1
|
Lee RU, Watson NL, Glickman GL, White L, Isidean SD, Porter CK, Hollis-Perry M, Walther SR, Maiolatesi S, Sedegah M, Ganeshan H, Huang J, Boulifard DA, Ewing D, Sundaram AK, Harrison EM, DeTizio K, Belmonte M, Belmonte A, Inoue S, Easterling A, Cooper ES, Danko J. A randomized clinical trial of the impact of melatonin on influenza vaccine: Outcomes from the melatonin and vaccine response immunity and chronobiology study (MAVRICS). Hum Vaccin Immunother 2024; 20:2419742. [PMID: 39539030 PMCID: PMC11572083 DOI: 10.1080/21645515.2024.2419742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 10/03/2024] [Accepted: 10/18/2024] [Indexed: 11/16/2024] Open
Abstract
Vaccine immunogenicity is affected by a variety of factors. Melatonin has been reported to affect immune responses to vaccines and infection. This was a randomized open-label trial - in which adults scheduled to receive the influenza vaccine were randomized to 5 mg melatonin or control to evaluate the effect of post-vaccination melatonin on humoral (hemagglutination-inhibition assays, HAI) and cellular (FluoroSpot) vaccine-specific cytokine responses 14-21 days post-vaccination. A total of 108 participants (melatonin treatment group: 53; control group: 55) completed the study. The groups were similar in baseline characteristics, including sleep as measured by the Pittsburgh Sleep Quality Index. Seroconversion rates or geometric mean fold rises (GMFR) in HAI titers did not vary by treatment group. There were also no statistically significant differences between pre- and post-vaccination levels of interferon gamma (IFN-γ) or granzyme B (GzB) by treatment; however, there was a significantly higher fold rise in the double secretor (IFN-γ + GzB) peripheral blood mononuclear cells for influenza vaccine in subjects taking daily melatonin (GMFR 1.7; 95% CI 1.3, 2.3) compared to those who did not (GMFR 0.9; 95% CI 0.7, 1.1) (p < .001). Daily melatonin for 14 days post-influenza vaccination significantly increased the cellular co-expression of IFN-γ + GzB; however, there were no other differences in the cellular or humoral responses. Future studies of the potential utility of melatonin for enhancing vaccine response with larger sample sizes may help elucidate candidate mechanisms for these limited effects, including any interactions with the circadian system.
Collapse
Affiliation(s)
- Rachel U. Lee
- Department of Medicine, Walter Reed National Military Medical Center, Bethesda, MD, USA
- Department of Psychiatry and Neuroscience, Uniformed Services University of the Health Sciences, Bethesda, MD, USA
| | - Nora L. Watson
- Department of Medicine, Walter Reed National Military Medical Center, Bethesda, MD, USA
| | - Gena L. Glickman
- Department of Psychiatry and Neuroscience, Uniformed Services University of the Health Sciences, Bethesda, MD, USA
| | - Lindsey White
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, MD, USA
- Department of Translational and Clinical Research, Naval Medical Research Command, Silver Spring, MD, USA
| | - Sandra D. Isidean
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, MD, USA
- Department of Translational and Clinical Research, Naval Medical Research Command, Silver Spring, MD, USA
| | - Chad K. Porter
- Department of Translational and Clinical Research, Naval Medical Research Command, Silver Spring, MD, USA
| | - Monique Hollis-Perry
- Department of Psychiatry and Neuroscience, Uniformed Services University of the Health Sciences, Bethesda, MD, USA
| | - Samuel R. Walther
- Department of Translational and Clinical Research, Naval Medical Research Command, Silver Spring, MD, USA
| | - Santina Maiolatesi
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, MD, USA
- Department of Translational and Clinical Research, Naval Medical Research Command, Silver Spring, MD, USA
| | - Martha Sedegah
- Department of Translational and Clinical Research, Naval Medical Research Command, Silver Spring, MD, USA
| | - Harini Ganeshan
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, MD, USA
- Department of Translational and Clinical Research, Naval Medical Research Command, Silver Spring, MD, USA
| | - Jun Huang
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, MD, USA
- Department of Translational and Clinical Research, Naval Medical Research Command, Silver Spring, MD, USA
| | - David A. Boulifard
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, MD, USA
- Department of Translational and Clinical Research, Naval Medical Research Command, Silver Spring, MD, USA
| | - Daniel Ewing
- Department of Translational and Clinical Research, Naval Medical Research Command, Silver Spring, MD, USA
| | - Appavu K. Sundaram
- Department of Translational and Clinical Research, Naval Medical Research Command, Silver Spring, MD, USA
| | - Elizabeth M. Harrison
- Department of Psychiatry and Neuroscience, Uniformed Services University of the Health Sciences, Bethesda, MD, USA
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, MD, USA
| | - Katherine DeTizio
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, MD, USA
- Department of Translational and Clinical Research, Naval Medical Research Command, Silver Spring, MD, USA
| | - Maria Belmonte
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, MD, USA
- Department of Translational and Clinical Research, Naval Medical Research Command, Silver Spring, MD, USA
| | - Arnel Belmonte
- Department of Translational and Clinical Research, Naval Medical Research Command, Silver Spring, MD, USA
- General Dynamics Information Technology, Falls Church, Virginia, MD, USA
| | - Sandra Inoue
- Department of Translational and Clinical Research, Naval Medical Research Command, Silver Spring, MD, USA
- General Dynamics Information Technology, Falls Church, Virginia, MD, USA
| | - Alexandra Easterling
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, MD, USA
| | - Elizabeth S. Cooper
- Department of Translational and Clinical Research, Naval Medical Research Command, Silver Spring, MD, USA
| | - Janine Danko
- Department of Translational and Clinical Research, Naval Medical Research Command, Silver Spring, MD, USA
| |
Collapse
|
2
|
Vránová L, Poláková I, Vaníková Š, Saláková M, Musil J, Vaníčková M, Vencálek O, Holub M, Bohoněk M, Řezáč D, Dresler J, Tachezy R, Šmahel M. Multiparametric analysis of the specific immune response against SARS-CoV-2. Infect Dis (Lond) 2024; 56:851-869. [PMID: 38805304 DOI: 10.1080/23744235.2024.2358379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/24/2024] [Revised: 04/24/2024] [Accepted: 05/17/2024] [Indexed: 05/30/2024] Open
Abstract
BACKGROUND SARS-CoV-2, which causes COVID-19, has killed more than 7 million people worldwide. Understanding the development of postinfectious and postvaccination immune responses is necessary for effective treatment and the introduction of appropriate antipandemic measures. OBJECTIVES We analysed humoral and cell-mediated anti-SARS-CoV-2 immune responses to spike (S), nucleocapsid (N), membrane (M), and open reading frame (O) proteins in individuals collected up to 1.5 years after COVID-19 onset and evaluated immune memory. METHODS Peripheral blood mononuclear cells and serum were collected from patients after COVID-19. Sampling was performed in two rounds: 3-6 months after infection and after another year. Most of the patients were vaccinated between samplings. SARS-CoV-2-seronegative donors served as controls. ELISpot assays were used to detect SARS-CoV-2-specific T and B cells using peptide pools (S, NMO) or recombinant proteins (rS, rN), respectively. A CEF peptide pool consisting of selected viral epitopes was applied to assess the antiviral T-cell response. SARS-CoV-2-specific antibodies were detected via ELISA and a surrogate virus neutralisation assay. RESULTS We confirmed that SARS-CoV-2 infection induces the establishment of long-term memory IgG+ B cells and memory T cells. We also found that vaccination enhanced the levels of anti-S memory B and T cells. Multivariate comparison also revealed the benefit of repeated vaccination. Interestingly, the T-cell response to CEF was lower in patients than in controls. CONCLUSION This study supports the importance of repeated vaccination for enhancing immunity and suggests a possible long-term perturbation of the overall antiviral immune response caused by SARS-CoV-2 infection.
Collapse
Affiliation(s)
- Lucie Vránová
- Department of Genetics and Microbiology, Faculty of Science, Charles University, BIOCEV, Vestec, Czech Republic
| | - Ingrid Poláková
- Department of Genetics and Microbiology, Faculty of Science, Charles University, BIOCEV, Vestec, Czech Republic
| | - Šárka Vaníková
- Department of Immunomonitoring and Flow Cytometry, Institute of Hematology and Blood Transfusion, Prague, Czech Republic
| | - Martina Saláková
- Department of Genetics and Microbiology, Faculty of Science, Charles University, BIOCEV, Vestec, Czech Republic
| | - Jan Musil
- Department of Immunomonitoring and Flow Cytometry, Institute of Hematology and Blood Transfusion, Prague, Czech Republic
| | - Marie Vaníčková
- Department of Genetics and Microbiology, Faculty of Science, Charles University, BIOCEV, Vestec, Czech Republic
| | - Ondřej Vencálek
- Department of Mathematical Analysis and Applications of Mathematics, Faculty of Science, Palacky University in Olomouc, Olomouc, Czech Republic
| | - Michal Holub
- Department of Infectious Diseases, First Faculty of Medicine, Military University Hospital Prague and Charles University, Prague, Czech Republic
| | - Miloš Bohoněk
- Department of Hematology and Blood Transfusion, Military University Hospital Prague, Prague, Czech Republic
- Faculty of Biomedical Engineering, Czech Technical University, Prague, Czech Republic
| | - David Řezáč
- Department of Infectious Diseases, First Faculty of Medicine, Military University Hospital Prague and Charles University, Prague, Czech Republic
| | - Jiří Dresler
- Military Health Institute, Military Medical Agency, Prague, Czech Republic
| | - Ruth Tachezy
- Department of Genetics and Microbiology, Faculty of Science, Charles University, BIOCEV, Vestec, Czech Republic
| | - Michal Šmahel
- Department of Genetics and Microbiology, Faculty of Science, Charles University, BIOCEV, Vestec, Czech Republic
| |
Collapse
|
3
|
Rubio R, Macià D, Barrios D, Vidal M, Jiménez A, Molinos-Albert LM, Díaz N, Canyelles M, Lara-Escandell M, Planchais C, Santamaria P, Carolis C, Izquierdo L, Aguilar R, Moncunill G, Dobaño C. High-resolution kinetics and cellular determinants of SARS-CoV-2 antibody response over two years after COVID-19 vaccination. Microbes Infect 2024:105423. [PMID: 39299570 DOI: 10.1016/j.micinf.2024.105423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 08/07/2024] [Accepted: 09/16/2024] [Indexed: 09/22/2024]
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) studies usually rely on cross-sectional data of large cohorts but limited repeated samples, overlooking significant inter-individual antibody kinetic differences. By combining Luminex, activation-induced marker (AIM) and IFN-γ/IL-2 Fluorospot assays, we characterized the IgM, IgA, and IgG antibody kinetics using 610 samples from 31 healthy adults over two years after COVID-19 vaccination, and the T-cell responses six months post-booster. Antibody trajectories varied among isotypes: IgG decayed slowly, IgA exhibited an initial sharp decline, which gradually slowed down and stabilized above the seropositivity threshold. Contrarily, IgM rapidly dropped to undetectable levels after primary vaccination. Importantly, three vaccine doses induced higher and more durable anti-spike IgG and IgA levels compared to two doses, whereas infection led to the highest antibody peak and slowest antibody decay rate compared to vaccination. Comparing with ancestral virus, antibody levels recognizing Omicron subvariants had a faster antibody decay. Finally, polyfunctional T cells were positively associated with subsequent IgA responses. These results revealed distinctive antibody patterns by isotype and highlight the benefits of booster doses in enhancing and sustaining antibody responses.
Collapse
Affiliation(s)
- Rocío Rubio
- ISGlobal, Barcelona, Spain; Facultat de Medicina i Ciències de la Salut, Universitat de Barcelona (UB), Barcelona, Spain
| | - Dídac Macià
- ISGlobal, Barcelona, Spain; Facultat de Medicina i Ciències de la Salut, Universitat de Barcelona (UB), Barcelona, Spain; CIBER de Enfermedades Infecciosas (CIBERINFEC), Barcelona, Spain
| | - Diana Barrios
- ISGlobal, Barcelona, Spain; Facultat de Medicina i Ciències de la Salut, Universitat de Barcelona (UB), Barcelona, Spain
| | - Marta Vidal
- ISGlobal, Barcelona, Spain; Facultat de Medicina i Ciències de la Salut, Universitat de Barcelona (UB), Barcelona, Spain
| | - Alfons Jiménez
- ISGlobal, Barcelona, Spain; Facultat de Medicina i Ciències de la Salut, Universitat de Barcelona (UB), Barcelona, Spain; CIBERESP, Barcelona, Spain
| | - Luis M Molinos-Albert
- ISGlobal, Barcelona, Spain; Facultat de Medicina i Ciències de la Salut, Universitat de Barcelona (UB), Barcelona, Spain
| | - Natalia Díaz
- ISGlobal, Barcelona, Spain; Facultat de Medicina i Ciències de la Salut, Universitat de Barcelona (UB), Barcelona, Spain
| | - Mar Canyelles
- ISGlobal, Barcelona, Spain; Facultat de Medicina i Ciències de la Salut, Universitat de Barcelona (UB), Barcelona, Spain
| | - Maria Lara-Escandell
- ISGlobal, Barcelona, Spain; Facultat de Medicina i Ciències de la Salut, Universitat de Barcelona (UB), Barcelona, Spain
| | - Cyril Planchais
- Laboratory of Humoral Immunology, Institut Pasteur, Université Paris Cité, F-75015 Paris, France
| | - Pere Santamaria
- Pathogenesis and treatment of autoimmunity group, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain; Department of Microbiology, Immunology and Infectious Diseases, Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Carlo Carolis
- Biomolecular Screening and Protein Technologies Unit, Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Luis Izquierdo
- ISGlobal, Barcelona, Spain; Facultat de Medicina i Ciències de la Salut, Universitat de Barcelona (UB), Barcelona, Spain; CIBER de Enfermedades Infecciosas (CIBERINFEC), Barcelona, Spain
| | - Ruth Aguilar
- ISGlobal, Barcelona, Spain; Facultat de Medicina i Ciències de la Salut, Universitat de Barcelona (UB), Barcelona, Spain
| | - Gemma Moncunill
- ISGlobal, Barcelona, Spain; Facultat de Medicina i Ciències de la Salut, Universitat de Barcelona (UB), Barcelona, Spain; CIBER de Enfermedades Infecciosas (CIBERINFEC), Barcelona, Spain.
| | - Carlota Dobaño
- ISGlobal, Barcelona, Spain; Facultat de Medicina i Ciències de la Salut, Universitat de Barcelona (UB), Barcelona, Spain; CIBER de Enfermedades Infecciosas (CIBERINFEC), Barcelona, Spain.
| |
Collapse
|
4
|
Stambouli N, Bahrini K, Romdhani C, Rebai A, Boughariou S, Zakraoui M, Arfaoui B, Seyli S, Boukhalfa Y, Battikh R, Moussa MB, Labbene I, Ferjani M, Gharssallah H. Humoral and cellular response of two different vaccines against SARS-CoV-2 in a group of healthcare workers: An observational study. J Immunol Methods 2024; 528:113665. [PMID: 38490578 DOI: 10.1016/j.jim.2024.113665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 03/08/2024] [Accepted: 03/11/2024] [Indexed: 03/17/2024]
Abstract
On March 13, 2021, Tunisia started a widespread immunization program against SARS-CoV-2 utilizing different vaccinations that had been given emergency approval. Herein, we followed prospectively a cohort of participant who received COVID-19 vaccine (Pfizer BioNTech and Sputnik-Gameleya V). The goal of this follow-up was to define the humoral and cellular immunological profile after immunization by assessing neutralizing antibodies and IFN- γ release. 26 vaccinated health care workers by Pfizer BioNTech (n=12) and Sputnik-Gameleya V (n=14) were enrolled from June to December 2021 in Military hospital of Tunis. All consenting participants were sampled for peripheral blood after three weeks of vaccination. The humoral response was investigated by the titer of anti-SARS-CoV-2 immunoglobulin G (IgG) antibodies to S1 protein. The CD4 and CD8 T cell responses were evaluated by the QuantiFERON® SARS-CoV-2 (Qiagen® Basel, Switzerland). Regardless the type of vaccine, the assessment of humoral and cellular response following vaccination showed a strong involvement of the later with expression of IFN-γ as compared to antibodies secretion. Moreover, we showed that people with past SARS-CoV-2 infection developed high levels of antibodies than those who are not previously infected. However, no significant difference was detected concerning interferon gamma (IFN-γ) expression by CD4 and CD8 T cells in health care worker (HCW) previously infection or not with COVID-19 infection. Analysis of immune response according to the type of vaccine, we found that Pfizer BioNTech induced high level of humoral response (91.66%) followed by Sputnik-Gameleya V (64.28%). However, adenovirus vaccine gave a better cellular response (57.14%) than mRNA vaccine (41.66%). Regarding the immune response following vaccine doses, we revealed a significant increase of neutralizing antibodies and IFN-γ release by T cells in patients fully vaccinated as compared to those who have received just one vaccine. Collectively, our data revealed a similar immune response between Pfizer BioNTech and Sputnik-Gameleya V vaccine with a slight increase of humoral response by mRNA vaccine and cellular response by adenovirus vaccine. It's evident that past SARS-CoV-2 infection was a factor that contributed to the vaccination's increased immunogenicity. However, the administration of full doses of vaccines (Pfizer BioNTech or Sputnik-Gameleya V) induces better humoral and cellular responses detectable even more than three months following vaccination.
Collapse
Affiliation(s)
- Nejla Stambouli
- Research Unit UR17DN05, Military Hospital of Tunis, 1008 Montfleury, Tunis, Tunisia
| | - Khadija Bahrini
- Research Unit UR17DN05, Military Hospital of Tunis, 1008 Montfleury, Tunis, Tunisia; University Tunis El Manar, Tunis, Tunisia.
| | - Chihebeddine Romdhani
- Department of Anesthesiology and Intensive Care, Military Hospital of Tunis, 1008 Montfleury, Tunis, Tunisia
| | - Aicha Rebai
- Department of Anesthesiology and Intensive Care, Military Hospital of Tunis, 1008 Montfleury, Tunis, Tunisia
| | - Sana Boughariou
- Department of Anesthesiology and Intensive Care, Military Hospital of Tunis, 1008 Montfleury, Tunis, Tunisia
| | - Mohamed Zakraoui
- Department of Anesthesiology and Intensive Care, Military Hospital of Tunis, 1008 Montfleury, Tunis, Tunisia
| | - Bilel Arfaoui
- Department of Internal Medicine, Military Hospital of Tunis, 1008 Montfleury, Tunis, Tunisia
| | - Sameh Seyli
- Department of Internal Medicine, Military Hospital of Tunis, 1008 Montfleury, Tunis, Tunisia
| | - Yasmine Boukhalfa
- Department of Anesthesiology and Intensive Care, Military Hospital of Tunis, 1008 Montfleury, Tunis, Tunisia
| | - Riadh Battikh
- Department of Infectious Disease, Military Hospital of Tunis, 1008 Montfleury, Tunis, Tunisia
| | - Mohamed Ben Moussa
- Laboratory of Virology, Military Hospital of Tunis, 1008 Montfleury, Tunis, Tunisia
| | - Iheb Labbene
- University Tunis El Manar, Tunis, Tunisia; Department of Anesthesiology and Intensive Care, Military Hospital of Tunis, 1008 Montfleury, Tunis, Tunisia
| | - Mustpha Ferjani
- University Tunis El Manar, Tunis, Tunisia; Department of Anesthesiology and Intensive Care, Military Hospital of Tunis, 1008 Montfleury, Tunis, Tunisia
| | - Hedi Gharssallah
- Research Unit UR17DN05, Military Hospital of Tunis, 1008 Montfleury, Tunis, Tunisia; University Tunis El Manar, Tunis, Tunisia; Department of Anesthesiology and Intensive Care, Military Hospital of Tunis, 1008 Montfleury, Tunis, Tunisia
| |
Collapse
|
5
|
Phiri K, Grill L. Development of a Candidate TMV Epitope Display Vaccine against SARS-CoV-2. Vaccines (Basel) 2024; 12:448. [PMID: 38793699 PMCID: PMC11125883 DOI: 10.3390/vaccines12050448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 04/16/2024] [Accepted: 04/18/2024] [Indexed: 05/26/2024] Open
Abstract
Essential in halting the COVID-19 pandemic caused by SARS-CoV-2, it is crucial to have stable, effective, and easy-to-manufacture vaccines. We developed a potential vaccine using a tobacco mosaic virus (TMV) epitope display model presenting peptides derived from the SARS-CoV-2 spike protein. The TMV-epitope fusions in laboratory tests demonstrated binding to the SARS-CoV-2 polyclonal antibodies. The fusion constructs maintained critical epitopes of the SARS-CoV-2 spike protein, and two in particular spanned regions of the receptor-binding domain that have mutated in the more recent SARS-CoV-2 variants. This would allow for the rapid modification of vaccines in response to changes in circulating variants. The TMV-peptide fusion constructs also remained stable for over 28 days when stored at temperatures between -20 and 37 °C, an ideal property when targeting developing countries. Immunogenicity studies conducted on BALB/c mice elicited robust antibody responses against SARS-CoV-2. A strong IFNγ response was also observed in immunized mice. Three of the six TMV-peptide fusion constructs produced virus-neutralizing titers, as measured with a pseudovirus neutralization assay. These TMV-peptide fusion constructs can be combined to make a multivalent vaccine that could be adapted to meet changing virus variants. These findings demonstrate the development of a stable COVID-19 vaccine candidate by combining SARS-CoV-2 spike protein-derived peptides presented on the surface of a TMV nanoparticle.
Collapse
Affiliation(s)
- Kelvin Phiri
- Henry E. Riggs School of Applied Life Sciences, Keck Graduate Institute, Claremont, CA 91711, USA;
| | | |
Collapse
|
6
|
Malani A, Aiyar J, Sant A, Kamran N, Mohanan M, Taneja S, Woda B, Zhao W, Acharya A. Comparing population-level humoral and cellular immunity to SARS-Cov-2 in Bangalore, India. Sci Rep 2024; 14:5758. [PMID: 38459035 PMCID: PMC10923858 DOI: 10.1038/s41598-024-54922-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Accepted: 02/18/2024] [Indexed: 03/10/2024] Open
Abstract
Two types of immunity, humoral and cellular, offer protection against COVID. Humoral protection, contributed by circulating neutralizing antibodies, can provide immediate protection but decays more quickly than cellular immunity and can lose effectiveness in the face of mutation and drift in the SARS-CoV-2 spike protein. Therefore, population-level seroprevalence surveys used to estimate population-level immunity may underestimate the degree to which a population is protected against COVID. In early 2021, before India began its vaccination campaign, we tested for humoral and cellular immunity to SARS-Cov-2 in representative samples of slum and non-slum populations in Bangalore, India. We found that 29.7% of samples (unweighted) had IgG antibodies to the spike protein and 15.5% had neutralizing antibodies, but at up to 46% showed evidence of cellular immunity. We also find that prevalence of cellular immunity is significantly higher in slums than in non-slums. These findings suggest (1) that a significantly larger proportion of the population in Bangalore, India, had cellular immunity to SARS-CoV-2 than had humoral immunity, as measured by serological surveys, and (2) that low socio-economic status communities display higher frequency of cellular immunity, likely because of greater exposure to infection due to population density.
Collapse
Affiliation(s)
| | | | - Andrea Sant
- Department of Microbiology and Immunology, University of Rochester Medical Center, Rochester, NY, USA
| | | | - Manoj Mohanan
- Sanford School of Public Policy, Duke University, Durham, NC, USA
| | - Saloni Taneja
- University of Southern California, Los Angeles, CA, USA
| | - Bartek Woda
- University of Chicago, Chicago, IL, USA
- Amazon, Chicago, IL, USA
| | | | | |
Collapse
|
7
|
Safont G, Villar-Hernández R, Smalchuk D, Stojanovic Z, Marín A, Lacoma A, Pérez-Cano C, López-Martínez A, Molina-Moya B, Solis AJ, Arméstar F, Matllo J, Díaz-Fernández S, Romero I, Casas I, Strecker K, Preyer R, Rosell A, Latorre I, Domínguez J. Measurement of IFN-γ and IL-2 for the assessment of the cellular immunity against SARS-CoV-2. Sci Rep 2024; 14:1137. [PMID: 38212416 PMCID: PMC10784529 DOI: 10.1038/s41598-024-51505-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Accepted: 01/05/2024] [Indexed: 01/13/2024] Open
Abstract
The study of specific T-cell responses against SARS-CoV-2 is important for understanding long-term immunity and infection management. The aim of this study was to assess the dual IFN-γ and IL-2 detection, using a SARS-CoV-2 specific fluorescence ELISPOT, in patients undergoing acute disease, during convalescence, and after vaccination. We also evaluated humoral response and compared with T-cells with the aim of correlating both types of responses, and increase the number of specific response detection. Blood samples were drawn from acute COVID-19 patients and convalescent individuals classified according to disease severity; and from unvaccinated and vaccinated uninfected individuals. IgGs against Spike and nucleocapsid, IgMs against nucleocapsid, and neutralizing antibodies were also analyzed. Our results show that IFN-γ in combination with IL-2 increases response detection in acute and convalescent individuals (p = 0.023). In addition, IFN-γ detection can be a useful biomarker for monitoring severe acute patients, as our results indicate that those individuals with a poor outcome have lower levels of this cytokine. In some cases, the lack of cellular immunity is compensated by antibodies, confirming the role of both types of immune responses in infection, and confirming that their dual detection can increase the number of specific response detections. In summary, IFN-γ/IL-2 dual detection is promising for characterizing and assessing the immunization status, and helping in the patient management.
Collapse
Affiliation(s)
- Guillem Safont
- Institut d'Investigació Germans Trias i Pujol, Barcelona, Spain
- CIBER de Enfermedades Respiratorias, Instituto de Salud Carlos III, Madrid, Spain
- Departament de Genètica i Microbiologia, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Raquel Villar-Hernández
- Institut d'Investigació Germans Trias i Pujol, Barcelona, Spain
- Genome Identification Diagnostics GmbH (GenID), Straßberg, Germany
| | - Daria Smalchuk
- Institut d'Investigació Germans Trias i Pujol, Barcelona, Spain
- Odesa I. I. Mechnykov National University, Odesa, Ukraine
| | - Zoran Stojanovic
- CIBER de Enfermedades Respiratorias, Instituto de Salud Carlos III, Madrid, Spain
- Departament de Genètica i Microbiologia, Universitat Autònoma de Barcelona, Barcelona, Spain
- Pulmonology Department, Hospital Universitari Germans Trias i Pujol, Badalona, Spain
| | - Alicia Marín
- CIBER de Enfermedades Respiratorias, Instituto de Salud Carlos III, Madrid, Spain
- Departament de Genètica i Microbiologia, Universitat Autònoma de Barcelona, Barcelona, Spain
- Pulmonology Department, Hospital Universitari Germans Trias i Pujol, Badalona, Spain
| | - Alicia Lacoma
- Institut d'Investigació Germans Trias i Pujol, Barcelona, Spain
- CIBER de Enfermedades Respiratorias, Instituto de Salud Carlos III, Madrid, Spain
- Departament de Genètica i Microbiologia, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Cristina Pérez-Cano
- Basic Unit for the Prevention of Occupational Risks (UBP), Hospital Universitari Germans Trias i Pujol, Badalona, Spain
| | - Anabel López-Martínez
- Basic Unit for the Prevention of Occupational Risks (UBP), Hospital Universitari Germans Trias i Pujol, Badalona, Spain
| | - Bárbara Molina-Moya
- Institut d'Investigació Germans Trias i Pujol, Barcelona, Spain
- CIBER de Enfermedades Respiratorias, Instituto de Salud Carlos III, Madrid, Spain
- Departament de Genètica i Microbiologia, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Alan Jhunior Solis
- CIBER de Enfermedades Respiratorias, Instituto de Salud Carlos III, Madrid, Spain
- Departament de Genètica i Microbiologia, Universitat Autònoma de Barcelona, Barcelona, Spain
- Pulmonology Department, Hospital Universitari Germans Trias i Pujol, Badalona, Spain
| | - Fernando Arméstar
- Intensive Care Medicine Department, Hospital Universitari Germans Trias I Pujol, Badalona, Spain
| | - Joan Matllo
- Basic Unit for the Prevention of Occupational Risks (UBP), Hospital Universitari Germans Trias i Pujol, Badalona, Spain
| | - Sergio Díaz-Fernández
- Institut d'Investigació Germans Trias i Pujol, Barcelona, Spain
- CIBER de Enfermedades Respiratorias, Instituto de Salud Carlos III, Madrid, Spain
- Departament de Genètica i Microbiologia, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Iris Romero
- Institut d'Investigació Germans Trias i Pujol, Barcelona, Spain
- CIBER de Enfermedades Respiratorias, Instituto de Salud Carlos III, Madrid, Spain
- Departament de Genètica i Microbiologia, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Irma Casas
- Departament de Genètica i Microbiologia, Universitat Autònoma de Barcelona, Barcelona, Spain
- Preventive Medicine Department, Hospital Universitari Germans Trias i Pujol, Badalona, Spain
| | - Kevin Strecker
- Genome Identification Diagnostics GmbH (GenID), Straßberg, Germany
| | - Rosemarie Preyer
- Genome Identification Diagnostics GmbH (GenID), Straßberg, Germany
| | - Antoni Rosell
- CIBER de Enfermedades Respiratorias, Instituto de Salud Carlos III, Madrid, Spain
- Departament de Genètica i Microbiologia, Universitat Autònoma de Barcelona, Barcelona, Spain
- Pulmonology Department, Hospital Universitari Germans Trias i Pujol, Badalona, Spain
| | - Irene Latorre
- Institut d'Investigació Germans Trias i Pujol, Barcelona, Spain
- CIBER de Enfermedades Respiratorias, Instituto de Salud Carlos III, Madrid, Spain
- Departament de Genètica i Microbiologia, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Jose Domínguez
- Institut d'Investigació Germans Trias i Pujol, Barcelona, Spain.
- CIBER de Enfermedades Respiratorias, Instituto de Salud Carlos III, Madrid, Spain.
- Departament de Genètica i Microbiologia, Universitat Autònoma de Barcelona, Barcelona, Spain.
| |
Collapse
|