1
|
Karadima E, Chavakis T, Alexaki VI. Arginine metabolism in myeloid cells in health and disease. Semin Immunopathol 2025; 47:11. [PMID: 39863828 PMCID: PMC11762783 DOI: 10.1007/s00281-025-01038-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Accepted: 01/15/2025] [Indexed: 01/27/2025]
Abstract
Metabolic flexibility is key for the function of myeloid cells. Arginine metabolism is integral to the regulation of myeloid cell responses. Nitric oxide (NO) production from arginine is vital for the antimicrobial and pro-inflammatory responses. Conversely, the arginase 1 (ARG1)-dependent switch between the branch of NO production and polyamine synthesis downregulates inflammation and promotes recovery of tissue homeostasis. Creatine metabolism is key for energy supply and proline metabolism is required for collagen synthesis. Myeloid ARG1 also regulates extracellular arginine availability and T cell responses in parasitic diseases and cancer. Cancer, surgery, sepsis and persistent inflammation in chronic inflammatory diseases, such as neuroinflammatory diseases or arthritis, are associated with dysregulation of arginine metabolism in myeloid cells. Here, we review current knowledge on arginine metabolism in different myeloid cell types, such as macrophages, neutrophils, microglia, osteoclasts, tumor-associated macrophages (TAMs), tumor-associated neutrophils (TANs) and myeloid-derived suppressor cells (MDSCs). A deeper understanding of the function of arginine metabolism in myeloid cells will improve our knowledge on the pathology of several diseases and may set the platform for novel therapeutic applications.
Collapse
Affiliation(s)
- Eleftheria Karadima
- Institute for Clinical Chemistry and Laboratory Medicine, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Fetscherstrasse 74, 01307, Dresden, Germany
| | - Triantafyllos Chavakis
- Institute for Clinical Chemistry and Laboratory Medicine, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Fetscherstrasse 74, 01307, Dresden, Germany
| | - Vasileia Ismini Alexaki
- Institute for Clinical Chemistry and Laboratory Medicine, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Fetscherstrasse 74, 01307, Dresden, Germany.
| |
Collapse
|
2
|
Chen L, Wang Y, Hu Q, Liu Y, Qi X, Tang Z, Hu H, Lin N, Zeng S, Yu L. Unveiling tumor immune evasion mechanisms: abnormal expression of transporters on immune cells in the tumor microenvironment. Front Immunol 2023; 14:1225948. [PMID: 37545500 PMCID: PMC10401443 DOI: 10.3389/fimmu.2023.1225948] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2023] [Accepted: 07/06/2023] [Indexed: 08/08/2023] Open
Abstract
The tumor microenvironment (TME) is a crucial driving factor for tumor progression and it can hinder the body's immune response by altering the metabolic activity of immune cells. Both tumor and immune cells maintain their proliferative characteristics and physiological functions through transporter-mediated regulation of nutrient acquisition and metabolite efflux. Transporters also play an important role in modulating immune responses in the TME. In this review, we outline the metabolic characteristics of the TME and systematically elaborate on the effects of abundant metabolites on immune cell function and transporter expression. We also discuss the mechanism of tumor immune escape due to transporter dysfunction. Finally, we introduce some transporter-targeted antitumor therapeutic strategies, with the aim of providing new insights into the development of antitumor drugs and rational drug usage for clinical cancer therapy.
Collapse
Affiliation(s)
- Lu Chen
- Institute of Drug Metabolism and Pharmaceutical Analysis, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
- Key Laboratory of Clinical Cancer Pharmacology and Toxicology Research of Zhejiang, Department of Clinical Pharmacy, Affiliated Hangzhou First People’s Hospital, Cancer Center, Zhejiang University School of Medicine, Hangzhou, China
- Center for Clinical Pharmacy, Cancer Center, Department of Pharmacy, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Yuchen Wang
- Institute of Drug Metabolism and Pharmaceutical Analysis, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Qingqing Hu
- The Fourth Affiliated Hospital, School of Medicine, Zhejiang University, Jinhua, China
| | - Yuxi Liu
- Institute of Drug Metabolism and Pharmaceutical Analysis, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Xuchen Qi
- Department of Neurosurgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Zhihua Tang
- Department of Pharmacy, Shaoxing People’s Hospital (Shaoxing Hospital, Zhejiang University School of Medicine), Shaoxing, China
| | - Haihong Hu
- Institute of Drug Metabolism and Pharmaceutical Analysis, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Nengming Lin
- Key Laboratory of Clinical Cancer Pharmacology and Toxicology Research of Zhejiang, Department of Clinical Pharmacy, Affiliated Hangzhou First People’s Hospital, Cancer Center, Zhejiang University School of Medicine, Hangzhou, China
- Westlake Laboratory of Life Sciences and Biomedicine of Zhejiang Province, Hangzhou, China
| | - Su Zeng
- Institute of Drug Metabolism and Pharmaceutical Analysis, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Lushan Yu
- Institute of Drug Metabolism and Pharmaceutical Analysis, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
- Department of Pharmacy, Shaoxing People’s Hospital (Shaoxing Hospital, Zhejiang University School of Medicine), Shaoxing, China
- Westlake Laboratory of Life Sciences and Biomedicine of Zhejiang Province, Hangzhou, China
- Department of Pharmacy, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| |
Collapse
|
3
|
Starikova EA, Rubinstein AA, Mammedova JT, Isakov DV, Kudryavtsev IV. Regulated Arginine Metabolism in Immunopathogenesis of a Wide Range of Diseases: Is There a Way to Pass between Scylla and Charybdis? Curr Issues Mol Biol 2023; 45:3525-3551. [PMID: 37185755 PMCID: PMC10137093 DOI: 10.3390/cimb45040231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 04/12/2023] [Accepted: 04/14/2023] [Indexed: 05/17/2023] Open
Abstract
More than a century has passed since arginine was discovered, but the metabolism of the amino acid never ceases to amaze researchers. Being a conditionally essential amino acid, arginine performs many important homeostatic functions in the body; it is involved in the regulation of the cardiovascular system and regeneration processes. In recent years, more and more facts have been accumulating that demonstrate a close relationship between arginine metabolic pathways and immune responses. This opens new opportunities for the development of original ways to treat diseases associated with suppressed or increased activity of the immune system. In this review, we analyze the literature describing the role of arginine metabolism in the immunopathogenesis of a wide range of diseases, and discuss arginine-dependent processes as a possible target for therapeutic approaches.
Collapse
Affiliation(s)
- Eleonora A Starikova
- Laboratory of Cellular Immunology, Department of Immunology, Institute of Experimental Medicine, Akademika Pavlova 12, 197376 Saint Petersburg, Russia
- Medical Faculty, First Saint Petersburg State I. Pavlov Medical University, L'va Tolstogo St. 6-8, 197022 Saint Petersburg, Russia
| | - Artem A Rubinstein
- Laboratory of Cellular Immunology, Department of Immunology, Institute of Experimental Medicine, Akademika Pavlova 12, 197376 Saint Petersburg, Russia
| | - Jennet T Mammedova
- Laboratory of General Immunology, Department of Immunology, Institute of Experimental Medicine, Akademika Pavlova 12, 197376 Saint Petersburg, Russia
| | - Dmitry V Isakov
- Medical Faculty, First Saint Petersburg State I. Pavlov Medical University, L'va Tolstogo St. 6-8, 197022 Saint Petersburg, Russia
| | - Igor V Kudryavtsev
- Laboratory of Cellular Immunology, Department of Immunology, Institute of Experimental Medicine, Akademika Pavlova 12, 197376 Saint Petersburg, Russia
- School of Biomedicine, Far Eastern Federal University, FEFU Campus, 10 Ajax Bay, Russky Island, 690922 Vladivostok, Russia
| |
Collapse
|
4
|
Transcriptional Analysis of the Endostyle Reveals Pharyngeal Organ Functions in Ascidian. BIOLOGY 2023; 12:biology12020245. [PMID: 36829522 PMCID: PMC9953650 DOI: 10.3390/biology12020245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 01/30/2023] [Accepted: 02/02/2023] [Indexed: 02/09/2023]
Abstract
The endostyle is a pharyngeal organ with an opening groove and cilia in invertebrate chordates (amphioxus and ascidian) and cyclostomate (lamprey), serving as a filter-feeding tract and thyroid-secreting location. Emerging evidence implies its complex cellular composition and potentially versatile functions. Multiple cell types in the endostyle have been thought to be progenitors of complex organs in advanced vertebrates. To describe the expression profile and the potential functions, bulk RNA sequencing on the endostyle in ascidian Styela clava was conducted and distinct markers were selected by multileveled comparative analysis. Transcriptional data assay and qRT-PCR-verified results showed the regional expression patterns of Hox genes in the longitudinal axis. Organ-specific markers of the endostyle was proposed by comparing expression with the main organs of the ascidian. A cross-species transcriptional profile projection between the endostyle and organs from Danio rerio and Homo sapiens indicates a robust homogenous relationship to the thyroid and digestive system of the endostyle. The high similarity between the endostyle and the head kidney in zebrafish/the bone marrow in human implies uniquely profound functions of the pharyngeal organ in proto-vertebrates. Our result revealed that the transcriptional profile of the human parathyroid gland was similar to the ascidian endostyle, indicating the evolutionary origin of vertebrate hormone secretion organs.
Collapse
|
5
|
Sun K, Li X, Scherer PE. Extracellular Matrix (ECM) and Fibrosis in Adipose Tissue: Overview and Perspectives. Compr Physiol 2023; 13:4387-4407. [PMID: 36715281 PMCID: PMC9957663 DOI: 10.1002/cphy.c220020] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Fibrosis in adipose tissue is a major driver of obesity-related metabolic dysregulation. It is characterized by an overaccumulation of extracellular matrix (ECM) during unhealthy expansion of adipose tissue in response to over nutrition. In obese adipose-depots, hypoxia stimulates multiple pro-fibrotic signaling pathways in different cell populations, thereby inducing the overproduction of the ECM components, including collagens, noncollagenous proteins, and additional enzymatic components of ECM synthesis. As a consequence, local fibrosis develops. The result of fibrosis-induced mechanical stress not only triggers cell necrosis and inflammation locally in adipose tissue but also leads to system-wide lipotoxicity and insulin resistance. A better understanding of the mechanisms underlying the obesity-induced fibrosis will help design therapeutic approaches to reduce or reverse the pathological changes associated with obese adipose tissue. Here, we aim to summarize the major advances in the field, which include newly identified fibrotic factors, cell populations that contribute to the fibrosis in adipose tissue, as well as novel mechanisms underlying the development of fibrosis. We further discuss the potential therapeutic strategies to target fibrosis in adipose tissue for the treatment of obesity-linked metabolic diseases and cancer. © 2023 American Physiological Society. Compr Physiol 13:4387-4407, 2023.
Collapse
Affiliation(s)
- Kai Sun
- Center for Metabolic and Degenerative Diseases, Institute of Molecular Medicine, University of Texas Health Science Center at Houston, Houston, Texas, USA
| | - Xin Li
- Center for Metabolic and Degenerative Diseases, Institute of Molecular Medicine, University of Texas Health Science Center at Houston, Houston, Texas, USA
| | - Philipp E. Scherer
- Department of Internal Medicine, Touchstone Diabetes Center, University of Texas Southwestern Medical Center at Dallas, Dallas, Texas, USA
- Department of Cell Biology, University of Texas Southwestern Medical Center at Dallas, Dallas, Texas, USA
| |
Collapse
|
6
|
Han B, Liu Q, Su X, Zhou L, Zhang B, Kang H, Ning J, Li C, Zhao B, Niu Y, Chen W, Chen L, Zhang R. The role of PP2A /NLRP3 signaling pathway in ambient particulate matter 2.5 induced lung injury. CHEMOSPHERE 2022; 307:135794. [PMID: 35926746 DOI: 10.1016/j.chemosphere.2022.135794] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 07/09/2022] [Accepted: 07/19/2022] [Indexed: 06/15/2023]
Abstract
Ambient particulate matter 2.5 (PM2.5) exposure has been linked to pulmonary fibrosis. However, the key signaling pathways remained unclear. In the present study, we applied a mouse model with myeloid-specific deletion of Ppp2r1a gene (encoding protein phosphatase 2 A (PP2A) A subunit) to identify the key signaling pathways involved in PM2.5-induced pulmonary fibrosis. PP2A Aα-/- homozygote mice and matched wild-type (WT) littermates were exposed to filtered air (FA), unfiltered air (UA), and concentrated PM2.5 (CA) in a real-ambient PM exposure system for 8 weeks and 16 weeks, respectively. The mice exposed to PM2.5 displayed a progressive inflammation and pulmonary fibrosis. Moreover, the expressions of NLRP3, pro-caspase-1, caspase-1, ASC and IL-1β were increased in mice lung following PM2.5 exposure, indicating PM2.5 exposure caused pulmonary inflammation by the NLRP3 pathways activation. Furthermore, the effects of PM exposure on pulmonary inflammation, pulmonary fibrosis, oxidative stress, and pulmonary function damage were significantly enhanced in PP2A-/- mice compared to WT mice, indicating the role of PP2A in the regulation of pulmonary injury induced by PM exposure. In vitro study confirmed that PP2A was involved in the PM2.5-induced inflammation response and NLRP3 inflammasome activation. Importantly, we identified PP2A regulated the activation of NLRP3 pathways by direct dephosphorylating IRE1α in response to PM2.5 exposure. Taken together, our results demonstrated that PP2A-IRE1α-NLRP3 signaling pathway played a crucial role in regulating the inflammation response, triggering the lung fibrogenesis upon PM2.5 exposure. Our findings provide new insights into regulatory role of PP2A in human diseases upon the PM exposure.
Collapse
Affiliation(s)
- Bin Han
- Department of Toxicology, Hebei Medical University, Shijiazhuang, 050017, Hebei, China.
| | - Qingping Liu
- Department of Toxicology, Hebei Medical University, Shijiazhuang, 050017, Hebei, China.
| | - Xuan Su
- Department of Toxicology, Hebei Medical University, Shijiazhuang, 050017, Hebei, China.
| | - Lixiao Zhou
- Department of Toxicology, Hebei Medical University, Shijiazhuang, 050017, Hebei, China.
| | - Boyuan Zhang
- Department of Toxicology, Hebei Medical University, Shijiazhuang, 050017, Hebei, China.
| | - Hui Kang
- Occupational Health and Environmental Health, Hebei Medical University, Shijiazhuang, 050017, Hebei, China.
| | - Jie Ning
- Department of Toxicology, Hebei Medical University, Shijiazhuang, 050017, Hebei, China.
| | - Chen Li
- Department of Toxicology, Hebei Medical University, Shijiazhuang, 050017, Hebei, China.
| | - Bo Zhao
- Department of Laboratory Diagnosis, Hebei Medical University, Shijiazhuang, 050017, Hebei, China.
| | - Yujie Niu
- Occupational Health and Environmental Health, Hebei Medical University, Shijiazhuang, 050017, Hebei, China; Hebei Key Laboratory of Environment and Human Health, Hebei Medical University, Shijiazhuang, 050017, Hebei, China.
| | - Wen Chen
- Department of Toxicology, School of Public Health, Sun Yat-sen University, Guangzhou, 510080, China.
| | - Liping Chen
- Department of Toxicology, School of Public Health, Sun Yat-sen University, Guangzhou, 510080, China.
| | - Rong Zhang
- Department of Toxicology, Hebei Medical University, Shijiazhuang, 050017, Hebei, China; Hebei Key Laboratory of Environment and Human Health, Hebei Medical University, Shijiazhuang, 050017, Hebei, China.
| |
Collapse
|
7
|
Chang YC, Li J, Mirhaidari G, Zbinden J, Barker J, Blum K, Reinhardt J, Best C, Kelly J, Shoji T, Yi T, Breuer C. Zoledronate alters natural progression of tissue-engineered vascular grafts. FASEB J 2021; 35:e21849. [PMID: 34473380 DOI: 10.1096/fj.202001606rr] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Revised: 07/11/2021] [Accepted: 07/27/2021] [Indexed: 12/19/2022]
Abstract
Macrophages are a critical driver of neovessel formation in tissue-engineered vascular grafts (TEVGs), but also contribute to graft stenosis, a leading clinical trial complication. Macrophage depletion via liposomal delivery of clodronate, a first-generation bisphosphonate, mitigates stenosis, but simultaneously leads to a complete lack of tissue development in TEVGs. This result and the associated difficulty of utilizing liposomal delivery means that clodronate may not be an ideal means of preventing graft stenosis. Newer generation bisphosphonates, such as zoledronate, may have differential effects on graft development with more facile drug delivery. We sought to examine the effect of zoledronate on TEVG neotissue formation and its potential application for mitigating TEVG stenosis. Thus, mice implanted with TEVGs received zoledronate or no treatment and were monitored by serial ultrasound for graft dilation and stenosis. After two weeks, TEVGs were explanted for histological examination. The overall graft area and remaining graft material (polyglycolic-acid) were higher in the zoledronate treatment group. These effects were associated with a corresponding decrease in macrophage infiltration. In addition, zoledronate affected the deposition of collagen in TEVGs, specifically, total and mature collagen. These differences may be, in part, explained by a depletion of leukocytes within the bone marrow that subsequently led to a decrease in the number of tissue-infiltrating macrophages. TEVGs from zoledronate-treated mice demonstrated a significantly greater degree of smooth muscle cell presence. There was no statistical difference in graft patency between treatment and control groups. While zoledronate led to a decrease in the number of macrophages in the TEVGs, the severity of stenosis appears to have increased significantly. Zoledronate treatment demonstrates that the process of smooth muscle cell-mediated neointimal hyperplasia may occur separately from a macrophage-mediated mechanism.
Collapse
Affiliation(s)
- Yu-Chun Chang
- Center for Regenerative Medicine at the Abigail Wexner Research Institute, Nationwide Children's Hospital, Columbus, Ohio, USA.,Biomedical Sciences Graduate Program, The Ohio State University College of Medicine, Columbus, Ohio, USA
| | - Junlang Li
- Center for Regenerative Medicine at the Abigail Wexner Research Institute, Nationwide Children's Hospital, Columbus, Ohio, USA
| | - Gabriel Mirhaidari
- Center for Regenerative Medicine at the Abigail Wexner Research Institute, Nationwide Children's Hospital, Columbus, Ohio, USA.,Biomedical Sciences Graduate Program, The Ohio State University College of Medicine, Columbus, Ohio, USA
| | - Jacob Zbinden
- Center for Regenerative Medicine at the Abigail Wexner Research Institute, Nationwide Children's Hospital, Columbus, Ohio, USA.,Department of Biomedical Engineering, The Ohio State University College of Engineering, Columbus, Ohio, USA
| | - Jenny Barker
- Center for Regenerative Medicine at the Abigail Wexner Research Institute, Nationwide Children's Hospital, Columbus, Ohio, USA.,Department of Plastic and Reconstructive Surgery, The Ohio State University Medical Center, Columbus, Ohio, USA
| | - Kevin Blum
- Center for Regenerative Medicine at the Abigail Wexner Research Institute, Nationwide Children's Hospital, Columbus, Ohio, USA.,Department of Biomedical Engineering, The Ohio State University College of Engineering, Columbus, Ohio, USA
| | - James Reinhardt
- Center for Regenerative Medicine at the Abigail Wexner Research Institute, Nationwide Children's Hospital, Columbus, Ohio, USA
| | - Cameron Best
- Center for Regenerative Medicine at the Abigail Wexner Research Institute, Nationwide Children's Hospital, Columbus, Ohio, USA.,Biomedical Sciences Graduate Program, The Ohio State University College of Medicine, Columbus, Ohio, USA
| | - John Kelly
- Center for Regenerative Medicine at the Abigail Wexner Research Institute, Nationwide Children's Hospital, Columbus, Ohio, USA
| | - Toshihiro Shoji
- Center for Regenerative Medicine at the Abigail Wexner Research Institute, Nationwide Children's Hospital, Columbus, Ohio, USA
| | - Tai Yi
- Center for Regenerative Medicine at the Abigail Wexner Research Institute, Nationwide Children's Hospital, Columbus, Ohio, USA
| | - Christopher Breuer
- Center for Regenerative Medicine at the Abigail Wexner Research Institute, Nationwide Children's Hospital, Columbus, Ohio, USA
| |
Collapse
|
8
|
Jiang Q, Shi L. Coordination of the Uptake and Metabolism of Amino Acids in Mycobacterium tuberculosis-Infected Macrophages. Front Immunol 2021; 12:711462. [PMID: 34326848 PMCID: PMC8315098 DOI: 10.3389/fimmu.2021.711462] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Accepted: 06/25/2021] [Indexed: 01/31/2023] Open
Abstract
Macrophage polarization to the M1-like phenotype, which is critical for the pro-inflammatory and antimicrobial responses of macrophages against intracellular pathogens, is associated with metabolic reprogramming to the Warburg effect and a high output of NO from increased expression of NOS2. However, there is limited understanding about the uptake and metabolism of other amino acids during M1 polarization. Based on functional analysis of a group of upregulated transporters and enzymes involved in the uptake and/or metabolism of amino acids in Mycobacterium tuberculosis-infected macrophages, plus studies of immune cell activation, we postulate a coherent scheme for amino acid uptake and metabolism during macrophage polarization to the M1-like phenotype. We describe potential mechanisms that the increased arginine metabolism by NOS2 is metabolically coupled with system L transporters LAT1 and LAT2 for the uptake of neutral amino acids, including those that drive mTORC1 signaling toward the M1-like phenotype. We also discuss the underappreciated pleiotropic roles of glutamine metabolism in the metabolic reprogramming of M1-like macrophages. Collectively, our analyses argue that a coordinated amino acid uptake and metabolism constitutes an integral component of the broad metabolic scheme required for macrophage polarization to M1-like phenotype against M. tuberculosis infection. This idea could stimulate future experimental efforts to elucidate the metabolic map of macrophage activation for the development of anti-tuberculosis therapies.
Collapse
Affiliation(s)
- Qingkui Jiang
- Public Health Research Institute, New Jersey Medical School, Rutgers Biomedical and Health Sciences, Rutgers The State University of New Jersey, Newark, NJ, United States
| | - Lanbo Shi
- Public Health Research Institute, New Jersey Medical School, Rutgers Biomedical and Health Sciences, Rutgers The State University of New Jersey, Newark, NJ, United States
| |
Collapse
|
9
|
Metabolomic Reprogramming of C57BL/6-Macrophages during Early Infection with L. amazonensis. Int J Mol Sci 2021; 22:ijms22136883. [PMID: 34206906 PMCID: PMC8267886 DOI: 10.3390/ijms22136883] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 06/19/2021] [Accepted: 06/23/2021] [Indexed: 12/20/2022] Open
Abstract
Leishmania survival inside macrophages depends on factors that lead to the immune response evasion during the infection. In this context, the metabolic scenario of the host cell-parasite relationship can be crucial to understanding how this parasite can survive inside host cells due to the host's metabolic pathways reprogramming. In this work, we aimed to analyze metabolic networks of bone marrow-derived macrophages from C57BL/6 mice infected with Leishmania amazonensis wild type (La-WT) or arginase knocked out (La-arg-), using the untargeted Capillary Electrophoresis-Mass Spectrometry (CE-MS) approach to assess metabolomic profile. Macrophages showed specific changes in metabolite abundance upon Leishmania infection, as well as in the absence of parasite-arginase. The absence of L. amazonensis-arginase promoted the regulation of both host and parasite urea cycle, glycine and serine metabolism, ammonia recycling, metabolism of arginine, proline, aspartate, glutamate, spermidine, spermine, methylhistidine, and glutathione metabolism. The increased L-arginine, L-citrulline, L-glutamine, oxidized glutathione, S-adenosylmethionine, N-acetylspermidine, trypanothione disulfide, and trypanothione levels were observed in La-WT-infected C57BL/6-macrophage compared to uninfected. The absence of parasite arginase increased L-arginine, argininic acid, and citrulline levels and reduced ornithine, putrescine, S-adenosylmethionine, glutamic acid, proline, N-glutamyl-alanine, glutamyl-arginine, trypanothione disulfide, and trypanothione when compared to La-WT infected macrophage. Moreover, the absence of parasite arginase leads to an increase in NO production levels and a higher infectivity rate at 4 h of infection. The data presented here show a host-dependent regulation of metabolomic profiles of C57BL/6 macrophages compared to the previously observed BALB/c macrophages infected with L. amazonensis, an important fact due to the dual and contrasting macrophage phenotypes of those mice. In addition, the Leishmania-arginase showed interference with the urea cycle, glycine, and glutathione metabolism during host-pathogen interactions.
Collapse
|
10
|
Nguyen PD, de Bakker DEM, Bakkers J. Cardiac regenerative capacity: an evolutionary afterthought? Cell Mol Life Sci 2021; 78:5107-5122. [PMID: 33950316 PMCID: PMC8254703 DOI: 10.1007/s00018-021-03831-9] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Revised: 03/23/2021] [Accepted: 03/29/2021] [Indexed: 01/01/2023]
Abstract
Cardiac regeneration is the outcome of the highly regulated interplay of multiple processes, including the inflammatory response, cardiomyocyte dedifferentiation and proliferation, neovascularization and extracellular matrix turnover. Species-specific traits affect these injury-induced processes, resulting in a wide variety of cardiac regenerative potential between species. Indeed, while mammals are generally considered poor regenerators, certain amphibian and fish species like the zebrafish display robust regenerative capacity post heart injury. The species-specific traits underlying these differential injury responses are poorly understood. In this review, we will compare the injury induced processes of the mammalian and zebrafish heart, describing where these processes overlap and diverge. Additionally, by examining multiple species across the animal kingdom, we will highlight particular traits that either positively or negatively affect heart regeneration. Last, we will discuss the possibility of overcoming regeneration-limiting traits to induce heart regeneration in mammals.
Collapse
Affiliation(s)
- Phong D Nguyen
- Hubrecht Institute-KNAW and University Medical Center Utrecht, Utrecht, Netherlands
| | - Dennis E M de Bakker
- Hubrecht Institute-KNAW and University Medical Center Utrecht, Utrecht, Netherlands
| | - Jeroen Bakkers
- Hubrecht Institute-KNAW and University Medical Center Utrecht, Utrecht, Netherlands.
- Department of Pediatric Cardiology, Division of Pediatrics, University Medical Center Utrecht, Utrecht, Netherlands.
| |
Collapse
|
11
|
Dichtl S, Lindenthal L, Zeitler L, Behnke K, Schlösser D, Strobl B, Scheller J, El Kasmi KC, Murray PJ. Lactate and IL6 define separable paths of inflammatory metabolic adaptation. SCIENCE ADVANCES 2021; 7:7/26/eabg3505. [PMID: 34162546 PMCID: PMC8221612 DOI: 10.1126/sciadv.abg3505] [Citation(s) in RCA: 64] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Accepted: 05/10/2021] [Indexed: 05/03/2023]
Abstract
Lactate is an end point of Warburg-type metabolism found in inflammatory macrophages. Recently, lactate was shown to modify histones of lipopolysaccharide (LPS)-activated macrophages in a time-dependent way and promote the expression of genes linked to tissue repair, including arginase-1 (Arg1). We tested the interrelationships between histone lactylation (Kla) and tissue reparative gene expression and found that Kla was uncoupled from changes in gene expression linked to resolving M2 macrophage activation but correlated with Arg1 expression. LPS-induced Arg1 was instead dependent on autocrine-paracrine interleukin-6 (IL6) production, the IL6 receptor, and Stat3 signal transduction. We found that Kla increases as macrophages prepare to die under inflammatory stress, and Kla was absent in macrophages that cannot generate reactive nitrogen or have defects in diverse macrophage death pathways. Thus, Kla is a consequence rather than a cause of macrophage activation but occurs coincidently with an IL6- and Arg1-dependent metabolic rewiring under inflammatory duress.
Collapse
Affiliation(s)
| | | | - Leonie Zeitler
- Max Planck Institute of Biochemistry, Martinsried, Germany
| | - Kristina Behnke
- Institute of Biochemistry and Molecular Biology II, Medical Faculty, Heinrich Heine University, Düsseldorf, Germany
| | | | - Birgit Strobl
- Institute of Animal Breeding and Genetics, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Jürgen Scheller
- Institute of Biochemistry and Molecular Biology II, Medical Faculty, Heinrich Heine University, Düsseldorf, Germany
| | - Karim C El Kasmi
- Boehringer Ingelheim Pharma GmbH & Co KG, 88397 Biberach, Germany
| | - Peter J Murray
- Max Planck Institute of Biochemistry, Martinsried, Germany.
| |
Collapse
|
12
|
Transport of L-Arginine Related Cardiovascular Risk Markers. J Clin Med 2020; 9:jcm9123975. [PMID: 33302555 PMCID: PMC7764698 DOI: 10.3390/jcm9123975] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Revised: 11/30/2020] [Accepted: 12/01/2020] [Indexed: 12/15/2022] Open
Abstract
L-arginine and its derivatives, asymmetric and symmetric dimethylarginine (ADMA and SDMA) and L-homoarginine, have emerged as cardiovascular biomarkers linked to cardiovascular outcomes and various metabolic and functional pathways such as NO-mediated endothelial function. Cellular uptake and efflux of L-arginine and its derivatives are facilitated by transport proteins. In this respect the cationic amino acid transporters CAT1 and CAT2 (SLC7A1 and SLC7A2) and the system y+L amino acid transporters (SLC7A6 and SLC7A7) have been most extensively investigated, so far, but the number of transporters shown to mediate the transport of L-arginine and its derivatives is constantly increasing. In the present review we assess the growing body of evidence regarding the function, expression, and clinical relevance of these transporters and their possible relation to cardiovascular diseases.
Collapse
|
13
|
Young BD, Serrano XM, Rosales SM, Miller MW, Williams D, Traylor-Knowles N. Innate immune gene expression in Acropora palmata is consistent despite variance in yearly disease events. PLoS One 2020; 15:e0228514. [PMID: 33091033 PMCID: PMC7580945 DOI: 10.1371/journal.pone.0228514] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Accepted: 09/28/2020] [Indexed: 12/20/2022] Open
Abstract
Coral disease outbreaks are expected to increase in prevalence, frequency and severity due to climate change and other anthropogenic stressors. This is especially worrying for the Caribbean branching coral Acropora palmata which has already seen an 80% decrease in cover primarily due to disease. Despite the importance of this keystone species, there has yet to be a characterization of its transcriptomic response to disease exposure. In this study we provide the first transcriptomic analysis of 12 A. palmata genotypes and their symbiont Symbiodiniaceae exposed to disease in 2016 and 2017. Year was the primary driver of gene expression variance for A. palmata and the Symbiodiniaceae. We hypothesize that lower expression of ribosomal genes in the coral, and higher expression of transmembrane ion transport genes in the Symbiodiniaceae indicate that a compensation or dysbiosis may be occurring between host and symbiont. Disease response was the second driver of gene expression variance for A. palmata and included a core set of 422 genes that were significantly differentially expressed. Of these, 2 genes (a predicted cyclin-dependent kinase 11b and aspartate 1-decarboxylase) showed negative Log2 fold changes in corals showing transmission of disease, and positive Log2 fold changes in corals showing no transmission of disease, indicating that these may be important in disease resistance. Co-expression analysis identified two modules positively correlated to disease exposure, one enriched for lipid biosynthesis genes, and the other enriched in innate immune genes. The hub gene in the immune module was identified as D-amino acid oxidase, a gene implicated in phagocytosis and microbiome homeostasis. The role of D-amino acid oxidase in coral immunity has not been characterized but could be an important enzyme for responding to disease. Our results indicate that A. palmata mounts a core immune response to disease exposure despite differences in the disease type and virulence between 2016 and 2017. These identified genes may be important for future biomarker development in this Caribbean keystone species.
Collapse
Affiliation(s)
- Benjamin D. Young
- Department of Marine Biology and Ecology, Rosenstiel School of Marine and Atmospheric Science, University of Miami, Miami, FL, United States of America
| | - Xaymara M. Serrano
- Atlantic Oceanographic and Meteorological Laboratory, National Oceanographic and Atmospheric Administration, Miami, Florida, United States of America
- Cooperative Institute for Marine and Atmospheric Studies, University of Miami, Miami, Florida, United States of America
| | - Stephanie M. Rosales
- Cooperative Institute for Marine and Atmospheric Studies, University of Miami, Miami, Florida, United States of America
| | - Margaret W. Miller
- Southeast Fisheries Science Center, NOAA-National Marine Fisheries Service, Miami, FL, United States of America
- SECORE International, Miami, FL, United States of America
| | - Dana Williams
- Cooperative Institute for Marine and Atmospheric Studies, University of Miami, Miami, Florida, United States of America
- Southeast Fisheries Science Center, NOAA-National Marine Fisheries Service, Miami, FL, United States of America
| | - Nikki Traylor-Knowles
- Department of Marine Biology and Ecology, Rosenstiel School of Marine and Atmospheric Science, University of Miami, Miami, FL, United States of America
| |
Collapse
|
14
|
Brightwell CR, Hanson ME, El Ayadi A, Prasai A, Wang Y, Finnerty CC, Fry CS. Thermal injury initiates pervasive fibrogenesis in skeletal muscle. Am J Physiol Cell Physiol 2020; 319:C277-C287. [PMID: 32432932 DOI: 10.1152/ajpcell.00337.2019] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Severe burn injury induces a myriad of deleterious effects to skeletal muscle, resulting in impaired function and delayed recovery. Following burn, catabolic signaling and myofiber atrophy are key fiber-intrinsic determinants of weakness; less well understood are alterations in the interstitial environment surrounding myofibers. Muscle quality, specifically alterations in the extracellular matrix (ECM), modulates force transmission and strength. We sought to determine the impact of severe thermal injury on adaptation to the muscle ECM and quantify muscle fibrotic burden. After a 30% total body surface area dorsal burn, spinotrapezius muscle was harvested from mice at 7 (7d, n = 5), 14 (14d, n = 4), and 21 days (21d, n = 4), and a sham control group was also examined (Sham, n = 4). Expression of transforming growth factor-β (TGFβ), myostatin, and downstream effectors and proteases involved in fibrosis and collagen remodeling were measured by immunoblotting, and immunohistochemical and biochemical analyses assessed fibrogenic cell abundance and collagen deposition. Myostatin signaling increased progressively through 21 days postburn alongside fibrogenic/adipogenic progenitor cell expansion, with abundance peaking at 14 days postburn. Postburn, elevated expression of tissue inhibitor of matrix metalloproteinase 1 supported collagen remodeling resulting in a net accumulation of muscle collagen content. Collagen accumulation peaked at 14 days postburn but remained elevated through 21 days postburn, demonstrating minimal resolution of burn-induced fibrosis. These findings highlight a progressive upregulation of fibrogenic processes following burn injury, eliciting a fibrotic muscle phenotype that hinders regenerative capacity and is not resolved with 21 days of recovery.
Collapse
Affiliation(s)
- Camille R Brightwell
- Cell Biology Graduate Program, University of Texas Medical Branch, Galveston, Texas.,Department of Athletic Training and Clinical Nutrition, University of Kentucky, Lexington, Kentucky.,Center for Muscle Biology, University of Kentucky, Lexington, Kentucky
| | - Madeline E Hanson
- Department of Nutrition and Metabolism, University of Texas Medical Branch, Galveston, Texas
| | - Amina El Ayadi
- Department of Surgery, University of Texas Medical Branch, Galveston, Texas.,Shriners Hospitals for Children, Galveston, Texas
| | - Anesh Prasai
- Department of Surgery, University of Texas Medical Branch, Galveston, Texas.,Shriners Hospitals for Children, Galveston, Texas
| | - Ye Wang
- Department of Surgery, University of Texas Medical Branch, Galveston, Texas.,Shriners Hospitals for Children, Galveston, Texas
| | - Celeste C Finnerty
- Department of Surgery, University of Texas Medical Branch, Galveston, Texas.,Shriners Hospitals for Children, Galveston, Texas
| | - Christopher S Fry
- Department of Athletic Training and Clinical Nutrition, University of Kentucky, Lexington, Kentucky.,Center for Muscle Biology, University of Kentucky, Lexington, Kentucky.,Shriners Hospitals for Children, Galveston, Texas
| |
Collapse
|
15
|
Sehlmeyer K, Ruwisch J, Roldan N, Lopez-Rodriguez E. Alveolar Dynamics and Beyond - The Importance of Surfactant Protein C and Cholesterol in Lung Homeostasis and Fibrosis. Front Physiol 2020; 11:386. [PMID: 32431623 PMCID: PMC7213507 DOI: 10.3389/fphys.2020.00386] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Accepted: 03/30/2020] [Indexed: 12/13/2022] Open
Abstract
Surfactant protein C (SP-C) is an important player in enhancing the interfacial adsorption of lung surfactant lipid films to the alveolar air-liquid interface. Doing so, surface tension drops down enough to stabilize alveoli and the lung, reducing the work of breathing. In addition, it has been shown that SP-C counteracts the deleterious effect of high amounts of cholesterol in the surfactant lipid films. On its side, cholesterol is a well-known modulator of the biophysical properties of biological membranes and it has been proven that it activates the inflammasome pathways in the lung. Even though the molecular mechanism is not known, there are evidences suggesting that these two molecules may interplay with each other in order to keep the proper function of the lung. This review focuses in the role of SP-C and cholesterol in the development of lung fibrosis and the potential pathways in which impairment of both molecules leads to aberrant lung repair, and therefore impaired alveolar dynamics. From molecular to cellular mechanisms to evidences in animal models and human diseases. The evidences revised here highlight a potential SP-C/cholesterol axis as target for the treatment of lung fibrosis.
Collapse
Affiliation(s)
- Kirsten Sehlmeyer
- Institute of Functional and Applied Anatomy, Hannover Medical School, Hanover, Germany
- Biomedical Research in Endstage and Obstructive Lung Disease Hannover, Member of the German Centre for Lung Research, Hanover, Germany
| | - Jannik Ruwisch
- Institute of Functional and Applied Anatomy, Hannover Medical School, Hanover, Germany
- Biomedical Research in Endstage and Obstructive Lung Disease Hannover, Member of the German Centre for Lung Research, Hanover, Germany
| | - Nuria Roldan
- Alveolix AG and ARTORG Center, University of Bern, Bern, Switzerland
| | - Elena Lopez-Rodriguez
- Institute of Functional and Applied Anatomy, Hannover Medical School, Hanover, Germany
- Biomedical Research in Endstage and Obstructive Lung Disease Hannover, Member of the German Centre for Lung Research, Hanover, Germany
- Institute of Functional Anatomy, Charité – Universitätsmedizin Berlin, Berlin, Germany
| |
Collapse
|
16
|
Ozaki Tan SJ, Floriano JF, Nicastro L, Emanueli C, Catapano F. Novel Applications of Mesenchymal Stem Cell-derived Exosomes for Myocardial Infarction Therapeutics. Biomolecules 2020; 10:E707. [PMID: 32370160 PMCID: PMC7277090 DOI: 10.3390/biom10050707] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Revised: 04/22/2020] [Accepted: 04/27/2020] [Indexed: 02/07/2023] Open
Abstract
Cardiovascular diseases (CVDs) are the leading cause of mortality and morbidity globally, representing approximately a third of all deaths every year. The greater part of these cases is represented by myocardial infarction (MI), or heart attack as it is better known, which occurs when declining blood flow to the heart causes injury to cardiac tissue. Mesenchymal stem cells (MSCs) are multipotent stem cells that represent a promising vector for cell therapies that aim to treat MI due to their potent regenerative effects. However, it remains unclear the extent to which MSC-based therapies are able to induce regeneration in the heart and even less clear the degree to which clinical outcomes could be improved. Exosomes, which are small extracellular vesicles (EVs) known to have implications in intracellular communication, derived from MSCs (MSC-Exos), have recently emerged as a novel cell-free vector that is capable of conferring cardio-protection and regeneration in target cardiac cells. In this review, we assess the current state of research of MSC-Exos in the context of MI. In particular, we place emphasis on the mechanisms of action by which MSC-Exos accomplish their therapeutic effects, along with commentary on the current difficulties faced with exosome research and the ongoing clinical applications of stem-cell derived exosomes in different medical contexts.
Collapse
Affiliation(s)
- Sho Joseph Ozaki Tan
- National Heart and Lung Institute, Imperial College London, London W12 0NN, UK; (S.J.O.T.); (J.F.F.); (L.N.)
| | - Juliana Ferreria Floriano
- National Heart and Lung Institute, Imperial College London, London W12 0NN, UK; (S.J.O.T.); (J.F.F.); (L.N.)
- Botucatu Medical School, Sao Paulo State University, Botucatu 18618687, Brazil
| | - Laura Nicastro
- National Heart and Lung Institute, Imperial College London, London W12 0NN, UK; (S.J.O.T.); (J.F.F.); (L.N.)
| | - Costanza Emanueli
- National Heart and Lung Institute, Imperial College London, London W12 0NN, UK; (S.J.O.T.); (J.F.F.); (L.N.)
| | - Francesco Catapano
- National Heart and Lung Institute, Imperial College London, London W12 0NN, UK; (S.J.O.T.); (J.F.F.); (L.N.)
| |
Collapse
|
17
|
Duan M, Yang Y, Peng S, Liu X, Zhong J, Guo Y, Lu M, Nie H, Ren B, Zhang X, Liu L. C/EBP Homologous Protein (CHOP) Activates Macrophages and Promotes Liver Fibrosis in Schistosoma japonicum-Infected Mice. J Immunol Res 2019; 2019:5148575. [PMID: 31886304 PMCID: PMC6914929 DOI: 10.1155/2019/5148575] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Revised: 09/29/2019] [Accepted: 10/09/2019] [Indexed: 12/14/2022] Open
Abstract
CCAAT/enhancer-binding homologous protein (CHOP), a transcriptional regulator induced by endoplasmic reticulum stress (ER stress) is a pivotal factor in the ER stress-mediated apoptosis pathway. Previous studies have shown that CHOP is involved in the formation of fibrosis in a variety of tissues and is associated with alternative macrophage activation. The role of CHOP in the pathologic effects of liver fibrosis in schistosomiasis has not been reported, and underlying mechanisms remain unclear. This study is aimed at understanding the effect of CHOP on liver fibrosis induced by Schistosoma japonicum (S. japonicum) in vivo and clarifying its mechanism. C57BL/6 mice were infected with cercariae of S. japonicum through the abdominal skin. The liver fibrosis was examined. The level of IL-13 was observed. The expressions of CHOP, Krüppel-like factor 4 (KLF4), signal transducer and activator of transcription 6 (STAT6), phosphorylation STAT6, interleukin-13 receptor alpha 1 (IL-13Rα1), and interleukin-4 receptor alpha (IL-4Rα) were analysed. The eosinophilic granuloma and collagen deposition were found around the eggs in mice infected for 6 and 10 weeks. IL-13 in plasma and IL-13Rα1 and IL-4Rα in liver tissue were significantly increased. The phosphorylated STAT6 was enhanced while Krüppel-like factor 4 (KLF4) was decreased in liver tissue. The expression of CHOP and colocalization of CHOP and CD206 were increased. Overall, these results suggest that CHOP plays a critical role in hepatic fibrosis induced by S. japonicum, likely through promoting alternative activation of macrophages.
Collapse
Affiliation(s)
- Mengyun Duan
- Department of Medical Imaging, Medical School of Yangtze University, Jingzhou 434023, China
| | - Yuan Yang
- Department of Radiology, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Shuang Peng
- Department of Medical Imaging, Medical School of Yangtze University, Jingzhou 434023, China
| | - Xiaoqin Liu
- Department of Medical Imaging, Medical School of Yangtze University, Jingzhou 434023, China
| | - Jixin Zhong
- Cardiovascular Research Institute, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Yurong Guo
- Department of Medical Imaging, Medical School of Yangtze University, Jingzhou 434023, China
| | - Min Lu
- Department of Medical Imaging, Medical School of Yangtze University, Jingzhou 434023, China
| | - Hao Nie
- Department of Pathogenic Biology, Medical School of Yangtze University, Jingzhou 434023, China
- Clinical Molecular Immunology Center, Medical School of Yangtze University, Jingzhou 434023, China
| | - Boxu Ren
- Department of Medical Imaging, Medical School of Yangtze University, Jingzhou 434023, China
| | - Xiangzhi Zhang
- Department of Pharmacology, Medical School of Yangtze University, Jingzhou 434023, China
| | - Lian Liu
- Department of Pharmacology, Medical School of Yangtze University, Jingzhou 434023, China
| |
Collapse
|
18
|
O'Rourke SA, Dunne A, Monaghan MG. The Role of Macrophages in the Infarcted Myocardium: Orchestrators of ECM Remodeling. Front Cardiovasc Med 2019; 6:101. [PMID: 31417911 PMCID: PMC6685361 DOI: 10.3389/fcvm.2019.00101] [Citation(s) in RCA: 72] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2019] [Accepted: 07/09/2019] [Indexed: 12/13/2022] Open
Abstract
Myocardial infarction is the most common form of acute cardiac injury attributing to heart failure. While there have been significant advances in current therapies, mortality and morbidity remain high. Emphasis on inflammation and extracellular matrix remodeling as key pathological factors has brought to light new potential therapeutic targets including macrophages which are central players in the inflammatory response following myocardial infarction. Blood derived and tissue resident macrophages exhibit both a pro- and anti-inflammatory phenotype, essential for removing injured tissue and facilitating repair, respectively. Sustained activation of pro-inflammatory macrophages evokes extensive remodeling of cardiac tissue through secretion of matrix proteases and activation of myofibroblasts. As the heart continues to employ methods of remodeling and repair, a destructive cycle prevails ultimately leading to deterioration of cardiac function and heart failure. This review summarizes not only the traditionally accepted role of macrophages in the heart but also recent advances that have deepened our understanding and appreciation of this dynamic cell. We discuss the role of macrophages in normal and maladaptive matrix remodeling, as well as studies to date which have aimed to target the inflammatory response in combatting excessive matrix deposition and subsequent heart failure.
Collapse
Affiliation(s)
- Sinead A O'Rourke
- Department of Mechanical and Manufacturing Engineering, Trinity College Dublin, Dublin, Ireland.,School of Biochemistry & Immunology and School of Medicine, Trinity Biomedical Science Institute, Trinity College Dublin, Dublin, Ireland.,Trinity Centre for Bioengineering, Trinity Biomedical Science Institute, Trinity College Dublin, Dublin, Ireland
| | - Aisling Dunne
- School of Biochemistry & Immunology and School of Medicine, Trinity Biomedical Science Institute, Trinity College Dublin, Dublin, Ireland
| | - Michael G Monaghan
- Department of Mechanical and Manufacturing Engineering, Trinity College Dublin, Dublin, Ireland.,Trinity Centre for Bioengineering, Trinity Biomedical Science Institute, Trinity College Dublin, Dublin, Ireland.,Advanced Materials for BioEngineering Research (AMBER) Centre, Trinity College Dublin and Royal College of Surgeons in Ireland, Dublin, Ireland
| |
Collapse
|
19
|
Nie Y, Huang H, Guo M, Chen J, Wu W, Li W, Xu X, Lin X, Fu W, Yao Y, Zheng F, Luo ML, Saw PE, Yao H, Song E, Hu H. Breast Phyllodes Tumors Recruit and Repolarize Tumor-Associated Macrophages via Secreting CCL5 to Promote Malignant Progression, Which Can Be Inhibited by CCR5 Inhibition Therapy. Clin Cancer Res 2019; 25:3873-3886. [PMID: 30890553 DOI: 10.1158/1078-0432.ccr-18-3421] [Citation(s) in RCA: 108] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2018] [Revised: 01/26/2019] [Accepted: 03/12/2019] [Indexed: 11/16/2022]
Affiliation(s)
- Yan Nie
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, SunYat-Sen Memorial Hospital, SunYat-Sen University, Guangzhou, People's Republic of China
- Breast Tumor Center, SunYat-Sen Memorial Hospital, SunYat-Sen University, Guangzhou, People's Republic of China
| | - Hongyan Huang
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, SunYat-Sen Memorial Hospital, SunYat-Sen University, Guangzhou, People's Republic of China
- Chongqing Key Laboratory of Molecular Oncology and Epigenetics, the First Affiliated Hospital of Chongqing Medical University, Chongqing, People's Republic of China
| | - Mingyan Guo
- Department of Anesthesiology, SunYat-Sen Memorial Hospital, SunYat-Sen University, Guangzhou, People's Republic of China
| | - Jiewen Chen
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, SunYat-Sen Memorial Hospital, SunYat-Sen University, Guangzhou, People's Republic of China
- Breast Tumor Center, SunYat-Sen Memorial Hospital, SunYat-Sen University, Guangzhou, People's Republic of China
| | - Wei Wu
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, SunYat-Sen Memorial Hospital, SunYat-Sen University, Guangzhou, People's Republic of China
- Breast Tumor Center, SunYat-Sen Memorial Hospital, SunYat-Sen University, Guangzhou, People's Republic of China
| | - Wende Li
- Guangdong Laboratory Animal Monitoring Institute, Guangdong Key Laboratory of Laboratory Animal, Guangzhou, Guangdong, People's Republic of China
| | - Xiaoding Xu
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, SunYat-Sen Memorial Hospital, SunYat-Sen University, Guangzhou, People's Republic of China
| | - Xiaorong Lin
- Department of Oncology, SunYat-Sen Memorial Hospital, SunYat-Sen University, Guangzhou, People's Republic of China
| | - Wenkui Fu
- Department of Oncology, SunYat-Sen Memorial Hospital, SunYat-Sen University, Guangzhou, People's Republic of China
| | - Yandan Yao
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, SunYat-Sen Memorial Hospital, SunYat-Sen University, Guangzhou, People's Republic of China
- Breast Tumor Center, SunYat-Sen Memorial Hospital, SunYat-Sen University, Guangzhou, People's Republic of China
| | - Fang Zheng
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, SunYat-Sen Memorial Hospital, SunYat-Sen University, Guangzhou, People's Republic of China
| | - Man-Li Luo
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, SunYat-Sen Memorial Hospital, SunYat-Sen University, Guangzhou, People's Republic of China
| | - Phei Er Saw
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, SunYat-Sen Memorial Hospital, SunYat-Sen University, Guangzhou, People's Republic of China
| | - Herui Yao
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, SunYat-Sen Memorial Hospital, SunYat-Sen University, Guangzhou, People's Republic of China
- Department of Oncology, SunYat-Sen Memorial Hospital, SunYat-Sen University, Guangzhou, People's Republic of China
| | - Erwei Song
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, SunYat-Sen Memorial Hospital, SunYat-Sen University, Guangzhou, People's Republic of China
- Breast Tumor Center, SunYat-Sen Memorial Hospital, SunYat-Sen University, Guangzhou, People's Republic of China
| | - Hai Hu
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, SunYat-Sen Memorial Hospital, SunYat-Sen University, Guangzhou, People's Republic of China.
- Department of Oncology, SunYat-Sen Memorial Hospital, SunYat-Sen University, Guangzhou, People's Republic of China
| |
Collapse
|
20
|
Smith H, Forman R, Mair I, Else KJ. Interactions of helminths with macrophages: therapeutic potential for inflammatory intestinal disease. Expert Rev Gastroenterol Hepatol 2018; 12:997-1006. [PMID: 30113218 DOI: 10.1080/17474124.2018.1505498] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Macrophages represent a highly heterogeneous and plastic cell type found in most tissues of the body; the intestine is home to enormous numbers of these cells. Considerable interest surrounds the 'M2 macrophage,' as it is able to control and regulate inflammation, while promoting tissue repair. Areas covered: As potent inducers of M2 macrophages, intestinal helminths and helminth-derived products are ideal candidates for small molecule drug design to drive M2 macrophage polarization. Several gastrointestinal helminths have been found to cause M2 macrophage-inducing infections. This review covers current knowledge of helminth products and their impact on macrophage polarization, which may in the future lead to new therapeutic strategies. A literature search was performed using the following search terms in PubMed: M2 macrophage, alternative activation, helminth products, helminth ES, helminth therapy, nanoparticle, intestinal macrophages. Other studies were selected by using references from articles identified through our original literature search. Expert commentary: While the immunomodulatory potential of helminth products is well established, we have yet to fully characterize many components of the intestinal helminth product library. Current work aims to identify the protein motifs responsible for modulation of macrophages and other components of the immune system.
Collapse
Affiliation(s)
- Hannah Smith
- a Faculty of Biology, Medicine and Health , University of Manchester , Manchester , UK.,b Manchester Academic Health Sciences Centre , Manchester , UK
| | - Ruth Forman
- a Faculty of Biology, Medicine and Health , University of Manchester , Manchester , UK.,b Manchester Academic Health Sciences Centre , Manchester , UK
| | - Iris Mair
- a Faculty of Biology, Medicine and Health , University of Manchester , Manchester , UK.,b Manchester Academic Health Sciences Centre , Manchester , UK
| | - Kathryn J Else
- a Faculty of Biology, Medicine and Health , University of Manchester , Manchester , UK.,b Manchester Academic Health Sciences Centre , Manchester , UK
| |
Collapse
|
21
|
Abstract
Coevolution of pathogens and host has led to many metabolic strategies employed by intracellular pathogens to deal with the immune response and the scarcity of food during infection. Simply put, bacterial pathogens are just looking for food. As a consequence, the host has developed strategies to limit nutrients for the bacterium by containment of the intruder in a pathogen-containing vacuole and/or by actively depleting nutrients from the intracellular space, a process called nutritional immunity. Since metabolism is a prerequisite for virulence, such pathways could potentially be good targets for antimicrobial therapies. In this chapter, we review the current knowledge about the in vivo diet of Mycobacterium tuberculosis, with a focus on amino acid and cofactors, discuss evidence for the bacilli's nutritionally independent lifestyle in the host, and evaluate strategies for new chemotherapeutic interventions.
Collapse
|
22
|
Phenotype and Function of Myeloid-Derived Suppressor Cells Induced by Porphyromonas gingivalis Infection. Infect Immun 2017; 85:IAI.00213-17. [PMID: 28533469 DOI: 10.1128/iai.00213-17] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2017] [Accepted: 05/12/2017] [Indexed: 01/04/2023] Open
Abstract
Porphyromonas gingivalis, a major etiologic agent of periodontitis, has been reported to induce the expansion of myeloid-derived suppressor cells (MDSC); however, little is known regarding the subpopulations of MDSC expanded by P. gingivalis infection. Flow cytometry was used to evaluate bone marrow and spleen cells from mice infected with P. gingivalis and controls for surface expression of CD11b, Ly6G, and Ly6C. To characterize the phenotype of MDSC subpopulations induced by infection, cells were sorted based on the differential expression of Ly6G and Ly6C. Moreover, since MDSC are suppressors of T cell immune activity, we determined the effect of the induced subpopulations of MDSC on the proliferative response of OVA-specific CD4+ T cells. Lastly, the plasticity of MDSC to differentiate into osteoclasts was assessed by staining for tartrate-resistant acid phosphatase activity. P. gingivalis infection induced the expansion of three subpopulations of MDSC (Ly6G++ Ly6C+, Ly6G+ Ly6C++, and Ly6G+ Ly6C+); however, only CD11b+ Ly6G+ Ly6C++-expressing cells exerted a significant suppressive effect on T cell proliferation. Inhibition of proliferative responses required T cell-MDSC contact and was mediated by inducible nitric oxide synthase and cationic amino acid transporter 2 via gamma interferon. Furthermore, only the CD11b+ Ly6G+ Ly6C++ subpopulation of MDSC induced by P. gingivalis infection was able to differentiate into osteoclasts. Thus, the inflammatory response induced by P. gingivalis infection promotes the expansion of immune-suppressive cells and consequently the development of regulatory inhibitors that curtail the host response. Moreover, monocytic MDSC have the plasticity to differentiate into OC, thus perhaps contributing to the OC pool in states of periodontal disease.
Collapse
|
23
|
Abstract
Prior to infecting erythrocytes and causing malaria symptoms, Plasmodium parasites undergo an obligatory phase of invasion and extensive replication inside their mammalian host's liver cells that depends on the parasite's ability to obtain the nutrients it requires for its intra-hepatic growth and multiplication. Here, we show that L-arginine (Arg) uptake through the host cell's SLC7A2-encoded transporters is essential for the parasite's development and maturation in the liver. Our data suggest that the Arg that is taken up is primarily metabolized by the arginase pathway to produce the polyamines required for Plasmodium growth. Although the parasite may hijack the host's biosynthesis pathway, it relies mainly upon its own arginase-AdoMetDC/ODC pathway to acquire the polyamines it needs to develop. These results identify for the first time a pivotal role for Arg-dependent polyamine production during Plasmodium's hepatic development and pave the way to the exploitation of strategies to impact liver infection by the malaria parasite through the modulation of Arg uptake and polyamine synthesis.
Collapse
|
24
|
Nie Y, Chen J, Huang D, Yao Y, Chen J, Ding L, Zeng J, Su S, Chao X, Su F, Yao H, Hu H, Song E. Tumor-Associated Macrophages Promote Malignant Progression of Breast Phyllodes Tumors by Inducing Myofibroblast Differentiation. Cancer Res 2017; 77:3605-3618. [PMID: 28512246 DOI: 10.1158/0008-5472.can-16-2709] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2016] [Revised: 03/01/2017] [Accepted: 05/10/2017] [Indexed: 11/16/2022]
Abstract
Myofibroblast differentiation plays an important role in the malignant progression of phyllodes tumor, a fast-growing neoplasm derived from periductal stromal cells of the breast. Macrophages are frequently found in close proximity with myofibroblasts, but it is uncertain whether they are involved in the myofibroblast differentiation during phyllodes tumor progression. Here we show that increased density of tumor-associated macrophage (TAM) correlates with malignant progression of phyllodes tumor. We found that TAMs stimulated myofibroblast differentiation and promoted the proliferation and invasion of phyllodes tumor cells. Furthermore, we found that levels of the chemokine CCL18 in TAM was an independent prognostic factor of phyllodes tumor. Mechanistic investigations showed that CCL18 promoted expression of α-smooth muscle actin, a hallmark of myofibroblast, along with the proliferation and invasion of phyllodes tumor cells, and that CCL18-driven myofibroblast differentiation was mediated by an NF-κB/miR-21/PTEN/AKT signaling axis. In murine xenograft models of human phyllodes tumor, CCL18 accelerated tumor growth, induced myofibroblast differentiation, and promoted metastasis. Taken together, our findings indicated that TAM drives myofibroblast differentiation and malignant progression of phyllodes tumor through a CCL18-driven signaling cascade amenable to antibody disruption. Cancer Res; 77(13); 3605-18. ©2017 AACR.
Collapse
Affiliation(s)
- Yan Nie
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, P.R. China.,Breast Tumor Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, P.R.China
| | - Jianing Chen
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, P.R. China.,Breast Tumor Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, P.R.China
| | - Di Huang
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, P.R. China.,Breast Tumor Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, P.R.China
| | - Yandan Yao
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, P.R. China.,Breast Tumor Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, P.R.China
| | - Jiewen Chen
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, P.R. China.,Breast Tumor Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, P.R.China
| | - Lin Ding
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, P.R. China.,Department of Oncology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, P.R. China
| | - Jiayi Zeng
- Guangzhou Zhixin High School, Guangzhou, P.R. China
| | - Shicheng Su
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, P.R. China.,Breast Tumor Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, P.R.China
| | - Xue Chao
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, P.R. China.,Breast Tumor Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, P.R.China
| | - Fengxi Su
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, P.R. China.,Breast Tumor Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, P.R.China
| | - Herui Yao
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, P.R. China.,Department of Oncology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, P.R. China
| | - Hai Hu
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, P.R. China. .,Department of Oncology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, P.R. China
| | - Erwei Song
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, P.R. China. .,Breast Tumor Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, P.R.China
| |
Collapse
|
25
|
Singh K, Al-Greene NT, Verriere TG, Coburn LA, Asim M, Barry DP, Allaman MM, Hardbower DM, Delgado AG, Piazuelo MB, Vallance BA, Gobert AP, Wilson KT. The L-Arginine Transporter Solute Carrier Family 7 Member 2 Mediates the Immunopathogenesis of Attaching and Effacing Bacteria. PLoS Pathog 2016; 12:e1005984. [PMID: 27783672 PMCID: PMC5081186 DOI: 10.1371/journal.ppat.1005984] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2016] [Accepted: 10/06/2016] [Indexed: 12/17/2022] Open
Abstract
Solute carrier family 7 member 2 (SLC7A2) is an inducible transporter of the semi-essential amino acid L-arginine (L-Arg), which has been implicated in immune responses to pathogens. We assessed the role of SLC7A2 in murine infection with Citrobacter rodentium, an attaching and effacing enteric pathogen that causes colitis. Induction of SLC7A2 was upregulated in colitis tissues, and localized predominantly to colonic epithelial cells. Compared to wild-type mice, Slc7a2–/–mice infected with C. rodentium had improved survival and decreased weight loss, colon weight, and histologic injury; this was associated with decreased colonic macrophages, dendritic cells, granulocytes, and Th1 and Th17 cells. In infected Slc7a2–/–mice, there were decreased levels of the proinflammatory cytokines G-CSF, TNF-α, IL-1α, IL-1β, and the chemokines CXCL1, CCL2, CCL3, CCL4, CXCL2, and CCL5. In bone marrow chimeras, the recipient genotype drove the colitis phenotype, indicative of the importance of epithelial, rather than myeloid SLC7A2. Mice lacking Slc7a2 exhibited reduced adherence of C. rodentium to the colonic epithelium and decreased expression of Talin-1, a focal adhesion protein involved in the attachment of the bacterium. The importance of SLC7A2 and Talin-1 in the intimate attachment of C. rodentium and induction of inflammatory response was confirmed in vitro, using conditionally-immortalized young adult mouse colon (YAMC) cells with shRNA knockdown of Slc7a2 or Tln1. Inhibition of L-Arg uptake with the competitive inhibitor, L-lysine (L-Lys), also prevented attachment of C. rodentium and chemokine expression. L-Lys and siRNA knockdown confirmed the role of L-Arg and SLC7A2 in human Caco-2 cells co-cultured with enteropathogenic Escherichia coli. Overexpression of SLC7A2 in human embryonic kidney cells increased bacterial adherence and chemokine expression. Taken together, our data indicate that C. rodentium enhances its own pathogenicity by inducing the expression of SLC7A2 to favor its attachment to the epithelium and thus create its ecological niche. Intestinal infections by attaching and effacing (A/E) bacteria widely impact human health, with major social and economic repercussions. Mucosal immunity plays a critical role in determining the outcome of these infections. The amino acid L-arginine regulates inflammatory responses to bacterial pathogens. We studied the role of the L-arginine transporter solute carrier family 7 member 2 (SLC7A2) during infection with the A/E pathogen Citrobacter rodentium. SLC7A2 is induced in colonic epithelial cells during the infection and facilitates the intimate attachment of the bacteria, thus initiating the inflammatory response of the infected mucosa. These data were confirmed in vitro using C. rodentium-infected mouse cells and human colonic epithelial cells infected with enteropathogenic Escherichia coli. Our work describes a mechanism by which A/E bacteria manipulate host response to favor their colonization, thereby positioning SLC7A2 as an unrecognized therapeutic target to limit infection with enterobacteria.
Collapse
Affiliation(s)
- Kshipra Singh
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, United States of America
| | - Nicole T. Al-Greene
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, United States of America
| | - Thomas G. Verriere
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, United States of America
| | - Lori A. Coburn
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, United States of America
- Center for Mucosal Inflammation and Cancer, Vanderbilt University Medical Center, Nashville, Tennessee, United States of America
- Veterans Affairs Tennessee Valley Healthcare System, Nashville, Tennessee, United States of America
| | - Mohammad Asim
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, United States of America
| | - Daniel P. Barry
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, United States of America
| | - Margaret M. Allaman
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, United States of America
| | - Dana M. Hardbower
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, United States of America
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee, United States of America
| | - Alberto G. Delgado
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, United States of America
| | - M. Blanca Piazuelo
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, United States of America
| | - Bruce A. Vallance
- Division of Gastroenterology, Department of Pediatrics, Child and Family Research Institute, University of British Columbia, Vancouver, British Columbia, Canada
| | - Alain P. Gobert
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, United States of America
- Center for Mucosal Inflammation and Cancer, Vanderbilt University Medical Center, Nashville, Tennessee, United States of America
| | - Keith T. Wilson
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, United States of America
- Center for Mucosal Inflammation and Cancer, Vanderbilt University Medical Center, Nashville, Tennessee, United States of America
- Veterans Affairs Tennessee Valley Healthcare System, Nashville, Tennessee, United States of America
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee, United States of America
- Department of Cancer Biology, Vanderbilt University Medical Center, Nashville, Tennessee, United States of America
- * E-mail:
| |
Collapse
|
26
|
Lohneis P, Wienert S, Klauschen F, Anagnostopoulos I, Jöhrens K. Fibrosis in low-grade follicular lymphoma - a link to the TH2 immune reaction. Leuk Lymphoma 2016; 58:1190-1196. [PMID: 27736316 DOI: 10.1080/10428194.2016.1231404] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
There is evidence from studies on fibrotic diseases that a TH2 polarized immune response, characterized by the production of cytokines like IL-4, IL-5, and IL-13 is important for fibrosis development. Data concerning the role of TH2 polarized immune response for fibrogenesis in lymphomas are scarce. Using immunohistochemistry, we investigated paraffin embedded tissue specimens of 58 follicular lymphomas (FL) grade 1/2 with and without fibrosis. In FL with fibrosis, we detected more interfollicular GATA-3 positive lymphocytes and a shift towards a TH2 immune response. In areas of fibrosis, which were enriched with myofibroblasts, we observed a polarization of macrophages towards a M2 phenotype with expression of CD163. Our results hold some evidence that a polarization of the adaptive immune system towards a TH2 immune response in the tumor microenvironment is associated with increased fibrosis, which may indicate its functional relevance for either development or maintenance of fibrosis in FL.
Collapse
Affiliation(s)
- Philipp Lohneis
- a Institute of Pathology , Charité Universitätsmedizin Berlin , Campus Mitte , Berlin , Germany
| | - Stephan Wienert
- a Institute of Pathology , Charité Universitätsmedizin Berlin , Campus Mitte , Berlin , Germany.,b VMscope GmbH , Berlin , Germany
| | - Frederick Klauschen
- a Institute of Pathology , Charité Universitätsmedizin Berlin , Campus Mitte , Berlin , Germany
| | - Ioannis Anagnostopoulos
- a Institute of Pathology , Charité Universitätsmedizin Berlin , Campus Mitte , Berlin , Germany
| | - Korinna Jöhrens
- a Institute of Pathology , Charité Universitätsmedizin Berlin , Campus Mitte , Berlin , Germany
| |
Collapse
|
27
|
Expression Profile of Cationic Amino Acid Transporters in Rats with Endotoxin-Induced Uveitis. Mediators Inflamm 2016; 2016:6586857. [PMID: 27413255 PMCID: PMC4927963 DOI: 10.1155/2016/6586857] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2016] [Accepted: 05/23/2016] [Indexed: 11/17/2022] Open
Abstract
Purpose. The transcellular arginine transportation via cationic amino acid transporter (CAT) is the rate-limiting step in nitric oxide (NO) synthesis, which is crucial in intraocular inflammation. In this study, CAT isoforms and inducible nitric oxide synthase (iNOS) expression was investigated in endotoxin-induced uveitis (EIU). Methods. EIU was induced in Lewis rats by lipopolysaccharide (LPS) injection. In the treatment group, the rats were injected intraperitoneally with the proteasome inhibitor bortezomib before EIU induction. After 24 hours, leukocyte quantification, NO measurement of the aqueous humor, and histopathological examination were evaluated. The expression of CAT isoforms and iNOS was determined by reverse transcription-polymerase chain reaction, western blotting, and immunofluorescence staining. Nuclear factor-kappa B (NF-κB) binding activity was evaluated by electrophoretic mobility shift assay. The mouse macrophage cell line RAW 264.7 was used to validate the in vivo findings. Results. LPS significantly stimulated iNOS, CAT-2A, and CAT-2B mRNA and protein expression but did not affect CAT-1 in EIU rats and RAW 264.7 cells. Bortezomib attenuated inflammation and inhibited iNOS, CAT-2A, and CAT-2B expression through NF-κB inhibition. Conclusions. CAT-2 and iNOS, but not CAT-1, are specifically involved in EIU. NF-κB is essential in the induction of CAT-2 and iNOS in EIU.
Collapse
|
28
|
Murray PJ. Amino acid auxotrophy as a system of immunological control nodes. Nat Immunol 2016; 17:132-9. [PMID: 26784254 PMCID: PMC4893777 DOI: 10.1038/ni.3323] [Citation(s) in RCA: 172] [Impact Index Per Article: 19.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2015] [Accepted: 10/13/2015] [Indexed: 02/07/2023]
Abstract
Cells of the immune system are auxotrophs for most amino acids, including several nonessential ones. Arginine and tryptophan are used within the regulatory immune networks to control proliferation and function through pathways that actively deplete the amino acid from the microenvironment or that create regulatory molecules such as nitric oxide or kynurenines. How immune cells integrate information about essential amino acid supplies and then transfer these signals to growth and activation pathways remains unclear but has potential for pathway discovery about amino sensing. In applied research, strategies to harness amino acid auxotrophy so as to block cancerous lymphocyte growth have been attempted for decades with limited success. Emerging insights about amino acid metabolism may lead to new strategies in clinical medicine whereby both amino acid auxotrophy and the immunoregulatory pathways controlled by amino acids can be manipulated.
Collapse
Affiliation(s)
- Peter J Murray
- Department of Infectious Diseases, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| |
Collapse
|
29
|
Abstract
Cells of the immune system are auxotrophs for most amino acids, including several nonessential ones. Arginine and tryptophan are used within the regulatory immune networks to control proliferation and function through pathways that actively deplete the amino acid from the microenvironment or that create regulatory molecules such as nitric oxide or kynurenines. How immune cells integrate information about essential amino acid supplies and then transfer these signals to growth and activation pathways remains unclear but has potential for pathway discovery about amino sensing. In applied research, strategies to harness amino acid auxotrophy so as to block cancerous lymphocyte growth have been attempted for decades with limited success. Emerging insights about amino acid metabolism may lead to new strategies in clinical medicine whereby both amino acid auxotrophy and the immunoregulatory pathways controlled by amino acids can be manipulated.
Collapse
|
30
|
Hams E, Bermingham R, Fallon PG. Macrophage and Innate Lymphoid Cell Interplay in the Genesis of Fibrosis. Front Immunol 2015; 6:597. [PMID: 26635811 PMCID: PMC4655423 DOI: 10.3389/fimmu.2015.00597] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2015] [Accepted: 11/06/2015] [Indexed: 01/15/2023] Open
Abstract
Fibrosis is a characteristic pathological feature of an array of chronic diseases, where development of fibrosis in tissue can lead to marked alterations in the architecture of the affected organs. As a result of this process of sustained attrition to organs, many diseases that involve fibrosis are often progressive conditions and have a poor long-term prognosis. Inflammation is often a prelude to fibrosis, with innate and adaptive immunity involved in both the initiation and regulation of the fibrotic process. In this review, we will focus on the emerging roles of the newly described innate lymphoid cells (ILCs) in the generation of fibrotic disease with an examination of the potential interplay between ILC and macrophages and the adaptive immune system.
Collapse
Affiliation(s)
- Emily Hams
- Trinity Biomedical Sciences Institute, School of Medicine, Trinity College Dublin , Dublin , Ireland
| | - Rachel Bermingham
- Trinity Biomedical Sciences Institute, School of Medicine, Trinity College Dublin , Dublin , Ireland
| | - Padraic G Fallon
- Trinity Biomedical Sciences Institute, School of Medicine, Trinity College Dublin , Dublin , Ireland
| |
Collapse
|
31
|
Cimen Bozkus C, Elzey BD, Crist SA, Ellies LG, Ratliff TL. Expression of Cationic Amino Acid Transporter 2 Is Required for Myeloid-Derived Suppressor Cell-Mediated Control of T Cell Immunity. THE JOURNAL OF IMMUNOLOGY 2015; 195:5237-50. [PMID: 26491198 DOI: 10.4049/jimmunol.1500959] [Citation(s) in RCA: 81] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Received: 04/24/2015] [Accepted: 09/24/2015] [Indexed: 01/04/2023]
Abstract
Myeloid-derived suppressor cells (MDSCs) are a heterogeneous population of immature cells that expand during benign and cancer-associated inflammation and are characterized by their ability to inhibit T cell immunity. Increased metabolism of l-Arginine (l-Arg), through the enzymes arginase 1 and NO synthase 2 (NOS2), is well documented as a major MDSC suppressive mechanism. Therefore, we hypothesized that restricting MDSC uptake of l-Arg is a critical control point to modulate their suppressor activity. Using murine models of prostate-specific inflammation and cancer, we have identified the mechanisms by which extracellular l-Arg is transported into MDSCs. We have shown that MDSCs recruited to localized inflammation and tumor sites upregulate cationic amino acid transporter 2 (Cat2), coordinately with Arg1 and Nos2. Cat2 expression is not induced in MDSCs in peripheral organs. CAT2 contributes to the transport of l-Arg in MDSCs and is an important regulator of MDSC suppressive function. MDSCs that lack CAT2 have significantly reduced suppressive ability ex vivo and display impaired capacity for regulating T cell responses in vivo as evidenced by increased T cell expansion and decreased tumor growth in Cat2(-/-) mice. The abrogation of suppressive function is due to low intracellular l-Arg levels, which leads to the impaired ability of NOS2 to catalyze l-Arg-dependent metabolic processes. Together, these findings demonstrate that CAT2 modulates MDSC function. In the absence of CAT2, MDSCs display diminished capacity for controlling T cell immunity in prostate inflammation and cancer models, where the loss of CAT2 results in enhanced antitumor activity.
Collapse
Affiliation(s)
- Cansu Cimen Bozkus
- Comparative Pathobiology Department, Purdue University Center for Cancer Research, Purdue University, West Lafayette, IN 47907; and
| | - Bennett D Elzey
- Comparative Pathobiology Department, Purdue University Center for Cancer Research, Purdue University, West Lafayette, IN 47907; and
| | - Scott A Crist
- Comparative Pathobiology Department, Purdue University Center for Cancer Research, Purdue University, West Lafayette, IN 47907; and
| | - Lesley G Ellies
- Department of Pathology, University of California, San Diego, La Jolla, CA 92093
| | - Timothy L Ratliff
- Comparative Pathobiology Department, Purdue University Center for Cancer Research, Purdue University, West Lafayette, IN 47907; and
| |
Collapse
|
32
|
Sleeping Beauty Transposon Mutagenesis as a Tool for Gene Discovery in the NOD Mouse Model of Type 1 Diabetes. G3-GENES GENOMES GENETICS 2015; 5:2903-11. [PMID: 26438296 PMCID: PMC4683661 DOI: 10.1534/g3.115.021709] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
A number of different strategies have been used to identify genes for which genetic variation contributes to type 1 diabetes (T1D) pathogenesis. Genetic studies in humans have identified >40 loci that affect the risk for developing T1D, but the underlying causative alleles are often difficult to pinpoint or have subtle biological effects. A complementary strategy to identifying "natural" alleles in the human population is to engineer "artificial" alleles within inbred mouse strains and determine their effect on T1D incidence. We describe the use of the Sleeping Beauty (SB) transposon mutagenesis system in the nonobese diabetic (NOD) mouse strain, which harbors a genetic background predisposed to developing T1D. Mutagenesis in this system is random, but a green fluorescent protein (GFP)-polyA gene trap within the SB transposon enables early detection of mice harboring transposon-disrupted genes. The SB transposon also acts as a molecular tag to, without additional breeding, efficiently identify mutated genes and prioritize mutant mice for further characterization. We show here that the SB transposon is functional in NOD mice and can produce a null allele in a novel candidate gene that increases diabetes incidence. We propose that SB transposon mutagenesis could be used as a complementary strategy to traditional methods to help identify genes that, when disrupted, affect T1D pathogenesis.
Collapse
|
33
|
Hu H, Jiao F, Han T, Wang LW. Functional significance of macrophages in pancreatic cancer biology. Tumour Biol 2015; 36:9119-26. [PMID: 26411672 PMCID: PMC4689759 DOI: 10.1007/s13277-015-4127-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2015] [Accepted: 09/20/2015] [Indexed: 02/06/2023] Open
Abstract
Pancreatic ductal adenocarcinoma (PDA) is a lethal disease that is usually diagnosed at late stage with few effective therapies. Despite the rapid progress on the genomics and proteomics of the neoplastic cells, therapies that targeted the pancreatic cancer cells proved to be inefficient, which promoted the researchers to turn their attentions to the microenvironment. Currently, various studies had proposed the microenvironment to be a contributing factor for PDA and pervasive researches showed that macrophages within the malignancy correlate with the malignant phenotype of the disease and were reported to a new therapeutic target. Generally, the pro-tumoral effects of macrophages can be summarized as angiogenesis promotion, immunosuppression, matrix remodeling and so on. Hence, a comprehensive understanding of the biologic behaviors of macrophages and their critical role in PDA development may provide new directions for the managements of the lethal disease. In this review, we will summarize the recent advancements on macrophages as pivotal players in PDA biology and the current knowledge about anti-macrophages as a novel strategy against cancer, with the expectation that more efficient therapies will be developed in the near future.
Collapse
Affiliation(s)
- Hai Hu
- Department of Medical Oncology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, 650 New Songjiang Road, Shanghai, 201620, China
| | - Feng Jiao
- Department of Medical Oncology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, 650 New Songjiang Road, Shanghai, 201620, China
| | - Ting Han
- Department of Medical Oncology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, 650 New Songjiang Road, Shanghai, 201620, China
| | - Li-Wei Wang
- Department of Medical Oncology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, 650 New Songjiang Road, Shanghai, 201620, China.
| |
Collapse
|
34
|
Abstract
Type 2 immune responses are defined by the cytokines interleukin-4 (IL-4), IL-5, IL-9 and IL-13, which can either be host protective or have pathogenic activity. Type 2 immunity promotes antihelminth immunity, suppresses type 1-driven autoimmune disease, neutralizes toxins, maintains metabolic homeostasis, and regulates wound repair and tissue regeneration pathways following infection or injury. Nevertheless, when type 2 responses are dysregulated, they can become important drivers of disease. Type 2 immunity induces a complex inflammatory response characterized by eosinophils, mast cells, basophils, type 2 innate lymphoid cells, IL-4-and/or IL-13-conditioned macrophages and T helper 2 (TH2) cells, which are crucial to the pathogenesis of many allergic and fibrotic disorders. As chronic type 2 immune responses promote disease, the mechanisms that regulate their maintenance are thought to function as crucial disease modifiers. This Review discusses the many endogenous negative regulatory mechanisms that antagonize type 2 immunity and highlights how therapies that target some of these pathways are being developed to treat type 2-mediated disease.
Collapse
Affiliation(s)
- Thomas A Wynn
- Immunopathogenesis Section, Program in Barrier Immunity and Repair, Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Disease, National Institutes of Health, Bethesda, Maryland 20892-0425, USA
| |
Collapse
|
35
|
Abstract
Type 2 immune responses are defined by the cytokines interleukin-4 (IL-4), IL-5, IL-9 and IL-13, which can either be host protective or have pathogenic activity. Type 2 immunity promotes antihelminth immunity, suppresses type 1-driven autoimmune disease, neutralizes toxins, maintains metabolic homeostasis, and regulates wound repair and tissue regeneration pathways following infection or injury. Nevertheless, when type 2 responses are dysregulated, they can become important drivers of disease. Type 2 immunity induces a complex inflammatory response characterized by eosinophils, mast cells, basophils, type 2 innate lymphoid cells, IL-4-and/or IL-13-conditioned macrophages and T helper 2 (TH2) cells, which are crucial to the pathogenesis of many allergic and fibrotic disorders. As chronic type 2 immune responses promote disease, the mechanisms that regulate their maintenance are thought to function as crucial disease modifiers. This Review discusses the many endogenous negative regulatory mechanisms that antagonize type 2 immunity and highlights how therapies that target some of these pathways are being developed to treat type 2-mediated disease.
Collapse
|
36
|
Edukulla R, Singh B, Jegga AG, Sontake V, Dillon SR, Madala SK. Th2 Cytokines Augment IL-31/IL-31RA Interactions via STAT6-dependent IL-31RA Expression. J Biol Chem 2015; 290:13510-20. [PMID: 25847241 DOI: 10.1074/jbc.m114.622126] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2014] [Indexed: 12/19/2022] Open
Abstract
Interleukin 31 receptor α (IL-31RA) is a novel Type I cytokine receptor that pairs with oncostatin M receptor to mediate IL-31 signaling. Binding of IL-31 to its receptor results in the phosphorylation and activation of STATs, MAPK, and JNK signaling pathways. IL-31 plays a pathogenic role in tissue inflammation, particularly in allergic diseases. Recent studies demonstrate IL-31RA expression and signaling in non-hematopoietic cells, but this receptor is poorly studied in immune cells. Macrophages are key immune-effector cells that play a critical role in Th2-cytokine-mediated allergic diseases. Here, we demonstrate that Th2 cytokines IL-4 and IL-13 are capable of up-regulating IL-31RA expression on both peritoneal and bone marrow-derived macrophages from mice. Our data also demonstrate that IL-4Rα-driven IL-31RA expression is STAT6 dependent in macrophages. Notably, the inflammation-associated genes Fizz1 and serum amyloid A (SAA) are significantly up-regulated in M2 macrophages stimulated with IL-31, but not in IL-4 receptor-deficient macrophages. Furthermore, the absence of Type II IL-4 receptor signaling is sufficient to attenuate the expression of IL-31RA in vivo during allergic asthma induced by soluble egg antigen, which may suggest a role for IL-31 signaling in Th2 cytokine-driven inflammation and allergic responses. Our study reveals an important counter-regulatory role between Th2 cytokine and IL-31 signaling involved in allergic diseases.
Collapse
Affiliation(s)
| | | | - Anil G Jegga
- Biomedical Informatics, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio 45229 and
| | | | - Stacey R Dillon
- the ZymoGenetics, Inc. (a Bristol-Myers Squibb Company), Seattle, Washington 98102
| | | |
Collapse
|
37
|
Joint haemorrhage partly accelerated immobilization-induced synovial adhesions and capsular shortening in rats. Knee Surg Sports Traumatol Arthrosc 2014; 22:2874-83. [PMID: 24013446 DOI: 10.1007/s00167-013-2659-9] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/05/2013] [Accepted: 08/24/2013] [Indexed: 10/26/2022]
Abstract
PURPOSE To elucidate the effects of intra-articular haemorrhage on the joint capsule of immobilized knees in rats. METHODS The unilateral knee joints were immobilized using a plastic plate and screws. Sham operated rats had only screws inserted. A single injection of fresh autologous blood was given postoperatively into the knee joints of the immobilized blood injection (Im-B) and the Sham blood injection (Sm-B) groups. Normal saline was administered for the immobilized-saline injection (Im-S) group. Sagittal sections were prepared from the medial midcondylar region of the knee and assessed with histological, histomorphometric, and immunohistochemical methods. The range of motion (ROM) was measured, and the mechanical property of the capsule was assessed by scanning acoustic microscope. RESULTS Absorption of the injected blood was delayed and made severe adhesions in the Im-B group. The length of the synovial membrane in the Im-B group was significantly shorter than that of the other groups. The ROM was significantly restricted in the Im-B group compared with the other groups. The elasticity of the posterior capsule in the Im-B group was significantly lower than that in the Sm-B group. Iron deposition was observed in the Im-B and Sm-B groups. Strong immunoreactivities of CD68, TGF-β1, and α-SMA were observed in the adhesion area of the Im-B group. Joint immobilization with blood injection caused severe capsular adhesion and limited range of motion. Immunostaining related to fibrosis increased with joint haemorrhage. CONCLUSION Intra-articular haemorrhage with joint immobilization might be an accelerated risk factor for joint contracture. It is likely that leaving a haematoma inside an immobilized joint should be avoided.
Collapse
|
38
|
Fu CL, Odegaard JI, Hsieh MH. Macrophages are required for host survival in experimental urogenital schistosomiasis. FASEB J 2014; 29:193-207. [PMID: 25351984 DOI: 10.1096/fj.14-259572] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Urogenital schistosomiasis, Schistosoma haematobium worm infection, afflicts millions of people with egg-triggered, fibrotic bladder granulomata. Despite the significant global impact of urogenital schistosomiasis, the mechanisms of bladder granulomogenesis and fibrosis are ill defined due to the prior lack of tractable animal models. We combined a mouse model of urogenital schistosomiasis with macrophage-depleting liposomal clodronate (LC) to define how macrophages mediate bladder granulomogenesis and fibrosis. Mice were injected with eggs purified from infected hamsters or vehicle prepared from uninfected hamster tissues (xenoantigen and injection trauma control). Empty liposomes were controls for LC: 1) LC treatment resulted in fewer bladder egg granuloma-infiltrating macrophages, eosinophils, and T and B cells, lower bladder and serum levels of eotaxin, and higher bladder concentrations of IL-1α and chemokines (in a time-dependent fashion), confirming that macrophages orchestrate leukocyte infiltration of the egg-exposed bladder; 2) macrophage-depleted mice exhibited greater weight loss and bladder hemorrhage postegg injection; 3) early LC treatment postegg injection resulted in profound decreases in bladder fibrosis, suggesting differing roles for macrophages in fibrosis over time; and 4) LC treatment also led to egg dose-dependent mortality, indicating that macrophages prevent death from urogenital schistosomiasis. Thus, macrophages are a potential therapeutic target for preventing or treating the bladder sequelae of urogenital schistosomiasis.
Collapse
Affiliation(s)
- Chi-Ling Fu
- Department of Urology, Stanford University School of Medicine, Stanford University, Stanford, California, USA
| | - Justin I Odegaard
- Cardiovascular Research Institute, University of California, San Francisco, San Francisco, California, USA
| | - Michael H Hsieh
- Biomedical Research Institute, Rockville, Maryland, USA; Children's National Medical Center, Washington, District of Columbia, USA; and The George Washington University, Washington, District of Columbia, USA
| |
Collapse
|
39
|
Wang T, Liu G, Wang R. The Intercellular Metabolic Interplay between Tumor and Immune Cells. Front Immunol 2014; 5:358. [PMID: 25120544 PMCID: PMC4112791 DOI: 10.3389/fimmu.2014.00358] [Citation(s) in RCA: 73] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2014] [Accepted: 07/12/2014] [Indexed: 01/14/2023] Open
Abstract
Functional and effective immune response requires a metabolic rewiring of immune cells to meet their energetic and anabolic demands. Beyond this, the availability of extracellular and intracellular metabolites may serve as metabolic signals interconnecting with cellular signaling events to influence cellular fate and immunological function. As such, tumor microenvironment represents a dramatic example of metabolic derangement, where the highly metabolic demanding tumor cells may compromise the function of some immune cells by competing nutrients (a form of intercellular competition), meanwhile may support the function of other immune cells by forming a metabolic symbiosis (a form of intercellular collaboration). It has been well known that tumor cells harness immune system through information exchanges that are largely attributed to soluble protein factors and intercellular junctions. In this review, we will discuss recent advance on tumor metabolism and immune metabolism, as well as provide examples of metabolic communications between tumor cells and immune system, which may represent a novel mechanism of conveying tumor-immune privilege.
Collapse
Affiliation(s)
- Tingting Wang
- Center for Childhood Cancer and Blood Disease, The Research Institute at Nationwide Children's Hospital , Columbus, OH , USA
| | - Guangwei Liu
- Key Laboratory of Medical Molecular Virology of Ministries of Education and Health, Department of Immunology, School of Basic Medical Sciences, Fudan University , Shanghai , China ; Biotherapy Research Center, Fudan University , Shanghai , China
| | - Ruoning Wang
- Center for Childhood Cancer and Blood Disease, The Research Institute at Nationwide Children's Hospital , Columbus, OH , USA ; Hematology/Oncology & BMT, The Research Institute at Nationwide Children's Hospital , Columbus, OH , USA ; Department of Pediatrics, The Ohio State University School of Medicine , Columbus, OH , USA
| |
Collapse
|
40
|
Moura VBL, Silva MM, Batista LF, Gomes CM, Leenen PJM, Lino RS, Oliveira MAP. Arginase activity is associated with fibrosis in experimental infection with Taenia crassiceps, but does not play a major role in resistance to infection. Exp Parasitol 2013; 135:599-605. [PMID: 24090570 DOI: 10.1016/j.exppara.2013.09.014] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2013] [Revised: 09/16/2013] [Accepted: 09/22/2013] [Indexed: 12/01/2022]
Abstract
Murine infection with Taenia crassiceps cysticerci is used as an experimental model for human and animal cysticercosis. In this infection parasites can be found associated with an inflammatory infiltrate enriched with macrophages. Experimental evidence exists supporting a role for either NO-producing classically activated (CAMΦ) or arginase- and CD301-expressing alternatively activated macrophages (AAMΦ) in T. crassiceps resistance. In both cell types, arginine is utilized as an important mediator in macrophage effector functions. To investigate whether there is an association between arginine availability, susceptibility to T. crassiceps and other parameters such as fibrosis, BALB/c mice were infected intraperitoneally with cysticerci and treated daily with the arginase inhibitor nor-NOHA or supplemented with l-arginine and followed for eight weeks. The numbers and developmental stages of parasites were evaluated as well as the presence of CD301+ AAMΦ, arginase activity and collagen deposition in the peritoneal membrane. Treatment with the arginase inhibitor or supplementation with l-arginine did not change the parasitic load or profile of the infection. However, the arginase inhibitor significantly decreased the deposition of collagen. These results suggest that arginase activity does not interfere with parasite control during experimental infection with T. crassiceps, but it is important for fibrosis in cysticercosis.
Collapse
Affiliation(s)
- Vania B L Moura
- Department of Microbiology, Immunology, Parasitology and Pathology, Institute of Tropical Pathology and Public Health, Federal University of Goiás, Rua 235 S/N, Setor Universitário, 74605-050 Goiânia, Goiás, Brazil.
| | | | | | | | | | | | | |
Collapse
|
41
|
Singh K, Coburn LA, Barry DP, Asim M, Scull BP, Allaman MM, Lewis ND, Washington MK, Rosen MJ, Williams CS, Chaturvedi R, Wilson KT. Deletion of cationic amino acid transporter 2 exacerbates dextran sulfate sodium colitis and leads to an IL-17-predominant T cell response. Am J Physiol Gastrointest Liver Physiol 2013; 305:G225-40. [PMID: 23703655 PMCID: PMC3742860 DOI: 10.1152/ajpgi.00091.2013] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
L-Arginine (L-Arg) is a semiessential amino acid that has altered availability in human ulcerative colitis (UC), a form of inflammatory bowel disease, and is beneficial in murine colitis induced by dextran sulfate sodium (DSS), a model with similarity to UC. We assessed the role of cationic amino acid transporter 2 (CAT2), the inducible transporter of L-Arg, in DSS colitis. Expression of CAT2 was upregulated in tissues from colitic mice and localized predominantly to colonic macrophages. CAT2-deficient (CAT2-/-) mice exposed to DSS exhibited worsening of survival, body weight loss, colon weight, and histological injury. These effects were associated with increased serum L-Arg and decreased tissue L-Arg uptake and inducible nitric oxide synthase protein expression. Clinical benefits of L-Arg supplementation in wild-type mice were lost in CAT2-/- mice. There was increased infiltration of macrophages, dendritic cells, granulocytes, and T cells in colitic CAT2-/- compared with wild-type mice. Cytokine profiling revealed increases in proinflammatory granulocyte colony-stimulating factor, macrophage inflammatory protein-1α, IL-15, and regulated and normal T cell-expressed and -secreted and a shift from an IFN-γ- to an IL-17-predominant T cell response, as well as an increase in IL-13, in tissues from colitic CAT2-/- mice. However, there were no increases in other T helper cell type 2 cytokines, nor was there a global increase in macrophage-derived proinflammatory cytokines. The increase in IL-17 derived from both CD4 and γδ T cells and was associated with colonic IL-6 expression. Thus CAT2 plays an important role in controlling inflammation and IL-17 activation in an injury model of colitis, and impaired L-Arg availability may contribute to UC pathogenesis.
Collapse
Affiliation(s)
- Kshipra Singh
- 1Division of Gastroenterology, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee;
| | - Lori A. Coburn
- 1Division of Gastroenterology, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee; ,5Veterans Affairs Tennessee Valley Healthcare System, Nashville, Tennessee
| | - Daniel P. Barry
- 1Division of Gastroenterology, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee; ,5Veterans Affairs Tennessee Valley Healthcare System, Nashville, Tennessee
| | - Mohammad Asim
- 1Division of Gastroenterology, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee; ,5Veterans Affairs Tennessee Valley Healthcare System, Nashville, Tennessee
| | - Brooks P. Scull
- 1Division of Gastroenterology, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee;
| | - Margaret M. Allaman
- 1Division of Gastroenterology, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee; ,5Veterans Affairs Tennessee Valley Healthcare System, Nashville, Tennessee
| | - Nuruddeen D. Lewis
- 1Division of Gastroenterology, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee; ,2Department of Cancer Biology, Vanderbilt University Medical Center, Nashville, Tennessee;
| | - M. Kay Washington
- 3Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee;
| | - Michael J. Rosen
- 4Division of Gastroenterology, Department of Pediatrics, Vanderbilt University Medical Center, Nashville, Tennessee; and
| | - Christopher S. Williams
- 1Division of Gastroenterology, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee; ,2Department of Cancer Biology, Vanderbilt University Medical Center, Nashville, Tennessee; ,5Veterans Affairs Tennessee Valley Healthcare System, Nashville, Tennessee
| | - Rupesh Chaturvedi
- 1Division of Gastroenterology, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee;
| | - Keith T. Wilson
- 1Division of Gastroenterology, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee; ,2Department of Cancer Biology, Vanderbilt University Medical Center, Nashville, Tennessee; ,3Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee; ,5Veterans Affairs Tennessee Valley Healthcare System, Nashville, Tennessee
| |
Collapse
|
42
|
Role of arginase 1 from myeloid cells in th2-dominated lung inflammation. PLoS One 2013; 8:e61961. [PMID: 23637937 PMCID: PMC3634833 DOI: 10.1371/journal.pone.0061961] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2012] [Accepted: 03/16/2013] [Indexed: 12/18/2022] Open
Abstract
Th2-driven lung inflammation increases Arginase 1 (Arg1) expression in alternatively-activated macrophages (AAMs). AAMs modulate T cell and wound healing responses and Arg1 might contribute to asthma pathogenesis by inhibiting nitric oxide production, regulating fibrosis, modulating arginine metabolism and restricting T cell proliferation. We used mice lacking Arg1 in myeloid cells to investigate the contribution of Arg1 to lung inflammation and pathophysiology. In six model systems encompassing acute and chronic Th2-mediated lung inflammation we observed neither a pathogenic nor protective role for myeloid-expressed Arg1. The number and composition of inflammatory cells in the airways and lungs, mucus secretion, collagen deposition, airway hyper-responsiveness, and T cell cytokine production were not altered if AAMs were deficient in Arg1 or simultaneously in both Arg1 and NOS2. Our results argue that Arg1 is a general feature of alternative activation but only selectively regulates Th2 responses. Therefore, attempts to experimentally or therapeutically inhibit arginase activity in the lung should be examined with caution.
Collapse
|
43
|
Qualls JE, Subramanian C, Rafi W, Smith AM, Balouzian L, DeFreitas AA, Shirey KA, Reutterer B, Kernbauer E, Stockinger S, Decker T, Miyairi I, Vogel SN, Salgame P, Rock CO, Murray PJ. Sustained generation of nitric oxide and control of mycobacterial infection requires argininosuccinate synthase 1. Cell Host Microbe 2013; 12:313-23. [PMID: 22980328 DOI: 10.1016/j.chom.2012.07.012] [Citation(s) in RCA: 115] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2012] [Revised: 06/07/2012] [Accepted: 07/13/2012] [Indexed: 12/17/2022]
Abstract
Nitric oxide (NO) defends against intracellular pathogens, but its synthesis must be regulated due to cell and tissue toxicity. During infection, macrophages import extracellular arginine to synthesize NO, generating the byproduct citrulline. Accumulated intracellular citrulline is thought to fuel arginine synthesis catalyzed by argininosuccinate synthase (Ass1) and argininosuccinate lyase (Asl), which would lead to abundant NO production. Instead, we find that citrulline is exported from macrophages during early stages of NO production with <2% retained for recycling via the Ass1-Asl pathway. Later, extracellular arginine is depleted, and Ass1 expression allows macrophages to synthesize arginine from imported citrulline to sustain NO output. Ass1-deficient macrophages fail to salvage citrulline in arginine-scarce conditions, leading to their inability to control mycobacteria infection. Thus, extracellular arginine fuels rapid NO production in activated macrophages, and citrulline recycling via Ass1 and Asl is a fail-safe system that sustains optimum NO production.
Collapse
Affiliation(s)
- Joseph E Qualls
- Department of Infectious Diseases, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Van Dyken SJ, Locksley RM. Interleukin-4- and interleukin-13-mediated alternatively activated macrophages: roles in homeostasis and disease. Annu Rev Immunol 2013; 31:317-43. [PMID: 23298208 DOI: 10.1146/annurev-immunol-032712-095906] [Citation(s) in RCA: 520] [Impact Index Per Article: 43.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The macrophage, a versatile cell type prominently involved in host defense and immunity, assumes a distinct state of alternative activation in the context of polarized type 2 immune responses such as allergic inflammation and helminth infection. This alternatively activated phenotype is induced by the canonical type 2 cytokines interleukin (IL)-4 and IL-13, which mediate expression of several characteristic markers along with a dramatic shift in macrophage metabolic pathways that influence surrounding cells and tissues. We discuss recent advances in the understanding of IL-4- and IL-13-mediated alternatively activated macrophages and type 2 immune responses; such advances have led to an expanded appreciation for functions of these cells beyond immunity, including maintenance of physiologic homeostasis and tissue repair.
Collapse
Affiliation(s)
- Steven J Van Dyken
- Departments of Medicine and Microbiology & Immunology, Howard Hughes Medical Institute, University of California, San Francisco, California 94143, USA
| | | |
Collapse
|
45
|
Lech M, Anders HJ. Macrophages and fibrosis: How resident and infiltrating mononuclear phagocytes orchestrate all phases of tissue injury and repair. Biochim Biophys Acta Mol Basis Dis 2012; 1832:989-97. [PMID: 23246690 DOI: 10.1016/j.bbadis.2012.12.001] [Citation(s) in RCA: 297] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2012] [Revised: 12/04/2012] [Accepted: 12/05/2012] [Indexed: 12/22/2022]
Abstract
Certain macrophage phenotypes contribute to tissue fibrosis, but why? Tissues host resident mononuclear phagocytes for their support to maintain homeostasis. Upon injury the changing tissue microenvironment alters their phenotype and primes infiltrating monocytes toward pro-inflammatory macrophages. Several mechanisms contribute to their deactivation and macrophage priming toward anti-inflammatory and pro-regenerative macrophages that produce multiple cytokines that display immunosuppressive as well as pro-regeneratory effects, such as IL-10 and TGF-beta1. Insufficient parenchymal repair creates a tissue microenvironment that becomes dominated by multiple growth factors that promote the pro-fibrotic macrophage phenotype that itself produces large amounts of such growth factors that further support fibrogenesis. However, the contribution of resident mononuclear phagocytes to physiological extracellular matrix turnover implies also their fibrolytic effects in the late stage of tissue scaring. Fibrolytic macrophages break down fibrous tissue, but their phenotypic characteristics remain to be described in more detail. Together, macrophages contribute to tissue fibrosis because the changing tissue environments prime them to assist and orchestrate all phases of tissue injury and repair. This article is part of a Special Issue entitled: Fibrosis: Translation of basic research to human disease.
Collapse
Affiliation(s)
- Maciej Lech
- Medizinische Klinik und Poliklinik IV, Ludwig-Maximilians Universität München, Germany.
| | | |
Collapse
|
46
|
Munitz A, Cole ET, Karo-Atar D, Finkelman FD, Rothenberg ME. Resistin-like molecule-α regulates IL-13-induced chemokine production but not allergen-induced airway responses. Am J Respir Cell Mol Biol 2012; 46:703-13. [PMID: 22246861 DOI: 10.1165/rcmb.2011-0391oc] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Resistin-like molecule α (Relm-α) is one of the most up-regulated gene products in allergen- and parasite-associated Th2 responses. Localized to alternatively activated macrophages, Relm-α was shown to exert an anti-inflammatory effect in parasite-induced Th2 responses, but its role in experimental asthma remains unexplored. Here, we analyzed the cellular source, the IL-4 receptors required to stimulate Relm-α production, and the role of Relm-α after experimental asthma induction by IL-4, IL-13, or multiple experimental regimes, including ovalbumin and Aspergillus fumigatus immunization. We demonstrate that Relm-α was secreted into the airway lumen, dependent on both the IL-13 receptor-α1 chain and likely the Type I IL-4 receptor, and differentially localized to epithelial cells and myeloid cells, depending on the specific cytokine or aeroallergen trigger. Studies performed with Retnla gene-targeted mice demonstrate that Relm-α was largely redundant in terms of inducing the infiltration of Th2 cytokines, mucus, and inflammatory cells into the lung. These results mirror the dispensable role that other alternatively activated macrophage products (such as arginase 1) have in allergen-induced experimental asthma and contrast with their role in the setting of parasitic infections. Taken together, our findings demonstrate the distinct utilization of IL-4/IL-13 receptors for the induction of Relm-α in the lungs. The differential regulation of Relm-α expression is likely determined by the relative expression levels of IL-4, IL-13, and their corresponding receptors, which are differentially expressed by divergent cells (i.e., epithelial cells and macrophages.) Finally, we identify a largely redundant functional role for Relm-α in acute experimental models of allergen-associated Th2 immune responses.
Collapse
Affiliation(s)
- Ariel Munitz
- Division of Allergy and Immunology, Cincinnati Children's Hospital Medical Center, 3333 Burnet Ave., Cincinnati, OH 45229, USA
| | | | | | | | | |
Collapse
|
47
|
Cationic amino acid transporter 2 enhances innate immunity during Helicobacter pylori infection. PLoS One 2011; 6:e29046. [PMID: 22194986 PMCID: PMC3237590 DOI: 10.1371/journal.pone.0029046] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2011] [Accepted: 11/18/2011] [Indexed: 01/19/2023] Open
Abstract
Once acquired, Helicobacter pylori infection is lifelong due to an inadequate innate and adaptive immune response. Our previous studies indicate that interactions among the various pathways of arginine metabolism in the host are critical determinants of outcomes following infection. Cationic amino acid transporter 2 (CAT2) is essential for transport of L-arginine (L-Arg) into monocytic immune cells during H. pylori infection. Once within the cell, this amino acid is utilized by opposing pathways that lead to elaboration of either bactericidal nitric oxide (NO) produced from inducible NO synthase (iNOS), or hydrogen peroxide, which causes macrophage apoptosis, via arginase and the polyamine pathway. Because of its central role in controlling L-Arg availability in macrophages, we investigated the importance of CAT2 in vivo during H. pylori infection. CAT2(-/-) mice infected for 4 months exhibited decreased gastritis and increased levels of colonization compared to wild type mice. We observed suppression of gastric macrophage levels, macrophage expression of iNOS, dendritic cell activation, and expression of granulocyte-colony stimulating factor in CAT2(-/-) mice suggesting that CAT2 is involved in enhancing the innate immune response. In addition, cytokine expression in CAT2(-/-) mice was altered from an antimicrobial Th1 response to a Th2 response, indicating that the transporter has downstream effects on adaptive immunity as well. These findings demonstrate that CAT2 is an important regulator of the immune response during H. pylori infection.
Collapse
|
48
|
Abstract
Pulmonary fibrosis is a highly heterogeneous and lethal pathological process with limited therapeutic options. Although research on the pathogenesis of pulmonary fibrosis has frequently focused on the mechanisms that regulate the proliferation, activation, and differentiation of collagen-secreting myofibroblasts, recent studies have identified new pathogenic mechanisms that are critically involved in the initiation and progression of fibrosis in a variety of settings. A more detailed and integrated understanding of the cellular and molecular mechanisms of pulmonary fibrosis could help pave the way for effective therapeutics for this devastating and complex disease.
Collapse
Affiliation(s)
- Thomas A Wynn
- Program in Barrier Immunity and Repair and the Immunopathogenesis Section, Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA.
| |
Collapse
|
49
|
Wynn TA, Barron L, Thompson RW, Madala SK, Wilson MS, Cheever AW, Ramalingam T. Quantitative assessment of macrophage functions in repair and fibrosis. CURRENT PROTOCOLS IN IMMUNOLOGY 2011; Chapter 14:Unit14.22. [PMID: 21462164 PMCID: PMC3109612 DOI: 10.1002/0471142735.im1422s93] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Macrophages play key roles in wound repair and fibrosis by regulating extracellular matrix turnover. Macrophages can process matrix components themselves, but also recruit and alter the functions of other cell types that directly build or degrade extracellular matrix. Classically activated macrophages (CAM, also called M1) tend to promote tissue injury while alternatively activated macrophages (AAM, also called M2) are often linked with the mechanisms of wound repair and fibrosis. However, rather than promoting collagen deposition, recent studies suggest that arginase-1-expressing AAM suppress chronic inflammation and fibrosis by inhibiting antigen-specific T cell responses. This unit describes methods to measure arginase activity in macrophages and whole tissues as well as assays to quantify the T cell suppressive activity of AAMs. Modified hydroxyproline and soluble collagen assays that can be used to quantify collagen levels in tissues and brochoalveolar lavage fluid are also described. The protocols in this unit should provide the investigator with all the necessary information required to measure arginase activity and to correlate the observed activity with the progression and resolution of fibrosis.
Collapse
Affiliation(s)
- Thomas A Wynn
- National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | | | | | | | | | | | | |
Collapse
|
50
|
Das P, Lahiri A, Lahiri A, Sen M, Iyer N, Kapoor N, Balaji KN, Chakravortty D. Cationic amino acid transporters and Salmonella Typhimurium ArgT collectively regulate arginine availability towards intracellular Salmonella growth. PLoS One 2010; 5:e15466. [PMID: 21151933 PMCID: PMC2997073 DOI: 10.1371/journal.pone.0015466] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2010] [Accepted: 09/24/2010] [Indexed: 11/25/2022] Open
Abstract
Cationic amino acid transporters (mCAT1 and mCAT2B) regulate the arginine availability in macrophages. How in the infected cell a pathogen can alter the arginine metabolism of the host remains to be understood. We reveal here a novel mechanism by which Salmonella exploit mCAT1 and mCAT2B to acquire host arginine towards its own intracellular growth within antigen presenting cells. We demonstrate that Salmonella infected bone marrow derived macrophages and dendritic cells show enhanced arginine uptake and increased expression of mCAT1 and mCAT2B. We show that the mCAT1 transporter is in close proximity to Salmonella containing vacuole (SCV) specifically by live intracellular Salmonella in order to access the macrophage cytosolic arginine pool. Further, Lysosome associated membrane protein 1, a marker of SCV, also was found to colocalize with mCAT1 in the Salmonella infected cell. The intra vacuolar Salmonella then acquire the host arginine via its own arginine transporter, ArgT for growth. The argT knockout strain was unable to acquire host arginine and was attenuated in growth in both macrophages and in mice model of infection. Together, these data reveal survival strategies by which virulent Salmonella adapt to the harsh conditions prevailing in the infected host cells.
Collapse
Affiliation(s)
- Priyanka Das
- Center for Infectious Disease Research and Biosafety Laboratories, Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore, India
| | - Amit Lahiri
- Center for Infectious Disease Research and Biosafety Laboratories, Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore, India
| | - Ayan Lahiri
- Center for Infectious Disease Research and Biosafety Laboratories, Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore, India
| | - Minakshi Sen
- Center for Infectious Disease Research and Biosafety Laboratories, Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore, India
| | - Namrata Iyer
- Center for Infectious Disease Research and Biosafety Laboratories, Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore, India
| | - Nisha Kapoor
- Center for Infectious Disease Research and Biosafety Laboratories, Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore, India
| | - Kithiganahalli Narayanaswamy Balaji
- Center for Infectious Disease Research and Biosafety Laboratories, Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore, India
| | - Dipshikha Chakravortty
- Center for Infectious Disease Research and Biosafety Laboratories, Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore, India
- * E-mail:
| |
Collapse
|