horneri utilization as a functional food supplement, and consequently resolve coastal S. horneri accumulation. S. horneri supplemented fermentation was most effective with Lactiplantibacillus pentosus SH803, thus this product (F-SHWE) was used for further in vitro studies. F-SHWE normalized expressions of oxidative stress related genes NF-κB, p53, BAX, cytochrome C, caspase 9, and caspase 3, while non-fermented S. horneri (SHWE) did not, in a H2O2-induced HT-29 cell model. Moreover, in an LPS-induced HT-29 cell model, F-SHWE repaired expressions of inflammation marker genes ZO1, IL1β, IFNγ more effectively than SHWE. For further functional assessment, F-SHWE was also treated in 3T3-L1 adipocytes. As a result, F-SHWE decreased lipid accumulation, along with gene expression of adipogenesis markers PPARγ, C/EBPα, C/EBPβ, aP2, and Lpl; lipogenesis markers Lep, Akt, SREBP1, Acc, Fas; inflammation markers IFN-γ and NF-κB. Notably, gene expression of C/EBPβ, IFN-γ and NF-κB were suppressed only by F-SHWE, suggesting the enhancing effect of fermentation on obesity-related properties. Compositional analysis attributed the protective effects of F-SHWE to acetate, an organic acid significantly higher in F-SHWE than SHWE. Therefore, F-SHWE is a novel potential anti-obesity agent, providing a strategy to reduce excess S. horneri populations along marine ecosystems.
Collapse
Affiliation(s)
- Jae-Young Kim
- College of Life Science and Biotechnology East Building, Korea University, 145, Anam-ro, Seongbuk-gu, Seoul, 02841, Republic of Korea
- Institute of Life Science and Natural Resources, Korea University, Seoul, 02841, Republic of Korea
| | - Sejin Jang
- College of Life Science and Biotechnology East Building, Korea University, 145, Anam-ro, Seongbuk-gu, Seoul, 02841, Republic of Korea
| | - Hyun Ji Song
- College of Life Science and Biotechnology East Building, Korea University, 145, Anam-ro, Seongbuk-gu, Seoul, 02841, Republic of Korea
| | - SangHoon Lee
- College of Life Science and Biotechnology East Building, Korea University, 145, Anam-ro, Seongbuk-gu, Seoul, 02841, Republic of Korea
| | - Sejin Cheon
- College of Life Science and Biotechnology East Building, Korea University, 145, Anam-ro, Seongbuk-gu, Seoul, 02841, Republic of Korea
| | - Eun Jin Seo
- College of Life Science and Biotechnology East Building, Korea University, 145, Anam-ro, Seongbuk-gu, Seoul, 02841, Republic of Korea
| | - Yi Hyun Choi
- College of Life Science and Biotechnology East Building, Korea University, 145, Anam-ro, Seongbuk-gu, Seoul, 02841, Republic of Korea
| | - Sae Hun Kim
- College of Life Science and Biotechnology East Building, Korea University, 145, Anam-ro, Seongbuk-gu, Seoul, 02841, Republic of Korea.
- Institute of Life Science and Natural Resources, Korea University, Seoul, 02841, Republic of Korea.
| |
Collapse
|
6
|
Ahmad SJ, Head M, Ahmed AR. Understanding Early Predictors and Inflammatory Markers for Mid-Term Outcomes in Laparoscopic Sleeve Gastrectomy. Obes Surg 2024; 34:2329-2330. [PMID: 38851647 DOI: 10.1007/s11695-024-07347-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2024] [Revised: 06/03/2024] [Accepted: 06/03/2024] [Indexed: 06/10/2024]
Affiliation(s)
- Suhaib Js Ahmad
- Department of General Surgery, Betsi Cadwaladr University Health Board, Bangor, Wales, LL57 2PW, UK.
- Department of Emergency Medicine, Inselspital University Hospital of Bern, Bern, Switzerland.
| | - Marion Head
- Department of General Surgery, Betsi Cadwaladr University Health Board, Bangor, Wales, LL57 2PW, UK
| | - Ahmed R Ahmed
- Department of Emergency Medicine, Inselspital University Hospital of Bern, Bern, Switzerland
- Department of Bariatric Surgery, Imperial College London, London, UK
| |
Collapse
|
7
|
Chirivi M, Cortes D, Rendon CJ, Contreras GA. Lipolysis inhibition as a treatment of clinical ketosis in dairy cows: Effects on adipose tissue metabolic and immune responses. J Dairy Sci 2024; 107:5104-5121. [PMID: 38278290 DOI: 10.3168/jds.2023-23998] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2023] [Accepted: 12/27/2023] [Indexed: 01/28/2024]
Abstract
Dairy cows with clinical ketosis (CK) exhibit excessive adipose tissue (AT) lipolysis and systemic inflammation. Lipolysis in cows can be induced by the canonical (hormonally induced) and inflammatory lipolytic pathways. Currently, the most common treatment for CK is oral propylene glycol (PG); however, PG does not reduce lipolysis or inflammation. Niacin (NIA) can reduce the activation of canonical lipolysis, whereas cyclooxygenase inhibitors such as flunixin meglumine (FM) can limit inflammation and inhibit the inflammatory lipolytic pathway. The objective of this study was to determine the effects of including NIA and FM in the standard PG treatment for postpartum CK on AT function. Multiparous Jersey cows (n = 18; 7.1 ± 3.8 DIM) were selected from a commercial dairy. Inclusion criteria were CK symptoms (lethargy, depressed appetite, and drop in milk yield) and high blood levels of BHB (≥1.2 mmol/L). Cows with CK were randomly assigned to one of 3 treatments: (1) PG: 310 g administered orally once per day for 5 d, (2) PG+NIA: 24 g administered orally once per day for 3 d, and (3) PG+NIA+FM: 1.1 mg/kg administered IV once per day for 3 d. Healthy control cows (HC; n = 6) matched by lactation and DIM (±2 d) were sampled. Subcutaneous AT explants were collected at d 0 and d 7 relative to enrollment. To assess AT insulin sensitivity, explants were treated with insulin (1 µL/L) during lipolysis stimulation with a β-adrenergic receptor agonist (isoproterenol, 1 µM). Lipolysis was quantified by glycerol release in the media. Lipid mobilization and inflammatory gene networks were evaluated using quantitative PCR. Protein biomarkers of lipolysis, insulin signaling, and AT inflammation, including hormone-sensitive lipase, protein kinase B (Akt), and ERK1/2, were quantified by capillary immunoassays. Flow cytometry of AT cellular components was used to characterize macrophage inflammatory phenotypes. Statistical significance was determined by a nonparametric t-test when 2 groups (HC vs. CK) were analyzed and an ANOVA test with Tukey adjustment when 3 treatment groups (PG vs. PG+NIA vs. PG+NIA+FM) were evaluated. At d 0, AT from CK cows showed higher mRNA expression of lipolytic enzymes ABHD5, LIPE, and LPL, as well as increased phosphorylation of hormone-sensitive lipase compared with HC. At d 0, insulin reduced lipolysis by 41% ± 8% in AT from HC, but CK cows were unresponsive (-2.9 ± 4%). Adipose tissue from CK cows exhibited reduced Akt phosphorylation compared with HC. Cows with CK had increased AT expression of inflammatory gene markers, including CCL2, IL8, IL10, TLR4, and TNF, along with ERK1/2 phosphorylation. Adipose tissue from CK cows showed increased macrophage infiltration compared with HC. By d 7, AT from PG+NIA+FM cows had a more robust response to insulin, as evidenced by reduced glycerol release (36.5% ± 8% compared with PG at 26.9% ± 7% and PG+NIA at 7.4% ± 8%) and enhanced phosphorylation of Akt. By d 7, PG+NIA+FM cows presented lower inflammatory markers, including ERK1/2 phosphorylation, and reduced macrophage infiltration, compared with PG and PG+NIA. These data suggest that including NIA and FM in CK treatment improves AT insulin sensitivity and reduces AT inflammation and macrophage infiltration.
Collapse
Affiliation(s)
- Miguel Chirivi
- Department of Large Animal Clinical Sciences, Michigan State University, East Lansing, MI 48824
| | - Daniela Cortes
- Department of Large Animal Clinical Sciences, Michigan State University, East Lansing, MI 48824
| | - C Javier Rendon
- Department of Large Animal Clinical Sciences, Michigan State University, East Lansing, MI 48824
| | - G Andres Contreras
- Department of Large Animal Clinical Sciences, Michigan State University, East Lansing, MI 48824.
| |
Collapse
|
8
|
Yang Z, Chen F, Zhang Y, Ou M, Tan P, Xu X, Li Q, Zhou S. Therapeutic targeting of white adipose tissue metabolic dysfunction in obesity: mechanisms and opportunities. MedComm (Beijing) 2024; 5:e560. [PMID: 38812572 PMCID: PMC11134193 DOI: 10.1002/mco2.560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2023] [Revised: 04/09/2024] [Accepted: 04/14/2024] [Indexed: 05/31/2024] Open
Abstract
White adipose tissue is not only a highly heterogeneous organ containing various cells, such as adipocytes, adipose stem and progenitor cells, and immune cells, but also an endocrine organ that is highly important for regulating metabolic and immune homeostasis. In individuals with obesity, dynamic cellular changes in adipose tissue result in phenotypic switching and adipose tissue dysfunction, including pathological expansion, WAT fibrosis, immune cell infiltration, endoplasmic reticulum stress, and ectopic lipid accumulation, ultimately leading to chronic low-grade inflammation and insulin resistance. Recently, many distinct subpopulations of adipose tissue have been identified, providing new insights into the potential mechanisms of adipose dysfunction in individuals with obesity. Therefore, targeting white adipose tissue as a therapeutic agent for treating obesity and obesity-related metabolic diseases is of great scientific interest. Here, we provide an overview of white adipose tissue remodeling in individuals with obesity including cellular changes and discuss the underlying regulatory mechanisms of white adipose tissue metabolic dysfunction. Currently, various studies have uncovered promising targets and strategies for obesity treatment. We also outline the potential therapeutic signaling pathways of targeting adipose tissue and summarize existing therapeutic strategies for antiobesity treatment including pharmacological approaches, lifestyle interventions, and novel therapies.
Collapse
Affiliation(s)
- Zi‐Han Yang
- Department of Plastic and Burn SurgeryWest China Hospital of Sichuan UniversityChengduChina
- Department of Plastic & Reconstructive SurgeryShanghai Ninth People's HospitalShanghai Jiao Tong University School of MedicineShanghaiChina
| | - Fang‐Zhou Chen
- Department of Plastic & Reconstructive SurgeryShanghai Ninth People's HospitalShanghai Jiao Tong University School of MedicineShanghaiChina
| | - Yi‐Xiang Zhang
- Department of Plastic & Reconstructive SurgeryShanghai Ninth People's HospitalShanghai Jiao Tong University School of MedicineShanghaiChina
| | - Min‐Yi Ou
- Department of Plastic & Reconstructive SurgeryShanghai Ninth People's HospitalShanghai Jiao Tong University School of MedicineShanghaiChina
| | - Poh‐Ching Tan
- Department of Plastic & Reconstructive SurgeryShanghai Ninth People's HospitalShanghai Jiao Tong University School of MedicineShanghaiChina
| | - Xue‐Wen Xu
- Department of Plastic and Burn SurgeryWest China Hospital of Sichuan UniversityChengduChina
| | - Qing‐Feng Li
- Department of Plastic & Reconstructive SurgeryShanghai Ninth People's HospitalShanghai Jiao Tong University School of MedicineShanghaiChina
| | - Shuang‐Bai Zhou
- Department of Plastic & Reconstructive SurgeryShanghai Ninth People's HospitalShanghai Jiao Tong University School of MedicineShanghaiChina
| |
Collapse
|
9
|
Aruwa CE, Sabiu S. Adipose tissue inflammation linked to obesity: A review of current understanding, therapies and relevance of phyto-therapeutics. Heliyon 2024; 10:e23114. [PMID: 38163110 PMCID: PMC10755291 DOI: 10.1016/j.heliyon.2023.e23114] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 11/25/2023] [Accepted: 11/27/2023] [Indexed: 01/03/2024] Open
Abstract
Obesity is a current global challenge affecting all ages and is characterized by the up-regulated secretion of bioactive factors/pathways which result in adipose tissue inflammation (ATI). Current obesity therapies are mainly focused on lifestyle (diet/nutrition) changes. This is because many chemosynthetic anti-obesogenic medications cause adverse effects like diarrhoea, dyspepsia, and faecal incontinence, among others. As such, it is necessary to appraise the efficacies and mechanisms of action of safer, natural alternatives like plant-sourced compounds, extracts [extractable phenol (EP) and macromolecular antioxidant (MA) extracts], and anti-inflammatory peptides, among others, with a view to providing a unique approach to obesity care. These natural alternatives may constitute potent therapies for ATI linked to obesity. The potential of MA compounds (analysed for the first time in this review) and extracts in ATI and obesity management is elucidated upon, while also highlighting research gaps and future prospects. Furthermore, immune cells, signalling pathways, genes, and adipocyte cytokines play key roles in ATI responses and are targeted in certain therapies. As a result, this review gives an in-depth appraisal of ATI linked to obesity, its causes, mechanisms, and effects of past, present, and future therapies for reversal and alleviation of ATI. Achieving a significant decrease in morbidity and mortality rates attributed to ATI linked to obesity and related comorbidities is possible as research improves our understanding over time.
Collapse
Affiliation(s)
- Christiana Eleojo Aruwa
- Department of Biotechnology and Food Science, Durban University of Technology, PO Box 1334, Durban, 4000, South Africa
| | - Saheed Sabiu
- Department of Biotechnology and Food Science, Durban University of Technology, PO Box 1334, Durban, 4000, South Africa
| |
Collapse
|
10
|
Sohn R, Jenei-Lanzl Z. Role of the Sympathetic Nervous System in Mild Chronic Inflammatory Diseases: Focus on Osteoarthritis. Neuroimmunomodulation 2023; 30:143-166. [PMID: 37429263 PMCID: PMC10428144 DOI: 10.1159/000531798] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Accepted: 06/28/2023] [Indexed: 07/12/2023] Open
Abstract
The sympathetic nervous system (SNS) is a major regulatory mediator connecting the brain and the immune system that influences accordingly inflammatory processes within the entire body. In the periphery, the SNS exerts its effects mainly via its neurotransmitters norepinephrine (NE) and epinephrine (E), which are released by peripheral nerve endings in lymphatic organs and other tissues. Depending on their concentration, NE and E bind to specific α- and β-adrenergic receptor subtypes and can cause both pro- and anti-inflammatory cellular responses. The co-transmitter neuropeptide Y, adenosine triphosphate, or its metabolite adenosine are also mediators of the SNS. Local pro-inflammatory processes due to injury or pathogens lead to an activation of the SNS, which in turn induces several immunoregulatory mechanisms with either pro- or anti-inflammatory effects depending on neurotransmitter concentration or pathological context. In chronic inflammatory diseases, the activity of the SNS is persistently elevated and can trigger detrimental pathological processes. Recently, the sympathetic contribution to mild chronic inflammatory diseases like osteoarthritis (OA) has attracted growing interest. OA is a whole-joint disease and is characterized by mild chronic inflammation in the joint. In this narrative article, we summarize the underlying mechanisms behind the sympathetic influence on inflammation during OA pathogenesis. In addition, OA comorbidities also accompanied by mild chronic inflammation, such as hypertension, obesity, diabetes, and depression, will be reviewed. Finally, the potential of SNS-based therapeutic options for the treatment of OA will be discussed.
Collapse
Affiliation(s)
- Rebecca Sohn
- Department of Orthopedics (Friedrichsheim), University Hospital Frankfurt, Goethe University, Frankfurt, Germany
| | - Zsuzsa Jenei-Lanzl
- Department of Orthopedics (Friedrichsheim), University Hospital Frankfurt, Goethe University, Frankfurt, Germany
| |
Collapse
|
11
|
Queiroz JLCD, Medeiros I, Lima MSR, Carvalho FMCD, Camillo CS, Santos PPDA, Guerra GCB, da Silva VC, Schroeder HT, Krause M, Morais AHDA, Passos TS. Efficacy of Carotenoid-Loaded Gelatin Nanoparticles in Reducing Plasma Cytokines and Adipocyte Hypertrophy in Wistar Rats. Int J Mol Sci 2023; 24:10657. [PMID: 37445834 DOI: 10.3390/ijms241310657] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 03/23/2023] [Accepted: 04/10/2023] [Indexed: 07/15/2023] Open
Abstract
The present study investigated the effect of gelatin-based nanoparticles (EPG) loaded with a carotenoid-rich crude extract (CE) on systemic and adipose tissue inflammatory response in a model with inflammation induced by a high glycemic index and high glycemic load diet (HGLI). Nanoparticles synthesized were characterized by different physical and chemical methods. The in vivo investigation evaluated Wistar rats (n = 20, 11 days, adult male with 21 weeks) subdivided into untreated (HGLI diet), conventional treatment (nutritionally adequate diet), treatment 1 (HGLI + crude extract (12.5 mg/kg)), and treatment 2 (HGLI + EPG (50 mg/kg)) groups. Dietary intake, caloric intake and efficiency, weight, inflammatory cytokines tissue concentration, visceral adipose tissue (VAT) weight, histopathological analysis, and antioxidant activity in plasma and VAT were investigated. EPG showed the same physical and chemical characteristics as previous batches (95.2 nm, smooth surface, and chemical interactions between materials). The EPG-treated group was the only group promoting negative ∆dietary intake, ∆caloric efficiency, and ∆weight. In addition, it presented a significant reduction (p < 0.05) in IL-6 and leptin levels and a greater presence of multilocular adipocytes. The results suggest that EPG can act as a nutraceutical in adjuvant therapy for treating inflammatory diseases associated with adipose tissue accumulation.
Collapse
Affiliation(s)
- Jaluza Luana C de Queiroz
- Biochemistry and Molecular Biology Postgraduate Program, Biosciences Center, Federal University of Rio Grande do Norte, Natal 59078-970, Brazil
| | - Isaiane Medeiros
- Biochemistry and Molecular Biology Postgraduate Program, Biosciences Center, Federal University of Rio Grande do Norte, Natal 59078-970, Brazil
| | - Mayara S R Lima
- Biochemistry and Molecular Biology Postgraduate Program, Biosciences Center, Federal University of Rio Grande do Norte, Natal 59078-970, Brazil
| | - Fabiana Maria C de Carvalho
- Biochemistry and Molecular Biology Postgraduate Program, Biosciences Center, Federal University of Rio Grande do Norte, Natal 59078-970, Brazil
- Nutrition Course, Potiguar University, Natal 59056-000, Brazil
| | - Christina S Camillo
- Postgraduate Program in Structural and Functional Biology, Biosciences Center, Federal University of Rio Grande do Norte, Natal 59078-970, Brazil
| | - Pedro Paulo de A Santos
- Postgraduate Program in Structural and Functional Biology, Biosciences Center, Federal University of Rio Grande do Norte, Natal 59078-970, Brazil
| | - Gerlane C B Guerra
- Development and Technological Innovation in Medicines Postgraduate Program, Center for Health Sciences, Federal University of Rio Grande do Norte, Natal 59078-970, Brazil
| | - Valéria C da Silva
- Development and Technological Innovation in Medicines Postgraduate Program, Center for Health Sciences, Federal University of Rio Grande do Norte, Natal 59078-970, Brazil
| | - Helena T Schroeder
- Laboratory of Inflammation, Metabolism and Exercise Research (LAPIMEX) and Laboratory of Cellular Physiology, Department of Physiology, Institute of Basic Health Sciences, Federal University of Rio Grande do Sul, Porto Alegre 90050-170, Brazil
| | - Mauricio Krause
- Laboratory of Inflammation, Metabolism and Exercise Research (LAPIMEX) and Laboratory of Cellular Physiology, Department of Physiology, Institute of Basic Health Sciences, Federal University of Rio Grande do Sul, Porto Alegre 90050-170, Brazil
| | - Ana Heloneida de A Morais
- Biochemistry and Molecular Biology Postgraduate Program, Biosciences Center, Federal University of Rio Grande do Norte, Natal 59078-970, Brazil
- Nutrition Postgraduate Program, Center for Health Sciences, Federal University of Rio Grande do Norte, Natal 59078-970, Brazil
| | - Thaís S Passos
- Nutrition Postgraduate Program, Center for Health Sciences, Federal University of Rio Grande do Norte, Natal 59078-970, Brazil
| |
Collapse
|
12
|
Subin P, Sabuhom P, Naladta A, Luecha P, Nualkaew S, Nualkaew N. An Evaluation of the Anti-Inflammatory Effects of a Thai Traditional Polyherbal Recipe TPDM6315 in LPS-Induced RAW264.7 Macrophages and TNF-α-Induced 3T3-L1 Adipocytes. Curr Issues Mol Biol 2023; 45:4891-4907. [PMID: 37367060 DOI: 10.3390/cimb45060311] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2023] [Revised: 05/31/2023] [Accepted: 06/01/2023] [Indexed: 06/28/2023] Open
Abstract
TPDM6315 is an antipyretic Thai herbal recipe that contains several herbs with anti-inflammatory and anti-obesity activities. This study aimed to investigate the anti-inflammatory effects of TPDM6315 extracts in lipopolysaccharide (LPS)-induced RAW264.7 macrophages and TNF-α-induced 3T3-L1 adipocytes, and the effects of TPDM6315 extracts on lipid accumulation in 3T3-L1 adipocytes. The results showed that the TPDM6315 extracts reduced the nitric oxide production and downregulated the iNOS, IL-6, PGE2, and TNF-α genes regulating fever in LPS-stimulated RAW264.7 macrophages. The treatment of 3T3-L1 pre-adipocytes with TPDM6315 extracts during a differentiation to the adipocytes resulted in the decreasing of the cellular lipid accumulation in adipocytes. The ethanolic extract (10 µg/mL) increased the mRNA level of adiponectin (the anti-inflammatory adipokine) and upregulated the PPAR-γ in the TNF-α induced adipocytes. These findings provide evidence-based support for the traditional use of TPDM6315 as an anti-pyretic for fever originating from inflammation. The anti-obesity and anti-inflammatory actions of TPDM6315 in TNF-α induced adipocytes suggest that this herbal recipe could be useful for the treatment of metabolic syndrome disorders caused by obesity. Further investigations into the modes of action of TPDM6315 are needed for developing health products to prevent or regulate disorders resulting from inflammation.
Collapse
Affiliation(s)
- Phetpawi Subin
- Division of Pharmacognosy and Toxicology, Faculty of Pharmaceutical Sciences, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Pattraporn Sabuhom
- Division of Pharmacognosy and Toxicology, Faculty of Pharmaceutical Sciences, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Alisa Naladta
- Department of Biochemistry, Faculty of Sciences, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Prathan Luecha
- Division of Pharmacognosy and Toxicology, Faculty of Pharmaceutical Sciences, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Somsak Nualkaew
- Pharmaceutical Chemistry and Natural Product Research Unit, Faculty of Pharmacy, Mahasarakham University, Mahasarakham 44150, Thailand
| | - Natsajee Nualkaew
- Division of Pharmacognosy and Toxicology, Faculty of Pharmaceutical Sciences, Khon Kaen University, Khon Kaen 40002, Thailand
| |
Collapse
|
13
|
Topete MV, Andrade S, Bernardino RL, Guimarães M, Pereira AM, Oliveira SB, Costa MM, Nora M, Monteiro MP, Pereira SS. Visceral Adipose Tissue Bioenergetics Varies According to Individuals' Obesity Class. Int J Mol Sci 2023; 24:ijms24021679. [PMID: 36675195 PMCID: PMC9863201 DOI: 10.3390/ijms24021679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 01/10/2023] [Accepted: 01/13/2023] [Indexed: 01/18/2023] Open
Abstract
Obesity is associated with complex adipose tissue energy metabolism remodeling. Whether AT metabolic reprogramming differs according to body mass index (BMI) and across different obesity classes is unknown. This study’s purpose was to evaluate and compare bioenergetics and energy substrate preference of visceral adipose tissue (VAT) pertaining to individuals with obesity class 2 and class 3. VAT obtained from patients with obesity (n = 15) class 2 (n = 7; BMI 37.53 ± 0.58 kg/m2) or class 3 (n = 8; BMI 47.79 ± 1.52 kg/m2) was used to assess oxygen consumption rate (OCR) bioenergetics and mitochondrial substrate preferences. VAT of patients with obesity class 3 presented significantly higher non-mitochondrial oxygen consumption (p < 0.05). In VAT of patients with obesity class 2, inhibition of pyruvate and glutamine metabolism significantly decreased maximal respiration and spare respiratory capacity (p < 0.05), while pyruvate and fatty acid metabolism inhibition, which renders glutamine the only available substrate, increased the proton leak with a protective role against oxidative stress (p < 0.05). In conclusion, VAT bioenergetics of patients with obesity class 2 depicts a greater dependence on glucose/pyruvate and glutamine metabolism, suggesting that patients within this BMI range are more likely to be responsive to interventions based on energetic substrate modulation for obesity treatment.
Collapse
Affiliation(s)
- Marcelo V. Topete
- UMIB-Unit for Multidisciplinary Research in Biomedicine, ICBAS-School of Medicine and Biomedical Sciences, University of Porto, Rua Jorge Viterbo Ferreira 228, 4050-313 Porto, Portugal
- ITR-Laboratory of Integrative and Translocation Research in Population Health, Rua das Taipas 135, 4050-600 Porto, Portugal
| | - Sara Andrade
- UMIB-Unit for Multidisciplinary Research in Biomedicine, ICBAS-School of Medicine and Biomedical Sciences, University of Porto, Rua Jorge Viterbo Ferreira 228, 4050-313 Porto, Portugal
- ITR-Laboratory of Integrative and Translocation Research in Population Health, Rua das Taipas 135, 4050-600 Porto, Portugal
| | - Raquel L. Bernardino
- UMIB-Unit for Multidisciplinary Research in Biomedicine, ICBAS-School of Medicine and Biomedical Sciences, University of Porto, Rua Jorge Viterbo Ferreira 228, 4050-313 Porto, Portugal
- ITR-Laboratory of Integrative and Translocation Research in Population Health, Rua das Taipas 135, 4050-600 Porto, Portugal
| | - Marta Guimarães
- UMIB-Unit for Multidisciplinary Research in Biomedicine, ICBAS-School of Medicine and Biomedical Sciences, University of Porto, Rua Jorge Viterbo Ferreira 228, 4050-313 Porto, Portugal
- ITR-Laboratory of Integrative and Translocation Research in Population Health, Rua das Taipas 135, 4050-600 Porto, Portugal
- Department of General Surgery, Hospital São Sebastião, Centro Hospitalar de Entre o Douro e Vouga, Rua Dr. Cândido Pinho, 4050-220 Santa Maia da Feira, Portugal
| | - Ana M. Pereira
- Department of General Surgery, Hospital São Sebastião, Centro Hospitalar de Entre o Douro e Vouga, Rua Dr. Cândido Pinho, 4050-220 Santa Maia da Feira, Portugal
- Hospital da Luz Arrábida, Praceta de Henrique Moreira 150, 4400-346 Vila Nova de Gaia, Portugal
| | - Sofia B. Oliveira
- UMIB-Unit for Multidisciplinary Research in Biomedicine, ICBAS-School of Medicine and Biomedical Sciences, University of Porto, Rua Jorge Viterbo Ferreira 228, 4050-313 Porto, Portugal
- ITR-Laboratory of Integrative and Translocation Research in Population Health, Rua das Taipas 135, 4050-600 Porto, Portugal
| | - Madalena M. Costa
- UMIB-Unit for Multidisciplinary Research in Biomedicine, ICBAS-School of Medicine and Biomedical Sciences, University of Porto, Rua Jorge Viterbo Ferreira 228, 4050-313 Porto, Portugal
- ITR-Laboratory of Integrative and Translocation Research in Population Health, Rua das Taipas 135, 4050-600 Porto, Portugal
| | - Mário Nora
- Department of General Surgery, Hospital São Sebastião, Centro Hospitalar de Entre o Douro e Vouga, Rua Dr. Cândido Pinho, 4050-220 Santa Maia da Feira, Portugal
- Hospital da Luz Arrábida, Praceta de Henrique Moreira 150, 4400-346 Vila Nova de Gaia, Portugal
| | - Mariana P. Monteiro
- UMIB-Unit for Multidisciplinary Research in Biomedicine, ICBAS-School of Medicine and Biomedical Sciences, University of Porto, Rua Jorge Viterbo Ferreira 228, 4050-313 Porto, Portugal
- ITR-Laboratory of Integrative and Translocation Research in Population Health, Rua das Taipas 135, 4050-600 Porto, Portugal
- Hospital da Luz Arrábida, Praceta de Henrique Moreira 150, 4400-346 Vila Nova de Gaia, Portugal
| | - Sofia S. Pereira
- UMIB-Unit for Multidisciplinary Research in Biomedicine, ICBAS-School of Medicine and Biomedical Sciences, University of Porto, Rua Jorge Viterbo Ferreira 228, 4050-313 Porto, Portugal
- ITR-Laboratory of Integrative and Translocation Research in Population Health, Rua das Taipas 135, 4050-600 Porto, Portugal
- Correspondence:
| |
Collapse
|
14
|
Meng H, Ruan J, Chen Y, Yan Z, Liu J, Wang X, Meng X, Wang J, Zhang Q, Li X, Meng F. Trace Elements Open a New Direction for the Diagnosis of Atherosclerosis. Rev Cardiovasc Med 2023; 24:23. [PMID: 39076854 PMCID: PMC11270404 DOI: 10.31083/j.rcm2401023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 11/02/2022] [Accepted: 11/10/2022] [Indexed: 09/26/2023] Open
Abstract
Abnormal or excessive accumulation of adipose tissue leads to a condition called obesity. Long-term positive energy balance arises when energy intake surpasses energy expenditure, which increases the risk of metabolic and other chronic diseases, such as atherosclerosis. In industrialized countries, the prevalence of coronary heart disease is positively correlated with the human development index. Atherosclerotic cardiovascular disease (ACD) is among the primary causes of death on a global scale. There is evidence to support the notion that individuals from varied socioeconomic origins may experience varying mortality effects as a result of high blood pressure, high blood sugar, raised cholesterol levels, and high body mass index (BMI). However, it is believed that changes in the concentration of trace elements in the human body are the main contributors to the development of some diseases and the transition from a healthy to a diseased state. Metal trace elements, non-metal trace elements, and the sampling site will be examined to determine whether trace elements can aid in the diagnosis of atherosclerosis. This article will discuss whether trace elements, discussed under three sections of metal trace elements, non-metal trace elements, and the sampling site, can participate in the diagnosis of atherosclerosis.
Collapse
Affiliation(s)
- Heyu Meng
- Department of Cardiology, China-Japan Union Hospital of Jilin University, 130033 Changchun, Jilin, China
- Jilin Provincial Precision Medicine Key Laboratory for Cardiovascular Genetic Diagnosis, Jilin Provincial Cardiovascular Research Institute, Jilin University, 130033 Changchun, Jilin, China
- Jilin Provincial Engineering Laboratory for Endothelial Function and Genetic Diagnosis of Cardiovascular Disease, Jilin Provincial Cardiovascular Research Institute, Jilin University, 130033 Changchun, Jilin, China
| | - Jianjun Ruan
- Department of Cardiology, China-Japan Union Hospital of Jilin University, 130033 Changchun, Jilin, China
- Jilin Provincial Precision Medicine Key Laboratory for Cardiovascular Genetic Diagnosis, Jilin Provincial Cardiovascular Research Institute, Jilin University, 130033 Changchun, Jilin, China
- Jilin Provincial Engineering Laboratory for Endothelial Function and Genetic Diagnosis of Cardiovascular Disease, Jilin Provincial Cardiovascular Research Institute, Jilin University, 130033 Changchun, Jilin, China
| | - Yanqiu Chen
- Department of Cardiology, China-Japan Union Hospital of Jilin University, 130033 Changchun, Jilin, China
- Jilin Provincial Precision Medicine Key Laboratory for Cardiovascular Genetic Diagnosis, Jilin Provincial Cardiovascular Research Institute, Jilin University, 130033 Changchun, Jilin, China
- Jilin Provincial Engineering Laboratory for Endothelial Function and Genetic Diagnosis of Cardiovascular Disease, Jilin Provincial Cardiovascular Research Institute, Jilin University, 130033 Changchun, Jilin, China
| | - Zhaohan Yan
- Department of Cardiology, China-Japan Union Hospital of Jilin University, 130033 Changchun, Jilin, China
- Jilin Provincial Precision Medicine Key Laboratory for Cardiovascular Genetic Diagnosis, Jilin Provincial Cardiovascular Research Institute, Jilin University, 130033 Changchun, Jilin, China
- Jilin Provincial Engineering Laboratory for Endothelial Function and Genetic Diagnosis of Cardiovascular Disease, Jilin Provincial Cardiovascular Research Institute, Jilin University, 130033 Changchun, Jilin, China
| | - Jinsha Liu
- Jilin Provincial Precision Medicine Key Laboratory for Cardiovascular Genetic Diagnosis, Jilin Provincial Cardiovascular Research Institute, Jilin University, 130033 Changchun, Jilin, China
- Jilin Provincial Engineering Laboratory for Endothelial Function and Genetic Diagnosis of Cardiovascular Disease, Jilin Provincial Cardiovascular Research Institute, Jilin University, 130033 Changchun, Jilin, China
| | - Xue Wang
- Jilin Provincial Precision Medicine Key Laboratory for Cardiovascular Genetic Diagnosis, Jilin Provincial Cardiovascular Research Institute, Jilin University, 130033 Changchun, Jilin, China
- Jilin Provincial Engineering Laboratory for Endothelial Function and Genetic Diagnosis of Cardiovascular Disease, Jilin Provincial Cardiovascular Research Institute, Jilin University, 130033 Changchun, Jilin, China
| | - Xin Meng
- Jilin Provincial Engineering Laboratory for Endothelial Function and Genetic Diagnosis of Cardiovascular Disease, Jilin Provincial Cardiovascular Research Institute, Jilin University, 130033 Changchun, Jilin, China
| | - Jingru Wang
- Jilin Provincial Engineering Laboratory for Endothelial Function and Genetic Diagnosis of Cardiovascular Disease, Jilin Provincial Cardiovascular Research Institute, Jilin University, 130033 Changchun, Jilin, China
| | - Qiang Zhang
- Jilin Provincial Engineering Laboratory for Endothelial Function and Genetic Diagnosis of Cardiovascular Disease, Jilin Provincial Cardiovascular Research Institute, Jilin University, 130033 Changchun, Jilin, China
| | - Xiangdong Li
- Jilin Provincial Precision Medicine Key Laboratory for Cardiovascular Genetic Diagnosis, Jilin Provincial Cardiovascular Research Institute, Jilin University, 130033 Changchun, Jilin, China
- Jilin Provincial Engineering Laboratory for Endothelial Function and Genetic Diagnosis of Cardiovascular Disease, Jilin Provincial Cardiovascular Research Institute, Jilin University, 130033 Changchun, Jilin, China
| | - Fanbo Meng
- Department of Cardiology, China-Japan Union Hospital of Jilin University, 130033 Changchun, Jilin, China
- Jilin Provincial Precision Medicine Key Laboratory for Cardiovascular Genetic Diagnosis, Jilin Provincial Cardiovascular Research Institute, Jilin University, 130033 Changchun, Jilin, China
- Jilin Provincial Engineering Laboratory for Endothelial Function and Genetic Diagnosis of Cardiovascular Disease, Jilin Provincial Cardiovascular Research Institute, Jilin University, 130033 Changchun, Jilin, China
- Jilin Provincial Molecular Biology Research Center for Precision Medicine of Major Cardiovascular Disease, Jilin Provincial Cardiovascular Research Institute, Jilin University, 130033 Changchun, Jilin, China
| |
Collapse
|
15
|
Kolb H. Obese visceral fat tissue inflammation: from protective to detrimental? BMC Med 2022; 20:494. [PMID: 36575472 PMCID: PMC9795790 DOI: 10.1186/s12916-022-02672-y] [Citation(s) in RCA: 52] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Accepted: 11/21/2022] [Indexed: 12/28/2022] Open
Abstract
Obesity usually is accompanied by inflammation of fat tissue, with a prominent role of visceral fat. Chronic inflammation in obese fat tissue is of a lower grade than acute immune activation for clearing the tissue from an infectious agent. It is the loss of adipocyte metabolic homeostasis that causes activation of resident immune cells for supporting tissue functions and regaining homeostasis. Initially, the excess influx of lipids and glucose in the context of overnutrition is met by adipocyte growth and proliferation. Eventual lipid overload of hypertrophic adipocytes leads to endoplasmic reticulum stress and the secretion of a variety of signals causing increased sympathetic tone, lipolysis by adipocytes, lipid uptake by macrophages, matrix remodeling, angiogenesis, and immune cell activation. Pro-inflammatory signaling of adipocytes causes the resident immune system to release increased amounts of pro-inflammatory and other mediators resulting in enhanced tissue-protective responses. With chronic overnutrition, these protective actions are insufficient, and death of adipocytes as well as senescence of several tissue cell types is seen. This structural damage causes the expression or release of immunostimulatory cell components resulting in influx and activation of monocytes and many other immune cell types, with a contribution of stromal cells. Matrix remodeling and angiogenesis is further intensified as well as possibly detrimental fibrosis. The accumulation of senescent cells also may be detrimental via eventual spread of senescence state from affected to neighboring cells by the release of microRNA-containing vesicles. Obese visceral fat inflammation can be viewed as an initially protective response in order to cope with excess ambient nutrients and restore tissue homeostasis but may contribute to tissue damage at a later stage.
Collapse
Affiliation(s)
- Hubert Kolb
- Faculty of Medicine, University of Düsseldorf, Moorenstr. 5, 40225, Düsseldorf, Germany. .,West-German Centre of Diabetes and Health, Düsseldorf Catholic Hospital Group, Hohensandweg 37, 40591, Düsseldorf, Germany.
| |
Collapse
|
16
|
Preparation, Characterization, Wound Healing, and Cytotoxicity Assay of PEGylated Nanophytosomes Loaded with 6-Gingerol. Nutrients 2022; 14:nu14235170. [PMID: 36501201 PMCID: PMC9741217 DOI: 10.3390/nu14235170] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 11/29/2022] [Accepted: 12/02/2022] [Indexed: 12/07/2022] Open
Abstract
BACKGROUND Nutrients are widely used for treating illnesses in traditional medicine. Ginger has long been used in folk medicine to treat motion sickness and other minor health disorders. Chronic non-healing wounds might elicit an inflammation response and cancerous mutation. Few clinical studies have investigated 6-gingerol's wound-healing activity due to its poor pharmacokinetic properties. However, nanotechnology can deliver 6-gingerol while possibly enhancing these properties. Our study aimed to develop a nanophytosome system loaded with 6-gingerol molecules to investigate the delivery system's influence on wound healing and anti-cancer activities. METHODS We adopted the thin-film hydration method to synthesize nanophytosomes. We used lipids in a ratio of 70:25:5 for DOPC(dioleoyl-sn-glycero-3-phosphocholine): cholesterol: DSPE/PEG2000, respectively. We loaded the 6-gingerol molecules in a concentration of 1.67 mg/mL and achieved size reduction via the extrusion technique. We determined cytotoxicity using lung, breast, and pancreatic cancer cell lines. We performed gene expression of inflammation markers and cytokines according to international protocols. RESULTS The synthesized nanophytosome particle sizes were 150.16 ± 1.65, the total charge was -13.36 ± 1.266, and the polydispersity index was 0.060 ± 0.050. Transmission electron microscopy determined the synthesized particles' spherical shape and uniform size. The encapsulation efficiency was 34.54% ± 0.035. Our biological tests showed that 6-gingerol nanophytosomes displayed selective antiproliferative activity, considerable downregulation of inflammatory markers and cytokines, and an enhanced wound-healing process. CONCLUSIONS Our results confirm the anti-cancer activity of PEGylated nanophytosome 6-gingerol, with superior activity exhibited in accelerating wound healing.
Collapse
|