1
|
Huang S, Jin S. Enhancing drought tolerance in horticultural plants through plant hormones: a strategic coping mechanism. FRONTIERS IN PLANT SCIENCE 2025; 15:1502438. [PMID: 39902215 PMCID: PMC11788359 DOI: 10.3389/fpls.2024.1502438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Accepted: 12/16/2024] [Indexed: 02/05/2025]
Abstract
Abiotic stresses are considered as a significant factor restricting horticultural crop productivity and quality. Drought stress is a major environmental constraint among the emerging concerns. Plants have significant susceptibility to drought stress, resulting in a marked decline in production during the last several decades. The development of effective strategies to mitigate drought stress is essential for sustainable agriculture and food security, especially considering the continuous growth of the world population. Several studies suggested that exogenous application of phytohormone to plants can improve drought stress tolerance by activating molecular and physiological defense systems. Phytohormone pretreatment is considered a potential approach for alleviating drought stress in horticultural plants. In addition, melatonin, salicylic acid, jasmonates, strigolactones, brassinosteroids, and gamma-aminobutyric acid are essential phytohormones that function as growth regulators and mitigate the effects of drought stress. These hormones frequently interact with one another to improve the survival of plants in drought-stressed environments. To sum up, this review will predominantly elucidate the role of phytohormones and related mechanisms in drought tolerance across various horticulture crop species.
Collapse
Affiliation(s)
| | - Songheng Jin
- Jiyang College, Zhejiang A&F University, Zhuji, China
| |
Collapse
|
2
|
Zhang X, Ma X, Wang S, Liu S, Shi S. Physiological and Genetic Aspects of Resistance to Abiotic Stresses in Capsicum Species. PLANTS (BASEL, SWITZERLAND) 2024; 13:3013. [PMID: 39519932 PMCID: PMC11548056 DOI: 10.3390/plants13213013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Revised: 10/22/2024] [Accepted: 10/26/2024] [Indexed: 11/16/2024]
Abstract
Abiotic stress is one of the key factors harming global agriculture today, seriously affecting the growth and yield of vegetables. Pepper is the most widely grown vegetable in the world, with both high nutritional and economic values. Currently, the increase in global extreme weather events has heightened the frequency of abiotic stresses, such as drought, high and low temperatures, waterlogging, and high salt levels, which impairs pepper growth and development, leading to its reduced yield and quality. In this review, we summarize the research progress on the responses of pepper to abiotic stress in recent years in terms of physiology, biochemistry, molecular level, and mitigation measures. We then explore the existing problems and propose future research directions. This work provides a reference for the cultivation and development of new pepper varieties resistant to abiotic stress.
Collapse
Affiliation(s)
- Xiaolin Zhang
- Shandong Key Laboratory of Bulk Open-field Vegetable Breeding/Ministry of Agriculture and Rural Affairs Key Laboratory of Huang Huai Protected Horticulture Engineering, Institute of Vegetables, Shandong Academy of Agricultural Sciences, Jinan 250100, China
| | - Xiuming Ma
- Shandong Key Laboratory of Bulk Open-field Vegetable Breeding/Ministry of Agriculture and Rural Affairs Key Laboratory of Huang Huai Protected Horticulture Engineering, Institute of Vegetables, Shandong Academy of Agricultural Sciences, Jinan 250100, China
| | - Shihui Wang
- Shandong Key Laboratory of Bulk Open-field Vegetable Breeding/Ministry of Agriculture and Rural Affairs Key Laboratory of Huang Huai Protected Horticulture Engineering, Institute of Vegetables, Shandong Academy of Agricultural Sciences, Jinan 250100, China
| | - Shumei Liu
- Shandong Key Laboratory of Bulk Open-field Vegetable Breeding/Ministry of Agriculture and Rural Affairs Key Laboratory of Huang Huai Protected Horticulture Engineering, Institute of Vegetables, Shandong Academy of Agricultural Sciences, Jinan 250100, China
| | - Shaochuan Shi
- Shandong Key Laboratory of Bulk Open-field Vegetable Breeding/Ministry of Agriculture and Rural Affairs Key Laboratory of Huang Huai Protected Horticulture Engineering, Institute of Vegetables, Shandong Academy of Agricultural Sciences, Jinan 250100, China
| |
Collapse
|
3
|
Paravar A, Maleki Farahani S, Rezazadeh A, Adetunji AE, Farooq M. Moisture content and mycorrhizal fungi in maternal environment influence performance and composition of Lallemantia species offspring. Heliyon 2024; 10:e31334. [PMID: 38818147 PMCID: PMC11137390 DOI: 10.1016/j.heliyon.2024.e31334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 05/11/2024] [Accepted: 05/14/2024] [Indexed: 06/01/2024] Open
Abstract
The availability of soil water content and nutrition in the maternal plant environment plays pivotal roles in shaping the performance, physio-biochemical properties, and chemical composition of the produced seed. This study aimed to investigate the effects of water and arbuscular mycorrhizal fungi (AMF) of maternal plant environment on performance, physio-biochemical properties, and chemical compositions of Lallemantia species offspring. A split-factorial experiment was performed using a randomized complete block design (RCBD) with three replications. The main plot consisted of three drought stress (30 %, 60 % and 90 % of soil available water depletion). The subplots were the factorial combination of arbuscular mycorrhizal fungi (AMF- and AMF+) and Lallemantia species (L. iberica and L. royleana). The offspring of both Lallemantia species experienced a decrease in seed performance, superoxide dismutase, catalase, ascorbate peroxidase enzyme activities, proline, and chemical composition as well as a rise in hydrogen peroxide and lipid peroxidation due to the limited availability of water in the maternal plant environment. On the other hand, providing adequate nutrition in the maternal plant environment resulted in improved germination index, increased starch, and oil content, as well as higher levels of nitrogen and phosphorus in the offspring of both Lallemantia species. Compared to the offspring of L. royleana, the offspring of L. iberica had a higher number of achenes, seeds, seed weight, larger seed size, greater germination index, and higher levels of starch, oil, nitrogen, phosphorus, potassium, and calcium. In contrast, the offspring of L. royleana exhibited higher longevity, enhanced germination under osmotic and salinity stress, increased proline levels, and higher activities of antioxidant enzymes such as superoxide dismutase, catalase, and ascorbic peroxidase as well as sucrose and total soluble sugar. The study concludes that the best seed performance, antioxidant enzyme activities, and carbohydrate levels were observed in the offspring of both Lallemantia species produced under 60 % soil available water depletion with AMF inoculation in the maternal plant environment. These findings highlight the significant impact of the soil available water depletion and AMF inoculation on the seed performance, physio-biochemical properties, and chemical composition of the offspring, providing valuable insights for optimizing seed production and performance.
Collapse
Affiliation(s)
- Arezoo Paravar
- Department of Agronomy and Plant Breeding, College of Agriculture, Shahed University, 18155-159, Tehran, Iran
| | - Saeideh Maleki Farahani
- Department of Agronomy and Plant Breeding, College of Agriculture, Shahed University, 18155-159, Tehran, Iran
| | - Alireza Rezazadeh
- Department of Plant Protection, College of Agriculture, Shahed University, Tehran, Iran
| | - Ademola Emmanuel Adetunji
- SAEON Ndlovu Node, Scientific Services, Kruger National Park, Private Bag X1021, Phalaborwa, 390, South Africa
- Unit for Environmental Sciences and Management (UESM), Faculty of Natural and Agricultural Sciences, North-West University, Private Bag X6001, Potchefstroom, 2520, South Africa
| | - Muhammad Farooq
- Department of Plant Sciences, College of Agricultural and Marine Sciences, Sultan Qaboos University, Al-Khoud, Oman
| |
Collapse
|
4
|
Ma L, Wei J, Han G, Sun X, Yang X. Seed osmopriming with polyethylene glycol (PEG) enhances seed germination and seedling physiological traits of Coronilla varia L. under water stress. PLoS One 2024; 19:e0303145. [PMID: 38728268 PMCID: PMC11086902 DOI: 10.1371/journal.pone.0303145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Accepted: 04/20/2024] [Indexed: 05/12/2024] Open
Abstract
Water stress can adversely affect seed germination and plant growth. Seed osmopriming is a pre-sowing treatment in which seeds are soaked in osmotic solutions to undergo the first stage of germination prior to radicle protrusion. Seed osmopriming enhances germination performance under stressful environmental conditions, making it an effective method to improve plant resistance and yield. This study analyzed the effect of seed osmopriming with polyethylene glycol (PEG) on seed germination and physiological parameters of Coronilla varia L. Priming treatments using 10% to 30% PEG enhanced germination percentage, germination vigor, germination index, vitality index, and seedling mass and reduced the time to reach 50% germination (T50). The PEG concentration that led to better results was 10%. The content of soluble proteins (SP), proline (Pro), soluble sugars (SS), and malondialdehyde (MDA) in Coronilla varia L. seedlings increased with the severity of water stress. In addition, under water stress, electrolyte leakage rose, and peroxidase (POD) and superoxide dismutase (SOD) activities intensified, while catalase (CAT) activity increased at mild-to-moderate water stress but declined with more severe deficiency. The 10% PEG priming significantly improved germination percentage, germination vigor, germination index, vitality index, and time to 50% germination (T50) under water stress. Across the water stress gradient here tested (8 to 12% PEG), seed priming enhanced SP content, Pro content, and SOD activity in Coronilla varia L. seedlings compared to the unprimed treatments. Under 10% PEG-induced water stress, primed seedlings displayed a significantly lower MDA content and electrolyte leakage than their unprimed counterparts and exhibited significantly higher CAT and POD activities. However, under 12% PEG-induced water stress, differences in electrolyte leakage, CAT activity, and POD activity between primed and unprimed treatments were not significant. These findings suggest that PEG priming enhances the osmotic regulation and antioxidant capacity of Coronilla varia seedlings, facilitating seed germination and seedling growth and alleviating drought stress damage, albeit with reduced efficacy under severe water deficiency.
Collapse
Affiliation(s)
- Leyuan Ma
- College of Resources and Environmental Sciences, Gansu Agricultural University, Lanzhou, Gansu province, China
| | - Jingui Wei
- College of Agronomy, Gansu Agricultural University, Lanzhou, Gansu province, China
| | - Guojun Han
- College of Resources and Environmental Sciences, Gansu Agricultural University, Lanzhou, Gansu province, China
| | - Xiaomei Sun
- College of Resources and Environmental Sciences, Gansu Agricultural University, Lanzhou, Gansu province, China
| | - Xiaobing Yang
- College of Resources and Environmental Sciences, Gansu Agricultural University, Lanzhou, Gansu province, China
| |
Collapse
|
5
|
Hafeez A, Ali S, Javed MA, Iqbal R, Khan MN, Çiğ F, Sabagh AE, Abujamel T, Harakeh S, Ercisli S, Ali B. Breeding for water-use efficiency in wheat: progress, challenges and prospects. Mol Biol Rep 2024; 51:429. [PMID: 38517566 DOI: 10.1007/s11033-024-09345-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2023] [Accepted: 02/12/2024] [Indexed: 03/24/2024]
Abstract
Drought poses a significant challenge to wheat production globally, leading to substantial yield losses and affecting various agronomic and physiological traits. The genetic route offers potential solutions to improve water-use efficiency (WUE) in wheat and mitigate the negative impacts of drought stress. Breeding for drought tolerance involves selecting desirable plants such as efficient water usage, deep root systems, delayed senescence, and late wilting point. Biomarkers, automated and high-throughput techniques, and QTL genes are crucial in enhancing breeding strategies and developing wheat varieties with improved resilience to water scarcity. Moreover, the role of root system architecture (RSA) in water-use efficiency is vital, as roots play a key role in nutrient and water uptake. Genetic engineering techniques offer promising avenues to introduce desirable RSA traits in wheat to enhance drought tolerance. These technologies enable targeted modifications in DNA sequences, facilitating the development of drought-tolerant wheat germplasm. The article highlighted the techniques that could play a role in mitigating drought stress in wheat.
Collapse
Affiliation(s)
- Aqsa Hafeez
- Department of Plant Sciences, Quaid-i-Azam University, Islamabad, 45320, Pakistan.
| | - Shehzad Ali
- Department of Environmental Sciences, Quaid-i-Azam University, Islamabad, 45320, Pakistan
| | - Muhammad Ammar Javed
- Institute of Industrial Biotechnology, Government College University, Lahore, 54000, Pakistan
| | - Rashid Iqbal
- Department of Agronomy, Faculty of Agriculture and Environment, The Islamia University of Bahawalpur, Bahawalpur, 63000, Pakistan
| | - Muhammad Nauman Khan
- Department of Botany, Islamia College Peshawar, Peshawar, 25120, Pakistan
- Biology Laboratory, University Public School, University of Peshawar, Peshawar, 25120, Pakistan
| | - Fatih Çiğ
- Department of Field Crops, Faculty of Agriculture, Siirt University, Siirt, 56100, Turkey
| | - Ayman El Sabagh
- Department of Field Crops, Faculty of Agriculture, Siirt University, Siirt, 56100, Turkey
| | - Turki Abujamel
- Vaccines and Immunotherapy Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah, 21589, Saudi Arabia
- Department of Medical Laboratory Sciences, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, 21589, Saudi Arabia
| | - Steve Harakeh
- King Fahd Medical Research Center, King Abdulaziz University, Jeddah, 21589, Saudi Arabia
- Yousef Abdullatif Jameel Chair of Prophetic Medicine Application, Faculty of Medicine, King Abdulaziz University, Jeddah, 21589, Saudi Arabia
| | - Sezai Ercisli
- Department of Horticulture, Agricultural Faculty, Ataturk University, Erzurum, 25240, Türkiye
- HGF Agro, Ata Teknokent, Erzurum, 25240, Türkiye
| | - Baber Ali
- Department of Plant Sciences, Quaid-i-Azam University, Islamabad, 45320, Pakistan.
| |
Collapse
|
6
|
Rathod K, Rana S, Dhandhukia P, Thakker JN. From Sea to Soil: Marine Bacillus subtilis enhancing chickpea production through in vitro and in vivo plant growth promoting traits. Braz J Microbiol 2024; 55:823-836. [PMID: 38191971 PMCID: PMC10920480 DOI: 10.1007/s42770-023-01238-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Accepted: 12/26/2023] [Indexed: 01/10/2024] Open
Abstract
Various strategies are used to augment agricultural output in response to the escalating food requirements stemming from population expansion. Out of various strategies, the use of plant growth-promoting bacteria (PGPB) has shown promise as a viable technique in implementing new agricultural practices. The study of PGPB derived from rhizospheric soil is extensive, but there is a need for more exploration of marine microorganisms. The present research aims to investigate the potential of marine microorganisms as promoters of plant growth. The marine microbe Bacillus subtilis used in current study has been discovered as a possible plant growth-promoting bacterium (PGPB) as it showed ability to produce ammonia, solubilize potassium and phosphate, and was able to colonize chickpea roots. Bacillus subtilis exhibited a 40% augmentation in germination. A talc-based bio-formulation was prepared using Bacillus subtilis, and pot experiment was done under two conditions: control (T1) and Bacillus treated (T2). In the pot experiment, the plant weight with Bacillus treatment increased by 14.17%, while the plant height increased by 13.71% as compared to control. It also enhanced the chlorophyll content of chickpea and had a beneficial influence on stress indicators. Furthermore, it was noted that it enhanced the levels of nitrogen, potassium, and phosphate in the soil improving soil quality. The findings showed that B. subtilis functioned as a plant growth-promoting bacteria (PGPB) to enhance the overall development of chickpea.
Collapse
Affiliation(s)
- Khushbu Rathod
- Department of Biological Sciences, P D Patel Institute of Applied Sciences, Charotar University of Science and Technology, Gujarat, India
| | - Shruti Rana
- Department of Biological Sciences, P D Patel Institute of Applied Sciences, Charotar University of Science and Technology, Gujarat, India
| | - Pinakin Dhandhukia
- Department of Microbiology, School of Science and Technology, Vanita Vishram Women's University, Surat, Gujarat, India
| | - Janki N Thakker
- Department of Biological Sciences, P D Patel Institute of Applied Sciences, Charotar University of Science and Technology, Gujarat, India.
| |
Collapse
|
7
|
Amin F, Al-Huqail AA, Ullah S, Khan MN, Kaplan A, Ali B, Iqbal M, Elsaid FG, Ercisli S, Malik T, Al-Robai SA, Abeed AHA. Mitigation effect of alpha-tocopherol and thermo-priming in Brassica napus L. under induced mercuric chloride stress. BMC PLANT BIOLOGY 2024; 24:108. [PMID: 38347449 PMCID: PMC10863246 DOI: 10.1186/s12870-024-04767-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2023] [Accepted: 01/24/2024] [Indexed: 02/15/2024]
Abstract
Soil pollution with heavy metals has grown to be a big hassle, leading to the loss in farming production particularly in developing countries like Pakistan, where no proper channel is present for irrigation and extraction of these toxic heavy metals. The present study aims to ameliorate the damages caused by heavy metal ions (Hg-Mercury) on rapeseed (Brassica napus L.) via a growth regulator (α-tocopherol 150 mg/L) and thermopriming technique at 4 °C and 50 °C to maintain plant agronomical and physiological characteristics. In pot experiments, we designed total of 11 treatments viz.( T0 (control), T1 (Hg4ppm), T2 (Hg8ppm), T3 (Hg4ppm + 4 °C), T4 (Hg4ppm + 4 °C + tocopherol (150 m/L)), T5 (Hg4ppm + 50 °C), T6 (Hg4ppm + 50 °C + tocopherol (150 mg/L)), T7 (Hg8ppm + 4 °C), T8 (Hg8ppm + 4 °C + tocopherol (150 mg/L)), T9 (Hg8ppm + 50 °C), T10 (Hg8ppm + 50 °C + tocopherol (150 mg/L) the results revealed that chlorophyll content at p < 0.05 with growth regulator and antioxidant enzymes such as catalase, peroxidase, and malondialdehyde enhanced up to the maximum level at T5 = Hg4ppm + 50 °C (50 °C thermopriming under 4 ppm mercuric chloride stress), suggesting that high temperature initiate the antioxidant system to reduce photosystem damage. However, protein, proline, superoxide dismutase at p < 0.05, and carotenoid, soluble sugar, and ascorbate peroxidase were increased non-significantly (p > 0.05) 50 °C thermopriming under 8 ppm high mercuric chloride stress (T9 = Hg8ppm + 50 °C) representing the tolerance of selected specie by synthesizing osmolytes to resist oxidation mechanism. Furthermore, reduction in % MC (moisture content) is easily improved with foliar application of α-tocopherol and 50 °C thermopriming and 4 ppm heavy metal stress at T6 = Hg4ppm + 50 °C + α-tocopherol (150 mg/L), with a remarkable increase in plant vigor and germination energy. It has resulted that the inhibitory effect of only lower concentration (4 ppm) of heavy metal stress was ameliorated by exogenous application of α-tocopherol and thermopriming technique by synthesizing high levels of proline and antioxidant activities in maintaining seedling growth and development on heavy metal contaminated soil.
Collapse
Affiliation(s)
- Fazal Amin
- Department of Botany, University of Peshawar, Peshawar, 25120, Pakistan
| | - Arwa Abdulkreem Al-Huqail
- Department of Biology, College of Science, Princess Nourah bint Abdulrahman University, P.O. Box 84428, Riyadh, 11671, Saudi Arabia
| | - Sami Ullah
- Department of Botany, University of Peshawar, Peshawar, 25120, Pakistan.
| | - Muhammad Nauman Khan
- Department of Botany, Islamia College, Peshawar, 25120, Pakistan
- Biology Laboratory, University Public School, University of Peshawar, Peshawar, 25120, Pakistan
| | - Alevcan Kaplan
- Department of Crop and Animal Production, Sason Vocational School, Batman University, Batman, 72060, Turkey
| | - Baber Ali
- Department of Plant Sciences, Quaid-I-Azam University, Islamabad, 45320, Pakistan.
| | - Majid Iqbal
- Institute of Geographic Sciences and Natural Resources Research, University of Chinese Academy of Sciences, Beijing, 100040, China
| | - Fahmy Gad Elsaid
- Biology Department, College of Science, King Khalid University, 61421, Abha, Al-Faraa, Asir, Saudi Arabia
| | - Sezai Ercisli
- Department of Horticulture, Agricultural Faculty, Ataturk University, Erzurum, 25240, Turkey
| | - Tabarak Malik
- Department of Biomedical Sciences, Institute of Health, Jimma University, 378, Jimma, Ethiopia.
| | - Sami Asir Al-Robai
- Department of Biology, Faculty of Science, Al-Baha University, 1988, Al-Baha, Saudi Arabia
| | - Amany H A Abeed
- Department of Botany and Microbiology, Faculty of Science, Assiut University, Assiut, 71516, Egypt
| |
Collapse
|
8
|
Abbas F, Faried HN, Akhtar G, Ullah S, Javed T, Shehzad MA, Ziaf K, Razzaq K, Amin M, Wattoo FM, Hafeez A, Rahimi M, Abeed AHA. Cucumber grafting on indigenous cucurbit landraces confers salt tolerance and improves fruit yield by enhancing morpho-physio-biochemical and ionic attributes. Sci Rep 2023; 13:21697. [PMID: 38066051 PMCID: PMC10709624 DOI: 10.1038/s41598-023-48947-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Accepted: 12/01/2023] [Indexed: 12/18/2023] Open
Abstract
Pakistan is the 8th most climate-affected country in the globe along with a semi-arid to arid climate, thereby the crops require higher irrigation from underground water. Moreover, ~ 70% of pumped groundwater in irrigated agriculture is brackish and a major cause of secondary salinization. Cucumber (Cucumis sativus L.) is an important vegetable crop with an annual growth rate of about 3.3% in Pakistan. However, it is a relatively salt-sensitive crop. Therefore, a dire need for an alternate environment-friendly technology like grafting for managing salinity stress in cucumber by utilizing the indigenous cucurbit landraces. In this regard, a non-perforated pot-based study was carried out in a lath house to explore indigenous cucurbit landraces; bottle gourd (Lagenaria siceraria) (cv. Faisalabad Round), pumpkin (Cucurbit pepo. L) (cv. Local Desi Special), sponge gourd (Luffa aegyptiaca) (cv. Local) and ridge gourd (Luffa acutangula) (cv. Desi Special) as rootstocks for inducing salinity tolerance in cucumber (cv. Yahla F1). Four different salts (NaCl) treatments; T0 Control (2.4 dSm-1), T1 (4 dSm-1), T2 (6 dSm-1) and T3 (8 dSm-1) were applied. The grafted cucumber plants were transplanted into the already-induced salinity pots (12-inch). Different morpho-physio-biochemical, antioxidants, ionic, and yield attributes were recorded. The results illustrate that increasing salinity negatively affected the growing cucumber plants. However, grafted cucumber plants showed higher salt tolerance relative to non-grafted ones. Indigenous bottle gourd landrace (cv. Faisalabad Round) exhibited higher salt tolerance compared to non-grafted cucumber plants due to higher up-regulation of morpho-physio-biochemical, ionic, and yield attributes that was also confirmed by principal component analysis (PCA). Shoot and root biomass, chlorophylls contents (a and b), activities of superoxide dismutase (SOD), catalase (CAT) and peroxidase (POX) enzymes, antioxidants scavenging activity (ASA), ionic (↑ K and Ca, ↓ Na), and yield-related attributes were found maximum in cucumber plants grafted onto indigenous bottle gourd landrace. Hence, the indigenous bottle gourd landrace 'cv. Faisalabad round' may be utilized as a rootstock for cucumber under a mild pot-based saline environment. However, indigenous bottle gourd landrace 'cv. Faisalabad round' may further be evaluated as rootstocks in moderate saline field conditions for possible developing hybrid rootstock and, subsequently, sustainable cucumber production.
Collapse
Affiliation(s)
- Fazal Abbas
- Department of Horticulture, MNS University of Agriculture, Multan, Pakistan
| | - Hafiz Nazar Faried
- Department of Horticulture, MNS University of Agriculture, Multan, Pakistan.
| | - Gulzar Akhtar
- Department of Horticulture, MNS University of Agriculture, Multan, Pakistan
| | - Sami Ullah
- Department of Horticulture, MNS University of Agriculture, Multan, Pakistan
| | - Talha Javed
- College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Muhammad Asif Shehzad
- Institute of Plant Breeding and Biotechnology, MNS University of Agriculture, Multan, Pakistan
| | - Khurram Ziaf
- Institute of Horticultural Sciences, University of Agriculture, Faisalabad, Pakistan
| | - Kashif Razzaq
- Department of Horticulture, MNS University of Agriculture, Multan, Pakistan
| | - Muhammad Amin
- Department of Horticultural Sciences, The Islamia University of Bahawalpur, Bahawalpur, Pakistan
| | - Fahad Masoud Wattoo
- Department Plant Breeding and Genetics, PMAS Arid Agriculture University, Rawalpindi, Pakistan
| | - Aqsa Hafeez
- Department of Plant Sciences, Quaid-i-Azam University, Islamabad, 45320, Pakistan
| | - Mehdi Rahimi
- Department of Biotechnology, Institute of Science and High Technology and Environmental Sciences, Graduate University of Advanced Technology, Kerman, Iran.
| | - Amany H A Abeed
- Department of Botany and Microbiology, Faculty of Science, Assiut University, Assiut, 71516, Egypt
| |
Collapse
|
9
|
Marra F, Maffia A, Canino F, Petrovicova B, Mallamaci C, Russo M, Iftikhar Hussain M, Muscolo A. Enhancing the nutritional value of sweet bell pepper through moderate NaCl salinity. Heliyon 2023; 9:e22439. [PMID: 38046132 PMCID: PMC10686852 DOI: 10.1016/j.heliyon.2023.e22439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 11/02/2023] [Accepted: 11/13/2023] [Indexed: 12/05/2023] Open
Abstract
Salinity presents a significant obstacle to crop productivity, particularly in dry and semi-arid regions. Sweet bell pepper (Capsicum annuum L.), a widely grown and consumed horticultural crop, is especially vulnerable to salinity. Consequently, it is vital to determine the salinity threshold that impacts bell pepper growth and quality, enabling sustainable production in salinized areas. This study aimed to evaluate the effects of varying sodium chloride concentrations (0, 50, and 75 mM) on bell pepper growth, nutritional value, and phytochemical composition, aiming to identify the adaptable threshold in salinized environments. The results suggested that the application of 75 mM NaCl not only had no adverse impact on fruit quality in terms of biomolecules and phytochemicals but also led to significant improvements. Specifically, under these conditions, there was a remarkable increase, in respect to control, in total protein (TPRO by 50 %), total carbohydrates (TCARB by 18 %), lycopene (LIC by 68 %), total Carotenoids (TCAR by 13 %), and total phenols (TPHE by 18 %) in terms of antioxidants.In contrast, the content of ascorbic acid and antioxidant activities remained consistent. Moderate salt stress exhibited the most positive influence on sweet bell pepper quality, leading to higher concentrations of essential nutrients and nutraceutical compounds, including minerals, phenolic acids, and flavonoids.
Collapse
Affiliation(s)
- F. Marra
- Department of AGRARIA, “Mediterranea” University, Feo di Vito, 89122 Reggio Calabria, Italy
| | - A. Maffia
- Department of AGRARIA, “Mediterranea” University, Feo di Vito, 89122 Reggio Calabria, Italy
| | - F. Canino
- Department of AGRARIA, “Mediterranea” University, Feo di Vito, 89122 Reggio Calabria, Italy
| | - B. Petrovicova
- Department of AGRARIA, “Mediterranea” University, Feo di Vito, 89122 Reggio Calabria, Italy
| | - C. Mallamaci
- Department of AGRARIA, “Mediterranea” University, Feo di Vito, 89122 Reggio Calabria, Italy
| | - Mt Russo
- Department of AGRARIA, “Mediterranea” University, Feo di Vito, 89122 Reggio Calabria, Italy
| | - Muhammad Iftikhar Hussain
- Department of Plant Biology & Soil Science, Universidad de Vigo, Campus Lagoas Marcosende, 36310 Vigo, Spain
| | - A. Muscolo
- Department of AGRARIA, “Mediterranea” University, Feo di Vito, 89122 Reggio Calabria, Italy
| |
Collapse
|