1
|
Şen A, Gümüş T, Temel A, Öztürk İ, Çelik Ö. Biochemical and Proteomic Analyses in Drought-Tolerant Wheat Mutants Obtained by Gamma Irradiation. PLANTS (BASEL, SWITZERLAND) 2024; 13:2702. [PMID: 39409572 PMCID: PMC11478800 DOI: 10.3390/plants13192702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 09/09/2024] [Accepted: 09/18/2024] [Indexed: 10/20/2024]
Abstract
The bread wheat cultivar (Triticum aestivum L. cv. Sagittario) as a parental line and its mutant, drought-tolerant lines (Mutant lines 4 and 5) were subjected to polyethylene glycol (PEG)-induced drought. Drought stress resulted in decreased chlorophyll levels and the accumulation of proline and TBARS, despite increases in activities of catalase, peroxidase, and superoxide dismutase enzymes. Transcription of the genes encoding these enzymes and delta-1-pyrroline 5-carboxylase synthetase was induced by drought. 2-DE gel electrophoresis analysis identified differentially expressed proteins (DEPs) in the mutant lines, which are distinguished by "chloroplast", "mitochondrion", "pyruvate dehydrogenase complex", and "homeostatic process" terms. The drought tolerance of the mutant lines might be attributed to improved photosynthesis, efficient ATP synthesis, and modified antioxidant capacity. In addition to proteomics data, the drought tolerance of wheat genotypes might also be assessed by chlorophyll content and TaPOX gene expression. To our knowledge, this is the first proteomic analysis of gamma-induced mutants of bread wheat. These findings are expected to be utilized in plant breeding studies.
Collapse
Affiliation(s)
- Ayşe Şen
- Department of Biology, Faculty of Science, Istanbul University, Istanbul 34134, Türkiye
| | - Tamer Gümüş
- Department of Molecular Biology and Genetics, Faculty of Science and Letters, Istanbul Kultur University, Istanbul 34156, Türkiye; (T.G.); (Ö.Ç.)
| | - Aslıhan Temel
- Department of Molecular Biology and Genetics, Faculty of Science, Istanbul University, Istanbul 34134, Türkiye;
| | - İrfan Öztürk
- Trakya Directorate of the Institute of Agricultural Research, Edirne 22030, Türkiye;
| | - Özge Çelik
- Department of Molecular Biology and Genetics, Faculty of Science and Letters, Istanbul Kultur University, Istanbul 34156, Türkiye; (T.G.); (Ö.Ç.)
| |
Collapse
|
2
|
Antony A, Veerappapillai S, Karuppasamy R. Deciphering early responsive signature genes in rice blast disease: an integrated temporal transcriptomic study. J Appl Genet 2024:10.1007/s13353-024-00901-z. [PMID: 39180632 DOI: 10.1007/s13353-024-00901-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 06/03/2024] [Accepted: 08/06/2024] [Indexed: 08/26/2024]
Abstract
Rice blast disease, caused by Magnaporthe oryzae, reigns as the top-most cereal killer, jeopardizing global food security. This necessitates the timely scouting of pathogen stress-responsive genes during the early infection stages. Thus, we integrated time-series microarray (GSE95394) and RNA-Seq (GSE131641) datasets to decipher rice transcriptome responses at 12- and 24-h post-infection (Hpi). Our analysis revealed 1580 differentially expressed genes (DEGs) overlapped between datasets. We constructed a protein-protein interaction (PPI) network for these DEGs and identified significant subnetworks using the MCODE plugin. Further analysis with CytoHubba highlighted eight plausible hub genes for pathogenesis: RPL8 (upregulated) and RPL27, OsPRPL3, RPL21, RPL9, RPS5, OsRPS9, and RPL17 (downregulated). We validated the expression levels of these hub genes in response to infection, finding that RPL8 exhibited significantly higher expression compared with other downregulated genes. Remarkably, RPL8 formed a distinct cluster in the co-expression network, whereas other hub genes were interconnected, with RPL9 playing a central role, indicating its pivotal role in coordinating gene expression during infection. Gene Ontology highlighted the enrichment of hub genes in the ribosome and protein translation processes. Prior studies suggested that plant immune defence activation diminishes the energy pool by suppressing ribosomes. Intriguingly, our study aligns with this phenomenon, as the identified ribosomal proteins (RPs) were suppressed, while RPL8 expression was activated. We anticipate that these RPs could be targeted to develop new stress-resistant rice varieties, beyond their housekeeping role. Overall, integrating transcriptomic data revealed more common DEGs, enhancing the reliability of our analysis and providing deeper insights into rice blast disease mechanisms.
Collapse
Affiliation(s)
- Ajitha Antony
- Department of Biotechnology, School of Bio Sciences and Technology, Vellore Institute of Technology, Vellore, 632014, Tamil Nadu, India
| | - Shanthi Veerappapillai
- Department of Biotechnology, School of Bio Sciences and Technology, Vellore Institute of Technology, Vellore, 632014, Tamil Nadu, India
| | - Ramanathan Karuppasamy
- Department of Biotechnology, School of Bio Sciences and Technology, Vellore Institute of Technology, Vellore, 632014, Tamil Nadu, India.
| |
Collapse
|
3
|
Zafar S, Khan IM, Ashraf MA, Zafar M, Ahmad M, Rasheed R, Mehmood A, Ahmad KS. Insights into trehalose mediated physiological and biochemical mechanisms in Zea mays L. under chromium stress. BMC PLANT BIOLOGY 2024; 24:783. [PMID: 39152388 PMCID: PMC11330127 DOI: 10.1186/s12870-024-05514-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Accepted: 08/12/2024] [Indexed: 08/19/2024]
Abstract
BACKGROUND Chromium (Cr) toxicity significantly threatens agricultural ecosystems worldwide, adversely affecting plant growth and development and reducing crop productivity. Trehalose, a non-reducing sugar has been identified as a mitigator of toxic effects induced by abiotic stressors such as drought, salinity, and heavy metals. The primary objective of this study was to investigate the influence of exogenously applied trehalose on maize plants exposed to Cr stress. RESULTS Two maize varieties, FH-1046 and FH-1453, were subjected to two different Cr concentrations (0.3 mM, and 0.5 mM). The results revealed significant variations in growth and biochemical parameters for both maize varieties under Cr-induced stress conditions as compared to the control group. Foliar application of trehalose at a concentration of 30 mM was administered to both maize varieties, leading to a noteworthy reduction in the detrimental effects of Cr stress. Notably, the Cr (0.5 mM) stress more adversely affected the shoot length more than 0.3mM of Cr stress. Cr stress (0.5 mM) significantly reduced the shoot length by 12.4% in FH-1046 and 24.5% in FH-1453 while Trehalose increased shoot length by 30.19% and 4.75% in FH-1046 and FH-1453 respectively. Cr stress significantly constrained growth and biochemical processes, whereas trehalose notably improved plant growth by reducing Cr uptake and minimizing oxidative stress caused by Cr. This reduction in oxidative stress was evidenced by decreased production of proline, SOD, POD, MDA, H2O2, catalase, and APX. Trehalose also enhanced photosynthetic activities under Cr stress, as indicated by increased values of chlorophyll a, b, and carotenoids. Furthermore, the ameliorative potential of trehalose was demonstrated by increased contents of proteins and carbohydrates and a decrease in Cr uptake. CONCLUSIONS The study demonstrates that trehalose application substantially improved growth and enhanced photosynthetic activities in both maize varieties. Trehalose (30 mM) significantly increased the plant biomass, reduced ROS production and enhanced resilience to Cr stress even at 0.5 mM.
Collapse
Affiliation(s)
- Sadia Zafar
- Department of Botany, Division of Science and Technology, University of Education Lahore, Punjab, 54770, Pakistan.
| | - Inam Mehdi Khan
- Department of Botany, Division of Science and Technology, University of Education Lahore, Punjab, 54770, Pakistan
| | | | - Muhammad Zafar
- Department of Plant Systematics and Biodiversity Lab, Quaid-i-Azam University, Islamabad, 45320, Pakistan
| | - Mushtaq Ahmad
- Department of Plant Systematics and Biodiversity Lab, Quaid-i-Azam University, Islamabad, 45320, Pakistan
| | - Rizwan Rasheed
- Department of Botany, Government College University, Faisalabad, 38000, Pakistan
| | - Ansar Mehmood
- Department of Botany, University of Poonch Rawalakot, Rawalakot, 12350, Pakistan
| | | |
Collapse
|
4
|
Hamid R, Ghorbanzadeh Z, Jacob F, Nekouei MK, Zeinalabedini M, Mardi M, Sadeghi A, Ghaffari MR. Decoding drought resilience: a comprehensive exploration of the cotton Eceriferum (CER) gene family and its role in stress adaptation. BMC PLANT BIOLOGY 2024; 24:468. [PMID: 38811873 PMCID: PMC11134665 DOI: 10.1186/s12870-024-05172-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Accepted: 05/20/2024] [Indexed: 05/31/2024]
Abstract
BACKGROUND The cuticular wax serves as a primary barrier that protects plants from environmental stresses. The Eceriferum (CER) gene family is associated with wax production and stress resistance. RESULTS In a genome-wide identification study, a total of 52 members of the CER family were discovered in four Gossypium species: G. arboreum, G. barbadense, G. raimondii, and G. hirsutum. There were variations in the physicochemical characteristics of the Gossypium CER (GCER) proteins. Evolutionary analysis classified the identified GCERs into five groups, with purifying selection emerging as the primary evolutionary force. Gene structure analysis revealed that the number of conserved motifs ranged from 1 to 15, and the number of exons varied from 3 to 13. Closely related GCERs exhibited similar conserved motifs and gene structures. Analyses of chromosomal positions, selection pressure, and collinearity revealed numerous fragment duplications in the GCER genes. Additionally, nine putative ghr-miRNAs targeting seven G. hirsutum CER (GhCER) genes were identified. Among them, three miRNAs, including ghr-miR394, ghr-miR414d, and ghr-miR414f, targeted GhCER09A, representing the most targeted gene. The prediction of transcription factors (TFs) and the visualization of the regulatory TF network revealed interactions with GhCER genes involving ERF, MYB, Dof, bHLH, and bZIP. Analysis of cis-regulatory elements suggests potential associations between the CER gene family of cotton and responses to abiotic stress, light, and other biological processes. Enrichment analysis demonstrated a robust correlation between GhCER genes and pathways associated with cutin biosynthesis, fatty acid biosynthesis, wax production, and stress response. Localization analysis showed that most GCER proteins are localized in the plasma membrane. Transcriptome and quantitative reverse transcription-polymerase chain reaction (qRT-PCR) expression assessments demonstrated that several GhCER genes, including GhCER15D, GhCER04A, GhCER06A, and GhCER12D, exhibited elevated expression levels in response to water deficiency stress compared to control conditions. The functional identification through virus-induced gene silencing (VIGS) highlighted the pivotal role of the GhCER04A gene in enhancing drought resistance by promoting increased tissue water retention. CONCLUSIONS This investigation not only provides valuable evidence but also offers novel insights that contribute to a deeper understanding of the roles of GhCER genes in cotton, their role in adaptation to drought and other abiotic stress and their potential applications for cotton improvement.
Collapse
Affiliation(s)
- Rasmieh Hamid
- Department of Plant Breeding, Cotton Research Institute of Iran (CRII), Agricultural Research, Education and Extension Organization (AREEO), Gorgan, Iran
| | - Zahra Ghorbanzadeh
- Department of Systems Biology, Agricultural Biotechnology Research Institute of Iran (ABRII), Agricultural Research, Education and Extension Organization (AREEO), Karaj, Iran
| | - Feba Jacob
- Centre for Plant Biotechnology and Molecular Biology, Kerala Agricultural University, Thrissur, India
| | | | - Mehrshad Zeinalabedini
- Department of Systems Biology, Agricultural Biotechnology Research Institute of Iran (ABRII), Agricultural Research, Education and Extension Organization (AREEO), Karaj, Iran
| | - Mohsen Mardi
- Department of Systems Biology, Agricultural Biotechnology Research Institute of Iran (ABRII), Agricultural Research, Education and Extension Organization (AREEO), Karaj, Iran
| | - Akram Sadeghi
- Department of Microbial Biotechnology and Biosafety, Agricultural Biotechnology Research Institute of Iran (ABRII), Agricultural Research, Education and Extension Organization (AREEO), Karaj, Iran
| | - Mohammad Reza Ghaffari
- Department of Systems Biology, Agricultural Biotechnology Research Institute of Iran (ABRII), Agricultural Research, Education and Extension Organization (AREEO), Karaj, Iran.
| |
Collapse
|
5
|
Wang X, Li X, Dong S. Biochemical characterization and metabolic reprogramming of amino acids in Soybean roots under drought stress. PHYSIOLOGIA PLANTARUM 2024; 176:e14319. [PMID: 38693848 DOI: 10.1111/ppl.14319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 04/05/2024] [Accepted: 04/15/2024] [Indexed: 05/03/2024]
Abstract
Amino acids play important roles in stress resistance, plant growth, development, and quality, with roots serving as the primary organs for drought response. We conducted biochemical and multi-omics analyses to investigate the metabolic processes of root amino acids in drought-resistant (HN44) and drought-sensitive (HN65) soybean (Glycine max) varieties. Our analysis revealed an increase in total amino acid content in both varieties, with phenylalanine, proline, and methionine accumulating in both. Additionally, several amino acids exhibited significant decreases in HN65 but slight increases in HN44. Multi-omics association analysis identified 13 amino acid-related pathways. We thoroughly examined the changes in genes and metabolites involved in various amino acid metabolism/synthesis and determined core genes and metabolites through correlation networks. The phenylalanine, tyrosine, and tryptophan metabolic pathways and proline, glutamic acid and sulfur-containing amino acid pathways were particularly important for drought resistance. Some candidate genes, such as ProDH and P4HA family genes, and metabolites, such as O-acetyl-L-serine, directly affected up- and downstream metabolism to induce drought resistance. This study provided a basis for soybean drought resistance breeding.
Collapse
Affiliation(s)
- Xiyue Wang
- College of Agriculture, Northeast Agricultural University, Harbin, China
| | - Xiaomei Li
- College of Agriculture, Heilongjiang Agricultural Engineering Vocational College, Harbin, China
| | - Shoukun Dong
- College of Agriculture, Northeast Agricultural University, Harbin, China
| |
Collapse
|
6
|
Wang X, Li X, Zhao W, Hou X, Dong S. Current views of drought research: experimental methods, adaptation mechanisms and regulatory strategies. FRONTIERS IN PLANT SCIENCE 2024; 15:1371895. [PMID: 38638344 PMCID: PMC11024477 DOI: 10.3389/fpls.2024.1371895] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Accepted: 03/20/2024] [Indexed: 04/20/2024]
Abstract
Drought stress is one of the most important abiotic stresses which causes many yield losses every year. This paper presents a comprehensive review of recent advances in international drought research. First, the main types of drought stress and the commonly used drought stress methods in the current experiment were introduced, and the advantages and disadvantages of each method were evaluated. Second, the response of plants to drought stress was reviewed from the aspects of morphology, physiology, biochemistry and molecular progression. Then, the potential methods to improve drought resistance and recent emerging technologies were introduced. Finally, the current research dilemma and future development direction were summarized. In summary, this review provides insights into drought stress research from different perspectives and provides a theoretical reference for scholars engaged in and about to engage in drought research.
Collapse
Affiliation(s)
- Xiyue Wang
- College of Agriculture, Northeast Agricultural University, Heilongjiang, Harbin, China
| | - Xiaomei Li
- College of Agriculture, Heilongjiang Agricultural Engineering Vocational College, Heilongjiang, Harbin, China
| | - Wei Zhao
- College of Agriculture, Northeast Agricultural University, Heilongjiang, Harbin, China
| | - Xiaomin Hou
- Millet Research Institute, Qiqihar Sub-Academy of Heilongjiang Academy of Agricultural Sciences, Heilongjiang, Qiqihar, China
| | - Shoukun Dong
- College of Agriculture, Northeast Agricultural University, Heilongjiang, Harbin, China
| |
Collapse
|
7
|
Pardo-Hernández M, Arbona V, Simón I, Rivero RM. Specific ABA-independent tomato transcriptome reprogramming under abiotic stress combination. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024; 117:1746-1763. [PMID: 38284474 DOI: 10.1111/tpj.16642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 01/08/2024] [Accepted: 01/11/2024] [Indexed: 01/30/2024]
Abstract
Crops often have to face several abiotic stresses simultaneously, and under these conditions, the plant's response significantly differs from that observed under a single stress. However, up to the present, most of the molecular markers identified for increasing plant stress tolerance have been characterized under single abiotic stresses, which explains the unexpected results found when plants are tested under real field conditions. One important regulator of the plant's responses to abiotic stresses is abscisic acid (ABA). The ABA signaling system engages many stress-responsive genes, but many others do not respond to ABA treatments. Thus, the ABA-independent pathway, which is still largely unknown, involves multiple signaling pathways and important molecular components necessary for the plant's adaptation to climate change. In the present study, ABA-deficient tomato mutants (flacca, flc) were subjected to salinity, heat, or their combination. An in-depth RNA-seq analysis revealed that the combination of salinity and heat led to a strong reprogramming of the tomato transcriptome. Thus, of the 685 genes that were specifically regulated under this combination in our flc mutants, 463 genes were regulated by ABA-independent systems. Among these genes, we identified six transcription factors (TFs) that were significantly regulated, belonging to the R2R3-MYB family. A protein-protein interaction network showed that the TFs SlMYB50 and SlMYB86 were directly involved in the upregulation of the flavonol biosynthetic pathway-related genes. One of the most novel findings of the study is the identification of the involvement of some important ABA-independent TFs in the specific plant response to abiotic stress combination. Considering that ABA levels dramatically change in response to environmental factors, the study of ABA-independent genes that are specifically regulated under stress combination may provide a remarkable tool for increasing plant resilience to climate change.
Collapse
Affiliation(s)
- Miriam Pardo-Hernández
- Department of Plant Nutrition, Center of Edaphology and Applied Biology of Segura (CEBAS-CSIC), Campus Universitario Espinardo, Ed 25, 30100, Murcia, Spain
| | - Vicent Arbona
- Departament de Biologia, Bioquímica i Ciències Naturals, Universitat Jaume I, Castelló de la Plana, 12071, Spain
| | - Inmaculada Simón
- Centro de Investigación e Innovación Agroalimentaria y Agroambiental (CIAGRO-UMH), Miguel Hernández University, Orihuela, Spain
| | - Rosa M Rivero
- Department of Plant Nutrition, Center of Edaphology and Applied Biology of Segura (CEBAS-CSIC), Campus Universitario Espinardo, Ed 25, 30100, Murcia, Spain
| |
Collapse
|