1
|
Wu C, Song J, Liu X, Zhang Y, Zhou Z, Thomas DG, Wu B, Yan X, Li J, Zhang R, Wu F, Cheng C, Pu X, Wang X. Effect of iron-manganese oxide on the degradation of deoxynivalenol in feed and enhancement of growth performance and intestinal health in weaned piglets. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 286:117246. [PMID: 39490105 DOI: 10.1016/j.ecoenv.2024.117246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Revised: 10/14/2024] [Accepted: 10/21/2024] [Indexed: 11/05/2024]
Abstract
Deoxynivalenol (DON), a prevalent and highly toxic mycotoxin in animal feed, poses significant risks to livestock health and productivity. This study evaluates the effectiveness of iron-manganese oxide (Fe/Mn oxides) in degrading DON. The DON degradation rate of Fe/Mn oxide reached 98.46 % in a controlled solution under specific conditions (0.2 % concentration, 37-85 °C, pH 6-7, 1-minute reaction time). When applied to actual feed, it reduced DON levels by approximately 49.3 % and remained stable in simulated gastrointestinal environments of weaned piglets. A 28-day trial involving 48 weaned piglets assessed the impacts of Fe/Mn oxides on health and growth. Results indicated that piglets consuming contaminated feed without the treatment exhibited reduced growth and compromised gut integrity, which were significantly mitigated by the addition of Fe/Mn oxides. Therefore, Fe/Mn oxides effectively reduce DON in feed and alleviate adverse health effects in piglets, making them a viable option to enhance safety and performance in mycotoxin-prone environments.
Collapse
Affiliation(s)
- Caimei Wu
- Institute of Animal Nutrition, Sichuan Agricultural University, Key Laboratory for Animal Disease-Resistance Nutrition and Feedstuffs of China Ministry of Agriculture and Rural Affairs, Chengdu, Sichuan 611130, China
| | - Jingping Song
- Institute of Animal Nutrition, Sichuan Agricultural University, Key Laboratory for Animal Disease-Resistance Nutrition and Feedstuffs of China Ministry of Agriculture and Rural Affairs, Chengdu, Sichuan 611130, China
| | - Xinyue Liu
- College of Science, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - Yuwei Zhang
- Institute of Animal Nutrition, Sichuan Agricultural University, Key Laboratory for Animal Disease-Resistance Nutrition and Feedstuffs of China Ministry of Agriculture and Rural Affairs, Chengdu, Sichuan 611130, China
| | - Ziyun Zhou
- Institute of Animal Nutrition, Sichuan Agricultural University, Key Laboratory for Animal Disease-Resistance Nutrition and Feedstuffs of China Ministry of Agriculture and Rural Affairs, Chengdu, Sichuan 611130, China
| | - David G Thomas
- School of Agriculture and Environment, Massey University, Private Bag 11-222, Palmerston North 4442, New Zealand
| | - Bing Wu
- Chelota Biotechnology Co., Ltd., Guanghan, Deyang, Sichuan 618302, China
| | - Xinru Yan
- Chelota Biotechnology Co., Ltd., Guanghan, Deyang, Sichuan 618302, China
| | - Jian Li
- Institute of Animal Nutrition, Sichuan Agricultural University, Key Laboratory for Animal Disease-Resistance Nutrition and Feedstuffs of China Ministry of Agriculture and Rural Affairs, Chengdu, Sichuan 611130, China
| | - Ruinan Zhang
- Institute of Animal Nutrition, Sichuan Agricultural University, Key Laboratory for Animal Disease-Resistance Nutrition and Feedstuffs of China Ministry of Agriculture and Rural Affairs, Chengdu, Sichuan 611130, China
| | - Fali Wu
- Institute of Animal Nutrition, Sichuan Agricultural University, Key Laboratory for Animal Disease-Resistance Nutrition and Feedstuffs of China Ministry of Agriculture and Rural Affairs, Chengdu, Sichuan 611130, China
| | - Chuanmin Cheng
- Sichuan Provincial Feed Work Station, Chengdu, Sichuan 610041, China
| | - Xiang Pu
- College of Science, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - Xianxiang Wang
- College of Science, Sichuan Agricultural University, Chengdu, Sichuan 611130, China.
| |
Collapse
|
2
|
Kim N, Do KH, Cho CU, Seo KW, Jeong DH. Insights into the Gut Microbial Diversity of Wild Siberian Musk Deer ( Moschus moschiferus) in Republic of Korea. Animals (Basel) 2024; 14:3000. [PMID: 39457930 PMCID: PMC11503724 DOI: 10.3390/ani14203000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Revised: 09/25/2024] [Accepted: 10/14/2024] [Indexed: 10/28/2024] Open
Abstract
The gut microbiota plays a crucial role in the health and well-being of wildlife. However, its composition and diversity remain unexplored, particularly in threatened species such as the Siberian musk deer (SMD). This study aimed to elucidate the gut microbiota composition within different wild SMD communities for assessing their health status. We conducted the first comprehensive fecal microbiome analysis of wild SMD inhabiting three distinct locations in Gangwon Province, Republic of Korea (Korea). Fecal samples were collected non-invasively and 16S rRNA gene sequencing was performed for gut microbiota characterization. Consistent with previous research, Firmicutes and Bacteroidetes were the dominant phyla in the gut microbiota of wild SMD. Planctomycetota was a prevalent phylum in wild SMD gut microbiota, warranting further investigation of its ecological significance. While significant differences were observed in the gut microbiota richness among the three groups, no significant disparities were detected in the beta diversity. Additionally, certain genera exhibited distinct relative abundances among the groups, suggesting potential associations with geographic factors, gut disorders, and dietary habits. Our findings provide valuable insights into the gut microbiome of wild SMD and offer a foundation for future microbiome-based conservation efforts for this vulnerable species.
Collapse
Affiliation(s)
- Nari Kim
- College of Veterinary Medicine, Chungbuk National University, Cheongju 28644, Republic of Korea; (N.K.); (K.-H.D.); (K.-W.S.)
| | - Kyung-Hyo Do
- College of Veterinary Medicine, Chungbuk National University, Cheongju 28644, Republic of Korea; (N.K.); (K.-H.D.); (K.-W.S.)
| | - Chea-Un Cho
- Yanggu Goral/Musk Deer Conservation Center, Yanggu 24506, Republic of Korea;
| | - Kwang-Won Seo
- College of Veterinary Medicine, Chungbuk National University, Cheongju 28644, Republic of Korea; (N.K.); (K.-H.D.); (K.-W.S.)
| | - Dong-Hyuk Jeong
- College of Veterinary Medicine, Chungbuk National University, Cheongju 28644, Republic of Korea; (N.K.); (K.-H.D.); (K.-W.S.)
- Wildlife Center of Chungbuk, Cheongju 28116, Republic of Korea
| |
Collapse
|
3
|
Rabapane KJ, Matambo TS. Profiling the dynamic adaptations of CAZyme-Producing microorganisms in the gastrointestinal tract of South African goats. Heliyon 2024; 10:e37508. [PMID: 39290285 PMCID: PMC11407064 DOI: 10.1016/j.heliyon.2024.e37508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 08/25/2024] [Accepted: 09/04/2024] [Indexed: 09/19/2024] Open
Abstract
The gastrointestinal tract of goats serves as a habitat for anaerobic microbial populations that work together to break down complex plant material, including lignocellulose. This study explored the microbial diversity and metabolic profiles across different gastrointestinal tract compartments. Significant diversity differences among the compartments were observed (ANOSIM p < 0.006), with the abomasum showing a distinct species composition and a decreased alpha diversity (Mann-Whitney/Kruskal-Wallis test p = 0.00096), possibly due to its acidic environment. Dominant microbial phyla included Proteobacteria, Bacteroidetes, and Firmicutes, with Proteobacteria being the most prevalent in the abomasum (50.06 %). Genera like Proteus and Bacteroides were particularly prominent in the rumen and reticulum, highlighting their significant role in feed degradation and fermentation processes. Over 65 % of genes at Kyoto Encyclopedia of Genes and Genomes level 1 were involved in metabolism with significant xenobiotic biodegradation in the abomasum. The dbCAN2 search identified Glycoside Hydrolases as the most prevalent CAZyme class (79 %), followed by Glycosyltransferases, Polysaccharide Lyases, and Carbohydrate Esterases, with Carbohydrate-Binding Modules and Auxiliary Activities accounting for 1 % of the hits. Higher CAZyme abundance was observed in the reticulum and omasum compartments, possibly due to MAGs diversity. In conclusion, the gastrointestinal tract of South African goats harbors diverse CAZyme classes, with Glycoside Hydrolases predominating. Interestingly, higher CAZyme abundance in specific compartments suggested compartmentalized microbial activity, reflecting adaptation to dietary substrates.
Collapse
Affiliation(s)
- Kgodiso J Rabapane
- Centre of Competence in Environmental Biotechnology, Department of Environmental Science, University of South Africa's College of Agriculture and Environmental Science, Cnr Pioneer and Christian De Wet Roads, Private Bag X6, Florida, 1710, South Africa
- Institute for Catalysis and Energy Solutions, University of South Africa's College of Science, Engineering, and Technology, Cnr Pioneer and Christian De Wet Roads, Private Bag X6, Florida, 1710, South Africa
| | - Tonderayi S Matambo
- Centre of Competence in Environmental Biotechnology, Department of Environmental Science, University of South Africa's College of Agriculture and Environmental Science, Cnr Pioneer and Christian De Wet Roads, Private Bag X6, Florida, 1710, South Africa
| |
Collapse
|
4
|
Tyrnenopoulou P, Tsilipounidaki K, Florou Z, Gkountinoudis CG, Tyropoli K, Starras A, Peleki C, Marneris D, Arseniou N, Lianou DT, Katsarou EI, Petinaki E, Fthenakis GC. Detection of Gastrointestinal Pathogens with Zoonotic Potential in Horses Used in Free-Riding Activities during a Countrywide Study in Greece. Animals (Basel) 2024; 14:2566. [PMID: 39272351 PMCID: PMC11394066 DOI: 10.3390/ani14172566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Revised: 08/31/2024] [Accepted: 09/02/2024] [Indexed: 09/15/2024] Open
Abstract
The objectives of this study were (a) to detect zoonotic gastrointestinal pathogens in faecal samples of horses using the FilmArray® GI Panel and (b) to identify variables potentially associated with their presence. Faecal samples collected from 224 horses obtained during a countrywide study in Greece were tested by means of the BioFire® FilmArray® Gastrointestinal (GI) Panel, which uses multiplex-PCR technology for the detection of 22 pathogens. Gastrointestinal pathogens were detected in the faecal samples obtained from 97 horses (43.3%). Zoonotic pathogens were detected more frequently in samples from horses in courtyard housing (56.0%) than in samples from horses in other housing types (39.7%) (p = 0.040). The most frequently detected zoonotic pathogens were enteropathogenic Escherichia coli (19.2% of horses) and Shiga-like toxin-producing E. coli stx1/stx2 (13.8%). During multivariable analysis, two variables emerged as significant predictors for the outcome 'detection of at least one zoonotic pathogen in the faecal sample from an animal': (a) the decreasing age of horses (p = 0.0001) and (b) the presence of livestock at the same premises as the horses (p = 0.013). As a significant predictor for the outcome 'detection of two zoonotic pathogens concurrently in the faecal sample from an animal', only the season of sampling of animals (autumn) emerged as significant in the multivariable analysis (p = 0.049). The results indicated a diversity of gastrointestinal pathogens with zoonotic potential in horses and provided evidence for predictors for the infections; also, they can serve to inform horse owners and handlers regarding the possible risk of transmission of pathogens with zoonotic potential. In addition, our findings highlight the importance of continuous surveillance for zoonotic pathogens in domestic animals.
Collapse
Affiliation(s)
| | | | - Zoi Florou
- University Hospital of Larissa, 41110 Larissa, Greece
| | | | | | | | | | - Danai Marneris
- Private Veterinary Practice, 15450 Neo Psychico, Attica, Greece
| | | | - Daphne T Lianou
- Veterinary Faculty, University of Thessaly, 43100 Karditsa, Greece
| | - Eleni I Katsarou
- Veterinary Faculty, University of Thessaly, 43100 Karditsa, Greece
| | | | | |
Collapse
|
5
|
Guo W, Liu T, Wang W, Yu Y, Neves ALA, Zhou M, Chen X. Survey of the fecal microbiota of indigenous small ruminants living in different areas of Guizhou. Front Microbiol 2024; 15:1415230. [PMID: 39176283 PMCID: PMC11340823 DOI: 10.3389/fmicb.2024.1415230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Accepted: 07/22/2024] [Indexed: 08/24/2024] Open
Abstract
Introduction Gut microbiota are associated with the health and performance of ruminant species, and they are affected by altitude, host genetics, and sex. However, there has been little research on comparing the fecal microbiota of indigenous small ruminants such as sheep and goats in Guizhou province, China. In the present study, we revealed the effect of altitude, genetics, and sex on fecal microbiota profiles and enterotypes in indigenous small ruminants of Guizhou province, China. Methods Fecal samples were collected from Hei and Qianbei Ma goats and Weining sheep in the Chinese province of Guizhou. 16S rRNA gene sequencing targeting the V3-V4 region was performed using the Illumina MiSeq platform. Sequences were processed using QIIME2, and the qualified sequences were processed using the plugin DADA2 to generate amplicon sequence variants (ASVs). The statistical analysis was performed using R studio. Results The fecal microbial profile was found to vary by herd (influenced by genetics/altitude) and sex. All samples were categorized into two enterotypes. The first enterotype is dominated by UCG-005, and the second enterotype is dominated by the Christensenellaceae_R-7_group, which may be highly driven by the host's genetics (breed). The predicted functional profiles of the fecal microbiota were also assigned to two clusters that corresponded exactly to the enterotypes. Cluster 1 of the functional profiling was characterized by biosynthesis pathways, and cluster 2 was characterized by energy metabolism pathways. Discussion Our findings may provide new insights into the fecal microbial community and enterotypes in small ruminants by herds, offering clues for understanding the mechanisms by which the fecal microbiota contribute to divergent host phenotypes in indigenous small ruminants in Guizhou.
Collapse
Affiliation(s)
- Wei Guo
- Key Laboratory of Animal Genetics, Breeding and Reproduction in the Plateau Mountainous Region, Ministry of Education, College of Animal Science, Guizhou University, Guiyang, China
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB, Canada
| | - Tingmei Liu
- Key Laboratory of Animal Genetics, Breeding and Reproduction in the Plateau Mountainous Region, Ministry of Education, College of Animal Science, Guizhou University, Guiyang, China
| | - Weiwei Wang
- Key Laboratory of Animal Genetics, Breeding and Reproduction in the Plateau Mountainous Region, Ministry of Education, College of Animal Science, Guizhou University, Guiyang, China
| | - Yinshu Yu
- Key Laboratory of Animal Genetics, Breeding and Reproduction in the Plateau Mountainous Region, Ministry of Education, College of Animal Science, Guizhou University, Guiyang, China
| | - André Luis Alves Neves
- Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Frederiksberg, Denmark
| | - Mi Zhou
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB, Canada
| | - Xiang Chen
- Key Laboratory of Animal Genetics, Breeding and Reproduction in the Plateau Mountainous Region, Ministry of Education, College of Animal Science, Guizhou University, Guiyang, China
| |
Collapse
|
6
|
Liu Y, Shu Y, Huang Y, Tan J, Wang F, Tang L, Fang T, Yuan S, Wang L. Microbial Biogeography along the Gastrointestinal Tract of a Wild Chinese Muntjac ( Muntiacus reevesi). Microorganisms 2024; 12:1587. [PMID: 39203429 PMCID: PMC11356339 DOI: 10.3390/microorganisms12081587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 07/27/2024] [Accepted: 08/02/2024] [Indexed: 09/03/2024] Open
Abstract
The gut microbiota plays an important role in host nutrient absorption, immune function, and behavioral patterns. Much research on the gut microbiota of wildlife has focused on feces samples, so the microbial composition along the gastrointestinal tract of wildlife is not well reported. To address this gap, we performed high-throughput sequencing of 16s rRNA genes and ITs rRNA genes in the gastrointestinal contents of a wild adult male Chinese muntjac (Muntiacus reevesi) to comparatively analyze the microbial diversity of different gastrointestinal regions. The results showed that the dominant bacterial phyla were Firmicutes (66.19%) and Bacteroidetes (22.7%), while the dominant fungal phyla were Ascomycetes (72.81%). The highest bacterial diversity was found in the stomach, and the highest fungal diversity was found in the cecum. The microbial communities of the large intestine and small intestine were of similar structures, which were distinct from that of the stomach. These results would facilitate the continued exploration of the microbial composition and functional diversity of the gastrointestinal tract of wild Chinese muntjacs and provide a scientific basis for microbial resource conservation of more wildlife.
Collapse
Affiliation(s)
- Yuan Liu
- Key Laboratory of Southwest China Wildlife Resources Conservation (Ministry of Education), China West Normal University, Nanchong 637009, China; (Y.L.); (Y.S.); (Y.H.); (J.T.); (F.W.); (L.T.); (T.F.)
- Nanchong Key Laboratory of Wildlife Nutrition Ecology and Disease Control, Nanchong 637009, China
| | - Yan Shu
- Key Laboratory of Southwest China Wildlife Resources Conservation (Ministry of Education), China West Normal University, Nanchong 637009, China; (Y.L.); (Y.S.); (Y.H.); (J.T.); (F.W.); (L.T.); (T.F.)
- Nanchong Key Laboratory of Wildlife Nutrition Ecology and Disease Control, Nanchong 637009, China
| | - Yuling Huang
- Key Laboratory of Southwest China Wildlife Resources Conservation (Ministry of Education), China West Normal University, Nanchong 637009, China; (Y.L.); (Y.S.); (Y.H.); (J.T.); (F.W.); (L.T.); (T.F.)
- Nanchong Key Laboratory of Wildlife Nutrition Ecology and Disease Control, Nanchong 637009, China
| | - Jinchao Tan
- Key Laboratory of Southwest China Wildlife Resources Conservation (Ministry of Education), China West Normal University, Nanchong 637009, China; (Y.L.); (Y.S.); (Y.H.); (J.T.); (F.W.); (L.T.); (T.F.)
- Nanchong Key Laboratory of Wildlife Nutrition Ecology and Disease Control, Nanchong 637009, China
| | - Fengmei Wang
- Key Laboratory of Southwest China Wildlife Resources Conservation (Ministry of Education), China West Normal University, Nanchong 637009, China; (Y.L.); (Y.S.); (Y.H.); (J.T.); (F.W.); (L.T.); (T.F.)
- Nanchong Key Laboratory of Wildlife Nutrition Ecology and Disease Control, Nanchong 637009, China
| | - Lin Tang
- Key Laboratory of Southwest China Wildlife Resources Conservation (Ministry of Education), China West Normal University, Nanchong 637009, China; (Y.L.); (Y.S.); (Y.H.); (J.T.); (F.W.); (L.T.); (T.F.)
- Nanchong Key Laboratory of Wildlife Nutrition Ecology and Disease Control, Nanchong 637009, China
| | - Tingting Fang
- Key Laboratory of Southwest China Wildlife Resources Conservation (Ministry of Education), China West Normal University, Nanchong 637009, China; (Y.L.); (Y.S.); (Y.H.); (J.T.); (F.W.); (L.T.); (T.F.)
- Nanchong Key Laboratory of Wildlife Nutrition Ecology and Disease Control, Nanchong 637009, China
| | - Shibin Yuan
- Key Laboratory of Southwest China Wildlife Resources Conservation (Ministry of Education), China West Normal University, Nanchong 637009, China; (Y.L.); (Y.S.); (Y.H.); (J.T.); (F.W.); (L.T.); (T.F.)
- Nanchong Key Laboratory of Wildlife Nutrition Ecology and Disease Control, Nanchong 637009, China
| | - Le Wang
- Key Laboratory of Southwest China Wildlife Resources Conservation (Ministry of Education), China West Normal University, Nanchong 637009, China; (Y.L.); (Y.S.); (Y.H.); (J.T.); (F.W.); (L.T.); (T.F.)
- Nanchong Key Laboratory of Wildlife Nutrition Ecology and Disease Control, Nanchong 637009, China
| |
Collapse
|
7
|
Qiu S, Li K, He X, Gu M, Jiang X, Lu J, Ma Z, Liang X, Gan Q. The Effects of Composite Alkali-Stored Spent Hypsizygus marmoreus Substrate on Carcass Quality, Rumen Fermentation, and Rumen Microbial Diversity in Goats. Animals (Basel) 2024; 14:166. [PMID: 38200897 PMCID: PMC10778354 DOI: 10.3390/ani14010166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2023] [Revised: 12/21/2023] [Accepted: 12/28/2023] [Indexed: 01/12/2024] Open
Abstract
The objective of this study was to investigate the effects of composite alkali-stored spent Hypsizygus marmoreus substrate (SHMS) on carcass quality, rumen fermentation, and rumen microbial diversity in goats. Twenty-four 6-month-old Chuanzhong black goats with similar body weights (20 ± 5 kg) were selected and randomly divided into four groups (n = 6 per group) and received four treatments: 0% (control group, CG); 20% (low-addition group, LG); 30% (moderate-addition group, MG); and 40% (high-addition group, HG) of SHMS-replaced silage corn and oat hay. The experiment lasted for 74 days (including a 14 d adaptation period and a 60 d treatment period). The results of this study showed that MG and HG significantly improved the marble score of goat meat (p < 0.05). The flesh color score significantly increased in each group (p < 0.05). The fat color scores significantly increased in LG and MG (p < 0.05). There were no significant effects on the pH value or shear force of the longissimus dorsi in each group (p > 0.05). The cooking loss in MG was higher than that in CG (p < 0.05). The histidine and tyrosine contents in each group of muscles significantly increased (p < 0.05), with no significant effect on fatty acids (p > 0.05). The rumen pH of MG significantly decreased (p < 0.05), while the total volatile fatty acids (TVFAs) and ammoniacal nitrogen (NH3-N) increased by 44.63% and 54.50%, respectively. The addition of the SHMS altered both the alpha and beta diversities of the rumen microbiota and significant differences in the composition and structure of the four microbial communities. The dominant bacterial phylum in each group were Firmicutes and Bacteroidetes, with Prevotella 1 as the dominant bacterial genus. Correlation analysis revealed that rumen bacteria are closely related to the animal carcass quality and rumen fermentation. In the PICRUSt prediction, 21 significantly different pathways were found, and the correlation network showed a positive correlation between the Prevotella 1 and 7 metabolic pathways, while the C5-branched dibasic acid metabolism was positively correlated with nine bacteria. In summary, feeding goats with an SHMS diet can improve the carcass quality, promote rumen fermentation, and alter the microbial structure. The research results can provide a scientific reference for the utilization of SHMS as feed in the goat industry.
Collapse
Affiliation(s)
- Shuiling Qiu
- College of Animal Science (College of Bee Science), Fujian Agriculture and Forestry University, Fuzhou 350002, China; (S.Q.); (K.L.); (X.H.); (M.G.); (X.J.); (J.L.); (Z.M.)
| | - Keyao Li
- College of Animal Science (College of Bee Science), Fujian Agriculture and Forestry University, Fuzhou 350002, China; (S.Q.); (K.L.); (X.H.); (M.G.); (X.J.); (J.L.); (Z.M.)
- Laboratory of Animal Nutritional Physiology and Metabolic Process, Key Laboratory of Agro-Ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, China
| | - Xiangbo He
- College of Animal Science (College of Bee Science), Fujian Agriculture and Forestry University, Fuzhou 350002, China; (S.Q.); (K.L.); (X.H.); (M.G.); (X.J.); (J.L.); (Z.M.)
| | - Mingming Gu
- College of Animal Science (College of Bee Science), Fujian Agriculture and Forestry University, Fuzhou 350002, China; (S.Q.); (K.L.); (X.H.); (M.G.); (X.J.); (J.L.); (Z.M.)
| | - Xinghui Jiang
- College of Animal Science (College of Bee Science), Fujian Agriculture and Forestry University, Fuzhou 350002, China; (S.Q.); (K.L.); (X.H.); (M.G.); (X.J.); (J.L.); (Z.M.)
| | - Jianing Lu
- College of Animal Science (College of Bee Science), Fujian Agriculture and Forestry University, Fuzhou 350002, China; (S.Q.); (K.L.); (X.H.); (M.G.); (X.J.); (J.L.); (Z.M.)
| | - Zhiyi Ma
- College of Animal Science (College of Bee Science), Fujian Agriculture and Forestry University, Fuzhou 350002, China; (S.Q.); (K.L.); (X.H.); (M.G.); (X.J.); (J.L.); (Z.M.)
| | - Xuewu Liang
- College of Animal Science (College of Bee Science), Fujian Agriculture and Forestry University, Fuzhou 350002, China; (S.Q.); (K.L.); (X.H.); (M.G.); (X.J.); (J.L.); (Z.M.)
| | - Qianfu Gan
- College of Animal Science (College of Bee Science), Fujian Agriculture and Forestry University, Fuzhou 350002, China; (S.Q.); (K.L.); (X.H.); (M.G.); (X.J.); (J.L.); (Z.M.)
| |
Collapse
|
8
|
Thapa S, Zhou S, O'Hair J, Al Nasr K, Ropelewski A, Li H. Exploring the microbial diversity and characterization of cellulase and hemicellulase genes in goat rumen: a metagenomic approach. BMC Biotechnol 2023; 23:51. [PMID: 38049781 PMCID: PMC10696843 DOI: 10.1186/s12896-023-00821-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Accepted: 11/20/2023] [Indexed: 12/06/2023] Open
Abstract
BACKGROUND Goat rumen microbial communities are perceived as one of the most potential biochemical reservoirs of multi-functional enzymes, which are applicable to enhance wide array of bioprocesses such as the hydrolysis of cellulose and hemi-cellulose into fermentable sugar for biofuel and other value-added biochemical production. Even though, the limited understanding of rumen microbial genetic diversity and the absence of effective screening culture methods have impeded the full utilization of these potential enzymes. In this study, we applied culture independent metagenomics sequencing approach to isolate, and identify microbial communities in goat rumen, meanwhile, clone and functionally characterize novel cellulase and xylanase genes in goat rumen bacterial communities. RESULTS Bacterial DNA samples were extracted from goat rumen fluid. Three genomic libraries were sequenced using Illumina HiSeq 2000 for paired-end 100-bp (PE100) and Illumina HiSeq 2500 for paired-end 125-bp (PE125). A total of 435gb raw reads were generated. Taxonomic analysis using Graphlan revealed that Fibrobacter, Prevotella, and Ruminococcus are the most abundant genera of bacteria in goat rumen. SPAdes assembly and prodigal annotation were performed. The contigs were also annotated using the DOE-JGI pipeline. In total, 117,502 CAZymes, comprising endoglucanases, exoglucanases, beta-glucosidases, xylosidases, and xylanases, were detected in all three samples. Two genes with predicted cellulolytic/xylanolytic activities were cloned and expressed in E. coli BL21(DE3). The endoglucanases and xylanase enzymatic activities of the recombinant proteins were confirmed using substrate plate assay and dinitrosalicylic acid (DNS) analysis. The 3D structures of endoglucanase A and endo-1,4-beta xylanase was predicted using the Swiss Model. Based on the 3D structure analysis, the two enzymes isolated from goat's rumen metagenome are unique with only 56-59% similarities to those homologous proteins in protein data bank (PDB) meanwhile, the structures of the enzymes also displayed greater stability, and higher catalytic activity. CONCLUSIONS In summary, this study provided the database resources of bacterial metagenomes from goat's rumen fluid, including gene sequences with annotated functions and methods for gene isolation and over-expression of cellulolytic enzymes; and a wealth of genes in the metabolic pathways affecting food and nutrition of ruminant animals.
Collapse
Affiliation(s)
- Santosh Thapa
- Department of Agricultural and Environmental Sciences, College of Agriculture, Tennessee State University, 3500 John A. Merritt Blvd, Nashville, TN, 37209, USA
- Vanderbilt University Medical Center, 2215 Garland Ave, Nashville, TN, 37232, USA
| | - Suping Zhou
- Department of Agricultural and Environmental Sciences, College of Agriculture, Tennessee State University, 3500 John A. Merritt Blvd, Nashville, TN, 37209, USA
| | - Joshua O'Hair
- Department of Biological Sciences, College of Life & Physical Sciences, Tennessee State University, 3500 John A. Merritt Blvd, Nashville, TN, 37209, USA
| | - Kamal Al Nasr
- Department of Computer Sciences, College of Engineering, Tennessee State University, 3500 John A. Merritt Blvd, Nashville, TN, 37209, USA
| | - Alexander Ropelewski
- Pittsburgh Supercomputing Center, 300 S. Craig Street, Pittsburgh, PA, 15213, USA
| | - Hui Li
- Department of Agricultural and Environmental Sciences, College of Agriculture, Tennessee State University, 3500 John A. Merritt Blvd, Nashville, TN, 37209, USA.
| |
Collapse
|
9
|
Huaiquipán R, Quiñones J, Díaz R, Velásquez C, Sepúlveda G, Velázquez L, Paz EA, Tapia D, Cancino D, Sepúlveda N. Review: Effect of Experimental Diets on the Microbiome of Productive Animals. Microorganisms 2023; 11:2219. [PMID: 37764062 PMCID: PMC10536378 DOI: 10.3390/microorganisms11092219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 07/14/2023] [Accepted: 07/24/2023] [Indexed: 09/29/2023] Open
Abstract
The microorganisms that inhabit the gastrointestinal tract are responsible for multiple chains of reactions that affect their environment and modify the internal metabolism, their study receives the name of microbiome, which has become more relevant in recent years. In the near future, the challenges related to feeding are anticipated to escalate, encompassing the nutritional needs to sustain an overpopulated world. Therefore, it is expected that a better understanding of the interactions between microorganisms within the digestive tract will allow their modulation in order to provide an improvement in the immune system, feed efficiency or the promotion of nutritional characteristics in production animals, among others. In the present study, the main effects of experimental diets in production animals were described, emphasizing the diversity of the bacterial populations found in response to the diets, ordering them between polygastric and monogastric animals, and then describing the experimental diets used and their effect on the microorganisms. It is hoped that this study will help as a first general approach to the study of the role of the microbiome in production animals under different diets.
Collapse
Affiliation(s)
- Rodrigo Huaiquipán
- Programa de Doctorado en Ciencias Agroalimentarias y Medioambiente, Facultad de Ciencias Agropecuarias y Medioambiente, Universidad de la Frontera, Temuco 4780000, Chile; (R.H.); (C.V.); (G.S.); (L.V.); (D.T.)
| | - John Quiñones
- Facultad de Ciencias Agropecuarias y Medioambiente, Universidad de la Frontera, Temuco 4780000, Chile; (R.D.); (D.C.)
- Centro de Tecnología e Innovación de la Carne, Universidad de La Frontera, Temuco 4780000, Chile
| | - Rommy Díaz
- Facultad de Ciencias Agropecuarias y Medioambiente, Universidad de la Frontera, Temuco 4780000, Chile; (R.D.); (D.C.)
- Centro de Tecnología e Innovación de la Carne, Universidad de La Frontera, Temuco 4780000, Chile
| | - Carla Velásquez
- Programa de Doctorado en Ciencias Agroalimentarias y Medioambiente, Facultad de Ciencias Agropecuarias y Medioambiente, Universidad de la Frontera, Temuco 4780000, Chile; (R.H.); (C.V.); (G.S.); (L.V.); (D.T.)
| | - Gastón Sepúlveda
- Programa de Doctorado en Ciencias Agroalimentarias y Medioambiente, Facultad de Ciencias Agropecuarias y Medioambiente, Universidad de la Frontera, Temuco 4780000, Chile; (R.H.); (C.V.); (G.S.); (L.V.); (D.T.)
| | - Lidiana Velázquez
- Programa de Doctorado en Ciencias Agroalimentarias y Medioambiente, Facultad de Ciencias Agropecuarias y Medioambiente, Universidad de la Frontera, Temuco 4780000, Chile; (R.H.); (C.V.); (G.S.); (L.V.); (D.T.)
| | - Erwin A. Paz
- UWA Institute of Agriculture, The University of Western Australia, Perth 6009, Australia;
| | - Daniela Tapia
- Programa de Doctorado en Ciencias Agroalimentarias y Medioambiente, Facultad de Ciencias Agropecuarias y Medioambiente, Universidad de la Frontera, Temuco 4780000, Chile; (R.H.); (C.V.); (G.S.); (L.V.); (D.T.)
| | - David Cancino
- Facultad de Ciencias Agropecuarias y Medioambiente, Universidad de la Frontera, Temuco 4780000, Chile; (R.D.); (D.C.)
- Centro de Tecnología e Innovación de la Carne, Universidad de La Frontera, Temuco 4780000, Chile
| | - Néstor Sepúlveda
- Facultad de Ciencias Agropecuarias y Medioambiente, Universidad de la Frontera, Temuco 4780000, Chile; (R.D.); (D.C.)
- Centro de Tecnología e Innovación de la Carne, Universidad de La Frontera, Temuco 4780000, Chile
| |
Collapse
|
10
|
Frias H, Murga Valderrama NL, Flores GJ, Cornejo VG, Del Solar JC, Romani AC, Bardales W, Segura GT, Polveiro RC, Vieira DDS, Lopez Lapa RM, Maicelo Quintana JL. An analysis of the cecum microbiome of three breeds of the guinea pig: Andina, Inti, and Peru. Res Vet Sci 2023; 161:50-61. [PMID: 37321011 DOI: 10.1016/j.rvsc.2023.06.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 05/24/2023] [Accepted: 06/06/2023] [Indexed: 06/17/2023]
Abstract
This study investigated the effect of host genetics on the structure and composition of the cecum microbiota of three breeds of guinea pigs: Andina, Inti, and Peru. Fifteen guinea pigs were distributed into three groups according to their breed: Andina (5), Inti (5), and Peru (5). We discovered that four main phyla were shared between the three breeds: Bacteroidota, Firmicutes, Spirochaetota, and Synergistota. Although there were no significant differences in the alpha and beta diversity analysis, we found that the Linear discriminant analysis effect size and the heat tree analysis showed significant differences between the abundance of several taxa present in the cecum microbiome of the three breeds. These results suggest that host genetics could be a factor in the structure and composition of the guinea pig cecum microbiome. In addition, we found unique genera for each breed that have fermentation capacity and, therefore can be analyzed in further studies to determine if there is a functional relationship between them and the breed and its industrial profile.
Collapse
Affiliation(s)
- Hugo Frias
- Academic Department of Zootechnics, Faculty of Zootechnical Engineering, Agribusiness and Biotechnology, National University Toribio Rodríguez de Mendoza, Amazonas, Peru
| | - Nilton Luis Murga Valderrama
- Livestock and Biotechnology Research Institute, National University Toribio Rodríguez de Mendoza, Amazonas, Peru
| | - Gary J Flores
- Livestock and Biotechnology Research Institute, National University Toribio Rodríguez de Mendoza, Amazonas, Peru
| | - Victor G Cornejo
- Livestock and Biotechnology Research Institute, National University Toribio Rodríguez de Mendoza, Amazonas, Peru
| | - Jakson Ch Del Solar
- Livestock and Biotechnology Research Institute, National University Toribio Rodríguez de Mendoza, Amazonas, Peru
| | - Ana C Romani
- Livestock and Biotechnology Research Institute, National University Toribio Rodríguez de Mendoza, Amazonas, Peru
| | - William Bardales
- Laboratory of Infectious and Parasitic Diseases, Livestock and Biotechnology Research Institute, Faculty of Zootechnical Engineering, Agribusiness, and Biotechnology, National University Toribio Rodríguez de Mendoza, Amazonas, Peru
| | - G T Segura
- Livestock and Biotechnology Research Institute, National University Toribio Rodríguez de Mendoza, Amazonas, Peru
| | - Richard C Polveiro
- Laboratory of Bacterial Diseases, Sector of Preventive Veterinary Medicine and Public Health, Department of Veterinary, Universidade Federal de Viçosa, Viçosa, MG, Brazil
| | - Dielson da S Vieira
- Section of Infectious Diseases, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT 06510, USA
| | - Rainer M Lopez Lapa
- Livestock and Biotechnology Research Institute, National University Toribio Rodríguez de Mendoza, Amazonas, Peru; Department of Public Health, Faculty of Health Sciences, National University Toribio Rodríguez de Mendoza de Amazonas, Chachapoyas, Peru.
| | - Jorge Luis Maicelo Quintana
- Livestock and Biotechnology Research Institute, National University Toribio Rodríguez de Mendoza, Amazonas, Peru
| |
Collapse
|
11
|
Zhu Z, Li X, Bu Q, Yan Q, Wen L, Chen X, Li X, Yan M, Jiang L, Chen G, Li S, Gao X, Zeng G, Liang J. Land-Water Transport and Sources of Nitrogen Pollution Affecting the Structure and Function of Riverine Microbial Communities. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:2726-2738. [PMID: 36746765 DOI: 10.1021/acs.est.2c04705] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
The characterization of variations in riverine microbiota that stem from contaminant sources and transport modes is important for understanding biogeochemical processes. However, the association between complex anthropogenic nitrogen pollution and bacteria has not been extensively investigated owing to the difficulties faced while determining the distribution of nitrogen contaminants in watersheds. Here, we employed the Soil and Water Assessment Tool alongside microbiological analysis to explore microbial characteristics and their responses to complex nitrogen pollution patterns. Significant variations in microbial communities were observed in sub-basins with distinct land-water pollution transport modes. Point source-dominated areas (PSDAs) exhibited reduced microbial diversity, high number of denitrification groups, and increased nitrogen cycling compared with others. The negative relative deviations (-3.38) between the measured and simulated nitrate concentrations in PSDAs indicated that nitrate removal was more effective in PSDAs. Pollution sources were also closely associated with microbiota. Effluents from concentrated animal feeding operations were the primary factors relating to the microbiota compositions in PSDAs and balanced areas. In nonpoint source-dominated areas, contaminants from septic tanks become the most relevant sources to microbial community structures. Overall, this study expands our knowledge regarding microbial biogeochemistry in catchments and beyond by linking specific nitrogen pollution scenarios to microorganisms.
Collapse
Affiliation(s)
- Ziqian Zhu
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, P. R. China
- Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, P. R. China
| | - Xin Li
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, P. R. China
- Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, P. R. China
| | - Qiurong Bu
- National Engineering Research Centre of Advanced Technologies and Equipment for Water Environmental Pollution Monitoring, Changsha 410205, P. R. China
| | - Qingcheng Yan
- National Engineering Research Centre of Advanced Technologies and Equipment for Water Environmental Pollution Monitoring, Changsha 410205, P. R. China
| | - Liqun Wen
- National Engineering Research Centre of Advanced Technologies and Equipment for Water Environmental Pollution Monitoring, Changsha 410205, P. R. China
| | - Xiaolei Chen
- National Engineering Research Centre of Advanced Technologies and Equipment for Water Environmental Pollution Monitoring, Changsha 410205, P. R. China
| | - Xiaodong Li
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, P. R. China
- Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, P. R. China
| | - Ming Yan
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, P. R. China
- Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, P. R. China
| | - Longbo Jiang
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, P. R. China
- Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, P. R. China
| | - Gaojie Chen
- School of Mathematics, Hunan University, Changsha 410082, P. R. China
| | - Shuai Li
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, P. R. China
- Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, P. R. China
| | - Xiang Gao
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, P. R. China
- Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, P. R. China
| | - Guangming Zeng
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, P. R. China
- Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, P. R. China
| | - Jie Liang
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, P. R. China
- Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, P. R. China
| |
Collapse
|
12
|
Wu ZL, Yang X, Zhang J, Wang W, Liu D, Hou B, Bai T, Zhang R, Zhang Y, Liu H, Hu H, Xia Y. Effects of forage type on the rumen microbiota, growth performance, carcass traits, and meat quality in fattening goats. Front Vet Sci 2023; 10:1147685. [PMID: 37180069 PMCID: PMC10172669 DOI: 10.3389/fvets.2023.1147685] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Accepted: 04/06/2023] [Indexed: 05/15/2023] Open
Abstract
Forages fed to goats influence ruminal microbiota, and further contribute to affect growth performance, meat quality and its nutritional composition. Our objective for current study was to investigate the effects of different forages on growth performance, carcass traits, meat nutritional composition, rumen microflora, and the relationships between key bacteria and amino acids and fatty acids in the longissimus dorsi and semimembranosus muscles of goats. Boer crossbred goats were separately fed commercial concentrate diet supplemented with Hemarthria altissima (HA), Pennisetum sinese (PS), or forage maize (FG), and then slaughtered 90 days after the beginning of the experiment. Growth performances did not vary but carcass traits of dressing percentage, semi-eviscerated slaughter percentage, and eviscerated slaughter percentage displayed significant difference with the treatment studied. Meats from goats fed forage maize, especially semimembranosus muscles are rich in essential amino acids, as well as an increase in the amount of beneficial fatty acids. Our 16S rRNA gene sequencing results showed that the Firmicutes, Bacteroidetes, and Proteobacteria were the most dominant phyla in all groups but different in relative abundance. Further, the taxonomic analysis and linear discriminant analysis effect size (LEfSe) identified the specific taxa that were differentially represented among three forage treatments. The spearman's correlation analysis showed that rumen microbiota was significantly associated with the goat meat nutritional composition, and more significant positive correlations were identified in semimembranosus muscles when compared with longissimus dorsi muscles. More specifically, the lipid metabolism-related bacteria Rikenellaceae_RC9_gut_group showed positively correlated with meat amino acid profile, while genera Oscillospiraceae_UCG-005 were positively correlated with fatty acid composition. These bacteria genera might have the potential to improve nutritional value and meat quality. Collectively, our results showed that different forages alter the carcass traits, meat nutritional composition, and rumen microflora in fattening goats, and forage maize induced an improvement in its nutritional value.
Collapse
Affiliation(s)
- Zhou-lin Wu
- Meat Processing Key Laboratory of Sichuan Province, College of Food and Biological Engineering, Chengdu University, Chengdu, China
| | - Xue Yang
- Chengdu Academy of Agricultural and Forestry Sciences, Chengdu, China
| | - Jiamin Zhang
- Meat Processing Key Laboratory of Sichuan Province, College of Food and Biological Engineering, Chengdu University, Chengdu, China
| | - Wei Wang
- Meat Processing Key Laboratory of Sichuan Province, College of Food and Biological Engineering, Chengdu University, Chengdu, China
| | - Dayu Liu
- Meat Processing Key Laboratory of Sichuan Province, College of Food and Biological Engineering, Chengdu University, Chengdu, China
| | - Bo Hou
- Meat Processing Key Laboratory of Sichuan Province, College of Food and Biological Engineering, Chengdu University, Chengdu, China
| | - Ting Bai
- Meat Processing Key Laboratory of Sichuan Province, College of Food and Biological Engineering, Chengdu University, Chengdu, China
| | - Rui Zhang
- Meat Processing Key Laboratory of Sichuan Province, College of Food and Biological Engineering, Chengdu University, Chengdu, China
| | - Yin Zhang
- Meat Processing Key Laboratory of Sichuan Province, College of Food and Biological Engineering, Chengdu University, Chengdu, China
| | - Hanyang Liu
- Chengdu Academy of Agricultural and Forestry Sciences, Chengdu, China
| | - Hongwen Hu
- Neijiang Academy of Agricultural Sciences, Neijiang, China
| | - Yunhong Xia
- Neijiang Academy of Agricultural Sciences, Neijiang, China
- *Correspondence: Yunhong Xia,
| |
Collapse
|