1
|
Fukaura R, Ato M, Murase C, Miyamoto Y, Sugawara-Mikami M, Takahashi T, Hoshino Y, Fujimoto N, Akiyama M, Ishii N, Yotsu R. Buruli ulcer: An epidemiological update from Japan. J Dermatol 2025; 52:3-10. [PMID: 39350453 DOI: 10.1111/1346-8138.17483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 08/15/2024] [Accepted: 09/13/2024] [Indexed: 01/07/2025]
Abstract
Japan is one of the rare non-tropical countries with documented cases of Buruli ulcer (BU). Mycobacterium ulcerans subsp. shinshuense has been identified as the causative agent. The first report of BU in Japan dates back to 1982, with sporadic reports thereafter. Recently, the number of cases has been on the increase, and 50 cases (57.7%) are from the past decade alone, out of a total of 87 cases reported to date. Japan's well-developed healthcare facilities play a crucial role in enabling detailed investigations and providing appropriate treatment for patients, contributing to a favorable prognosis. However, the rarity of the disease results in lack of awareness among healthcare professionals, leading to frequent delays in diagnosis. This article aims to offer an updated overview of BU cases in Japan and to raise awareness of BU among dermatologists and other healthcare professionals in a non-endemic setting.
Collapse
Affiliation(s)
- Ryo Fukaura
- Department of Dermatology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Manabu Ato
- Leprosy Research Center, National Institute of Infectious Diseases, Tokyo, Japan
| | - Chiaki Murase
- Department of Dermatology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Yuji Miyamoto
- Leprosy Research Center, National Institute of Infectious Diseases, Tokyo, Japan
| | | | | | - Yoshihiko Hoshino
- Leprosy Research Center, National Institute of Infectious Diseases, Tokyo, Japan
| | - Noriki Fujimoto
- Department of Dermatology, Shiga University of Medical Science, Otsu, Japan
| | - Masashi Akiyama
- Department of Dermatology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | | | - Rie Yotsu
- Department of Tropical Medicine and Infectious Disease, Tulane School of Public Health and Tropical Medicine, New Orleans, Louisiana, USA
- Department of Dermatology, National Center for Global Health and Medicine, Tokyo, Japan
- School of Tropical Medicine and Global Health, Nagasaki University, Nagasaki, Japan
| |
Collapse
|
2
|
Zhang H, Tang M, Li D, Xu M, Ao Y, Lin L. Applications and advances in molecular diagnostics: revolutionizing non-tuberculous mycobacteria species and subspecies identification. Front Public Health 2024; 12:1410672. [PMID: 38962772 PMCID: PMC11220129 DOI: 10.3389/fpubh.2024.1410672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Accepted: 06/10/2024] [Indexed: 07/05/2024] Open
Abstract
Non-tuberculous mycobacteria (NTM) infections pose a significant public health challenge worldwide, affecting individuals across a wide spectrum of immune statuses. Recent epidemiological studies indicate rising incidence rates in both immunocompromised and immunocompetent populations, underscoring the need for enhanced diagnostic and therapeutic approaches. NTM infections often present with symptoms similar to those of tuberculosis, yet with less specificity, increasing the risk of misdiagnosis and potentially adverse outcomes for patients. Consequently, rapid and accurate identification of the pathogen is crucial for precise diagnosis and treatment. Traditional detection methods, notably microbiological culture, are hampered by lengthy incubation periods and a limited capacity to differentiate closely related NTM subtypes, thereby delaying diagnosis and the initiation of targeted therapies. Emerging diagnostic technologies offer new possibilities for the swift detection and accurate identification of NTM infections, playing a critical role in early diagnosis and providing more accurate and comprehensive information. This review delineates the current molecular methodologies for NTM species and subspecies identification. We critically assess the limitations and challenges inherent in these technologies for diagnosing NTM and explore potential future directions for their advancement. It aims to provide valuable insights into advancing the application of molecular diagnostic techniques in NTM infection identification.
Collapse
Affiliation(s)
- Haiyang Zhang
- Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Sichuan University, Ministry of Education, Chengdu, China
| | - Maoting Tang
- Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Sichuan University, Ministry of Education, Chengdu, China
| | - Deyuan Li
- Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Sichuan University, Ministry of Education, Chengdu, China
| | - Min Xu
- Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Sichuan University, Ministry of Education, Chengdu, China
| | - Yusen Ao
- Department of Pediatrics, The Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen, China
| | - Liangkang Lin
- Department of Pediatrics, The Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen, China
| |
Collapse
|
3
|
Lee D, Kim DH, Seo H, Choi S, Kim BJ. Phylogenetic distribution of malonate semialdehyde decarboxylase (MSAD) genes among strains within the genus Mycobacterium: evidence of MSAD gene loss in the evolution of pathogenic mycobacteria. Front Microbiol 2023; 14:1275616. [PMID: 37901833 PMCID: PMC10606566 DOI: 10.3389/fmicb.2023.1275616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Accepted: 09/29/2023] [Indexed: 10/31/2023] Open
Abstract
Despite the great diversity of malonate semialdehyde decarboxylases (MSADs), one of five subgroups of the tautomerase superfamily (TSF) found throughout the biosphere, their distribution among strains within the genus Mycobacterium remains unknown. In this study, we sought to investigate the phylogenetic distribution of MSAD genes of mycobacterial species via genome analysis of 192 different reference Mycobacterium species or subspecies retrieved from NCBI databases. We found that in a total of 87 of 192 strains (45.3%), MSAD-1 and MSAD-2 were distributed in an exclusive manner among Mycobacterium species except for 12 strains, including Mycobacterium chelonae members, with both in their genome. Of note, Mycobacterium strains better adapted to the host and of high virulence potential, such as the Mycobacterium tuberculosis complex, Mycobacterium leprae, Mycobacterium marinum, Mycobacterium ulcerans, and Mycobacterium avium subsp. paratuberculosis, had no orthologs of MSAD in their genome, suggesting MSAD loss during species differentiation in pathogenic slow-growing Mycobacterium. To investigate the MSAD distribution among strains of M. avium subspecies, the genome sequences of a total of 255 reference strains from the four subspecies of M. avium (43 of subspecies avium, 162 of subspecies hominissuis, 49 of subspecies paratuberculosis, and 1 of subspecies silvaticum) were further analyzed. We found that only 121 of 255 strains (47.4%) had MSADs in their genome, with none of the 49 M. avium subsp. paratuberculosis strains having MSAD genes. Even in 13 of 121 M. avium strains with the MSAD-1 gene in their genome, deletion mutations in the 98th codon causing premature termination of MSAD were found, further highlighting the occurrence of MSAD pseudogenization during species or subspecies differentiation of M. avium. In conclusion, our data indicated that there are two distinct types of MSADs, MSAD-1 and MSAD-2, among strains in the Mycobacterium genus, but more than half of the strains, including pathogenic mycobacteria, M. tuberculosis and M. leprae, have no orthologs in their genome, suggesting MSAD loss during host adaptation of pathogenic mycobacteria. In the future, the role of two distinct MSADs, MSAD-1 and MSAD-2, in mycobacterial pathogenesis or evolution should be investigated.
Collapse
Affiliation(s)
- Duhyung Lee
- Department of Microbiology and Immunology, College of Medicine, Seoul National University, Seoul, Republic of Korea
- Cancer Research Institute, College of Medicine, Seoul National University, Seoul, Republic of Korea
| | - Dong Hyun Kim
- Department of Microbiology and Immunology, College of Medicine, Seoul National University, Seoul, Republic of Korea
- Department of Biomedical Sciences, College of Medicine, Seoul National University, Seoul, Republic of Korea
| | - Hyejun Seo
- Department of Microbiology and Immunology, College of Medicine, Seoul National University, Seoul, Republic of Korea
- Cancer Research Institute, College of Medicine, Seoul National University, Seoul, Republic of Korea
- Seoul National University Medical Research Center, Seoul, Republic of Korea
| | - Seaone Choi
- Department of Microbiology and Immunology, College of Medicine, Seoul National University, Seoul, Republic of Korea
- Department of Biomedical Sciences, College of Medicine, Seoul National University, Seoul, Republic of Korea
- Brain Korea 21 FOUR Biomedical Science Project, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Bum-Joon Kim
- Department of Microbiology and Immunology, College of Medicine, Seoul National University, Seoul, Republic of Korea
- Cancer Research Institute, College of Medicine, Seoul National University, Seoul, Republic of Korea
- Department of Biomedical Sciences, College of Medicine, Seoul National University, Seoul, Republic of Korea
- Seoul National University Medical Research Center, Seoul, Republic of Korea
- Brain Korea 21 FOUR Biomedical Science Project, Seoul National University College of Medicine, Seoul, Republic of Korea
- Liver Research Institute, College of Medicine, Seoul National University, Seoul, Republic of Korea
| |
Collapse
|
4
|
Ayerakwa EA, Abban MK, Isawumi A, Mosi L. Profiling Mycobacterium ulcerans: sporulation, survival strategy and response to environmental factors. Future Sci OA 2023; 9:FSO845. [PMID: 37026027 PMCID: PMC10072065 DOI: 10.2144/fsoa-2022-0044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Accepted: 03/07/2023] [Indexed: 04/03/2023] Open
Abstract
Mycobacterium ulcerans is the causative agent of Buruli ulcer – a necrotizing skin infection. As an environmental pathogen, it has developed stress response mechanisms for survival. Similar to endospore formation in M. marinum, it is likely that M. ulcerans employs sporulation mechanisms for its survival and transmission. In this review, we modeled possible transmission routes and patterns of M. ulcerans from the environment to its host. We provided insights into the evolution of M. ulcerans and its genomic profiles. We discuss reservoirs of M. ulcerans as an environmental pathogen and its environmental survival. We comprehensively discuss sporulation as a possible stress response mechanism and modelled endospore formation in M. ulcerans. At last, we highlighted sporulation associated markers, which upon expression trigger endospore formation.
Collapse
|
5
|
Gyamfi E, Dogbe MA, Quaye C, Affouda AA, Kyei-Baffour E, Awuku-Asante D, Sarpong-Duah M, Mosi L. Variable Number Tandem Repeat Profiling of Mycobacterium ulcerans Reveals New Genotypes in Buruli Ulcer Endemic Communities in Ghana and Côte d’Ivoire. Front Microbiol 2022; 13:872579. [PMID: 35814673 PMCID: PMC9262091 DOI: 10.3389/fmicb.2022.872579] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Accepted: 04/27/2022] [Indexed: 11/13/2022] Open
Abstract
Buruli ulcer (BU), a necrotic skin disease caused by Mycobacterium ulcerans, is mainly prevalent in West Africa, but cases have also been reported in other tropical parts of the world. It is the second most common mycobacterial disease after tuberculosis in Ghana and Côte d’Ivoire. Heterogeneity among M. ulcerans from different geographical locations has not been clearly elucidated, and some studies seem to suggest genetic differences between M. ulcerans in humans and in the environment. This study aimed at identifying genetic differences among M. ulcerans strains between two BU endemic countries: Ghana and Côte d’Ivoire. Clinical samples consisting of swabs, fine needle aspirates, and tissue biopsies of suspected BU lesions and environmental samples (e.g., water, biofilms from plants, soil, and detrital material) were analyzed. BU cases were confirmed via acid fast staining and PCR targeting the 16S rRNA, IS2404, IS2606, and ER domain genes present on M. ulcerans. Heterogeneity among M. ulcerans was determined through VNTR profiling targeting 10 loci. Eleven M. ulcerans genotypes were identified within the clinical samples in both Ghana and Côte d’Ivoire, whiles six M. ulcerans genotypes were found among the environmental samples. Clinical M. ulcerans genotypes C, D, F, and G were common in both countries. Genotype E was unique among the Ghanaian samples, whiles genotypes A, Z, J, and K were unique to the Ivorian samples. Environmental isolates were found to be more conserved compared with the clinical isolates. Genotype W was observed only among the Ghanaian environmental samples. Genotype D was found to be prominent in both clinical and environmental samples, suggesting evidence of possible transmission of M. ulcerans from the environment, particularly water bodies and biofilms from aquatic plants, to humans through open lesions on the skin.
Collapse
|
6
|
Receveur JP, Bauer A, Pechal JL, Picq S, Dogbe M, Jordan HR, Rakestraw AW, Fast K, Sandel M, Chevillon C, Guégan JF, Wallace JR, Benbow ME. A need for null models in understanding disease transmission: the example of Mycobacterium ulcerans (Buruli ulcer disease). FEMS Microbiol Rev 2022; 46:fuab045. [PMID: 34468735 PMCID: PMC8767449 DOI: 10.1093/femsre/fuab045] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Accepted: 08/12/2021] [Indexed: 01/19/2023] Open
Abstract
Understanding the interactions of ecosystems, humans and pathogens is important for disease risk estimation. This is particularly true for neglected and newly emerging diseases where modes and efficiencies of transmission leading to epidemics are not well understood. Using a model for other emerging diseases, the neglected tropical skin disease Buruli ulcer (BU), we systematically review the literature on transmission of the etiologic agent, Mycobacterium ulcerans (MU), within a One Health/EcoHealth framework and against Hill's nine criteria and Koch's postulates for making strong inference in disease systems. Using this strong inference approach, we advocate a null hypothesis for MU transmission and other understudied disease systems. The null should be tested against alternative vector or host roles in pathogen transmission to better inform disease management. We propose a re-evaluation of what is necessary to identify and confirm hosts, reservoirs and vectors associated with environmental pathogen replication, dispersal and transmission; critically review alternative environmental sources of MU that may be important for transmission, including invertebrate and vertebrate species, plants and biofilms on aquatic substrates; and conclude with placing BU within the context of other neglected and emerging infectious diseases with intricate ecological relationships that lead to disease in humans, wildlife and domestic animals.
Collapse
Affiliation(s)
- Joseph P Receveur
- Department of Entomology, Michigan State University, East Lansing, MI 48824, USA
| | - Alexandra Bauer
- Department of Entomology, Michigan State University, East Lansing, MI 48824, USA
| | - Jennifer L Pechal
- Department of Entomology, Michigan State University, East Lansing, MI 48824, USA
| | - Sophie Picq
- Department of Entomology, Michigan State University, East Lansing, MI 48824, USA
| | - Magdalene Dogbe
- Department of Biological Sciences, Mississippi State University, Starkville, MS, USA
| | - Heather R Jordan
- Department of Biological Sciences, Mississippi State University, Starkville, MS, USA
| | - Alex W Rakestraw
- Department of Biological and Environmental Sciences, The University of West Alabama, Livingston, AL, USA
| | - Kayla Fast
- Department of Biological and Environmental Sciences, The University of West Alabama, Livingston, AL, USA
| | - Michael Sandel
- Department of Biological and Environmental Sciences, The University of West Alabama, Livingston, AL, USA
| | - Christine Chevillon
- Maladies Infectieuses et Vecteurs : Ecologie, Génétique, Evolution et Contrôle (MIVEGEC), Université de Montpellier (UM), Centre National de la Recherche Scientifique (CNRS), Institut pour la Recherche et le Développement, Montpellier, France
| | - Jean-François Guégan
- Maladies Infectieuses et Vecteurs : Ecologie, Génétique, Evolution et Contrôle (MIVEGEC), Université de Montpellier (UM), Centre National de la Recherche Scientifique (CNRS), Institut pour la Recherche et le Développement, Montpellier, France
- UMR Animal, santé, territoires, risques et écosystèmes, Institut national de recherche pour l'agriculture, l'alimentation et l'environnement (INRAE), Centre de coopération internationale en recherche agronomique pour le développement (Cirad), Université de Montpellier (UM), Montpellier, France
| | - John R Wallace
- Department of Biology, Millersville University, Millersville, PA, USA
| | - M Eric Benbow
- Department of Entomology, Michigan State University, East Lansing, MI 48824, USA
- Ecology, Evolution and Behavior Program, Michigan State University, East Lansing, MI, USA
- AgBioResearch, Michigan State University, East Lansing, MI, USA
- Department of Osteopathic Medical Specialties, Michigan State University, East Lansing, MI, USA
| |
Collapse
|
7
|
Muhi S, Stinear TP. Systematic review of M. Bovis BCG and other candidate vaccines for Buruli ulcer prophylaxis. Vaccine 2021; 39:7238-7252. [PMID: 34119347 DOI: 10.1016/j.vaccine.2021.05.092] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 05/10/2021] [Accepted: 05/23/2021] [Indexed: 01/17/2023]
Abstract
Buruli ulcer, caused by Mycobacterium ulcerans, is a neglected tropical disease endemic to over 30 countries, with increasing incidence in temperate, coastal Victoria, Australia. Strategies to control transmission are urgently required. This study systematically reviews the literature to identify and describe candidate prophylactic Buruli ulcer vaccines. This review highlights that Mycobacterium bovis Bacillus Calmette-Guérin (BCG) vaccine is the only vaccine studied in randomised controlled trials and confirms its importance as a benchmark for comparison against putative vaccines in pre-clinical studies. Nevertheless, BCG alone is unable to offer long-term protection in humans. A number of experimental vaccines that exceed the protection provided by BCG in mice have emerged, particularly those utilising recombinant BCG expressing immunogenic M. ulcerans proteins. Although progress is promising, there remain key questions about the optimal approach to characterising the immunological correlates of protection in humans and strategies to investigate the safety and efficacy of such vaccines in humans.
Collapse
Affiliation(s)
- Stephen Muhi
- Victorian Infectious Diseases Service at the Royal Melbourne Hospital, Melbourne, Australia; Department of Microbiology and Immunology, Peter Doherty Institute at the University of Melbourne, Melbourne, Australia
| | - Timothy P Stinear
- Department of Microbiology and Immunology, Peter Doherty Institute at the University of Melbourne, Melbourne, Australia.
| |
Collapse
|
8
|
Fevereiro J, Fraga AG, Pedrosa J. Genetics in the Host-Mycobacterium ulcerans interaction. Immunol Rev 2021; 301:222-241. [PMID: 33682158 DOI: 10.1111/imr.12958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Revised: 01/30/2021] [Accepted: 02/01/2021] [Indexed: 11/30/2022]
Abstract
Buruli ulcer is an emerging infectious disease associated with high morbidity and unpredictable outbreaks. It is caused by Mycobacterium ulcerans, a slow-growing pathogen evolutionarily shaped by the acquisition of a plasmid involved in the production of a potent macrolide-like cytotoxin and by genome rearrangements and downsizing. These events culminated in an uncommon infection pattern, whereby M. ulcerans is both able to induce the initiation of the inflammatory cascade and the cell death of its proponents, as well as to survive within the phagosome and in the extracellular milieu. In such extreme conditions, the host is sentenced to rely on a highly orchestrated genetic landscape to be able to control the infection. We here revisit the dynamics of M. ulcerans infection, drawing parallels from other mycobacterioses and integrating the most recent knowledge on its evolution and pathogenicity in its interaction with the host immune response.
Collapse
Affiliation(s)
- João Fevereiro
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal.,ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Alexandra G Fraga
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal.,ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Jorge Pedrosa
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal.,ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal
| |
Collapse
|
9
|
Tiukova IA, Pettersson ME, Hoeppner MP, Olsen RA, Käller M, Nielsen J, Dainat J, Lantz H, Söderberg J, Passoth V. Chromosomal genome assembly of the ethanol production strain CBS 11270 indicates a highly dynamic genome structure in the yeast species Brettanomyces bruxellensis. PLoS One 2019; 14:e0215077. [PMID: 31042716 PMCID: PMC6493715 DOI: 10.1371/journal.pone.0215077] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2018] [Accepted: 03/26/2019] [Indexed: 12/30/2022] Open
Abstract
Here, we present the genome of the industrial ethanol production strain Brettanomyces bruxellensis CBS 11270. The nuclear genome was found to be diploid, containing four chromosomes with sizes of ranging from 2.2 to 4.0 Mbp. A 75 Kbp mitochondrial genome was also identified. Comparing the homologous chromosomes, we detected that 0.32% of nucleotides were polymorphic, i.e. formed single nucleotide polymorphisms (SNPs), 40.6% of them were found in coding regions (i.e. 0.13% of all nucleotides formed SNPs and were in coding regions). In addition, 8,538 indels were found. The total number of protein coding genes was 4897, of them, 4,284 were annotated on chromosomes; and the mitochondrial genome contained 18 protein coding genes. Additionally, 595 genes, which were annotated, were on contigs not associated with chromosomes. A number of genes was duplicated, most of them as tandem repeats, including a six-gene cluster located on chromosome 3. There were also examples of interchromosomal gene duplications, including a duplication of a six-gene cluster, which was found on both chromosomes 1 and 4. Gene copy number analysis suggested loss of heterozygosity for 372 genes. This may reflect adaptation to relatively harsh but constant conditions of continuous fermentation. Analysis of gene topology showed that most of these losses occurred in clusters of more than one gene, the largest cluster comprising 33 genes. Comparative analysis against the wine isolate CBS 2499 revealed 88,534 SNPs and 8,133 indels. Moreover, when the scaffolds of the CBS 2499 genome assembly were aligned against the chromosomes of CBS 11270, many of them aligned completely, some have chunks aligned to different chromosomes, and some were in fact rearranged. Our findings indicate a highly dynamic genome within the species B. bruxellensis and a tendency towards reduction of gene number in long-term continuous cultivation.
Collapse
Affiliation(s)
- Ievgeniia A. Tiukova
- Chalmers University of Technology, Department of Biology and Biological Engineering, Systems and Synthetic Biology, Göteborg, Sweden
- Swedish University of Agricultural Sciences, Department of Molecular Sciences, Uppsala, Sweden
| | - Mats E. Pettersson
- Uppsala University, Department of Medical Biochemistry and Microbiology, Uppsala, Sweden
| | - Marc P. Hoeppner
- Uppsala University, Department of Medical Biochemistry and Microbiology, Uppsala, Sweden
- National Bioinformatics Infrastructure Sweden (NBIS), Uppsala, Sweden
- Christian-Albrechts-University of Kiel, Institute of Clinical Molecular Biology, Kiel, Germany
| | - Remi-Andre Olsen
- Science for Life Laboratory, Division of Gene Technology, School of Biotechnology, Royal Institute of Technology (KTH), Solna, Sweden
| | - Max Käller
- Royal Institute of Technology, Biotechnology and Health, School of Engineering Sciences in Chemistry, SciLifeLab, Stockholm, Sweden
- Stockholm University, Department of Biochemistry and Biophysics, SciLifeLab, Stockholm, Sweden
| | - Jens Nielsen
- Chalmers University of Technology, Department of Biology and Biological Engineering, Systems and Synthetic Biology, Göteborg, Sweden
| | - Jacques Dainat
- Uppsala University, Department of Medical Biochemistry and Microbiology, Uppsala, Sweden
- National Bioinformatics Infrastructure Sweden (NBIS), Uppsala, Sweden
| | - Henrik Lantz
- Uppsala University, Department of Medical Biochemistry and Microbiology, Uppsala, Sweden
- National Bioinformatics Infrastructure Sweden (NBIS), Uppsala, Sweden
| | - Jonas Söderberg
- Uppsala University, Department of Cell and Molecular Biology, Molecular Evolution, Uppsala, Sweden
| | - Volkmar Passoth
- Swedish University of Agricultural Sciences, Department of Molecular Sciences, Uppsala, Sweden
| |
Collapse
|
10
|
Scherr N, Bieri R, Thomas SS, Chauffour A, Kalia NP, Schneide P, Ruf MT, Lamelas A, Manimekalai MSS, Grüber G, Ishii N, Suzuki K, Tanner M, Moraski GC, Miller MJ, Witschel M, Jarlier V, Pluschke G, Pethe K. Targeting the Mycobacterium ulcerans cytochrome bc 1:aa 3 for the treatment of Buruli ulcer. Nat Commun 2018; 9:5370. [PMID: 30560872 PMCID: PMC6299076 DOI: 10.1038/s41467-018-07804-8] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2018] [Accepted: 11/26/2018] [Indexed: 11/21/2022] Open
Abstract
Mycobacterium ulcerans is the causative agent of Buruli ulcer, a neglected tropical skin disease that is most commonly found in children from West and Central Africa. Despite the severity of the infection, therapeutic options are limited to antibiotics with severe side effects. Here, we show that M. ulcerans is susceptible to the anti-tubercular drug Q203 and related compounds targeting the respiratory cytochrome bc1:aa3. While the cytochrome bc1:aa3 is the primary terminal oxidase in Mycobacterium tuberculosis, the presence of an alternate bd-type terminal oxidase limits the bactericidal and sterilizing potency of Q203 against this bacterium. M. ulcerans strains found in Buruli ulcer patients from Africa and Australia lost all alternate terminal electron acceptors and rely exclusively on the cytochrome bc1:aa3 to respire. As a result, Q203 is bactericidal at low dose against M. ulcerans replicating in vitro and in mice, making the drug a promising candidate for Buruli ulcer treatment. Mycobacterium ulcerans is the causative agent of Buruli ulcer (BU). Existing anti-tubercular drugs have been used to treat the condition with varying success. Here, the authors show that a clinical-stage drug candidate for tuberculosis, Q203, is effective at killing M. ulcerans and is a promising therapeutic candidate for BU.
Collapse
Affiliation(s)
- Nicole Scherr
- Swiss Tropical and Public Health Institute, Basel, 4051, Switzerland.,University of Basel, Basel, 4001, Switzerland
| | - Raphael Bieri
- Swiss Tropical and Public Health Institute, Basel, 4051, Switzerland.,University of Basel, Basel, 4001, Switzerland
| | - Sangeeta S Thomas
- Lee Kong Chian School of Medicine, Nanyang Technological University, Experimental Medicine Building, Singapore, 636921, Singapore
| | - Aurélie Chauffour
- CR7, INSERM, U1135, Centre d'Immunologie et des Maladies Infectieuses, CIMI, Team E13 (Bactériologie), Sorbonne Universités, UPMC Université Paris 06, Paris, 75005, France
| | - Nitin Pal Kalia
- Lee Kong Chian School of Medicine, Nanyang Technological University, Experimental Medicine Building, Singapore, 636921, Singapore
| | | | - Marie-Thérèse Ruf
- Swiss Tropical and Public Health Institute, Basel, 4051, Switzerland.,University of Basel, Basel, 4001, Switzerland
| | - Araceli Lamelas
- Swiss Tropical and Public Health Institute, Basel, 4051, Switzerland.,University of Basel, Basel, 4001, Switzerland.,Red de Estudios Moleculares, AvanzadosInstituto de Ecología A. C., Xalapa, 91000, Veracruz, Mexico
| | - Malathy S S Manimekalai
- School of Biological Sciences, Nanyang Technological University, Singapore, 637551, Singapore
| | - Gerhard Grüber
- School of Biological Sciences, Nanyang Technological University, Singapore, 637551, Singapore
| | - Norihisa Ishii
- Department of Mycobacteriology, Leprosy Research Center, National Institute of Infectious Diseases, Tokyo, 189-0002, Japan
| | - Koichi Suzuki
- Department of Mycobacteriology, Leprosy Research Center, National Institute of Infectious Diseases, Tokyo, 189-0002, Japan.,Department of Clinical Laboratory Science, Faculty of Medical Technology, Teikyo University, Tokyo, 173-8605, Japan
| | - Marcel Tanner
- Swiss Tropical and Public Health Institute, Basel, 4051, Switzerland.,University of Basel, Basel, 4001, Switzerland
| | - Garrett C Moraski
- Department of Chemistry and Biochemistry, Montana State University, Bozeman, MT, 59715, USA
| | - Marvin J Miller
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN, 46556, USA
| | | | - Vincent Jarlier
- CR7, INSERM, U1135, Centre d'Immunologie et des Maladies Infectieuses, CIMI, Team E13 (Bactériologie), Sorbonne Universités, UPMC Université Paris 06, Paris, 75005, France.,CNR-MyRMA, Bactériologie Hygiène, Hôpitaux Universitaires Pitie Salpêtrière-Charles Foix, Paris, 75013, France
| | - Gerd Pluschke
- Swiss Tropical and Public Health Institute, Basel, 4051, Switzerland. .,University of Basel, Basel, 4001, Switzerland.
| | - Kevin Pethe
- Lee Kong Chian School of Medicine, Nanyang Technological University, Experimental Medicine Building, Singapore, 636921, Singapore. .,School of Biological Sciences, Nanyang Technological University, Singapore, 637551, Singapore.
| |
Collapse
|
11
|
Das S, Pettersson BMF, Behra PRK, Mallick A, Cheramie M, Ramesh M, Shirreff L, DuCote T, Dasgupta S, Ennis DG, Kirsebom LA. Extensive genomic diversity among Mycobacterium marinum strains revealed by whole genome sequencing. Sci Rep 2018; 8:12040. [PMID: 30104693 PMCID: PMC6089878 DOI: 10.1038/s41598-018-30152-y] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2018] [Accepted: 07/25/2018] [Indexed: 12/20/2022] Open
Abstract
Mycobacterium marinum is the causative agent for the tuberculosis-like disease mycobacteriosis in fish and skin lesions in humans. Ubiquitous in its geographical distribution, M. marinum is known to occupy diverse fish as hosts. However, information about its genomic diversity is limited. Here, we provide the genome sequences for 15 M. marinum strains isolated from infected humans and fish. Comparative genomic analysis of these and four available genomes of the M. marinum strains M, E11, MB2 and Europe reveal high genomic diversity among the strains, leading to the conclusion that M. marinum should be divided into two different clusters, the "M"- and the "Aronson"-type. We suggest that these two clusters should be considered to represent two M. marinum subspecies. Our data also show that the M. marinum pan-genome for both groups is open and expanding and we provide data showing high number of mutational hotspots in M. marinum relative to other mycobacteria such as Mycobacterium tuberculosis. This high genomic diversity might be related to the ability of M. marinum to occupy different ecological niches.
Collapse
Affiliation(s)
- Sarbashis Das
- Department of Cell and Molecular Biology, Box 596, Biomedical Centre, SE-751 24, Uppsala, Sweden
| | - B M Fredrik Pettersson
- Department of Cell and Molecular Biology, Box 596, Biomedical Centre, SE-751 24, Uppsala, Sweden
| | - Phani Rama Krishna Behra
- Department of Cell and Molecular Biology, Box 596, Biomedical Centre, SE-751 24, Uppsala, Sweden
| | - Amrita Mallick
- Department of Biology, University of Louisiana, Lafayette, Louisiana, USA
| | - Martin Cheramie
- Department of Biology, University of Louisiana, Lafayette, Louisiana, USA
| | - Malavika Ramesh
- Department of Cell and Molecular Biology, Box 596, Biomedical Centre, SE-751 24, Uppsala, Sweden
| | - Lisa Shirreff
- Department of Biology, University of Louisiana, Lafayette, Louisiana, USA
| | - Tanner DuCote
- Department of Biology, University of Louisiana, Lafayette, Louisiana, USA
| | - Santanu Dasgupta
- Department of Cell and Molecular Biology, Box 596, Biomedical Centre, SE-751 24, Uppsala, Sweden
| | - Don G Ennis
- Department of Biology, University of Louisiana, Lafayette, Louisiana, USA
| | - Leif A Kirsebom
- Department of Cell and Molecular Biology, Box 596, Biomedical Centre, SE-751 24, Uppsala, Sweden.
| |
Collapse
|
12
|
Nakanaga K, Ogura Y, Toyoda A, Yoshida M, Fukano H, Fujiwara N, Miyamoto Y, Nakata N, Kazumi Y, Maeda S, Ooka T, Goto M, Tanigawa K, Mitarai S, Suzuki K, Ishii N, Ato M, Hayashi T, Hoshino Y. Naturally occurring a loss of a giant plasmid from Mycobacterium ulcerans subsp. shinshuense makes it non-pathogenic. Sci Rep 2018; 8:8218. [PMID: 29844323 PMCID: PMC5974349 DOI: 10.1038/s41598-018-26425-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2017] [Accepted: 04/30/2018] [Indexed: 12/30/2022] Open
Abstract
Mycobacterium ulcerans is the causative agent of Buruli ulcer (BU), a WHO-defined neglected tropical disease. All Japanese BU causative isolates have shown distinct differences from the prototype and are categorized as M. ulcerans subspecies shinshuense. During repeated sub-culture, we found that some M. shinshuense colonies were non-pigmented whereas others were pigmented. Whole genome sequence analysis revealed that non-pigmented colonies did not harbor a giant plasmid, which encodes elements needed for mycolactone toxin biosynthesis. Moreover, mycolactone was not detected in sterile filtrates of non-pigmented colonies. Mice inoculated with suspensions of pigmented colonies died within 5 weeks whereas those infected with suspensions of non-pigmented colonies had significantly prolonged survival (>8 weeks). This study suggests that mycolactone is a critical M. shinshuense virulence factor and that the lack of a mycolactone-producing giant plasmid makes the strain non-pathogenic. We made an avirulent mycolactone-deletion mutant strain directly from the virulent original.
Collapse
Affiliation(s)
- Kazue Nakanaga
- Department of Mycobacteriology, Leprosy Research Center, National Institute of Infectious Diseases, Tokyo, Japan
| | - Yoshitoshi Ogura
- Department of Bacteriology, Faculty of Medicine, Kyushu University, Fukuoka, Japan
| | - Atsushi Toyoda
- Center for Information Biology, National Institute of Genetics, Shizuoka, Japan
| | - Mitsunori Yoshida
- Department of Mycobacteriology, Leprosy Research Center, National Institute of Infectious Diseases, Tokyo, Japan
| | - Hanako Fukano
- Department of Mycobacteriology, Leprosy Research Center, National Institute of Infectious Diseases, Tokyo, Japan
| | - Nagatoshi Fujiwara
- Department of Food and Nutrition, Faculty of Contemporary Human Life Science, Tezukayama University, Nara, Japan
| | - Yuji Miyamoto
- Department of Mycobacteriology, Leprosy Research Center, National Institute of Infectious Diseases, Tokyo, Japan
| | - Noboru Nakata
- Department of Mycobacteriology, Leprosy Research Center, National Institute of Infectious Diseases, Tokyo, Japan
- Antimicrobial Resistance Research Center, National Institute of Infectious Diseases, Tokyo, Japan
| | - Yuko Kazumi
- Antimicrobial Resistance Research Center, National Institute of Infectious Diseases, Tokyo, Japan
- The Research Institute of Tuberculosis, Japan Anti-Tuberculosis Association, Tokyo, Japan
| | - Shinji Maeda
- The Research Institute of Tuberculosis, Japan Anti-Tuberculosis Association, Tokyo, Japan
- School of Pharmacy, Hokkaido Pharmaceutical University, Sapporo, Japan
| | - Tadasuke Ooka
- Department of Microbiology, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima, Japan
| | | | - Kazunari Tanigawa
- Department of Mycobacteriology, Leprosy Research Center, National Institute of Infectious Diseases, Tokyo, Japan
- Faculty of Pharma-Sciences, Teikyo University, Tokyo, Japan
| | - Satoshi Mitarai
- The Research Institute of Tuberculosis, Japan Anti-Tuberculosis Association, Tokyo, Japan
| | - Koichi Suzuki
- Department of Mycobacteriology, Leprosy Research Center, National Institute of Infectious Diseases, Tokyo, Japan
- Department of Clinical Laboratory Science, Faculty of Medical Technology, Teikyo University, Tokyo, Japan
| | - Norihisa Ishii
- Department of Mycobacteriology, Leprosy Research Center, National Institute of Infectious Diseases, Tokyo, Japan
| | - Manabu Ato
- Department of Mycobacteriology, Leprosy Research Center, National Institute of Infectious Diseases, Tokyo, Japan
| | - Tetsuya Hayashi
- Department of Bacteriology, Faculty of Medicine, Kyushu University, Fukuoka, Japan
| | - Yoshihiko Hoshino
- Department of Mycobacteriology, Leprosy Research Center, National Institute of Infectious Diseases, Tokyo, Japan.
| |
Collapse
|
13
|
Buruli Ulcer, a Prototype for Ecosystem-Related Infection, Caused by Mycobacterium ulcerans. Clin Microbiol Rev 2017; 31:31/1/e00045-17. [PMID: 29237707 DOI: 10.1128/cmr.00045-17] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Buruli ulcer is a noncontagious disabling cutaneous and subcutaneous mycobacteriosis reported by 33 countries in Africa, Asia, Oceania, and South America. The causative agent, Mycobacterium ulcerans, derives from Mycobacterium marinum by genomic reduction and acquisition of a plasmid-borne, nonribosomal cytotoxin mycolactone, the major virulence factor. M. ulcerans-specific sequences have been readily detected in aquatic environments in food chains involving small mammals. Skin contamination combined with any type of puncture, including insect bites, is the most plausible route of transmission, and skin temperature of <30°C significantly correlates with the topography of lesions. After 30 years of emergence and increasing prevalence between 1970 and 2010, mainly in Africa, factors related to ongoing decreasing prevalence in the same countries remain unexplained. Rapid diagnosis, including laboratory confirmation at the point of care, is mandatory in order to reduce delays in effective treatment. Parenteral and potentially toxic streptomycin-rifampin is to be replaced by oral clarithromycin or fluoroquinolone combined with rifampin. In the absence of proven effective primary prevention, avoiding skin contamination by means of clothing can be implemented in areas of endemicity. Buruli ulcer is a prototype of ecosystem pathology, illustrating the impact of human activities on the environment as a source for emerging tropical infectious diseases.
Collapse
|
14
|
Aboagye SY, Ampah KA, Ross A, Asare P, Otchere ID, Fyfe J, Yeboah-Manu D. Seasonal Pattern of Mycobacterium ulcerans, the Causative Agent of Buruli Ulcer, in the Environment in Ghana. MICROBIAL ECOLOGY 2017; 74:350-361. [PMID: 28238016 PMCID: PMC5496970 DOI: 10.1007/s00248-017-0946-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/19/2016] [Accepted: 01/31/2017] [Indexed: 06/06/2023]
Abstract
This study aimed to contribute to the understanding of Mycobacterium ulcerans (MU) ecology by analysing both clinical and environmental samples collected from ten communities along two major river basins (Offin and Densu) associated with Buruli ulcer (BU) at different seasons. We collected clinical samples from presumptive BU cases and environmental samples from ten communities. Following DNA extraction, clinical samples were confirmed by IS2404 PCR and environmental samples were confirmed by targeting MU-specific genes, IS2404, IS2606 and the ketoreductase (KR) using real-time PCR. Environmental samples were first analysed for IS2404; after which, IS2404-positive samples were multiplexed for the IS2606 and KR gene. Our findings indicate an overall decline in BU incidence along both river basins, although incidence at Densu outweighs that of Offin. Overall, 1600 environmental samples were screened along Densu (434, 27 %) and Offin (1166, 73 %) and MU was detected in 139 (9 %) of the combined samples. The positivity of MU along the Densu River basin was 89/434 (20.5 %), whilst that of the Offin River basin was 50/1166 (4.3 %). The DNA was detected mainly in snails (5/6, 83 %), moss (8/40, 20 %), soil (55/586, 9 %) and vegetation (55/675, 8 %). The proportion of MU positive samples recorded was higher during the months with higher rainfall levels (126/1175, 11 %) than during the dry season months (13/425, 3 %). This study indicates for the first time that there is a seasonal pattern in the presence of MU in the environment, which may be related to recent rainfall or water in the soil.
Collapse
Affiliation(s)
- Samuel Yaw Aboagye
- Bacteriology Department, Noguchi Memorial Institute for Medical Research, University of Ghana, P.O. Box LG 581, Legon, Accra, Ghana
- Institute of Environmental and Sanitation Studies, University of Ghana, Accra, Ghana
| | - Kobina Assan Ampah
- Bacteriology Department, Noguchi Memorial Institute for Medical Research, University of Ghana, P.O. Box LG 581, Legon, Accra, Ghana
- Swiss Tropical and Public Health Institute, Basel, Switzerland
- University of Basel, Basel, Switzerland
| | - Amanda Ross
- Swiss Tropical and Public Health Institute, Basel, Switzerland
- University of Basel, Basel, Switzerland
| | - Prince Asare
- Bacteriology Department, Noguchi Memorial Institute for Medical Research, University of Ghana, P.O. Box LG 581, Legon, Accra, Ghana
| | - Isaac Darko Otchere
- Bacteriology Department, Noguchi Memorial Institute for Medical Research, University of Ghana, P.O. Box LG 581, Legon, Accra, Ghana
| | - Janet Fyfe
- Victorian Infectious Diseases Reference Laboratory, Melbourne, VIC, Australia
| | - Dorothy Yeboah-Manu
- Bacteriology Department, Noguchi Memorial Institute for Medical Research, University of Ghana, P.O. Box LG 581, Legon, Accra, Ghana.
| |
Collapse
|
15
|
Methodological and Clinical Aspects of the Molecular Epidemiology of Mycobacterium tuberculosis and Other Mycobacteria. Clin Microbiol Rev 2016; 29:239-90. [PMID: 26912567 DOI: 10.1128/cmr.00055-15] [Citation(s) in RCA: 97] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Molecular typing has revolutionized epidemiological studies of infectious diseases, including those of a mycobacterial etiology. With the advent of fingerprinting techniques, many traditional concepts regarding transmission, infectivity, or pathogenicity of mycobacterial bacilli have been revisited, and their conventional interpretations have been challenged. Since the mid-1990s, when the first typing methods were introduced, a plethora of other modalities have been proposed. So-called molecular epidemiology has become an essential subdiscipline of modern mycobacteriology. It serves as a resource for understanding the key issues in the epidemiology of tuberculosis and other mycobacterial diseases. Among these issues are disclosing sources of infection, quantifying recent transmission, identifying transmission links, discerning reinfection from relapse, tracking the geographic distribution and clonal expansion of specific strains, and exploring the genetic mechanisms underlying specific phenotypic traits, including virulence, organ tropism, transmissibility, or drug resistance. Since genotyping continues to unravel the biology of mycobacteria, it offers enormous promise in the fight against and prevention of the diseases caused by these pathogens. In this review, molecular typing methods for Mycobacterium tuberculosis and nontuberculous mycobacteria elaborated over the last 2 decades are summarized. The relevance of these methods to the epidemiological investigation, diagnosis, evolution, and control of mycobacterial diseases is discussed.
Collapse
|
16
|
Complete Genome Sequence of Mycobacterium ulcerans subsp. shinshuense. GENOME ANNOUNCEMENTS 2016; 4:4/5/e01050-16. [PMID: 27688344 PMCID: PMC5043562 DOI: 10.1128/genomea.01050-16] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Mycobacterium ulcerans subsp. shinshuense produces mycolactone and causes Buruli ulcer. Here, we report the complete sequence of its genome, which comprises a 5.9-Mb chromosome and a 166-kb plasmid (pShT-P). The sequence will represent the essential data for future phylogenetic and comparative genome studies of mycolactone-producing mycobacteria.
Collapse
|
17
|
Shida Y, Furukawa T, Ogasawara W. Deciphering the molecular mechanisms behind cellulase production in Trichoderma reesei, the hyper-cellulolytic filamentous fungus. Biosci Biotechnol Biochem 2016; 80:1712-29. [DOI: 10.1080/09168451.2016.1171701] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Abstract
The filamentous fungus Trichoderma reesei is a potent cellulase producer and the best-studied cellulolytic fungus. A lot of investigations not only on glycoside hydrolases produced by T. reesei, but also on the machinery controlling gene expression of these enzyme have made this fungus a model organism for cellulolytic fungi. We have investigated the T. reesei strain including mutants developed in Japan in detail to understand the molecular mechanisms that control the cellulase gene expression, the biochemical and morphological aspects that could favor this phenotype, and have attempted to generate novel strains that may be appropriate for industrial use. Subsequently, we developed recombinant strains by combination of these insights and the heterologous-efficient saccharifing enzymes. Resulting enzyme preparations were highly effective for saccharification of various biomass. In this review, we present some of the salient findings from the recent biochemical, morphological, and molecular analyses of this remarkable cellulase hyper-producing fungus.
Collapse
Affiliation(s)
- Yosuke Shida
- Department of Bioengineering, Nagaoka University of Technology, Nagaoka, Japan
| | - Takanori Furukawa
- Department of Bioengineering, Nagaoka University of Technology, Nagaoka, Japan
| | - Wataru Ogasawara
- Department of Bioengineering, Nagaoka University of Technology, Nagaoka, Japan
| |
Collapse
|
18
|
Shinoda N, Nakamura H, Watanabe M. Detection of Mycobacterium ulcerans by real-time PCR with improved primers. Trop Med Health 2016; 44:28. [PMID: 27610043 PMCID: PMC5009631 DOI: 10.1186/s41182-016-0028-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2016] [Accepted: 08/01/2016] [Indexed: 12/04/2022] Open
Abstract
Background Buruli ulcer is a severe skin disease caused by Mycobacterium ulcerans. Real-time PCR targeting the IS2404 sequence has been used as a reliable and rapid method for the diagnosis of Buruli ulcer and detection of M. ulcerans in the environment. The genome of M. ulcerans contains hundreds of IS2404 copies, which have variability in certain sequences. Therefore, the design of new primers specific to conserved IS2404 regions may potentially improve the sensitivity of M. ulcerans detection and, consequently, the diagnosis of Buruli ulcer, thus ensuring timely treatment of the disease. Results In silico analysis indicates that DNA sequences of the IS2404 elements are highly variable within a single strain. As the binding sites of conventional IS2404-specific primers used for M. ulcerans detection contain polymorphic sequences, we designed new primers, which enabled the detection of M. ulcerans by real-time PCR with higher sensitivity and similar specificity with respect to that of conventional primers. However, the increase in sensitivity with the new primers depended on the M. ulcerans strain. Conclusions The results suggest that real-time PCR based on the new primers could improve Buruli ulcer diagnosis and M. ulcerans detection in environmental samples. Electronic supplementary material The online version of this article (doi:10.1186/s41182-016-0028-3) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Noriko Shinoda
- Graduate School of Infection Control Sciences, Kitasato University, 5-9-1 Shirokane, Minato-ku, Tokyo 108-8641 Japan
| | - Hajime Nakamura
- Research Institute of Tuberculosis, Japan Anti-Tuberculosis Association, 3-1-24 Matsuyama, Kiyose, Tokyo 204-8533 Japan
| | - Mineo Watanabe
- Graduate School of Infection Control Sciences, Kitasato University, 5-9-1 Shirokane, Minato-ku, Tokyo 108-8641 Japan ; Kitasato Institute for Life Sciences, Kitasato University, 5-9-1 Shirokane, Minato-ku, Tokyo 108-8641 Japan
| |
Collapse
|
19
|
Yotsu RR, Murase C, Sugawara M, Suzuki K, Nakanaga K, Ishii N, Asiedu K. Revisiting Buruli ulcer. J Dermatol 2015; 42:1033-41. [PMID: 26332541 DOI: 10.1111/1346-8138.13049] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2015] [Accepted: 06/23/2015] [Indexed: 11/27/2022]
Abstract
Buruli ulcer (BU), or Mycobacterium ulcerans infection, is a new emerging infectious disease which has been reported in over 33 countries worldwide. It has been noted not only in tropical areas, such as West Africa where it is most endemic, but also in moderate non-tropical climate areas, including Australia and Japan. Clinical presentation starts with a papule, nodule, plaque or edematous form which eventually leads to extensive skin ulceration. It can affect all age groups, but especially children aged between 5 and 15 years in West Africa. Multiple-antibiotic treatment has proven effective, and with surgical intervention at times of severity, it is curable. However, if diagnosis and treatment is delayed, those affected may be left with life-long disabilities. The disease is not yet fully understood, including its route of transmission and pathogenesis. However, due to recent research, several important features of the disease are now being elucidated. Notably, there may be undiagnosed cases in other parts of the world where BU has not yet been reported. Japan exemplifies the finding that awareness among dermatologists plays a key role in BU case detection. So, what about in other countries where a case of BU has never been diagnosed and there is no awareness of the disease among the population or, more importantly, among health professionals? This article will revisit BU, reviewing clinical features as well as the most recent epidemiological and scientific findings of the disease, to raise awareness of BU among dermatologists worldwide.
Collapse
Affiliation(s)
- Rie R Yotsu
- Department of Dermatology, National Suruga Sanatorium, Shizuoka, Japan.,Department of Dermatology, National Center for Global Health and Medicine, Tokyo, Japan
| | - Chiaki Murase
- Department of Dermatology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | | | - Koichi Suzuki
- Department of Clinical Laboratory Science, Faculty of Medical Technology, Teikyo University, Tokyo, Japan.,Leprosy Research Center, National Institute of Infectious Diseases, Tokyo, Japan
| | - Kazue Nakanaga
- Leprosy Research Center, National Institute of Infectious Diseases, Tokyo, Japan
| | - Norihisa Ishii
- Leprosy Research Center, National Institute of Infectious Diseases, Tokyo, Japan
| | - Kingsley Asiedu
- Department of Control of Neglected Tropical Diseases, World Health Organization, Geneva, Switzerland
| |
Collapse
|
20
|
Mougin B, Tian RBD, Drancourt M. Tropical Plant Extracts Modulating the Growth of Mycobacterium ulcerans. PLoS One 2015; 10:e0124626. [PMID: 25905816 PMCID: PMC4408112 DOI: 10.1371/journal.pone.0124626] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2014] [Accepted: 03/17/2015] [Indexed: 12/03/2022] Open
Abstract
Mycobacterium ulcerans, the etiologic agent of Buruli ulcer, has been detected on aquatic plants in endemic tropical regions. Here, we tested the effect of several tropical plant extracts on the growth of M. ulcerans and the closely related Mycobacterium marinum. M. ulcerans and M. marinum were inoculated on Middlebrook 7H11 medium with and without extracts from tropical aquatic plants, including Ammannia gracilis, Crinum calamistratum, Echinodorus africanus, Vallisneria nana and Vallisneria torta. Delay of detection of the first colony and the number of colonies at day 7 (M. marinum) or day 16 (M. ulcerans) were used as endpoints. The first M. ulcerans colonies were detected at 8 ± 0 days on control Middlebrook 7H11 medium, 6.34 ± 0.75 days on A. gracilis-enriched medium (p<0.01), 6 ± 1 days on E. africanus- and V. torta-enriched media (p<0.01), 6 ± 0 days on V. nana-enriched medium (p<0.01) and 5.67 ± 0.47 days on C. calamistratum-enriched medium (p<0.01). Furthermore, the number of detected colonies was significantly increased in C. calamistratum- and E. africanus-enriched media at each time point compared to Middlebrook 7H11 (p<0.05). V. nana- and V. torta-enriched media significantly increased the number of detected colonies starting from day 6 and day 10, respectively (p<0.001). At the opposite, A. gracilis-enriched medium significantly decreased the number of detected colonies starting from day 8 PI (p<0.05). In conclusion, some aquatic plant extracts, could be added as adjuvants to the Middlebrook 7H11 medium for the culturing of M. marinum and M. ulcerans.
Collapse
Affiliation(s)
- Benjamin Mougin
- URMITE (Unité de Recherche sur les Maladies Infectieuses et Tropicales Emergentes), UMR CNRS 7278, IRD 198, Inserm 1095, Aix Marseille Université, Marseille, France
| | - Roger B. D. Tian
- URMITE (Unité de Recherche sur les Maladies Infectieuses et Tropicales Emergentes), UMR CNRS 7278, IRD 198, Inserm 1095, Aix Marseille Université, Marseille, France
| | - Michel Drancourt
- URMITE (Unité de Recherche sur les Maladies Infectieuses et Tropicales Emergentes), UMR CNRS 7278, IRD 198, Inserm 1095, Aix Marseille Université, Marseille, France
| |
Collapse
|
21
|
Evaluation and application of the strand-specific protocol for next-generation sequencing. BIOMED RESEARCH INTERNATIONAL 2015; 2015:182389. [PMID: 25893191 PMCID: PMC4393923 DOI: 10.1155/2015/182389] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/11/2014] [Accepted: 02/03/2015] [Indexed: 12/02/2022]
Abstract
Next-generation sequencing (NGS) has become a powerful sequencing tool, applied in a wide range of biological studies. However, the traditional sample preparation protocol for NGS is non-strand-specific (NSS), leading to biased estimates of expression for transcripts overlapped at the antisense strand. Strand-specific (SS) protocols have recently been developed. In this study, we prepared the same RNA sample by using the SS and NSS protocols, followed by sequencing with Illumina HiSeq platform. Using real-time quantitative PCR as a standard, we first proved that the SS protocol more precisely estimates gene expressions compared with the NSS protocol, particularly for those overlapped at the antisense strand. In addition, we also showed that the sequence reads from the SS protocol are comparable with those from conventional NSS protocols in many aspects. Finally, we also mapped a fraction of sequence reads back to the antisense strand of the known genes, originally without annotated genes located. Using sequence assembly and PCR validation, we succeeded in identifying and characterizing the novel antisense genes. Our results show that the SS protocol performs more accurately than the traditional NSS protocol and can be applied in future studies.
Collapse
|
22
|
Mycobacterium ulcerans Disease (Buruli Ulcer): Potential Reservoirs and Vectors. CURRENT CLINICAL MICROBIOLOGY REPORTS 2015. [DOI: 10.1007/s40588-015-0013-3] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
23
|
Population structure of a microparasite infecting Daphnia: spatio-temporal dynamics. BMC Evol Biol 2014; 14:247. [PMID: 25471262 PMCID: PMC4265321 DOI: 10.1186/s12862-014-0247-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2014] [Accepted: 11/18/2014] [Indexed: 11/21/2022] Open
Abstract
Background Detailed knowledge of spatial and temporal variation in the genetic population structure of hosts and parasites is required for understanding of host − parasite coevolution. As hot-spots of contemporary coevolution in natural systems are difficult to detect and long-term studies are restricted to few systems, additional population genetic data from various host − parasite systems may provide important insights into the topic. This is particularly true for parasites, as these players have been under-investigated so far due to the lower availability of suitable molecular markers. Here, we traced genetic variation (based on sequence variants in the internal transcribed spacer region, ITS) among seven geographically isolated populations of the ichthyosporean Caullerya mesnili, a common microparasite of the cladoceran Daphnia (here, the D. longispina hybrid complex). At three sites, we also studied parasite genetic variation over time (three to four sampling points) and tested for associations between parasite genotypes and host species. Results Parasite (and host) populations were significantly structured across space, indicating limited dispersal. Moreover, the frequency of parasite genotypes varied significantly over time, suggesting rapid evolutionary change in Caullerya. However, the distribution of parasite genotypes was similar across different host species, which might in turn have important consequences for parasite epidemiology. Conclusions The approach proposed here can be applied to track spatial and temporal changes in the population structure of other microparasite species for which sequence variation in the ITS or other highly variable genome regions has been documented but other types of polymorphic markers are lacking. Screening of parasite sequence variants allows for reliable detection of cross-species infections and, using advanced sequencing techniques in the near future, for detailed studies of parasite evolution in natural host − parasite systems. Electronic supplementary material The online version of this article (doi:10.1186/s12862-014-0247-3) contains supplementary material, which is available to authorized users.
Collapse
|
24
|
Chang FM, Ou TY, Cheng WN, Chou ML, Lee KC, Chin YP, Lin CP, Chang KD, Lin CT, Su CH. Short-term exposure to fluconazole induces chromosome loss in Candida albicans: an approach to produce haploid cells. Fungal Genet Biol 2014; 70:68-76. [PMID: 25038494 DOI: 10.1016/j.fgb.2014.06.009] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2014] [Revised: 06/16/2014] [Accepted: 06/19/2014] [Indexed: 02/07/2023]
Abstract
Candida albicans is considered to be an obligate diploid fungus. Here, we describe an approach to isolate aneuploids or haploids induced by the short-term (12-16 h) exposure of diploid reference strains SC5314 and CAI4 to the most commonly used antifungal drug, fluconazole, followed by repeated single-cell separation among small morphologically distinct colonies in the inhibition zone. The isolated strains had altered cell morphology and LOH events in the MTL and other marker alleles of the analyzed loci at 8 chromosomes of C. albicans with decreased DNA content. The present study employed next-generation sequencing (NGS) combined flow cytometry analysis of the DNA content to analyze the haploid, autodiploid, and aneuploid strains that arose from the fluconazole treatment instead of using the conventional single nucleotide polymorphism/comparative genome hybridization (SNP/CGH) method. A multiple-alignment tool was also developed based on sequenced data from NGS to establish haplotype mapping for each chromosome of the selected strains. These findings revealed that C. albicans experiences 'concerted chromosome loss' to form strains with homozygous alleles and that it even has a haploid status after short-term exposure to fluconazole. Additionally, we developed a new platform to analyze chromosome copy number using NGS.
Collapse
Affiliation(s)
- Fang-Mo Chang
- School of Dentistry, College of Oral Medicine, Taipei Medical University, Taipei, Taiwan
| | - Tsong-Yih Ou
- Division of Infectious Disease, Department of Internal Medicine, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan
| | - Wei-Ning Cheng
- Department of Microbiology and Immunology, Taipei Medical University, Taipei, Taiwan
| | - Ming-Li Chou
- Department of Microbiology and Immunology, Taipei Medical University, Taipei, Taiwan
| | - Kai-Cheng Lee
- Department of Microbiology and Immunology, Taipei Medical University, Taipei, Taiwan
| | - Yi-Ping Chin
- Department of Microbiology and Immunology, Taipei Medical University, Taipei, Taiwan
| | | | | | - Che-Tong Lin
- School of Dentistry, College of Oral Medicine, Taipei Medical University, Taipei, Taiwan
| | - Ching-Hua Su
- Department of Microbiology and Immunology, Taipei Medical University, Taipei, Taiwan.
| |
Collapse
|
25
|
Röltgen K, Bratschi MW, Ross A, Aboagye SY, Ampah KA, Bolz M, Andreoli A, Pritchard J, Minyem JC, Noumen D, Koka E, Um Boock A, Yeboah-Manu D, Pluschke G. Late onset of the serological response against the 18 kDa small heat shock protein of Mycobacterium ulcerans in children. PLoS Negl Trop Dis 2014; 8:e2904. [PMID: 24853088 PMCID: PMC4031220 DOI: 10.1371/journal.pntd.0002904] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2013] [Accepted: 04/14/2014] [Indexed: 11/18/2022] Open
Abstract
A previous survey for clinical cases of Buruli ulcer (BU) in the Mapé Basin of Cameroon suggested that, compared to older age groups, very young children may be less exposed to Mycobacterium ulcerans. Here we determined serum IgG titres against the 18 kDa small heat shock protein (shsp) of M. ulcerans in 875 individuals living in the BU endemic river basins of the Mapé in Cameroon and the Densu in Ghana. While none of the sera collected from children below the age of four contained significant amounts of 18 kDa shsp specific antibodies, the majority of sera had high IgG titres against the Plasmodium falciparum merozoite surface protein 1 (MSP-1). These data suggest that exposure to M. ulcerans increases at an age which coincides with the children moving further away from their homes and having more intense environmental contact, including exposure to water bodies at the periphery of their villages. Although M. ulcerans, the causative agent of Buruli ulcer (BU), was identified in 1948, its transmission pathways and environmental reservoirs remain poorly understood. The occurrence of M. ulcerans infections in endemic countries in West and Central Africa is highly focal and associated with stagnant and slow flowing water bodies. BU is often described as a disease mainly affecting children <15 years of age. However, taking the population age distribution into account, our recent longitudinal survey for BU in the Mapé Dam Region of Cameroon revealed that clinical cases of BU among children <5 years are relatively rare. In accordance with these findings, data of the present sero-epidemiological study indicate that children <4 years old are less exposed to M. ulcerans than older children. Sero-conversion is associated with age, which may be due to age-related changes in behavioural factors, such as a wider movement radius of older children, including more frequent contact with water bodies at the periphery of their villages.
Collapse
Affiliation(s)
- Katharina Röltgen
- Swiss Tropical and Public Health Institute, Molecular Immunology, Basel, Switzerland
- University of Basel, Basel, Switzerland
| | - Martin W. Bratschi
- Swiss Tropical and Public Health Institute, Molecular Immunology, Basel, Switzerland
- University of Basel, Basel, Switzerland
| | - Amanda Ross
- Swiss Tropical and Public Health Institute, Molecular Immunology, Basel, Switzerland
- University of Basel, Basel, Switzerland
| | - Samuel Y. Aboagye
- Noguchi Memorial Institute for Medical Research, University of Ghana, Legon, Ghana
| | - Kobina A. Ampah
- Noguchi Memorial Institute for Medical Research, University of Ghana, Legon, Ghana
| | - Miriam Bolz
- Swiss Tropical and Public Health Institute, Molecular Immunology, Basel, Switzerland
- University of Basel, Basel, Switzerland
| | - Arianna Andreoli
- Swiss Tropical and Public Health Institute, Molecular Immunology, Basel, Switzerland
- University of Basel, Basel, Switzerland
| | - James Pritchard
- Swiss Tropical and Public Health Institute, Molecular Immunology, Basel, Switzerland
- University of Basel, Basel, Switzerland
| | - Jacques C. Minyem
- Swiss Tropical and Public Health Institute, Molecular Immunology, Basel, Switzerland
- FAIRMED, Yaoundé, Cameron
| | | | - Eric Koka
- Noguchi Memorial Institute for Medical Research, University of Ghana, Legon, Ghana
| | | | - Dorothy Yeboah-Manu
- Noguchi Memorial Institute for Medical Research, University of Ghana, Legon, Ghana
| | - Gerd Pluschke
- Swiss Tropical and Public Health Institute, Molecular Immunology, Basel, Switzerland
- University of Basel, Basel, Switzerland
- * E-mail:
| |
Collapse
|
26
|
Soubeyrand S, Tollenaere C, Haon-Lasportes E, Laine AL. Regression-based ranking of pathogen strains with respect to their contribution to natural epidemics. PLoS One 2014; 9:e86591. [PMID: 24497956 PMCID: PMC3909007 DOI: 10.1371/journal.pone.0086591] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2013] [Accepted: 12/13/2013] [Indexed: 11/23/2022] Open
Abstract
Genetic variation in pathogen populations may be an important factor driving heterogeneity in disease dynamics within their host populations. However, to date, we understand poorly how genetic diversity in diseases impact on epidemiological dynamics because data and tools required to answer this questions are lacking. Here, we combine pathogen genetic data with epidemiological monitoring of disease progression, and introduce a statistical exploratory method to investigate differences among pathogen strains in their performance in the field. The method exploits epidemiological data providing a measure of disease progress in time and space, and genetic data indicating the relative spatial patterns of the sampled pathogen strains. Applying this method allows to assign ranks to the pathogen strains with respect to their contributions to natural epidemics and to assess the significance of the ranking. This method was first tested on simulated data, including data obtained from an original, stochastic, multi-strain epidemic model. It was then applied to epidemiological and genetic data collected during one natural epidemic of powdery mildew occurring in its wild host population. Based on the simulation study, we conclude that the method can achieve its aim of ranking pathogen strains if the sampling effort is sufficient. For powdery mildew data, the method indicated that one of the sampled strains tends to have a higher fitness than the four other sampled strains, highlighting the importance of strain diversity for disease dynamics. Our approach allowing the comparison of pathogen strains in natural epidemic is complementary to the classical practice of using experimental infections in controlled conditions to estimate fitness of different pathogen strains. Our statistical tool, implemented in the R package StrainRanking, is mainly based on regression and does not rely on mechanistic assumptions on the pathogen dynamics. Thus, the method can be applied to a wide range of pathogens.
Collapse
Affiliation(s)
- Samuel Soubeyrand
- UR546 Biostatistics and Spatial Processes, INRA, Avignon,
France es that the sum of the estimated propor
| | - Charlotte Tollenaere
- Metapopulation Research Group, Department of Biosciences, University of Helsinki, Helsinki, Finland
| | - Emilie Haon-Lasportes
- UR546 Biostatistics and Spatial Processes, INRA, Avignon,
France es that the sum of the estimated propor
| | - Anna-Liisa Laine
- Metapopulation Research Group, Department of Biosciences, University of Helsinki, Helsinki, Finland
| |
Collapse
|
27
|
Chany AC, Tresse C, Casarotto V, Blanchard N. History, biology and chemistry of Mycobacterium ulcerans infections (Buruli ulcer disease). Nat Prod Rep 2014; 30:1527-67. [PMID: 24178858 DOI: 10.1039/c3np70068b] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Mycobacterium ulcerans infections (Buruli ulcer disease) have a long history that can be traced back 150 years. The successive discoveries of the mycobacteria in 1948 and of mycolactone A/B in 1999, the toxin responsible for this dramatic necrotic skin disease, resulted in a paradigm shift concerning the disease itself and in a broader sense, delineated an entirely new role for bioactive polyketides as virulence factors. The fascinating history, biology and chemistry of M. ulcerans infections are discussed in this review.
Collapse
Affiliation(s)
- Anne-Caroline Chany
- Université de Haute Alsace, Laboratoire de Chimie Organique et Bioorganique, EA4566, Ecole Nationale Supérieure de Chimie de Mulhouse, 3 rue Alfred Werner, 68093 Mulhouse Cedex, France
| | | | | | | |
Collapse
|
28
|
Joshi KR, Dhiman H, Scaria V. tbvar: A comprehensive genome variation resource for Mycobacterium tuberculosis. DATABASE-THE JOURNAL OF BIOLOGICAL DATABASES AND CURATION 2014; 2014:bat083. [PMID: 24408216 PMCID: PMC3885892 DOI: 10.1093/database/bat083] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Mycobacterium tuberculosis, along with closely related species, commonly known as M. tuberculosis complex (MTBC), causes tuberculosis in humans and other organisms. Tuberculosis is a disease with high morbidity and mortality, especially in the third world. The genetic variability between clinical isolates of MTBC has been poorly understood, although recent years have seen the re-sequencing of a large number of clinical isolates of MTBC from around the world. The availability of genomic data of multiple isolates in public domain would potentially offer a unique opportunity toward understanding the variome of the organism and the functional consequences of the variations. This nevertheless has been limited by the lack of systematic curation and analysis of data sets available in public domain. In this report, we have re-analyzed re-sequencing data sets corresponding to >450 isolates of MTBC available in public domain to create a comprehensive variome map of MTBC comprising >29 000 single nucleotide variations. Using a systematic computational pipeline, we have annotated potential functional variants and drug-resistance-associated variants from the variome. We have made available this data set as a searchable database. Apart from a user-friendly interface, the database also has a novel option to annotate variants from clinical re-sequencing data sets of MTBC. To the best of our knowledge, tbvar is the largest and most comprehensive genome variation resources for MTBC. Database URL:http://genome.igib.res.in/tbvar/
Collapse
Affiliation(s)
- Kandarp Rakeshkumar Joshi
- CSIR Open Source Drug Discovery Unit, Anusandhan Bhawan, Delhi 110001, India; Academy of Scientific and Innovative Research (AcSIR), Anusandhan Bhawan, Delhi 110001, India; Department of Biotechnology, Delhi Technological University, Bawana Road, Delhi 110042, India and GN Ramachandran Knowledge Center for Genome Informatics, CSIR Institute of Genomics and Integrative Biology (CSIR-IGIB), Mall Road, Delhi 110007, India
| | | | | |
Collapse
|
29
|
Narh CA, Mosi L, Quaye C, Tay SC, Bonfoh B, de Souza DK. Genotyping Tools for Mycobacterium ulcerans-Drawbacks and Future Prospects. ACTA ACUST UNITED AC 2014; 4:1000149. [PMID: 24900947 PMCID: PMC4040416 DOI: 10.4172/2161-1068.1000149] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
Abstract
Mycobacterium ulcerans infection (Buruli ulcer) is a neglected but treatable skin disease endemic in over 30 countries. M. ulcerans is an environmental mycobacteria with an elusive mode of transmission to humans. Ecological and Molecular epidemiological studies to identify reservoirs and transmission vectors are important for source tracking infections especially during outbreaks and elucidating transmission routes. Research efforts have therefore focused on genotyping strains of the mycobacteria from clinical and environmental samples. This review discusses genotyping tools for differentiating M. ulcerans strains from other environmental and Mycolactone Producing Mycobacteria (MPMs). We highlight tools that have been adapted from related fields and propose ways these could be enhanced to resolve intra-species variation for epidemiological, transmission, evolutionary studies, and detection of emerging drug resistant strains. In the wake of increasing cases of Buruli ulcer, cumulative efforts including improvement in diagnostic methods and fine-tuning of genotyping tools are crucial to complement public health efforts in reducing infections.
Collapse
Affiliation(s)
- Charles A Narh
- Parasitology Department, Noguchi Memorial Institute for Medical Research, University of Ghana, Ghana ; Centre Suisse de Recherches Scientifiques en Côte d'Ivoire, Ivory Coast ; Clinical Microbiology Department, School of Medical Sciences, Kwame Nkrumah University of Science and Technology, Ghana
| | - Lydia Mosi
- Centre Suisse de Recherches Scientifiques en Côte d'Ivoire, Ivory Coast ; Biochemistry, Cell and Molecular Biology Department, University of Ghana
| | - Charles Quaye
- Parasitology Department, Noguchi Memorial Institute for Medical Research, University of Ghana, Ghana ; Centre Suisse de Recherches Scientifiques en Côte d'Ivoire, Ivory Coast
| | - Samuel Ck Tay
- Clinical Microbiology Department, School of Medical Sciences, Kwame Nkrumah University of Science and Technology, Ghana
| | - Bassirou Bonfoh
- Centre Suisse de Recherches Scientifiques en Côte d'Ivoire, Ivory Coast
| | - Dziedzom K de Souza
- Parasitology Department, Noguchi Memorial Institute for Medical Research, University of Ghana, Ghana
| |
Collapse
|
30
|
Insertion sequence element single nucleotide polymorphism typing provides insights into the population structure and evolution of Mycobacterium ulcerans across Africa. Appl Environ Microbiol 2013; 80:1197-209. [PMID: 24296504 DOI: 10.1128/aem.02774-13] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Buruli ulcer is an indolent, slowly progressing necrotizing disease of the skin caused by infection with Mycobacterium ulcerans. In the present study, we applied a redesigned technique to a vast panel of M. ulcerans disease isolates and clinical samples originating from multiple African disease foci in order to (i) gain fundamental insights into the population structure and evolutionary history of the pathogen and (ii) disentangle the phylogeographic relationships within the genetically conserved cluster of African M. ulcerans. Our analyses identified 23 different African insertion sequence element single nucleotide polymorphism (ISE-SNP) types that dominate in different areas where Buruli ulcer is endemic. These ISE-SNP types appear to be the initial stages of clonal diversification from a common, possibly ancestral ISE-SNP type. ISE-SNP types were found unevenly distributed over the greater West African hydrological drainage basins. Our findings suggest that geographical barriers bordering the basins to some extent prevented bacterial gene flow between basins and that this resulted in independent focal transmission clusters associated with the hydrological drainage areas. Different phylogenetic methods yielded two well-supported sister clades within the African ISE-SNP types. The ISE-SNP types from the "pan-African clade" were found to be widespread throughout Africa, while the ISE-SNP types of the "Gabonese/Cameroonian clade" were much rarer and found in a more restricted area, which suggested that the latter clade evolved more recently. Additionally, the Gabonese/Cameroonian clade was found to form a strongly supported monophyletic group with Papua New Guinean ISE-SNP type 8, which is unrelated to other Southeast Asian ISE-SNP types.
Collapse
|
31
|
Holmes A, McAllister G, McAdam PR, Hsien Choi S, Girvan K, Robb A, Edwards G, Templeton K, Fitzgerald JR. Genome-wide single nucleotide polymorphism-based assay for high-resolution epidemiological analysis of the methicillin-resistant Staphylococcus aureus hospital clone EMRSA-15. Clin Microbiol Infect 2013; 20:O124-31. [PMID: 23927001 DOI: 10.1111/1469-0691.12328] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2013] [Revised: 07/04/2013] [Accepted: 07/04/2013] [Indexed: 11/28/2022]
Abstract
The EMRSA-15 clone is a major cause of nosocomial methicillin-resistant Staphylococcus aureus (MRSA) infections in the UK and elsewhere but existing typing methodologies have limited capacity to discriminate closely related strains, and are often poorly reproducible between laboratories. Here, we report the design, development and validation of a genome-wide single nucleotide polymorphism (SNP) typing method and compare it to established methods for typing of EMRSA-15. In order to identify discriminatory SNPs, the genomes of 17 EMRSA-15 strains, selected to represent the breadth of genotypic and phenotypic diversity of EMRSA-15 isolates in Scotland, were determined and phylogenetic reconstruction was carried out. In addition to 17 phylogenetically informative SNPs, five binary markers were included to form the basis of an EMRSA-15 genotyping assay. The SNP-based typing assay was as discriminatory as pulsed-field gel electrophoresis, and significantly more discriminatory than staphylococcal protein A (spa) typing for typing of a representative panel of diverse EMRSA-15 strains, isolates from two EMRSA-15 hospital outbreak investigations, and a panel of bacteraemia isolates obtained in healthcare facilities in the east of Scotland during a 12-month period. The assay is a rapid, and reproducible approach for epidemiological analysis of EMRSA-15 clinical isolates in Scotland. Unlike established methods the DNA sequence-based method is ideally suited for inter-laboratory comparison of identified genotypes, and its flexibility lends itself to supplementation with additional SNPs or markers for the identification of novel S. aureus strains in other regions of the world.
Collapse
Affiliation(s)
- A Holmes
- The Roslin Institute and Edinburgh Infectious Diseases, Easter Bush Campus, University of Edinburgh, Edinburgh, UK
| | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Pepperell CS, Casto AM, Kitchen A, Granka JM, Cornejo OE, Holmes EC, Holmes EC, Birren B, Galagan J, Feldman MW. The role of selection in shaping diversity of natural M. tuberculosis populations. PLoS Pathog 2013; 9:e1003543. [PMID: 23966858 PMCID: PMC3744410 DOI: 10.1371/journal.ppat.1003543] [Citation(s) in RCA: 92] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2012] [Accepted: 06/24/2013] [Indexed: 12/26/2022] Open
Abstract
Mycobacterium tuberculosis (M.tb), the cause of tuberculosis (TB), is estimated to infect a new host every second. While analyses of genetic data from natural populations of M.tb have emphasized the role of genetic drift in shaping patterns of diversity, the influence of natural selection on this successful pathogen is less well understood. We investigated the effects of natural selection on patterns of diversity in 63 globally extant genomes of M.tb and related pathogenic mycobacteria. We found evidence of strong purifying selection, with an estimated genome-wide selection coefficient equal to -9.5 × 10(-4) (95% CI -1.1 × 10(-3) to -6.8 × 10(-4)); this is several orders of magnitude higher than recent estimates for eukaryotic and prokaryotic organisms. We also identified different patterns of variation across categories of gene function. Genes involved in transport and metabolism of inorganic ions exhibited very low levels of non-synonymous polymorphism, equivalent to categories under strong purifying selection (essential and translation-associated genes). The highest levels of non-synonymous variation were seen in a group of transporter genes, likely due to either diversifying selection or local selective sweeps. In addition to selection, we identified other important influences on M.tb genetic diversity, such as a 25-fold expansion of global M.tb populations coincident with explosive growth in human populations (estimated timing 1684 C.E., 95% CI 1620-1713 C.E.). These results emphasize the parallel demographic histories of this obligate pathogen and its human host, and suggest that the dominant effect of selection on M.tb is removal of novel variants, with exceptions in an interesting group of genes involved in transportation and defense. We speculate that the hostile environment within a host imposes strict demands on M.tb physiology, and thus a substantial fitness cost for most new mutations. In this respect, obligate bacterial pathogens may differ from other host-associated microbes such as symbionts.
Collapse
Affiliation(s)
- Caitlin S Pepperell
- Departments of Medicine, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, Wisconsin, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Development of a temperature-switch PCR-based SNP typing method for Mycobacterium ulcerans. PLoS Negl Trop Dis 2012; 6:e1904. [PMID: 23166851 PMCID: PMC3499370 DOI: 10.1371/journal.pntd.0001904] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2012] [Accepted: 10/01/2012] [Indexed: 11/19/2022] Open
Abstract
Mycobacterium ulcerans (M. ulcerans), the causative agent of the devastating skin disease Buruli ulcer (BU), is characterized by an extremely low level of genetic diversity. Recently, we have reported the first discrimination of closely related M. ulcerans variants in the BU endemic Densu River Valley of Ghana. In the study real-time PCR-based single nucleotide polymorphism (SNP) typing at 89 predefined loci revealed the presence of ten M. ulcerans haplotypes circulating in the BU endemic region. Here we describe the development of temperature-switch PCR (TSP) assays that allow distinguishing these haplotypes by conventional agarose gel-based analysis of the PCR products. After validation of the accuracy of typing results, the TSP assays were successfully established in a reference laboratory in Ghana. Development of the cost-effective and rapid TSP-based genetic fingerprinting method will thus allow investigating the spread of M. ulcerans clones by regular genetic monitoring in BU endemic countries.
Collapse
|
34
|
Screening of antifungal azole drugs and agrochemicals with an adapted alamarBlue-based assay demonstrates antibacterial activity of croconazole against Mycobacterium ulcerans. Antimicrob Agents Chemother 2012; 56:6410-3. [PMID: 23006761 DOI: 10.1128/aac.01383-12] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
An alamarBlue-based growth inhibition assay has been adapted for the thermosensitive and slow-growing pathogen Mycobacterium ulcerans. The standardized test procedure enables medium-throughput screening of preselected compound libraries. Testing of a set of 48 azoles with known antifungal activity led to the identification of an imidazole antifungal displaying an inhibitory dose (ID) of 9 μM for M. ulcerans.
Collapse
|
35
|
Doig KD, Holt KE, Fyfe JAM, Lavender CJ, Eddyani M, Portaels F, Yeboah-Manu D, Pluschke G, Seemann T, Stinear TP. On the origin of Mycobacterium ulcerans, the causative agent of Buruli ulcer. BMC Genomics 2012; 13:258. [PMID: 22712622 PMCID: PMC3434033 DOI: 10.1186/1471-2164-13-258] [Citation(s) in RCA: 99] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2012] [Accepted: 05/30/2012] [Indexed: 12/29/2022] Open
Abstract
Background Mycobacterium ulcerans is an unusual bacterial pathogen with elusive origins. While closely related to the aquatic dwelling M. marinum, M. ulcerans has evolved the ability to produce the immunosuppressive polyketide toxin mycolactone and cause the neglected tropical disease Buruli ulcer. Other mycolactone-producing mycobacteria (MPM) have been identified in fish and frogs and given distinct species designations (M. pseudoshottsii, M. shinshuense, M. liflandii and M. marinum), however the evolution of M. ulcerans and its relationship to other MPM has not been defined. Here we report the comparative analysis of whole genome sequences from 30 MPM and five M. marinum. Results A high-resolution phylogeny based on genome-wide single nucleotide polymorphisms (SNPs) showed that M. ulcerans and all other MPM represent a single clonal group that evolved from a common M. marinum progenitor. The emergence of the MPM was driven by the acquisition of the pMUM plasmid encoding genes for the biosynthesis of mycolactones. This change was accompanied by the loss of at least 185 genes, with a significant overrepresentation of genes associated with cell wall functions. Cell wall associated genes also showed evidence of substantial adaptive selection, suggesting cell wall remodeling has been critical for the survival of MPM. Fine-grain analysis of the MPM complex revealed at least three distinct lineages, one of which comprised a highly clonal group, responsible for Buruli ulcer in Africa and Australia. This indicates relatively recent transfer of M. ulcerans between these continents, which represent the vast majority of the global Buruli ulcer burden. Our data provide SNPs and gene sequences that can differentiate M. ulcerans lineages, suitable for use in the diagnosis and surveillance of Buruli ulcer. Conclusions M. ulcerans and all mycolactone-producing mycobacteria are specialized variants of a common Mycobacterium marinum progenitor that have adapted to live in restricted environments. Examination of genes lost or retained and now under selective pressure suggests these environments might be aerobic, and extracellular, where slow growth, production of an immune suppressor, cell wall remodeling, loss or modification of cell wall antigens, and biofilm-forming ability provide a survival advantage. These insights will guide our efforts to find the elusive reservoir(s) of M. ulcerans and to understand transmission of Buruli ulcer.
Collapse
Affiliation(s)
- Kenneth D Doig
- Department of Microbiology and Immunology, University of Melbourne, Parkville, Australia
| | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Röltgen K, Stinear TP, Pluschke G. The genome, evolution and diversity of Mycobacterium ulcerans. INFECTION GENETICS AND EVOLUTION 2012; 12:522-9. [DOI: 10.1016/j.meegid.2012.01.018] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2011] [Revised: 01/18/2012] [Accepted: 01/19/2012] [Indexed: 11/26/2022]
|
37
|
Jiang J, Li J, Kwan HS, Au CH, Wan Law PT, Li L, Kam KM, Lun Ling JM, Leung FC. A cost-effective and universal strategy for complete prokaryotic genomic sequencing proposed by computer simulation. BMC Res Notes 2012; 5:80. [PMID: 22289569 PMCID: PMC3296665 DOI: 10.1186/1756-0500-5-80] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2011] [Accepted: 01/31/2012] [Indexed: 01/31/2023] Open
Abstract
BACKGROUND Pyrosequencing techniques allow scientists to perform prokaryotic genome sequencing to achieve the draft genomic sequences within a few days. However, the assemblies with shotgun sequencing are usually composed of hundreds of contigs. A further multiplex PCR procedure is needed to fill all the gaps and link contigs into complete chromosomal sequence, which is the basis for prokaryotic comparative genomic studies. In this article, we study various pyrosequencing strategies by simulated assembling from 100 prokaryotic genomes. FINDINGS Simulation study shows that a single end 454 Jr. run combined with a paired end 454 Jr. run (8 kb library) can produce: 1) ~90% of 100 assemblies with < 10 scaffolds and ~95% of 100 assemblies with < 150 contigs; 2) average contig N50 size is over 331 kb; 3) average single base accuracy is > 99.99%; 4) average false gene duplication rate is < 0.7%; 5) average false gene loss rate is < 0.4%. CONCLUSIONS A single end 454 Jr. run combined with a paired end 454 Jr. run (8 kb library) is a cost-effective way for prokaryotic whole genome sequencing. This strategy provides solution to produce high quality draft assemblies for most of prokaryotic organisms within days. Due to the small number of assembled scaffolds, the following multiplex PCR procedure (for gap filling) would be easy. As a result, large scale prokaryotic whole genome sequencing projects may be finished within weeks.
Collapse
Affiliation(s)
- Jingwei Jiang
- School of Biological Sciences, Faculty of Science, The University of Hong Kong, Hong Kong, China.
| | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Yeboah-Manu D, Röltgen K, Opare W, Asan-Ampah K, Quenin-Fosu K, Asante-Poku A, Ampadu E, Fyfe J, Koram K, Ahorlu C, Pluschke G. Sero-epidemiology as a tool to screen populations for exposure to Mycobacterium ulcerans. PLoS Negl Trop Dis 2012; 6:e1460. [PMID: 22253937 PMCID: PMC3254650 DOI: 10.1371/journal.pntd.0001460] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2011] [Accepted: 11/21/2011] [Indexed: 11/23/2022] Open
Abstract
Background Previous analyses of sera from a limited number of Ghanaian Buruli ulcer (BU) patients, their household contacts, individuals living in BU non-endemic regions as well as European controls have indicated that antibody responses to the M. ulcerans 18 kDa small heat shock protein (shsp) reflect exposure to this pathogen. Here, we have investigated to what extent inhabitants of regions in Ghana regarded as non-endemic for BU develop anti-18 kDa shsp antibody titers. Methodology/Principal Findings For this purpose we determined anti-18 kDa shsp IgG titers in sera collected from healthy inhabitants of the BU endemic Densu River Valley and the Volta Region, which was so far regarded as BU non-endemic. Significantly more sera from the Densu River Valley contained anti-18 kDa shsp IgG (32% versus 12%, respectively). However, some sera from the Volta Region also showed high titers. When interviewing these sero-responders, it was revealed that the person with the highest titer had a chronic wound, which was clinically diagnosed and laboratory reconfirmed as active BU. After identification of this BU index case, further BU cases were clinically diagnosed by the Volta Region local health authorities and laboratory reconfirmed. Interestingly, there was neither a difference in sero-prevalence nor in IS2404 PCR positivity of environmental samples between BU endemic and non-endemic communities located in the Densu River Valley. Conclusions These data indicate that the intensity of exposure to M. ulcerans in endemic and non-endemic communities along the Densu River is comparable and that currently unknown host and/or pathogen factors may determine how frequently exposure is leading to clinical disease. While even high serum titers of anti-18 kDa shsp IgG do not indicate active disease, sero-epidemiological studies can be used to identify new BU endemic areas. Sero-epidemiological analyses revealed that a higher proportion of sera from individuals living in the Buruli ulcer (BU) endemic Densu River Valley of Ghana contain Mycobacterium ulcerans 18 kDa small heat shock protein (shsp)-specific IgG than sera from inhabitants of the Volta Region, which was regarded so far as BU non-endemic. However, follow-up studies in the Volta Region showed that the individual with the highest anti-18 kDa shsp-specific serum IgG titer of all participants from the Volta Region had a BU lesion. Identification of more BU patients in the Volta Region by subsequent active case search demonstrated that sero-epidemiology can help identify low endemicity areas. Endemic and non-endemic communities along the Densu River Valley differed neither in sero-prevalence nor in positivity of environmental samples in PCR targeting M. ulcerans genomic and plasmid DNA sequences. A lower risk of developing M. ulcerans disease in the non-endemic communities may either be related to host factors or a lower virulence of local M. ulcerans strains.
Collapse
Affiliation(s)
- Dorothy Yeboah-Manu
- Noguchi Memorial Institute for Medical Research, University of Ghana, Legon, Ghana
| | - Katharina Röltgen
- Molecular Immunology, Swiss Tropical and Public Health Institute, Basel, Switzerland
- University of Basel, Basel, Switzerland
| | - William Opare
- National Buruli Ulcer Control Programme, Disease Control Unit - GHS, Accra, Ghana
| | - Kobina Asan-Ampah
- Noguchi Memorial Institute for Medical Research, University of Ghana, Legon, Ghana
| | - Kwabena Quenin-Fosu
- Noguchi Memorial Institute for Medical Research, University of Ghana, Legon, Ghana
| | - Adwoa Asante-Poku
- Noguchi Memorial Institute for Medical Research, University of Ghana, Legon, Ghana
| | - Edwin Ampadu
- National Buruli Ulcer Control Programme, Disease Control Unit - GHS, Accra, Ghana
| | - Janet Fyfe
- Victorian Infectious Diseases Reference Laboratory, North Melbourne, Victoria, Australia
| | - Kwadwo Koram
- Noguchi Memorial Institute for Medical Research, University of Ghana, Legon, Ghana
| | - Collins Ahorlu
- Noguchi Memorial Institute for Medical Research, University of Ghana, Legon, Ghana
| | - Gerd Pluschke
- Molecular Immunology, Swiss Tropical and Public Health Institute, Basel, Switzerland
- University of Basel, Basel, Switzerland
- * E-mail:
| |
Collapse
|
39
|
Hsu CY, Wu CW, Talaat AM. Genome-Wide Sequence Variation among Mycobacterium avium Subspecies paratuberculosis Isolates: A Better Understanding of Johne's Disease Transmission Dynamics. Front Microbiol 2011; 2:236. [PMID: 22163226 PMCID: PMC3234532 DOI: 10.3389/fmicb.2011.00236] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2011] [Accepted: 11/09/2011] [Indexed: 12/29/2022] Open
Abstract
Mycobacterium avium subspecies paratuberculosis (M. ap), the causative agent of Johne’s disease, infects many farmed ruminants, wild-life animals, and recently isolated from humans. To better understand the molecular pathogenesis of these infections, we analyzed the whole-genome sequences of several M. ap and M. avium subspecies avium (M. avium) isolates to gain insights into genomic diversity associated with variable hosts and environments. Using Next-generation sequencing technology, all six M. ap isolates showed a high percentage of similarity (98%) to the reference genome sequence of M. ap K-10 isolated from cattle. However, two M. avium isolates (DT 78 and Env 77) showed significant sequence diversity (only 87 and 40% similarity, respectively) compared to the reference strain M. avium 104, a reflection of the wide environmental niches of this group of mycobacteria. Within the M. ap isolates, genomic rearrangements (insertions/deletions) were not detected, and only unique single nucleotide polymorphisms (SNPs) were observed among M. ap isolates. While more of the SNPs (~100) in M. ap genomes were non-synonymous, a total of ~6,000 SNPs were detected among M. avium genomes, most of them were synonymous suggesting a differential selective pressure between M. ap and M. avium isolates. In addition, SNPs-based phylo-genomics had a enough discriminatory power to differentiate between isolates from different hosts but yet suggesting a bovine source of infection to other animals examined in this study. Interestingly, the human isolate (M. ap 4B) was closely related to a M. ap isolate from a dairy facility, suggesting a common source of infection. Overall, the identified phylo-genomes further supported the idea of a common ancestor to both M. ap and M. avium isolates. Genome-wide analysis described here could provide a strong foundation for a population genetic structure that could be useful for the analysis of mycobacterial evolution and for the tracking of Johne’s disease transmission among animals.
Collapse
Affiliation(s)
- Chung-Yi Hsu
- Laboratory of Bacterial Genomics, Department of Pathobiological Sciences, University of Wisconsin-Madison Madison, WI, USA
| | | | | |
Collapse
|
40
|
Schürch AC, Kremer K, Hendriks ACA, Freyee B, McEvoy CRE, van Crevel R, Boeree MJ, van Helden P, Warren RM, Siezen RJ, van Soolingen D. SNP/RD typing of Mycobacterium tuberculosis Beijing strains reveals local and worldwide disseminated clonal complexes. PLoS One 2011; 6:e28365. [PMID: 22162765 PMCID: PMC3230589 DOI: 10.1371/journal.pone.0028365] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2011] [Accepted: 11/07/2011] [Indexed: 02/04/2023] Open
Abstract
The Beijing strain is one of the most successful genotypes of Mycobacterium tuberculosis worldwide and appears to be highly homogenous according to existing genotyping methods. To type Beijing strains reliably we developed a robust typing scheme using single nucleotide polymorphisms (SNPs) and regions of difference (RDs) derived from whole-genome sequencing data of eight Beijing strains. SNP/RD typing of 259 M. tuberculosis isolates originating from 45 countries worldwide discriminated 27 clonal complexes within the Beijing genotype family. A total of 16 Beijing clonal complexes contained more than one isolate of known origin, of which two clonal complexes were strongly associated with South African origin. The remaining 14 clonal complexes encompassed isolates from different countries. Even highly resolved clonal complexes comprised isolates from distinct geographical sites. Our results suggest that Beijing strains spread globally on multiple occasions and that the tuberculosis epidemic caused by the Beijing genotype is at least partially driven by modern migration patterns. The SNPs and RDs presented in this study will facilitate future molecular epidemiological and phylogenetic studies on Beijing strains.
Collapse
Affiliation(s)
- Anita C. Schürch
- Tuberculosis Reference Laboratory, National Institute for Public Health and the Environment (RIVM), Centre for Infectious Disease Control, (CIb/LIS, pb 22), Bilthoven, The Netherlands
- Radboud University Nijmegen Medical Centre/NCMLS, Centre for Molecular and Biomolecular Informatics, Nijmegen, The Netherlands
| | - Kristin Kremer
- Tuberculosis Reference Laboratory, National Institute for Public Health and the Environment (RIVM), Centre for Infectious Disease Control, (CIb/LIS, pb 22), Bilthoven, The Netherlands
| | - Amber C. A. Hendriks
- Tuberculosis Reference Laboratory, National Institute for Public Health and the Environment (RIVM), Centre for Infectious Disease Control, (CIb/LIS, pb 22), Bilthoven, The Netherlands
| | - Benthe Freyee
- Tuberculosis Reference Laboratory, National Institute for Public Health and the Environment (RIVM), Centre for Infectious Disease Control, (CIb/LIS, pb 22), Bilthoven, The Netherlands
| | - Christopher R. E. McEvoy
- Department of Science and Technology, National Research Foundation Centre of Excellence in Biomedical Tuberculosis Research, Medical Research Council Centre for Molecular and Cellular Biology, Stellenbosch University, Tygerberg, Cape Town, South Africa
- Department of Microbiology and Immunology, University of Melbourne, Victoria, Australia
| | - Reinout van Crevel
- Department of Medicine, Radboud University Nijmegen Medical Centre, Nijmegen, The Netherlands
| | - Martin J. Boeree
- Department of Pulmonary Diseases, Radboud University Nijmegen Medical Centre/University Lung Centre Dekkerswald, Nijmegen, The Netherlands
| | - Paul van Helden
- Department of Science and Technology, National Research Foundation Centre of Excellence in Biomedical Tuberculosis Research, Medical Research Council Centre for Molecular and Cellular Biology, Stellenbosch University, Tygerberg, Cape Town, South Africa
| | - Robin M. Warren
- Department of Science and Technology, National Research Foundation Centre of Excellence in Biomedical Tuberculosis Research, Medical Research Council Centre for Molecular and Cellular Biology, Stellenbosch University, Tygerberg, Cape Town, South Africa
| | - Roland J. Siezen
- Radboud University Nijmegen Medical Centre/NCMLS, Centre for Molecular and Biomolecular Informatics, Nijmegen, The Netherlands
| | - Dick van Soolingen
- Tuberculosis Reference Laboratory, National Institute for Public Health and the Environment (RIVM), Centre for Infectious Disease Control, (CIb/LIS, pb 22), Bilthoven, The Netherlands
- Department of Pulmonary Diseases, Radboud University Nijmegen Medical Centre/University Lung Centre Dekkerswald, Nijmegen, The Netherlands
| |
Collapse
|
41
|
Febrer M, McLay K, Caccamo M, Twomey KB, Ryan RP. Advances in bacterial transcriptome and transposon insertion-site profiling using second-generation sequencing. Trends Biotechnol 2011; 29:586-94. [PMID: 21764162 DOI: 10.1016/j.tibtech.2011.06.004] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2011] [Revised: 05/25/2011] [Accepted: 06/09/2011] [Indexed: 12/20/2022]
Abstract
The arrival of second-generation sequencing has revolutionized the study of bacteria within a short period. The sequence information generated from these platforms has helped in our understanding of bacterial development, adaptation and diversity and how bacteria cause disease. Furthermore, these technologies have quickly been adapted for high-throughput studies that were previously performed using DNA cloning or microarray-based applications. This has facilitated a more comprehensive study of bacterial transcriptomes through RNA sequencing (RNA-Seq) and the systematic determination of gene function by 'transposon monitoring'. In this review, we provide an outline of these powerful tools and the in silico analyses used in their application, and also highlight the biological questions being addressed in these approaches.
Collapse
Affiliation(s)
- Melanie Febrer
- The Genome Analysis Centre, Norwich Research Park, Colney Lane, Norwich NR4 7UH, UK
| | | | | | | | | |
Collapse
|
42
|
Comparative immunological and microbiological aspects of paratuberculosis as a model mycobacterial infection. Vet Immunol Immunopathol 2011; 148:29-47. [PMID: 21450348 DOI: 10.1016/j.vetimm.2011.03.003] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2010] [Revised: 02/12/2011] [Accepted: 03/03/2011] [Indexed: 11/20/2022]
Abstract
Paratuberculosis or Johne's disease of livestock, which is caused by Mycobacterium avium subsp. paratuberculosis (MAP), has increased in prevalence and expanded in geographic and host ranges over about 100 years. The slow and progressive spread of MAP reflects its substantial adaptation to its hosts, the technical limitations of diagnosis, the lack of practical therapeutic approaches, the lack of a vaccine that prevents transmission and the complexity and difficulty of the on-farm control strategies needed to prevent infection. More recently evidence has accumulated for an association of MAP with Crohn's disease in humans, adding to the pressure on animal health authorities to take precautions by controlling paratuberculosis. Mycobacterial infections invoke complex immune responses but the essential determinants of virulence and pathogenesis are far from clear. In this review we compare the features of major diseases in humans and animals that are caused by the pathogenic mycobacteria M. ulcerans, M. avium subsp. avium, M. leprae, M. tuberculosis and MAP. We seek to answer key questions: are the common mycobacterial infections of humans and animals useful "models" for each other, or are the differences between them too great to enable meaningful extrapolation? To simplify this, the immunopathogenesis of mycobacterial infections will be defined at cellular, tissue, animal and population levels and the key events at each level will be discussed. Many pathogenic processes are similar between divergent mycobacterial diseases, and at variance between virulent and avirulent isolates of mycobacteria, suggesting that the research on the pathogenesis of one mycobacterial disease will be informative for the others.
Collapse
|
43
|
Walsh DS, Portaels F, Meyers WM. Buruli ulcer: Advances in understanding Mycobacterium ulcerans infection. Dermatol Clin 2011; 29:1-8. [PMID: 21095521 DOI: 10.1016/j.det.2010.09.006] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Buruli ulcer (BU), caused by the environmental organism Mycobacterium ulcerans and characterized by necrotizing skin and bone lesions, poses important public health issues as the third most common mycobacterial infection in humans. Pathogenesis of M ulcerans is mediated by mycolactone, a necrotizing immunosuppressive toxin. First-line therapy for BU is rifampin plus streptomycin, sometimes with surgery. New insights into the pathogenesis of BU should improve control strategies.
Collapse
Affiliation(s)
- Douglas S Walsh
- Department of Immunology and Medicine, Armed Forces Research Institute of Medical Sciences, Bangkok, Thailand.
| | | | | |
Collapse
|
44
|
Li SC, Chan WC, Lai CH, Tsai KW, Hsu CN, Jou YS, Chen HC, Chen CH, Lin WC. UMARS: Un-MAppable Reads Solution. BMC Bioinformatics 2011; 12 Suppl 1:S9. [PMID: 21342592 PMCID: PMC3044317 DOI: 10.1186/1471-2105-12-s1-s9] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022] Open
Abstract
Background Un-MAppable Reads Solution (UMARS) is a user-friendly web service focusing on retrieving valuable information from sequence reads that cannot be mapped back to reference genomes. Recently, next-generation sequencing (NGS) technology has emerged as a powerful tool for generating high-throughput sequencing data and has been applied to many kinds of biological research. In a typical analysis, adaptor-trimmed NGS reads were first mapped back to reference sequences, including genomes or transcripts. However, a fraction of NGS reads failed to be mapped back to the reference sequences. Such un-mappable reads are usually imputed to sequencing errors and discarded without further consideration. Methods We are investigating possible biological relevance and possible sources of un-mappable reads. Therefore, we developed UMARS to scan for virus genomic fragments or exon-exon junctions of novel alternative splicing isoforms from un-mappable reads. For mapping un-mappable reads, we first collected viral genomes and sequences of exon-exon junctions. Then, we constructed UMARS pipeline as an automatic alignment interface. Results By demonstrating the results of two UMARS alignment cases, we show the applicability of UMARS. We first showed that the expected EBV genomic fragments can be detected by UMARS. Second, we also detected exon-exon junctions from un-mappable reads. Further experimental validation also ensured the authenticity of the UMARS pipeline. The UMARS service is freely available to the academic community and can be accessed via http://musk.ibms.sinica.edu.tw/UMARS/. Conclusions In this study, we have shown that some un-mappable reads are not caused by sequencing errors. They can originate from viral infection or transcript splicing. Our UMARS pipeline provides another way to examine and recycle the un-mappable reads that are commonly discarded as garbage.
Collapse
Affiliation(s)
- Sung-Chou Li
- Institute of Biomedical Informatics, National Yang-Ming University, Taipei, Taiwan
| | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Mutations in the regulatory network underlie the recent clonal expansion of a dominant subclone of the Mycobacterium tuberculosis Beijing genotype. INFECTION GENETICS AND EVOLUTION 2011; 11:587-97. [PMID: 21277396 DOI: 10.1016/j.meegid.2011.01.009] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2010] [Revised: 12/10/2010] [Accepted: 01/13/2011] [Indexed: 11/20/2022]
Abstract
The Beijing genotype family is an epidemiologically important sub-group of Mycobacterium tuberculosis. It has been suggested that the high frequency of the Beijing isolates in some areas could be explained by selective advantages. Some evidence suggests that the emerging and most frequently isolated "Typical Beijing" lineage has the ability to circumvent BCG-induced immunity. To investigate the phylogeny of the Beijing genotype of M. tuberculosis, the genome of six Beijing strains from three different countries was sequenced with next-generation sequencing. The phylogeny of these strains was established using single nucleotide polymorphisms (SNPs). The three Typical Beijing strains clustered very tightly in the Beijing phylogeny suggesting that Typical Beijing strains represent a monophyletic lineage and resulted from recent diversification. Typing of 150 M. tuberculosis strains with a subset of the SNPs and comparison of the IS6110 restriction-fragment length polymorphism (RFLP) patterns of these strains to a database of 1522 Beijing RFLP patterns revealed that about 80% of all Beijing strains belong to the Typical Beijing subclone, which indicates clonal expansion. To identify the genomic changes that are characteristic for all Typical Beijing strains and to reconstruct their most recent common ancestor, the presence of SNPs was assayed in other Beijing strains. We identified 51 SNPs that define the minimal set of polymorphisms for all Typical Beijing strains. Nonsynonymous polymorphisms in genes coding for the regulatory network were over-represented in this set of mutations. We suggest that alterations in the response to environmental signals may have enabled Typical Beijing strains to develop the emerging phenotype.
Collapse
|
46
|
Li SC, Chan WC, Ho MR, Tsai KW, Hu LY, Lai CH, Hsu CN, Hwang PP, Lin WC. Discovery and characterization of medaka miRNA genes by next generation sequencing platform. BMC Genomics 2010; 11 Suppl 4:S8. [PMID: 21143817 PMCID: PMC3005926 DOI: 10.1186/1471-2164-11-s4-s8] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Background MicroRNAs (miRNAs) are endogenous non-protein-coding RNA genes which exist in a wide variety of organisms, including animals, plants, virus and even unicellular organisms. Medaka (Oryzias latipes) is a useful model organism among vertebrate animals. However, no medaka miRNAs have been investigated systematically. It is beneficial to conduct a genome-wide miRNA discovery study using the next generation sequencing (NGS) technology, which has emerged as a powerful sequencing tool for high-throughput analysis. Results In this study, we adopted ABI SOLiD platform to generate small RNA sequence reads from medaka tissues, followed by mapping these sequence reads back to medaka genome. The mapped genomic loci were considered as candidate miRNAs and further processed by a support vector machine (SVM) classifier. As result, we identified 599 novel medaka pre-miRNAs, many of which were found to encode more than one isomiRs. Besides, additional minor miRNAs (also called miRNA star) can be also detected with the improvement of sequencing depth. These quantifiable isomiRs and minor miRNAs enable us to further characterize medaka miRNA genes in many aspects. First of all, many medaka candidate pre-miRNAs position close to each other, forming many miRNA clusters, some of which are also conserved across other vertebrate animals. Secondly, during miRNA maturation, there is an arm selection preference of mature miRNAs within precursors. We observed the differences on arm selection preference between our candidate pre-miRNAs and their orthologous ones. We classified these differences into three categories based on the distribution of NGS reads. Finally, we also investigated the relationship between conservation status and expression level of miRNA genes. We concluded that the evolutionally conserved miRNAs were usually the most abundant ones. Conclusions Medaka is a widely used model animal and usually involved in many biomedical studies, including the ones on development biology. Identifying and characterizing medaka miRNA genes would benefit the studies using medaka as a model organism.
Collapse
Affiliation(s)
- Sung-Chou Li
- Institute of Biomedical Informatics, National Yang-Ming University, Taipei, Taiwan
| | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Abstract
PURPOSE OF REVIEW After tuberculosis, leprosy (Mycobacterium leprae) and Buruli ulcer (M. ulcerans infection) are the second and third most common mycobacterial infections in humankind, respectively. Recent advances in both diseases are summarized. RECENT FINDINGS Leprosy remains a public health problem in some countries, and new case detections indicate active transmission. Newly identified M. lepromatosis, closely related to M. leprae, may cause disseminated leprosy in some regions. In genome-wide screening in China, leprosy susceptibility associates with polymorphisms in seven genes, many involved with innate immunity. World Health Organization multiple drug therapy administered for 1 or 2 years effectively arrests disseminated leprosy but disability remains a public health concern. Relapse is infrequent, often associated with higher pretreatment M. leprae burdens. M. ulcerans, a re-emerging environmental organism, arose from M. marinum and acquired a virulence plasmid coding for mycolactone, a necrotizing, immunosuppressive toxin. Geographically, there are multiple strains of M. ulcerans, with variable pathogenicity and immunogenicity. Molecular epidemiology is describing M. ulcerans evolution and genotypic variants. First-line therapy for Buruli ulcer is rifampin + streptomycin, sometimes with surgery, but improved regimens are needed. SUMMARY Leprosy and Buruli ulcer are important infections with significant public health implications. Modern research is providing new insights into molecular epidemiology and pathogenesis, boding well for improved control strategies.
Collapse
|
48
|
Statistical Issues in the Analysis of ChIP-Seq and RNA-Seq Data. Genes (Basel) 2010; 1:317-34. [PMID: 24710049 PMCID: PMC3954086 DOI: 10.3390/genes1020317] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2010] [Accepted: 09/20/2010] [Indexed: 11/29/2022] Open
Abstract
The recent arrival of ultra-high throughput, next generation sequencing (NGS) technologies has revolutionized the genetics and genomics fields by allowing rapid and inexpensive sequencing of billions of bases. The rapid deployment of NGS in a variety of sequencing-based experiments has resulted in fast accumulation of massive amounts of sequencing data. To process this new type of data, a torrent of increasingly sophisticated algorithms and software tools are emerging to help the analysis stage of the NGS applications. In this article, we strive to comprehensively identify the critical challenges that arise from all stages of NGS data analysis and provide an objective overview of what has been achieved in existing works. At the same time, we highlight selected areas that need much further research to improve our current capabilities to delineate the most information possible from NGS data. The article focuses on applications dealing with ChIP-Seq and RNA-Seq.
Collapse
|
49
|
Gulig PA, Crécy-Lagard VD, Wright AC, Walts B, Telonis-Scott M, McIntyre LM. SOLiD sequencing of four Vibrio vulnificus genomes enables comparative genomic analysis and identification of candidate clade-specific virulence genes. BMC Genomics 2010; 11:512. [PMID: 20863407 PMCID: PMC3091676 DOI: 10.1186/1471-2164-11-512] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2010] [Accepted: 09/24/2010] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Vibrio vulnificus is the leading cause of reported death from consumption of seafood in the United States. Despite several decades of research on molecular pathogenesis, much remains to be learned about the mechanisms of virulence of this opportunistic bacterial pathogen. The two complete and annotated genomic DNA sequences of V. vulnificus belong to strains of clade 2, which is the predominant clade among clinical strains. Clade 2 strains generally possess higher virulence potential in animal models of disease compared with clade 1, which predominates among environmental strains. SOLiD sequencing of four V. vulnificus strains representing different clades (1 and 2) and biotypes (1 and 2) was used for comparative genomic analysis. RESULTS Greater than 4,100,000 bases were sequenced of each strain, yielding approximately 100-fold coverage for each of the four genomes. Although the read lengths of SOLiD genomic sequencing were only 35 nt, we were able to make significant conclusions about the unique and shared sequences among the genomes, including identification of single nucleotide polymorphisms. Comparative analysis of the newly sequenced genomes to the existing reference genomes enabled the identification of 3,459 core V. vulnificus genes shared among all six strains and 80 clade 2-specific genes. We identified 523,161 SNPs among the six genomes. CONCLUSIONS We were able to glean much information about the genomic content of each strain using next generation sequencing. Flp pili, GGDEF proteins, and genomic island XII were identified as possible virulence factors because of their presence in virulent sequenced strains. Genomic comparisons also point toward the involvement of sialic acid catabolism in pathogenesis.
Collapse
Affiliation(s)
- Paul A Gulig
- Department of Molecular Genetics and Microbiology, University of Florida, Gainesville, Florida, USA
| | - Valérie de Crécy-Lagard
- Department of Microbiology and Cell Science, University of Florida, Gainesville, Florida, USA
| | - Anita C Wright
- Department of Food Science and Human Nutrition, University of Florida, Gainesville, Florida, USA
| | - Brandon Walts
- Department of Molecular Genetics and Microbiology, University of Florida, Gainesville, Florida, USA
| | - Marina Telonis-Scott
- Department of Molecular Genetics and Microbiology, University of Florida, Gainesville, Florida, USA
- Department of Genetics, University of Melbourne, 3010 Australia
| | - Lauren M McIntyre
- Department of Molecular Genetics and Microbiology, University of Florida, Gainesville, Florida, USA
| |
Collapse
|
50
|
High-throughput sequencing and clinical microbiology: progress, opportunities and challenges. Curr Opin Microbiol 2010; 13:625-31. [PMID: 20843733 DOI: 10.1016/j.mib.2010.08.003] [Citation(s) in RCA: 116] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2010] [Revised: 08/04/2010] [Accepted: 08/18/2010] [Indexed: 02/07/2023]
Abstract
High-throughput sequencing is sweeping through clinical microbiology, transforming our discipline in its wake. It is already providing an enhanced view of pathogen biology through rapid and inexpensive whole-genome sequencing and more sophisticated applications such as RNA-seq. It also promises to deliver high-resolution genomic epidemiology as the ultimate typing method for bacteria. However, the most revolutionary effect of this 'disruptive technology' is likely to be creation of a novel sequence-based, culture-independent diagnostic microbiology that incorporates microbial community profiling, metagenomics and single-cell genomics. We should prepare for the coming 'technological singularity' in sequencing, when this technology becomes so fast and so cheap that it threatens to out-compete existing diagnostic and typing methods in microbiology.
Collapse
|