1
|
Qiao L, Lu C, Zang T, Dzyuba B, Shao J. Maternal GLP-1 receptor activation inhibits fetal growth. Am J Physiol Endocrinol Metab 2024; 326:E268-E276. [PMID: 38197791 PMCID: PMC11193516 DOI: 10.1152/ajpendo.00361.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 01/03/2024] [Accepted: 01/03/2024] [Indexed: 01/11/2024]
Abstract
Glucagon-like peptide 1 (GLP-1) regulates food intake, insulin production, and metabolism. Our recent study demonstrated that pancreatic α-cells-secreted (intraislet) GLP-1 effectively promotes maternal insulin secretion and metabolic adaptation during pregnancy. However, the role of circulating GLP-1 in maternal energy metabolism remains largely unknown. Our study aims to investigate systemic GLP-1 response to pregnancy and its regulatory effect on fetal growth. Using C57BL/6 mice, we observed a gradual decline in maternal blood GLP-1 concentrations. Subsequent administration of the GLP-1 receptor agonist semaglutide (Sem) to dams in late pregnancy revealed a modest decrease in maternal food intake during initial treatment. At the same time, no significant alterations were observed in maternal body weight or fat mass. Notably, Sem-treated dams exhibited a significant decrease in fetal body weight, which persisted even following the restoration of maternal blood glucose levels. Despite no observable change in placental weight, a marked reduction in the placenta labyrinth area from Sem-treated dams was evident. Our investigation further demonstrated a substantial decrease in the expression levels of various pivotal nutrient transporters within the placenta, including glucose transporter one and sodium-neutral amino acid transporter one, after Sem treatment. In addition, Sem injection led to a notable reduction in the capillary area, number, and surface densities within the labyrinth. These findings underscore the crucial role of modulating circulating GLP-1 levels in maternal adaptation, emphasizing the inhibitory effects of excessive GLP-1 receptor activation on both placental development and fetal growth.NEW & NOTEWORTHY Our study reveals a progressive decline in maternal blood glucagon-like peptide 1 (GLP-1) concentration. GLP-1 receptor agonist injection in late pregnancy significantly reduced fetal body weight, even after restoration of maternal blood glucose concentration. GLP-1 receptor activation significantly reduced the placental labyrinth area, expression of some nutrient transporters, and capillary development. Our study indicates that reducing maternal blood GLP-1 levels is a physiological adaptation process that benefits placental development and fetal growth.
Collapse
Affiliation(s)
- Liping Qiao
- Department of Pediatrics, University of California San Diego, La Jolla, California, United States
| | - Cindy Lu
- Department of Pediatrics, University of California San Diego, La Jolla, California, United States
| | - Tianyi Zang
- Department of Pediatrics, University of California San Diego, La Jolla, California, United States
| | - Brianna Dzyuba
- Department of Pediatrics, University of California San Diego, La Jolla, California, United States
| | - Jianhua Shao
- Department of Pediatrics, University of California San Diego, La Jolla, California, United States
| |
Collapse
|
2
|
Biolcatti CF, Bobbo VC, Solon C, Morari J, Haddad-Tovolli R, Araujo EP, Simoes MR, Velloso LA. Pregnancy Protects against Abnormal Gut Permeability Promoted via the Consumption of a High-Fat Diet in Mice. Nutrients 2023; 15:5041. [PMID: 38140300 PMCID: PMC10746116 DOI: 10.3390/nu15245041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 12/02/2023] [Accepted: 12/04/2023] [Indexed: 12/24/2023] Open
Abstract
The consumption of large amounts of dietary fats and pregnancy are independent factors that can promote changes in gut permeability and the gut microbiome landscape. However, there is limited evidence regarding the impact of pregnancy on the regulation of such parameters in females fed a high-fat diet. Here, gut permeability and microbiome landscape were evaluated in a mouse model of diet-induced obesity in pregnancy. The results show that pregnancy protected against the harmful effects of the consumption of a high-fat diet as a disruptor of gut permeability; thus, there was a two-fold reduction in FITC-dextran passage to the bloodstream compared to non-pregnant mice fed a high-fat diet (p < 0.01). This was accompanied by an increased expression of gut barrier-related transcripts, particularly in the ileum. In addition, the beneficial effect of pregnancy on female mice fed the high-fat diet was accompanied by a reduced presence of bacteria belonging to the genus Clostridia, and by increased Lactobacillus murinus in the gut (p < 0.05). Thus, this study advances the understanding of how pregnancy can act during a short window of time, protecting against the harmful effects of the consumption of a high-fat diet by promoting an increased expression of transcripts encoding proteins involved in the regulation of gut permeability, particularly in the ileum, and promoting changes in the gut microbiome.
Collapse
Affiliation(s)
- Caio F. Biolcatti
- Laboratory of Cell Signaling, Obesity and Comorbidities Research Center, University of Campinas, Campinas 13083-864, Brazil; (C.F.B.); (V.C.B.); (C.S.); (J.M.); (R.H.-T.); (E.P.A.); (M.R.S.)
- School of Medical Sciences, University of Campinas, Campinas 13083-894, Brazil
| | - Vanessa C. Bobbo
- Laboratory of Cell Signaling, Obesity and Comorbidities Research Center, University of Campinas, Campinas 13083-864, Brazil; (C.F.B.); (V.C.B.); (C.S.); (J.M.); (R.H.-T.); (E.P.A.); (M.R.S.)
- School of Nursing, University of Campinas, Campinas 13083-887, Brazil
| | - Carina Solon
- Laboratory of Cell Signaling, Obesity and Comorbidities Research Center, University of Campinas, Campinas 13083-864, Brazil; (C.F.B.); (V.C.B.); (C.S.); (J.M.); (R.H.-T.); (E.P.A.); (M.R.S.)
| | - Joseane Morari
- Laboratory of Cell Signaling, Obesity and Comorbidities Research Center, University of Campinas, Campinas 13083-864, Brazil; (C.F.B.); (V.C.B.); (C.S.); (J.M.); (R.H.-T.); (E.P.A.); (M.R.S.)
| | - Roberta Haddad-Tovolli
- Laboratory of Cell Signaling, Obesity and Comorbidities Research Center, University of Campinas, Campinas 13083-864, Brazil; (C.F.B.); (V.C.B.); (C.S.); (J.M.); (R.H.-T.); (E.P.A.); (M.R.S.)
- Neuronal Control of Metabolism (NeuCoMe) Laboratory, Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), 08036 Barcelona, Spain
| | - Eliana P. Araujo
- Laboratory of Cell Signaling, Obesity and Comorbidities Research Center, University of Campinas, Campinas 13083-864, Brazil; (C.F.B.); (V.C.B.); (C.S.); (J.M.); (R.H.-T.); (E.P.A.); (M.R.S.)
- School of Nursing, University of Campinas, Campinas 13083-887, Brazil
| | - Marcela R. Simoes
- Laboratory of Cell Signaling, Obesity and Comorbidities Research Center, University of Campinas, Campinas 13083-864, Brazil; (C.F.B.); (V.C.B.); (C.S.); (J.M.); (R.H.-T.); (E.P.A.); (M.R.S.)
| | - Licio A. Velloso
- Laboratory of Cell Signaling, Obesity and Comorbidities Research Center, University of Campinas, Campinas 13083-864, Brazil; (C.F.B.); (V.C.B.); (C.S.); (J.M.); (R.H.-T.); (E.P.A.); (M.R.S.)
- School of Medical Sciences, University of Campinas, Campinas 13083-894, Brazil
| |
Collapse
|