1
|
Clyne M, Ó Cróinín T. Pathogenicity and virulence of Helicobacter pylori: A paradigm of chronic infection. Virulence 2025; 16:2438735. [PMID: 39725863 DOI: 10.1080/21505594.2024.2438735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 11/18/2024] [Accepted: 12/02/2024] [Indexed: 12/28/2024] Open
Abstract
Infection with Helicobacter pylori is one of the most common infections of mankind. Infection typically occurs in childhood and persists for the lifetime of the host unless eradicated with antimicrobials. The organism colonizes the stomach and causes gastritis. Most infected individuals are asymptomatic, but infection also causes gastric and duodenal ulceration, and gastric cancer. H. pylori possesses an arsenal of virulence factors, including a potent urease enzyme for protection from acid, flagella that mediate motility, an abundance of outer membrane proteins that can mediate attachment, several immunomodulatory proteins, and an ability to adapt to specific conditions in individual human stomachs. The presence of a type 4 secretion system that injects effector molecules into gastric cells and subverts host cell signalling is associated with virulence. In this review we discuss the interplay of H. pylori colonization and virulence factors with host and environmental factors to determine disease outcome in infected individuals.
Collapse
Affiliation(s)
- Marguerite Clyne
- School of Medicine, University College Dublin, Dublin, Ireland
- The Conway Institute of Biomolecular and Biomedical Science, University College Dublin, Dublin, Ireland
| | - Tadhg Ó Cróinín
- The Conway Institute of Biomolecular and Biomedical Science, University College Dublin, Dublin, Ireland
- School of Biomolecular and Biomedical Science, University College Dublin, Dublin, Ireland
| |
Collapse
|
2
|
Saberi S, Shans N, Ghaffari S, Esmaeili M, Mohammadi M. The role of CEACAMs versus integrins in Helicobacter pylori CagA translocation: a systematic review. Microbes Infect 2024; 26:105246. [PMID: 37926369 DOI: 10.1016/j.micinf.2023.105246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2023] [Revised: 10/24/2023] [Accepted: 10/30/2023] [Indexed: 11/07/2023]
Abstract
The delivery of Helicobacter pylori CagA into host cells was long believed to occur through the integrin cell surface receptors. However, the role of CEACAM receptors has recently been highlighted, instead. Here, we have categorized the existing experimental evidence according to whether deletion, upregulation, downregulation, or inhibition of the target ligands (T4SS or HopQ) or receptors (integrins or CEACAMs), result in alterations in CagA phosphorylation, cell elongation, or IL-8 production. According to our analysis, the statistics favor the essence of most of the T4SS constituents and the involvement of HopQ adhesin in all three functions. Concerning the integrin family, the collected data is controversial, but yielding towards it being dispensable or involved in CagA translocation. Yet, regarding cell elongation, more events are showing β1 integrin being involved, than αvβ4 being inhibitory. Concerning IL-8 secretion, again there are more events showing α5, β1 and β6 integrins to be involved, than those showing inhibitory roles for β1, β4 and β6 integrins. Finally, CEACAM 1, 3, and 5 are identified as mostly essential or involved in CagA phosphorylation, whereasCEACAM 4, 7, and 8 are found dispensable and CEACAM6 is under debate. Conversely, CEACAM1, 5 and 6 appear mostly dispensable for cell elongation. Noteworthy is the choice of cell type, bacterial strain, multiplicity and duration of infection, as well as the sensitivity of the detection methods, all of which can affect the variably obtained results.
Collapse
Affiliation(s)
- Samaneh Saberi
- HPGC Research Group, Department of Medical Biotechnology, Biotechnology Research Center, Pasteur Institute of Iran, Tehran, Iran
| | - Nazanin Shans
- HPGC Research Group, Department of Medical Biotechnology, Biotechnology Research Center, Pasteur Institute of Iran, Tehran, Iran
| | - Saba Ghaffari
- HPGC Research Group, Department of Medical Biotechnology, Biotechnology Research Center, Pasteur Institute of Iran, Tehran, Iran
| | - Maryam Esmaeili
- HPGC Research Group, Department of Medical Biotechnology, Biotechnology Research Center, Pasteur Institute of Iran, Tehran, Iran
| | - Marjan Mohammadi
- HPGC Research Group, Department of Medical Biotechnology, Biotechnology Research Center, Pasteur Institute of Iran, Tehran, Iran.
| |
Collapse
|
3
|
Tran SC, Bryant KN, Cover TL. The Helicobacter pylori cag pathogenicity island as a determinant of gastric cancer risk. Gut Microbes 2024; 16:2314201. [PMID: 38391242 PMCID: PMC10896142 DOI: 10.1080/19490976.2024.2314201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Accepted: 01/31/2024] [Indexed: 02/24/2024] Open
Abstract
Helicobacter pylori strains can be broadly classified into two groups based on whether they contain or lack a chromosomal region known as the cag pathogenicity island (cag PAI). Colonization of the human stomach with cag PAI-positive strains is associated with an increased risk of gastric cancer and peptic ulcer disease, compared to colonization with cag PAI-negative strains. The cag PAI encodes a secreted effector protein (CagA) and components of a type IV secretion system (Cag T4SS) that delivers CagA and non-protein substrates into host cells. Animal model experiments indicate that CagA and the Cag T4SS stimulate a gastric mucosal inflammatory response and contribute to the development of gastric cancer. In this review, we discuss recent studies defining structural and functional features of CagA and the Cag T4SS and mechanisms by which H. pylori strains containing the cag PAI promote the development of gastric cancer and peptic ulcer disease.
Collapse
Affiliation(s)
- Sirena C. Tran
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Kaeli N. Bryant
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Timothy L. Cover
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, TN, USA
- Department of Medicine, Vanderbilt University School of Medicine, Nashville, TN, USA
- Vanderbilt Institute for Infection, Immunology, and Inflammation, Vanderbilt University Medical Center, Nashville, TN, USA
- Veterans Affairs Tennessee Valley Healthcare System, Nashville, TN, USA
| |
Collapse
|
4
|
Jiang N, Li W, Jiang S, Xie M, Liu R. Acetylation in pathogenesis: Revealing emerging mechanisms and therapeutic prospects. Biomed Pharmacother 2023; 167:115519. [PMID: 37729729 DOI: 10.1016/j.biopha.2023.115519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 09/08/2023] [Accepted: 09/14/2023] [Indexed: 09/22/2023] Open
Abstract
Protein acetylation modifications play a central and pivotal role in a myriad of biological processes, spanning cellular metabolism, proliferation, differentiation, apoptosis, and beyond, by effectively reshaping protein structure and function. The metabolic state of cells is intricately connected to epigenetic modifications, which in turn influence chromatin status and gene expression patterns. Notably, pathological alterations in protein acetylation modifications are frequently observed in diseases such as metabolic syndrome, cardiovascular disorders, and cancer. Such abnormalities can result in altered protein properties and loss of function, which are closely associated with developing and progressing related diseases. In recent years, the advancement of precision medicine has highlighted the potential value of protein acetylation in disease diagnosis, treatment, and prevention. This review includes provocative and thought-provoking papers outlining recent breakthroughs in acetylation modifications as they relate to cardiovascular disease, mitochondrial metabolic regulation, liver health, neurological health, obesity, diabetes, and cancer. Additionally, it covers the molecular mechanisms and research challenges in understanding the role of acetylation in disease regulation. By summarizing novel targets and prognostic markers for the treatment of related diseases, we aim to contribute to the field. Furthermore, we discuss current hot topics in acetylation research related to health regulation, including N4-acetylcytidine and liquid-liquid phase separation. The primary objective of this review is to provide insights into the functional diversity and underlying mechanisms by which acetylation regulates proteins in disease contexts.
Collapse
Affiliation(s)
- Nan Jiang
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing 210009, China
| | - Wenyong Li
- School of Biology and Food Engineering, Fuyang Normal University, Fuyang, Anhui 236037, China
| | - Shuanglin Jiang
- School of Biology and Food Engineering, Fuyang Normal University, Fuyang, Anhui 236037, China
| | - Ming Xie
- North China Petroleum Bureau General Hospital, Renqiu 062550, China.
| | - Ran Liu
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing 210009, China.
| |
Collapse
|
5
|
Azizimoghaddam Y, Kermanpour S, Mirzaei N, Houri H, Nabavi-Rad A, Asadzadeh Aghdaei H, Yadegar A, Zali MR. Genetic diversity of Helicobacter pylori type IV secretion system cagI and cagN genes and their association with clinical diseases. Sci Rep 2023; 13:10264. [PMID: 37355714 PMCID: PMC10290643 DOI: 10.1038/s41598-023-37392-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Accepted: 06/21/2023] [Indexed: 06/26/2023] Open
Abstract
A number of cagPAI genes in the Helicobacter pylori genome are considered the most evolved genes under a diversifying selection and evolutionary pressure. Among them, cagI and cagN are described as a part of the two different-operon of cagPAI that are involved in the T4SS machinery, but the definite association of these factors with clinical manifestations is still unclear. A total of 70 H. pylori isolates were obtained from different gastroduodenal patients. All isolates were examined for the presence of primary H. pylori virulence genes by PCR analysis. Direct DNA sequence analysis was performed for the cagI and cagN genes. The results were compared with the reference strain. The cagI, cagN, cagA, cagL, vacA s1m1, vacA s1m2, vacA s2m2, babA2, sabA, and dupA genotypes were detected in 80, 91.4, 84, 91.4, 32.8, 42.8, 24.4, 97.1, 84.3, and 84.3% of the total isolates, respectively. The most variable codon usage in cagI was observed at residues 20-25, 55-60, 94, 181-199, 213-221, 241-268, and 319-320, while the most variable codon usage in CagN hypervariable motif (CagNHM) was observed at residues 53 to 63. Sequencing data analysis of cagN revealed a hypothetical hexapeptide motif (EAKDEN/K) in residues of 278-283 among six H. pylori isolates, which needs further studies to evaluate its putative function. The present study demonstrated a high prevalence of cagI and cagN genes among Iranian H. pylori isolates with gastroduodenal diseases. Furthermore, no significant correlation between cagI and cagN variants and clinical diseases was observed in the present study. However, all patients had a high prevalence of cagPAI genes including cagI, cagN, cagA, and cagL, which indicates more potential role of these genes in disease outcome.
Collapse
Affiliation(s)
- Yasaman Azizimoghaddam
- Foodborne and Waterborne Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Sadaf Kermanpour
- Foodborne and Waterborne Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Nasrin Mirzaei
- Foodborne and Waterborne Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Hamidreza Houri
- Foodborne and Waterborne Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Ali Nabavi-Rad
- Foodborne and Waterborne Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Hamid Asadzadeh Aghdaei
- Basic and Molecular Epidemiology of Gastrointestinal Disorders Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Abbas Yadegar
- Foodborne and Waterborne Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Mohammad Reza Zali
- Gastroenterology and Liver Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
6
|
Reyes VE. Helicobacter pylori and Its Role in Gastric Cancer. Microorganisms 2023; 11:1312. [PMID: 37317287 PMCID: PMC10220541 DOI: 10.3390/microorganisms11051312] [Citation(s) in RCA: 37] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 05/08/2023] [Accepted: 05/15/2023] [Indexed: 06/16/2023] Open
Abstract
Gastric cancer is a challenging public health concern worldwide and remains a leading cause of cancer-related mortality. The primary risk factor implicated in gastric cancer development is infection with Helicobacter pylori. H. pylori induces chronic inflammation affecting the gastric epithelium, which can lead to DNA damage and the promotion of precancerous lesions. Disease manifestations associated with H. pylori are attributed to virulence factors with multiple activities, and its capacity to subvert host immunity. One of the most significant H. pylori virulence determinants is the cagPAI gene cluster, which encodes a type IV secretion system and the CagA toxin. This secretion system allows H. pylori to inject the CagA oncoprotein into host cells, causing multiple cellular perturbations. Despite the high prevalence of H. pylori infection, only a small percentage of affected individuals develop significant clinical outcomes, while most remain asymptomatic. Therefore, understanding how H. pylori triggers carcinogenesis and its immune evasion mechanisms is critical in preventing gastric cancer and mitigating the burden of this life-threatening disease. This review aims to provide an overview of our current understanding of H. pylori infection, its association with gastric cancer and other gastric diseases, and how it subverts the host immune system to establish persistent infection.
Collapse
Affiliation(s)
- Victor E Reyes
- Department of Pediatrics and Microbiology & Immunology, University of Texas Medical Branch, 301 University Blvd., Galveston, TX 77555-0372, USA
| |
Collapse
|
7
|
Blanc M, Lettl C, Guérin J, Vieille A, Furler S, Briand-Schumacher S, Dreier B, Bergé C, Plückthun A, Vadon-Le Goff S, Fronzes R, Rousselle P, Fischer W, Terradot L. Designed Ankyrin Repeat Proteins provide insights into the structure and function of CagI and are potent inhibitors of CagA translocation by the Helicobacter pylori type IV secretion system. PLoS Pathog 2023; 19:e1011368. [PMID: 37155700 DOI: 10.1371/journal.ppat.1011368] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 05/18/2023] [Accepted: 04/18/2023] [Indexed: 05/10/2023] Open
Abstract
The bacterial human pathogen Helicobacter pylori produces a type IV secretion system (cagT4SS) to inject the oncoprotein CagA into gastric cells. The cagT4SS external pilus mediates attachment of the apparatus to the target cell and the delivery of CagA. While the composition of the pilus is unclear, CagI is present at the surface of the bacterium and required for pilus formation. Here, we have investigated the properties of CagI by an integrative structural biology approach. Using Alpha Fold 2 and Small Angle X-ray scattering, it was found that CagI forms elongated dimers mediated by rod-shape N-terminal domains (CagIN) prolonged by globular C-terminal domains (CagIC). Three Designed Ankyrin Repeat Proteins (DARPins) K2, K5 and K8 selected against CagI interacted with CagIC with subnanomolar affinities. The crystal structures of the CagI:K2 and CagI:K5 complexes were solved and identified the interfaces between the molecules, thereby providing a structural explanation for the difference in affinity between the two binders. Purified CagI and CagIC were found to interact with adenocarcinoma gastric (AGS) cells, induced cell spreading and the interaction was inhibited by K2. The same DARPin inhibited CagA translocation by up to 65% in AGS cells while inhibition levels were 40% and 30% with K8 and K5, respectively. Our study suggests that CagIC plays a key role in cagT4SS-mediated CagA translocation and that DARPins targeting CagI represent potent inhibitors of the cagT4SS, a crucial risk factor for gastric cancer development.
Collapse
Affiliation(s)
- Marine Blanc
- UMR 5086 Molecular Microbiology and Structural Biochemistry CNRS-Université de Lyon, Institut de Biologie et Chimie des Protéines, Lyon, France
| | - Clara Lettl
- Max von Pettenkofer Institute of Hygiene and Medical Microbiology, Faculty of Medicine, LMU Munich, Munich, Germany
| | - Jérémy Guérin
- UMR 5086 Molecular Microbiology and Structural Biochemistry CNRS-Université de Lyon, Institut de Biologie et Chimie des Protéines, Lyon, France
| | - Anaïs Vieille
- UMR 5086 Molecular Microbiology and Structural Biochemistry CNRS-Université de Lyon, Institut de Biologie et Chimie des Protéines, Lyon, France
| | - Sven Furler
- Department of Biochemistry, University of Zurich, Zurich, Switzerland
| | | | - Birgit Dreier
- Department of Biochemistry, University of Zurich, Zurich, Switzerland
| | - Célia Bergé
- UMR 5086 Molecular Microbiology and Structural Biochemistry CNRS-Université de Lyon, Institut de Biologie et Chimie des Protéines, Lyon, France
| | - Andreas Plückthun
- Department of Biochemistry, University of Zurich, Zurich, Switzerland
| | - Sandrine Vadon-Le Goff
- University of Lyon, CNRS UMR5305, Tissue Biology and Therapeutic Engineering Laboratory (LBTI), Lyon, France
| | - Rémi Fronzes
- European Institute of Chemistry and Biology, CNRS UMR 5234 Microbiologie Fondamentale et Pathogénicité, Univ. Bordeaux, Pessac, France
| | - Patricia Rousselle
- University of Lyon, CNRS UMR5305, Tissue Biology and Therapeutic Engineering Laboratory (LBTI), Lyon, France
| | - Wolfgang Fischer
- Max von Pettenkofer Institute of Hygiene and Medical Microbiology, Faculty of Medicine, LMU Munich, Munich, Germany
| | - Laurent Terradot
- UMR 5086 Molecular Microbiology and Structural Biochemistry CNRS-Université de Lyon, Institut de Biologie et Chimie des Protéines, Lyon, France
| |
Collapse
|
8
|
Mechanism of regulation of the Helicobacter pylori Cagβ ATPase by CagZ. Nat Commun 2023; 14:479. [PMID: 36717564 PMCID: PMC9886983 DOI: 10.1038/s41467-023-36218-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Accepted: 01/20/2023] [Indexed: 02/01/2023] Open
Abstract
The transport of the CagA effector into gastric epithelial cells by the Cag Type IV secretion system (Cag T4SS) of Helicobacter pylori (H. pylori) is critical for pathogenesis. CagA is recruited to Cag T4SS by the Cagβ ATPase. CagZ, a unique protein in H. pylori, regulates Cagβ-mediated CagA transport, but the underlying mechanisms remain unclear. Here we report the crystal structure of the cytosolic region of Cagβ, showing a typical ring-like hexameric assembly. The central channel of the ring is narrow, suggesting that CagA must unfold for transport through the channel. Our structure of CagZ in complex with the all-alpha domain (AAD) of Cagβ shows that CagZ adopts an overall U-shape and tightly embraces Cagβ. This binding mode of CagZ is incompatible with the formation of the Cagβ hexamer essential for the ATPase activity. CagZ therefore inhibits Cagβ by trapping it in the monomeric state. Based on these findings, we propose a refined model for the transport of CagA by Cagβ.
Collapse
|
9
|
Freire de Melo F, Marques HS, Rocha Pinheiro SL, Lemos FFB, Silva Luz M, Nayara Teixeira K, Souza CL, Oliveira MV. Influence of Helicobacter pylori oncoprotein CagA in gastric cancer: A critical-reflective analysis. World J Clin Oncol 2022; 13:866-879. [PMID: 36483973 PMCID: PMC9724182 DOI: 10.5306/wjco.v13.i11.866] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/06/2022] [Revised: 09/20/2022] [Accepted: 10/11/2022] [Indexed: 11/21/2022] Open
Abstract
Gastric cancer is the fifth most common malignancy and third leading cancer-related cause of death worldwide. Helicobacter pylori is a Gram-negative bacterium that inhabits the gastric environment of 60.3% of the world’s population and represents the main risk factor for the onset of gastric neoplasms. CagA is the most important virulence factor in H. pylori, and is a translocated oncoprotein that induces morphofunctional modifications in gastric epithelial cells and a chronic inflammatory response that increases the risk of developing precancerous lesions. Upon translocation and tyrosine phosphorylation, CagA moves to the cell membrane and acts as a pathological scaffold protein that simultaneously interacts with multiple intracellular signaling pathways, thereby disrupting cell proliferation, differentiation and apoptosis. All these alterations in cell biology increase the risk of damaged cells acquiring pro-oncogenic genetic changes. In this sense, once gastric cancer sets in, its perpetuation is independent of the presence of the oncoprotein, characterizing a “hit-and-run” carcinogenic mechanism. Therefore, this review aims to describe H. pylori- and CagA-related oncogenic mechanisms, to update readers and discuss the novelties and perspectives in this field.
Collapse
Affiliation(s)
- Fabrício Freire de Melo
- Instituto Multidisciplinar em Saúde, Universidade Federal da Bahia, Vitória da Conquista 45029-094, Brazil
| | - Hanna Santos Marques
- Campus Vitória da Conquista, Universidade Estadual do Sudoeste da Bahia, Vitória da Conquista 45029-094, Brazil
| | - Samuel Luca Rocha Pinheiro
- Instituto Multidisciplinar em Saúde, Universidade Federal da Bahia, Vitória da Conquista 45029-094, Brazil
| | - Fabian Fellipe Bueno Lemos
- Instituto Multidisciplinar em Saúde, Universidade Federal da Bahia, Vitória da Conquista 45029-094, Brazil
| | - Marcel Silva Luz
- Instituto Multidisciplinar em Saúde, Universidade Federal da Bahia, Vitória da Conquista 45029-094, Brazil
| | | | - Cláudio Lima Souza
- Instituto Multidisciplinar em Saúde, Universidade Federal da Bahia, Vitória da Conquista 45029-094, Brazil
| | | |
Collapse
|
10
|
Atrisco-Morales J, Ramírez M, Castañón-Sánchez CA, Román-Román A, Román-Fernández IV, Martínez-Carrillo DN, García-Arellano S, Muñoz-Valle JF, Rodríguez-Ruiz HA, Fernández-Tilapa G. In Peripheral Blood Mononuclear Cells Helicobacter pylori Induces the Secretion of Soluble and Exosomal Cytokines Related to Carcinogenesis. Int J Mol Sci 2022; 23:ijms23158801. [PMID: 35955936 PMCID: PMC9368997 DOI: 10.3390/ijms23158801] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 08/02/2022] [Accepted: 08/05/2022] [Indexed: 11/16/2022] Open
Abstract
Helicobacter pylori promotes the secretion of cytokines that regulate inflammation and carcinogenesis. Immune cells secrete cytokines into the extracellular medium or packaged in exosomes. The objective of this study was to analyze the profile of soluble and exosomal cytokines that were secreted by human peripheral blood mononuclear cells (PBMCs) that were infected with H. pylori and to build a network of interaction between cytokines and cellular proteins. PBMCs were obtained by density gradient centrifugation and infected with H. pylori for 24 h. The infection was verified by immunofluorescence and Western blot for CagA. The exosomes were obtained from culture supernatant by ultracentrifugation and characterized by transmission electron microscopy, particle size analysis, and Western blot for CD9 and CD81. Cytokines were quantified using a multiplex immunoassay in the culture supernatant, intact exosomes, and lysed exosomes. H. pylori adheres to lymphocytes and translocates CagA. In PBMCs, H. pylori induces an increase in the soluble and exosomal IL-1β, IL-6, TNF-α, IL-10, IL-17A, IL-21, and IL-22. The protein-protein interaction (PPI) network shows that soluble and exosomal cytokines interact with proteins that participate in signaling pathways such as NF-κB, MAPK, PI3K-Akt, Jak-STAT, FoxO, and mTOR, that are related to carcinogenesis; moreover, TNF-α had the highest number of interactions. Cytokine-loaded exosomes represent another means of intercellular communication that is activated by H. pylori to stimulate inflammation, carcinogenesis, or cancer progression. Cytokine-loaded exosomes are likely to be associated with extragastrointestinal diseases of inflammatory origin.
Collapse
Affiliation(s)
- Josefina Atrisco-Morales
- Laboratorio de Investigación Clínica, Facultad de Ciencias Químico Biológicas, Universidad Autónoma de Guerrero, Chilpancingo 39087, Guerrero, Mexico
- Laboratorio de Investigación en Biomoléculas, Facultad de Ciencias Químico Biológicas, Universidad Autónoma de Guerrero, Chilpancingo 39087, Guerrero, Mexico
| | - Mónica Ramírez
- CONACYT-Universidad Autónoma de Guerrero, Chilpancingo 39087, Guerrero, Mexico
| | - Carlos Alberto Castañón-Sánchez
- Laboratorio de Investigación Biomédica, Hospital Regional de Alta Especialidad de Oaxaca, San Bartolo Coyotepec 71256, Oaxaca, Mexico
| | - Adolfo Román-Román
- Laboratorio de Investigación en Bacteriología, Facultad de Ciencias Químico Biológicas, Universidad Autónoma de Guerrero, Chilpancingo 39087, Guerrero, Mexico
| | - Ilce Valeria Román-Fernández
- Instituto de Investigación en Ciencias Biomédicas, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara 44340, Jalisco, Mexico
| | - Dinorah Nashely Martínez-Carrillo
- Laboratorio de Investigación Clínica, Facultad de Ciencias Químico Biológicas, Universidad Autónoma de Guerrero, Chilpancingo 39087, Guerrero, Mexico
- Laboratorio de Investigación en Biomoléculas, Facultad de Ciencias Químico Biológicas, Universidad Autónoma de Guerrero, Chilpancingo 39087, Guerrero, Mexico
| | - Samuel García-Arellano
- Instituto de Investigación en Ciencias Biomédicas, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara 44340, Jalisco, Mexico
| | - José Francisco Muñoz-Valle
- Instituto de Investigación en Ciencias Biomédicas, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara 44340, Jalisco, Mexico
| | - Hugo Alberto Rodríguez-Ruiz
- Laboratorio de Biomedicina Molecular, Facultad de Ciencias Químico-Biológicas, Universidad Autónoma de Guerrero, Chilpancingo 39087, Guerrero, Mexico
| | - Gloria Fernández-Tilapa
- Laboratorio de Investigación Clínica, Facultad de Ciencias Químico Biológicas, Universidad Autónoma de Guerrero, Chilpancingo 39087, Guerrero, Mexico
- Laboratorio de Investigación en Biomoléculas, Facultad de Ciencias Químico Biológicas, Universidad Autónoma de Guerrero, Chilpancingo 39087, Guerrero, Mexico
- Correspondence:
| |
Collapse
|
11
|
Shrestha R, Murata-Kamiya N, Imai S, Yamamoto M, Tsukamoto T, Nomura S, Hatakeyama M. Mouse Gastric Epithelial Cells Resist CagA Delivery by the Helicobacter pylori Type IV Secretion System. Int J Mol Sci 2022; 23:ijms23052492. [PMID: 35269634 PMCID: PMC8910101 DOI: 10.3390/ijms23052492] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 02/16/2022] [Accepted: 02/21/2022] [Indexed: 12/17/2022] Open
Abstract
The initial step in bacterial infection is adherence of the bacterium to the target cell surface. Helicobacter pylori exploits the interaction of bacterial adhesin protein HopQ with human epithelial CEACAMs (CEACAM1, 5, and 6) to stably adhere to gastric epithelial cells, which is necessary for delivery of the H. pylori CagA oncoprotein into the epithelial cells via a type IV secretion system. In contrast to human CEACAMs, however, HopQ does not interact with Ceacam1 (mouse CEACAM1) in vitro or in CHO cells ectopically expressing Ceacam1. Since the mouse genome lacks Ceacam5 and Ceacam6, no significant HopQ–Ceacam interaction may occur in mouse gastric epithelial cells. Here, we found that the mouse stomach has a much lower expression level of Ceacam1 than the expression level of CEACAM1 in the human stomach. Consistently, mouse gastric epithelial cells resist CagA delivery by cagA-positive H. pylori, and the delivery is restored by ectopic expression of human CEACAM1 or CEACAM5 in mouse gastric epithelial cells. Thus, despite the fact that mice are routinely used for H. pylori infection studies, a low expression level of Ceacam1 in the mouse stomach together with the loss or greatly reduced interaction of HopQ with Ceacams make the mouse an inappropriate model for studying the role of H. pylori-delivered CagA in gastric pathogenesis, including the development of gastric cancer.
Collapse
Affiliation(s)
- Rejina Shrestha
- Division of Microbiology, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan; (R.S.); (N.M.-K.); (S.I.)
| | - Naoko Murata-Kamiya
- Division of Microbiology, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan; (R.S.); (N.M.-K.); (S.I.)
| | - Satoshi Imai
- Division of Microbiology, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan; (R.S.); (N.M.-K.); (S.I.)
| | - Masami Yamamoto
- Division of Physiological Pathology, Department of Applied Science, School of Veterinary Nursing and Technology, Nippon Veterinary and Life Science University, 1-7-1 Kyonan-cho, Musashino-shi, Tokyo 180-8602, Japan;
| | - Tetsuya Tsukamoto
- Department of Diagnostic Pathology, Fujita Health University School of Medicine, 1-98 Dengakugakubo, Kutsukake-cho, Toyoake 470-1192, Japan;
| | - Sachiyo Nomura
- Department of Gastrointestinal Surgery, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan;
| | - Masanori Hatakeyama
- Division of Microbiology, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan; (R.S.); (N.M.-K.); (S.I.)
- Correspondence: ; Tel.: +81-3-5841-3404
| |
Collapse
|
12
|
Li B, Rong Q, Du Y, Zhang R, Li J, Tong X, Geng L, Zhang Y. Regulation of β1-integrin in autophagy and apoptosis of gastric epithelial cells infected with Helicobacter pylori. World J Microbiol Biotechnol 2021; 38:12. [PMID: 34873651 DOI: 10.1007/s11274-021-03199-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Accepted: 11/30/2021] [Indexed: 01/22/2023]
Abstract
Helicobacter pylori infection is an essential factor in the development of human gastric diseases, but its pathogenic mechanism is still unclear. In this work we have showed that, the LC3II levels were increased and β1-integrin levels were decreased in H. pylori-positive human gastric tissue samples and H. pylori co-cultured GES-1 cells. There was significant upregulation of LC3II levels and downregulation of P62 levels in GES-1 cells after β1-integrin knockdown co-cultured with H. pylori. This indicated that β1-integrin downregulation promoted autophagy in GES-1 cells after H. pylori infection. The cell apoptosis rate and poly ADP-ribose polymerase (PARP) and caspase-3 activities were increased in GES-1 cells pretreated with 3-methyladenine (3-MA ) after H. pylori infection. Furthermore, there was a significant decrease in apoptosis of β1-integrin knockdown GES-1 cells co-cultured with H. pylori; apoptosis was also downregulated in β1-integrin knockdown- and 3-MA-treated GES-1 cells co-cultured with H. pylori. Correspondingly, PARP and caspase-3 activities were decreased in β1-integrin knockdown cells co-cultured with H. pylori and β1-integrin knockdown-3-MA-treated-1 cells with H. pylori infection. Thus, β1-integrin is a novel autophagy and apoptosis regulator during H. pylori infection. However, inhibition of autophagy did not reverse the decrease in apoptosis caused by downregulation of β1-integrin.
Collapse
Affiliation(s)
- Boqing Li
- School of Basic Medical Sciences, Binzhou Medical University, 346# Guanhai Road, Yantai, 264003, China
| | - Qianyu Rong
- Yantai Affiliated Hospital of Binzhou Medical University, Yantai, 264100, China
| | - Yunqiu Du
- School of Basic Medical Sciences, Binzhou Medical University, 346# Guanhai Road, Yantai, 264003, China
| | - Ruiqing Zhang
- School of Basic Medical Sciences, Binzhou Medical University, 346# Guanhai Road, Yantai, 264003, China
| | - Jing Li
- School of Basic Medical Sciences, Binzhou Medical University, 346# Guanhai Road, Yantai, 264003, China
| | - Xiaohan Tong
- School of Basic Medical Sciences, Binzhou Medical University, 346# Guanhai Road, Yantai, 264003, China
| | - Li Geng
- School of Basic Medical Sciences, Binzhou Medical University, 346# Guanhai Road, Yantai, 264003, China
| | - Ying Zhang
- School of Basic Medical Sciences, Binzhou Medical University, 346# Guanhai Road, Yantai, 264003, China.
| |
Collapse
|
13
|
Lettl C, Haas R, Fischer W. Kinetics of CagA type IV secretion by Helicobacter pylori and the requirement for substrate unfolding. Mol Microbiol 2021; 116:794-807. [PMID: 34121254 DOI: 10.1111/mmi.14772] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Revised: 06/02/2021] [Accepted: 06/12/2021] [Indexed: 12/27/2022]
Abstract
Type IV secretion of effector proteins is an important principle for interaction of human pathogens with their target cells. The corresponding secretion systems may transport a multitude of effector proteins that have to be deployed in the respective spatiotemporal context, or only a single translocated protein, as in the case of the CagA effector protein produced by the human gastric pathogen Helicobacter pylori. For a more detailed analysis of the kinetics and mode of action of CagA type IV secretion by H. pylori, we describe here, a novel, highly sensitive split luciferase-based translocation reporter which can be easily adapted to different end-point or real-time measurements. Using this reporter, we showed that H. pylori cells are able to rapidly inject a limited amount of their CagA supply into cultured gastric epithelial cells. We have further employed the reporter system to address the question whether CagA has to be unfolded prior to translocation by the type IV secretion system. We showed that protein domains co-translocated with CagA as protein fusions are more readily tolerated as substrates than in other secretion systems, but also provide evidence that unfolding of effector proteins is a prerequisite for their transport.
Collapse
Affiliation(s)
- Clara Lettl
- Max von Pettenkofer Institute of Hygiene and Medical Microbiology, Medical Faculty, LMU Munich, Munich, Germany.,Partner Site Munich, German Center for Infection Research (DZIF), Munich, Germany
| | - Rainer Haas
- Max von Pettenkofer Institute of Hygiene and Medical Microbiology, Medical Faculty, LMU Munich, Munich, Germany.,Partner Site Munich, German Center for Infection Research (DZIF), Munich, Germany
| | - Wolfgang Fischer
- Max von Pettenkofer Institute of Hygiene and Medical Microbiology, Medical Faculty, LMU Munich, Munich, Germany.,Partner Site Munich, German Center for Infection Research (DZIF), Munich, Germany
| |
Collapse
|
14
|
Toll-like Receptor 5 Activation by the CagY Repeat Domains of Helicobacter pylori. Cell Rep 2021; 32:108159. [PMID: 32937132 DOI: 10.1016/j.celrep.2020.108159] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Revised: 07/01/2020] [Accepted: 08/24/2020] [Indexed: 02/07/2023] Open
Abstract
Helicobacter pylori (Hp) is an important human pathogen associated with gastric inflammation and neoplasia. It is commonly believed that this bacterium avoids major immune recognition by Toll-like receptors (TLRs) because of low intrinsic activity of its flagellin and lipopolysaccharides (LPS). In particular, TLR5 specifically detects flagellins in various bacterial pathogens, while Hp evolved mutations in flagellin to evade detection through TLR5. Cancerogenic Hp strains encode a type IV secretion system (T4SS). The T4SS core component and pilus-associated protein CagY, a large VirB10 ortholog, drives effector molecule translocation. Here, we identify CagY as a flagellin-independent TLR5 agonist. We detect five TLR5 interaction sites, promoting binding of CagY-positive Hp to TLR5-expressing cells, TLR5 stimulation, and intracellular signal transduction. Consequently, CagY constitutes a remarkable VirB10 member detected by TLR5, driving crucial innate immune responses by this human pathogen.
Collapse
|
15
|
Wen Y, Huang H, Tang T, Yang H, Wang X, Huang X, Gong Y, Zhang X, She F. AI-2 represses CagA expression and bacterial adhesion, attenuating the Helicobacter pylori-induced inflammatory response of gastric epithelial cells. Helicobacter 2021; 26:e12778. [PMID: 33400843 DOI: 10.1111/hel.12778] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Revised: 11/27/2020] [Accepted: 11/28/2020] [Indexed: 01/05/2023]
Abstract
BACKGROUND Helicobacter pylori (H. pylori) infection of gastric epithelial cells induces inflammatory response. Outer membrane proteins (OMPs), Type 4 secretion system (T4SS) encoded by cagPAI, and the effector protein CagA are involved in the pathogenesis of H. pylori. H. pylori possesses a gene encoding LuxS which synthesizes AI-2, a quorum sensing signal molecule. The aim of this study was to investigate the role of AI-2 in the expression of virulence factors and the inflammatory response of gastric epithelial (AGS) cells induced by H. pylori. MATERIALS AND METHODS H. pylori ΔluxS mutant was constructed, and AI-2 activity was measured with Vibrio harveyi BB170. NF-κB activation, IL-8 production, expression of OMPs (outer membrane proteins), CagA, and T4SS encoded by cagPAI were investigated in H. pylori wild type, and ΔluxS with or without supplementation of AI-2. RESULTS H. pylori produced approximately 7 μM of AI-2 in the medium. AI-2 inhibited expression and translocation of CagA after infection of AGS cells. AI-2 upregulated the expression of CagM, CagE, and CagX, while had no effect to the interaction between T4SS and α5β1 integrin. AI-2 also reduced expression of adhesins and bacterial adhesion to AGS cells. Finally, AI-2 reduced the activation of NF-κB and expression of IL-8 in H. pylori-infected AGS. CONCLUSIONS AI-2 plays an important role in the pathogenesis of H. pylori. AI-2 inhibits the bacterial adhesion, expression, and translocation of CagA, and attenuates the inflammatory response of AGS cells induced by H. pylori.
Collapse
Affiliation(s)
- Yancheng Wen
- Key Laboratory of Ministry of Education for Gastrointestinal Cancer, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, China.,Fujian Key Laboratory of Tumor Microbiology, Department of Medical Microbiology, Fujian Medical University, Fuzhou, China
| | - Hongming Huang
- Key Laboratory of Ministry of Education for Gastrointestinal Cancer, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, China.,Fujian Key Laboratory of Tumor Microbiology, Department of Medical Microbiology, Fujian Medical University, Fuzhou, China
| | - Tiechen Tang
- The First Hospital of Nanping City, affiliated to Fujian Medical University, Nanping, Fujian, China
| | - Huang Yang
- Key Laboratory of Ministry of Education for Gastrointestinal Cancer, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, China.,Fujian Key Laboratory of Tumor Microbiology, Department of Medical Microbiology, Fujian Medical University, Fuzhou, China
| | - Xi Wang
- Key Laboratory of Ministry of Education for Gastrointestinal Cancer, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, China.,Fujian Key Laboratory of Tumor Microbiology, Department of Medical Microbiology, Fujian Medical University, Fuzhou, China
| | - Xi Huang
- Key Laboratory of Ministry of Education for Gastrointestinal Cancer, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, China.,Fujian Key Laboratory of Tumor Microbiology, Department of Medical Microbiology, Fujian Medical University, Fuzhou, China
| | - Yingying Gong
- Key Laboratory of Ministry of Education for Gastrointestinal Cancer, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, China.,Fujian Key Laboratory of Tumor Microbiology, Department of Medical Microbiology, Fujian Medical University, Fuzhou, China
| | - Xiaoyan Zhang
- Key Laboratory of Ministry of Education for Gastrointestinal Cancer, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, China.,Fujian Key Laboratory of Tumor Microbiology, Department of Medical Microbiology, Fujian Medical University, Fuzhou, China
| | - Feifei She
- Key Laboratory of Ministry of Education for Gastrointestinal Cancer, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, China.,Fujian Key Laboratory of Tumor Microbiology, Department of Medical Microbiology, Fujian Medical University, Fuzhou, China
| |
Collapse
|
16
|
Jaboulay C, Godeux AS, Doublet P, Vianney A. Regulatory Networks of the T4SS Control: From Host Cell Sensing to the Biogenesis and the Activity during the Infection. J Mol Biol 2021; 433:166892. [PMID: 33636165 DOI: 10.1016/j.jmb.2021.166892] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Revised: 02/17/2021] [Accepted: 02/17/2021] [Indexed: 02/03/2023]
Abstract
Delivery of effectors, DNA or proteins, that hijack host cell processes to the benefit of bacteria is a mechanism widely used by bacterial pathogens. It is achieved by complex effector injection devices, the secretion systems, among which Type 4 Secretion Systems (T4SSs) play a key role in bacterial virulence of numerous animal and plant pathogens. Considerable progress has recently been made in the structure-function analyses of T4SSs. Nevertheless, the signals and processes that trigger machine assembly and activity during infection, as well as those involved in substrate recognition and transfer, are complex and still poorly understood. In this review, we aim at summarizing the last updates of the knowledge on signaling pathways that regulate the biogenesis and the activity of T4SSs in important bacterial pathogens.
Collapse
Affiliation(s)
- C Jaboulay
- CIRI, Centre International de Recherche en Infectiologie, (Team: Legionella pathogenesis), Univ Lyon, Inserm, U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, ENS de Lyon, F-69007 Lyon, France.
| | - A S Godeux
- CIRI, Centre International de Recherche en Infectiologie, (Team: Horigene), Univ Lyon, Inserm, U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, ENS de Lyon, F-69007 Lyon, France
| | - P Doublet
- CIRI, Centre International de Recherche en Infectiologie, (Team: Legionella pathogenesis), Univ Lyon, Inserm, U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, ENS de Lyon, F-69007 Lyon, France
| | - A Vianney
- CIRI, Centre International de Recherche en Infectiologie, (Team: Legionella pathogenesis), Univ Lyon, Inserm, U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, ENS de Lyon, F-69007 Lyon, France
| |
Collapse
|
17
|
Costa TRD, Harb L, Khara P, Zeng L, Hu B, Christie PJ. Type IV secretion systems: Advances in structure, function, and activation. Mol Microbiol 2021; 115:436-452. [PMID: 33326642 DOI: 10.1111/mmi.14670] [Citation(s) in RCA: 119] [Impact Index Per Article: 29.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Revised: 12/12/2020] [Accepted: 12/13/2020] [Indexed: 12/14/2022]
Abstract
Bacterial type IV secretion systems (T4SSs) are a functionally diverse translocation superfamily. They consist mainly of two large subfamilies: (i) conjugation systems that mediate interbacterial DNA transfer and (ii) effector translocators that deliver effector macromolecules into prokaryotic or eukaryotic cells. A few other T4SSs export DNA or proteins to the milieu, or import exogenous DNA. The T4SSs are defined by 6 or 12 conserved "core" subunits that respectively elaborate "minimized" systems in Gram-positive or -negative bacteria. However, many "expanded" T4SSs are built from "core" subunits plus numerous others that are system-specific, which presumptively broadens functional capabilities. Recently, there has been exciting progress in defining T4SS assembly pathways and architectures using a combination of fluorescence and cryoelectron microscopy. This review will highlight advances in our knowledge of structure-function relationships for model Gram-negative bacterial T4SSs, including "minimized" systems resembling the Agrobacterium tumefaciens VirB/VirD4 T4SS and "expanded" systems represented by the Helicobacter pylori Cag, Legionella pneumophila Dot/Icm, and F plasmid-encoded Tra T4SSs. Detailed studies of these model systems are generating new insights, some at atomic resolution, to long-standing questions concerning mechanisms of substrate recruitment, T4SS channel architecture, conjugative pilus assembly, and machine adaptations contributing to T4SS functional versatility.
Collapse
Affiliation(s)
- Tiago R D Costa
- MRC Centre for Molecular Bacteriology and Infection, Department of Life Sciences, Imperial College London, London, UK
| | - Laith Harb
- Department of Biochemistry and Biophysics and Center for Phage Technology, Texas A&M University, College Station, TX, USA
| | - Pratick Khara
- Department of Microbiology and Molecular Genetics, McGovern Medical School at UTHealth, Houston, TX, USA
| | - Lanying Zeng
- Department of Biochemistry and Biophysics and Center for Phage Technology, Texas A&M University, College Station, TX, USA
| | - Bo Hu
- Department of Microbiology and Molecular Genetics, McGovern Medical School at UTHealth, Houston, TX, USA
| | - Peter J Christie
- Department of Microbiology and Molecular Genetics, McGovern Medical School at UTHealth, Houston, TX, USA
| |
Collapse
|
18
|
Hatakeyama M. The role of Helicobacter pylori CagA oncoprotein in neoplastic transformation of gastric epithelial cells. RESEARCH AND CLINICAL APPLICATIONS OF TARGETING GASTRIC NEOPLASMS 2021:119-144. [DOI: 10.1016/b978-0-323-85563-1.00005-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
19
|
Abstract
The Helicobacter pylori type IV secretion system (T4SS) encoded on the cag pathogenicity island (cagPAI) secretes the CagA oncoprotein and other effectors into the gastric epithelium. During murine infection, T4SS function is lost in an immune-dependent manner, typically as a result of in-frame recombination in the middle repeat region of cagY, though single nucleotide polymorphisms (SNPs) in cagY or in other essential genes may also occur. Loss of T4SS function also occurs in gerbils, nonhuman primates, and humans, suggesting that it is biologically relevant and not simply an artifact of the murine model. Here, we sought to identify physiologically relevant conditions under which T4SS function is maintained in the murine model. We found that loss of H. pylori T4SS function in mice was blunted by systemic Salmonella coinfection and completely eliminated by dietary iron restriction. Both have epidemiologic parallels in humans, since H. pylori strains from individuals in developing countries, where iron deficiency and systemic infections are common, are also more often cagPAI+ than strains from developed countries. These results have implications for our fundamental understanding of the cagPAI and also provide experimental tools that permit the study of T4SS function in the murine model.IMPORTANCE The type IV secretion system (T4SS) is the major Helicobacter pylori virulence factor, though its function is lost during murine infection. Loss of function also occurs in gerbils and in humans, suggesting that it is biologically relevant, but the conditions under which T4SS regulation occurs are unknown. Here, we found that systemic coinfection with Salmonella and iron deprivation each promote retention of T4SS function. These results improve our understanding of the cag pathogenicity island (cagPAI) and provide experimental tools that permit the study of T4SS function in the murine model.
Collapse
|
20
|
Tegtmeyer N, Backert S. Different roles of integrin-β1 and integrin-αv for type IV secretion of CagA versus cell elongation phenotype and cell lifting by Helicobacter pylori. PLoS Pathog 2020; 16:e1008135. [PMID: 32692784 PMCID: PMC7373265 DOI: 10.1371/journal.ppat.1008135] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Accepted: 10/07/2019] [Indexed: 12/15/2022] Open
Affiliation(s)
- Nicole Tegtmeyer
- Department of Biology, Division of Microbiology, Friedrich Alexander University Erlangen-Nuremberg, Erlangen, Germany
- * E-mail: (NT); (SB)
| | - Steffen Backert
- Department of Biology, Division of Microbiology, Friedrich Alexander University Erlangen-Nuremberg, Erlangen, Germany
- * E-mail: (NT); (SB)
| |
Collapse
|
21
|
Fischer W, Tegtmeyer N, Stingl K, Backert S. Four Chromosomal Type IV Secretion Systems in Helicobacter pylori: Composition, Structure and Function. Front Microbiol 2020; 11:1592. [PMID: 32754140 PMCID: PMC7366825 DOI: 10.3389/fmicb.2020.01592] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Accepted: 06/18/2020] [Indexed: 12/14/2022] Open
Abstract
The pathogenic bacterium Helicobacter pylori is genetically highly diverse and a major risk factor for the development of peptic ulcer disease and gastric adenocarcinoma in humans. During evolution, H. pylori has acquired multiple type IV secretion systems (T4SSs), and then adapted for various purposes. These T4SSs represent remarkable molecular transporter machines, often associated with an extracellular pilus structure present in many bacteria, which are commonly composed of multiple structural proteins spanning the inner and outer membranes. By definition, these T4SSs exhibit central functions mediated through the contact-dependent conjugative transfer of mobile DNA elements, the contact-independent release and uptake of DNA into and from the extracellular environment as well as the secretion of effector proteins in mammalian host target cells. In recent years, numerous features on the molecular functionality of these T4SSs were disclosed. H. pylori encodes up to four T4SSs on its chromosome, namely the Cag T4SS present in the cag pathogenicity island (cagPAI), the ComB system, as well as the Tfs3 and Tfs4 T4SSs, some of which exhibit unique T4SS functions. The Cag T4SS facilitates the delivery of the CagA effector protein and pro-inflammatory signal transduction through translocated ADP-heptose and chromosomal DNA, while various structural pilus proteins can target host cell receptors such as integrins or TLR5. The ComB apparatus mediates the import of free DNA from the extracellular milieu, whereas Tfs3 may accomplish the secretion or translocation of effector protein CtkA. Both Tfs3 and Tfs4 are furthermore presumed to act as conjugative DNA transfer machineries due to the presence of tyrosine recombinases with cognate recognition sequences, conjugational relaxases, and potential origins of transfer (oriT) found within the tfs3 and tfs4 genome islands. In addition, some extrachromosomal plasmids, transposons and phages have been discovered in multiple H. pylori isolates. The genetic exchange mediated by DNA mobilization events of chromosomal genes and plasmids combined with recombination events could account for much of the genetic diversity found in H. pylori. In this review, we highlight our current knowledge on the four T4SSs and the involved mechanisms with consequences for H. pylori adaptation to the hostile environment in the human stomach.
Collapse
Affiliation(s)
- Wolfgang Fischer
- Max von Pettenkofer-Institut für Hygiene und Medizinische Mikrobiologie, Medizinische Fakultät, LMU München, Munich, Germany
| | - Nicole Tegtmeyer
- Department Biologie, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Kerstin Stingl
- Department of Biological Safety, National Reference Laboratory for Campylobacter, German Federal Institute for Risk Assessment (BfR), Berlin, Germany
| | - Steffen Backert
- Department Biologie, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| |
Collapse
|
22
|
HAYASHI HIROKI, INOUE JUN, OYAMA KATSUAKI, MATSUOKA KOKI, NISHIUMI SHIN, YOSHIDA MASARU, YANO YOSHIHIKO, KODAMA YUZO. Detection of Novel Amino Acid Polymorphisms in the East Asian CagA of Helicobacter Pylori with Full Sequencing Data. THE KOBE JOURNAL OF MEDICAL SCIENCES 2020; 66:E22-E31. [PMID: 32814754 PMCID: PMC7447099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Accepted: 03/17/2020] [Indexed: 06/11/2023]
Abstract
Cytotoxin-associated gene A (CagA) is generally accepted to be the most important virulence factor of Helicobacter pylori and increases the risk of developing gastric cancer. East Asian CagA, which includes the EPIYA-D segment at the C-terminal region, has a significantly higher gastric carcinogenic rate than Western CagA including the EPIYA-C segment. Although the amino acid polymorphism surrounding the EPIYA motif in the C-terminal region has been examined in detail, limited information is currently available on the amino acid polymorphism of the N-terminal region of East Asian CagA. In the present study, we analyzed the sequencing data of East Asian CagA that we obtained previously to detect amino acid changes (AACs) in the N-terminal region of East Asian CagA. Four highly frequent AACs in the N-terminal region of East Asian CagA were detected in our datasets, two of which (V356A, Y677F) exhibited reproducible specificity using a validation dataset from the NCBI database, which are candidate AACs related to the pathogenic function of CagA. We examined whether these AACs affect the functions of CagA in silico model. The computational docking simulation model showed that binding affinity between CagA and phosphatidylserine remained unchanged in the model of mutant CagA reflecting both AAC, whereas that between CagA and α5β1 integrin significantly increased. Based on whole genome sequencing data we herein identified novel specific AACs in the N-terminal regions of EPIYA-D that have the potential to change the function of CagA.
Collapse
Affiliation(s)
- HIROKI HAYASHI
- Division of Gastroenterology, Department of Internal Medicine, Kobe University Graduate School of Medicine, Kobe, Japan
| | - JUN INOUE
- Division of Gastroenterology, Department of Internal Medicine, Kobe University Graduate School of Medicine, Kobe, Japan
| | - KATSUAKI OYAMA
- Division of Gastroenterology, Department of Internal Medicine, Kobe University Graduate School of Medicine, Kobe, Japan
| | - KOKI MATSUOKA
- Division of Gastroenterology, Department of Internal Medicine, Kobe University Graduate School of Medicine, Kobe, Japan
| | - SHIN NISHIUMI
- Division of Gastroenterology, Department of Internal Medicine, Kobe University Graduate School of Medicine, Kobe, Japan
| | - MASARU YOSHIDA
- Division of Gastroenterology, Department of Internal Medicine, Kobe University Graduate School of Medicine, Kobe, Japan
- Division of Metabolomics Research, Department of Internal Related, Kobe University Graduate School of Medicine, Kobe, Japan
| | - YOSHIHIKO YANO
- Division of Gastroenterology, Department of Internal Medicine, Kobe University Graduate School of Medicine, Kobe, Japan
- Division of Molecular Medicine & Medical Genetics, Department of Pathology, Kobe University Graduate School of Medicine, Kobe, Japan
| | - YUZO KODAMA
- Division of Gastroenterology, Department of Internal Medicine, Kobe University Graduate School of Medicine, Kobe, Japan
| |
Collapse
|
23
|
Fischer W, Haas R. Different roles of integrin-β1 and integrin-αv for type IV secretion of CagA versus cell elongation phenotype and cell lifting by Helicobacter pylori. PLoS Pathog 2020; 16:e1008564. [PMID: 32497129 PMCID: PMC7271986 DOI: 10.1371/journal.ppat.1008564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Accepted: 04/20/2020] [Indexed: 11/25/2022] Open
Affiliation(s)
- Wolfgang Fischer
- Medical Microbiology and Hospital Epidemiology, Max von Pettenkofer Institute, Faculty of Medicine, Ludwig-Maximilians-University Munich, Munich, Germany
- German Center for Infection Research (DZIF), Ludwig-Maximilians-University Munich, Munich, Germany
- * E-mail: (WF); (RH)
| | - Rainer Haas
- Medical Microbiology and Hospital Epidemiology, Max von Pettenkofer Institute, Faculty of Medicine, Ludwig-Maximilians-University Munich, Munich, Germany
- German Center for Infection Research (DZIF), Ludwig-Maximilians-University Munich, Munich, Germany
- * E-mail: (WF); (RH)
| |
Collapse
|
24
|
Identification of Pathogenicity Island Genes Associated with Loss of Type IV Secretion Function during Murine Infection with Helicobacter pylori. Infect Immun 2020; 88:IAI.00801-19. [PMID: 32205402 DOI: 10.1128/iai.00801-19] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Accepted: 03/16/2020] [Indexed: 01/18/2023] Open
Abstract
Chronic Helicobacter pylori colonization in animal models often leads to downregulation of the type IV secretion system (T4SS), typically by recombination in cagY, which is an essential T4SS gene. However, 17 other cag pathogenicity island (cagPAI) genes, as well as some non-cagPAI genes, are also essential for T4SS function. To get a more complete picture of how H. pylori regulates the T4SS during animal colonization, we examined cagY in 534 mouse-passaged isolates that lost T4SS function, defined as a normalized interleukin-8 (IL-8) value of <0.3 relative to the input H. pylori strain PMSS1. In order to analyze the genetic changes in the strains with unchanged cagY, we sequenced the entire pathogenicity island of 60 such isolates using single-molecule, real-time (SMRT) sequencing technology (PacBio, Menlo Park, CA), and we compared the results to the PMSS1 wild type (WT). Of the 534 strains, 271 (51%) showed evidence of recombination in cagY, but we also found indels or nonsynonymous changes in 13 other essential cagPAI genes implicated in H. pylori T4SS function, most commonly cag5, cag10, and cagA While cagY recombination is the most common mechanism by which H. pylori downregulates T4SS function during murine infection, loss of function is also associated with changes in other essential cagPAI genes.
Collapse
|
25
|
Tegtmeyer N, Ghete TD, Schmitt V, Remmerbach T, Cortes MCC, Bondoc EM, Graf HL, Singer BB, Hirsch C, Backert S. Type IV secretion of Helicobacter pylori CagA into oral epithelial cells is prevented by the absence of CEACAM receptor expression. Gut Pathog 2020; 12:25. [PMID: 32435278 PMCID: PMC7222478 DOI: 10.1186/s13099-020-00363-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Accepted: 05/09/2020] [Indexed: 02/07/2023] Open
Abstract
Background Helicobacter pylori typically colonizes the human stomach, but it can occasionally be detected in the oral cavity of infected persons. Clinical outcome as a result of gastric colonization depends on presence of the pathogenicity island cagPAI that encodes a type-IV secretion system (T4SS) for translocation of the effector protein CagA and ADP-heptose. Upon injection into target cells, CagA is phosphorylated, which can be demonstrated by in vitro infection of the gastric epithelial cell line AGS, resulting in cell elongation. Here we investigated whether H. pylori can exert these responses during interaction with cells from the oral epithelium. To this purpose, three oral epithelial cell lines, HN, CAL-27 and BHY, were infected with various virulent wild-type H. pylori strains, and CagA delivery and ADP-heptose-mediated pro-inflammatory responses were monitored. Results All three oral cell lines were resistant to elongation upon infection, despite similar bacterial binding capabilities. Moreover, T4SS-dependent CagA injection was absent. Resistance to CagA delivery was shown to be due to absence of CEACAM expression in these cell lines, while these surface molecules have recently been recognized as H. pylori T4SS receptors. Lack of CEACAM expression in HN, CAL-27 and BHY cells was overcome by genetic introduction of either CEACAM1, CEACAM5, or CEACAM6, which in each of the cell lines was proven sufficient to facilitate CagA delivery and phosphorylation upon H. pylori infection to levels similar to those observed with the gastric AGS cells. Pro-inflammatory responses, as measured by interleukin-8 ELISA, were induced to high levels in each cell line and CEACAM-independent. Conclusions These results show that lack of CEACAM receptors on the surface of the oral epithelial cells was responsible for resistance to H. pylori CagA-dependent pathogenic activities, and confirms the important role for the T4SS-dependent interaction of these receptors with H. pylori in the gastric epithelium.
Collapse
Affiliation(s)
- Nicole Tegtmeyer
- 1Department of Biology, Division of Microbiology, Friedrich Alexander University Erlangen, Staudtstrasse 5, 91058 Erlangen, Germany
| | - Tabita Denisia Ghete
- 1Department of Biology, Division of Microbiology, Friedrich Alexander University Erlangen, Staudtstrasse 5, 91058 Erlangen, Germany
| | - Verena Schmitt
- 2Medical Faculty, Institute of Anatomy, University of Duisburg-Essen, Hufelandstrasse 55, 45147 Essen, Germany
| | - Torsten Remmerbach
- 3Division of Clinical and Experimental Oral Medicine, Department of OMF-Surgery, Leipzig University Hospital, University of Leipzig, Leipzig, Germany
| | - Maria Celeste C Cortes
- 4Center for Basic Science Research (CBSR), Research and Biotechnology (R&B), St. Luke's Medical Center, Quezon City, Philippines
| | - Edgardo M Bondoc
- 5Institute for Digestive and Liver Diseases, St. Luke's Medical Center, Quezon City, Philippines
| | - Hans-Ludwig Graf
- 6Department of Oral, Maxillary, Facial and Reconstructive Plastic Surgery, University Hospital of Leipzig, Leipzig, Germany
| | - Bernhard B Singer
- 2Medical Faculty, Institute of Anatomy, University of Duisburg-Essen, Hufelandstrasse 55, 45147 Essen, Germany
| | - Christian Hirsch
- 7Department of Paediatric Dentistry, University School of Dental Medicine, University of Leipzig, Leipzig, Germany
| | - Steffen Backert
- 1Department of Biology, Division of Microbiology, Friedrich Alexander University Erlangen, Staudtstrasse 5, 91058 Erlangen, Germany
| |
Collapse
|
26
|
Rizzato C, Torres J, Obazee O, Camorlinga-Ponce M, Trujillo E, Stein A, Mendez-Tenorio A, Bravo MM, Canzian F, Kato I. Variations in cag pathogenicity island genes of Helicobacter pylori from Latin American groups may influence neoplastic progression to gastric cancer. Sci Rep 2020; 10:6570. [PMID: 32300197 PMCID: PMC7162905 DOI: 10.1038/s41598-020-63463-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Accepted: 03/20/2020] [Indexed: 12/11/2022] Open
Abstract
Helicobacter pylori (HP) colonizes the human stomach and induces acute gastritis, peptic ulcer disease, atrophic gastritis, and gastric adenocarcinoma. Increased virulence in HP isolates derives from harboring the cag (cytotoxin-associated genes) pathogenicity island (cagPAI). We analyzed the microvariants in cagPAI genes with the hypothesis that they may play an important role in determining HP virulence. We tested DNAs from cagA positive patients HP isolates; a total of 74 patients with chronic gastritis (CG, N = 37), intestinal metaplasia (IM, N = 21) or gastric cancer (GC, N = 16) from Mexico and Colombia. We selected 520 non-synonymous variants with at least 7.5% frequency in the original sequence outputs or with a minimum of 5 isolates with minor allele. After adjustment for multiple comparisons, no variants were statistically significantly associated with IM or GC. However, 19 non-synonymous showed conventional P-values < 0.05 comparing the frequency of the alleles between the isolates from subjects with gastritis and isolates from subjects with IM or GC; 12 of these showed a significant correlation with the severity of the disease. The present study revealed that several cagPAI genes from Latin American Western HP strains contains a number of non-synonymous variants in relatively high frequencies which could influence on the clinical outcome. However, none of the associations remained statistically significant after adjustment for multiple comparison.
Collapse
Affiliation(s)
- Cosmeri Rizzato
- Department of Translation Research and of New Technologies in Medicine and Surgery, University of Pisa, Pisa, Italy.
| | - Javier Torres
- Unidad de Investigación en Enfermedades Infecciosas, UMAE Pediatría, Instituto Mexicano del Seguro Social, Mexico City, Mexico
| | - Ofure Obazee
- Genomic Epidemiology Group, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Margarita Camorlinga-Ponce
- Unidad de Investigación en Enfermedades Infecciosas, UMAE Pediatría, Instituto Mexicano del Seguro Social, Mexico City, Mexico
| | - Esperanza Trujillo
- Grupo de Investigación en Biología del Cáncer. Instituto Nacional de Cancerología, Bogotá, Colombia
| | - Angelika Stein
- Genomic Epidemiology Group, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Alfonso Mendez-Tenorio
- Laboratorio de Biotecnología y Bioinformática Genómica, ENCB, Instituto Politécnico Nacional, México City, México
| | - Maria Mercedes Bravo
- Grupo de Investigación en Biología del Cáncer. Instituto Nacional de Cancerología, Bogotá, Colombia
| | - Federico Canzian
- Genomic Epidemiology Group, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Ikuko Kato
- Department of Oncology and Pathology, Wayne State University School of Medicine, Detroit, MI, USA
| |
Collapse
|
27
|
The Helicobacter pylori Cag Type IV Secretion System. Trends Microbiol 2020; 28:682-695. [PMID: 32451226 DOI: 10.1016/j.tim.2020.02.004] [Citation(s) in RCA: 77] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Revised: 01/30/2020] [Accepted: 02/25/2020] [Indexed: 12/24/2022]
Abstract
Colonization of the human stomach with Helicobacter pylori strains containing the cag pathogenicity island is a risk factor for development of gastric cancer. The cag pathogenicity island contains genes encoding a secreted effector protein (CagA) and components of a type IV secretion system (Cag T4SS). The molecular architecture of the H. pylori Cag T4SS is substantially more complex than that of prototype T4SSs in other bacterial species. In this review, we discuss recent discoveries pertaining to the structure and function of the Cag T4SS and its role in gastric cancer pathogenesis.
Collapse
|
28
|
Jan HM, Chen YC, Yang TC, Ong LL, Chang CC, Muthusamy S, Abera AB, Wu MS, Gervay-Hague J, Mong KKT, Lin CH. Cholesteryl α-D-glucoside 6-acyltransferase enhances the adhesion of Helicobacter pylori to gastric epithelium. Commun Biol 2020; 3:120. [PMID: 32170208 PMCID: PMC7069968 DOI: 10.1038/s42003-020-0855-y] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Accepted: 02/20/2020] [Indexed: 12/18/2022] Open
Abstract
Helicobacter pylori, the most common etiologic agent of gastric diseases including gastric cancer, is auxotrophic for cholesterol and has to hijack it from gastric epithelia. Upon uptake, the bacteria convert cholesterol to cholesteryl 6′-O-acyl-α-D-glucopyranoside (CAG) to promote lipid raft clustering in the host cell membranes. However, how CAG appears in the host to exert the pathogenesis still remains ambiguous. Herein we identified hp0499 to be the gene of cholesteryl α-D-glucopyranoside acyltransferase (CGAT). Together with cholesteryl glucosyltransferase (catalyzing the prior step), CGAT is secreted via outer membrane vesicles to the host cells for direct synthesis of CAG. This significantly enhances lipid rafts clustering, gathers adhesion molecules (including Lewis antigens and integrins α5, β1), and promotes more bacterial adhesion. Furthermore, the clinically used drug amiodarone was shown as a potent inhibitor of CGAT to effectively reduce the bacterial adhesion, indicating that CGAT is a potential target of therapeutic intervention. Jan et al. identify cholesteryl α-D- glucopyranoside acyltransferase as a key enzyme in Helicobacter pylori’s synthesis of cholesteryl 6’-O-acyl-α-D-glucopyranoside, which promotes bacterial adhesion. This study provides insights into the H. pylori-induced pathogenesis and therapeutic strategies against it.
Collapse
Affiliation(s)
- Hau-Ming Jan
- Institute of Biological Chemistry, Academia Sinica, No. 128 Academic Road Section 2, Nan-Kang, Taipei, 11529, Taiwan
| | - Yi-Chi Chen
- Institute of Biological Chemistry, Academia Sinica, No. 128 Academic Road Section 2, Nan-Kang, Taipei, 11529, Taiwan.,Department of Chemistry and Institute of Biochemical Sciences, National Taiwan University, Taipei, 10617, Taiwan
| | - Tsai-Chen Yang
- Institute of Biological Chemistry, Academia Sinica, No. 128 Academic Road Section 2, Nan-Kang, Taipei, 11529, Taiwan
| | - Lih-Lih Ong
- Institute of Biological Chemistry, Academia Sinica, No. 128 Academic Road Section 2, Nan-Kang, Taipei, 11529, Taiwan.,Department of Applied Chemistry, National Chiao Tung University, Hsin-Chu, 30010, Taiwan.,Sustainable Chemical Science and Technology, Taiwan International Graduate Program, Academia Sinica and National Chiao Tung University, Taipei, 11529, Taiwan
| | - Chia-Chen Chang
- Department of Applied Chemistry, National Chiao Tung University, Hsin-Chu, 30010, Taiwan
| | - Sasikala Muthusamy
- Institute of Biological Chemistry, Academia Sinica, No. 128 Academic Road Section 2, Nan-Kang, Taipei, 11529, Taiwan.,Molecular and Biological Agricultural Sciences, Taiwan International Graduate Program, Academia Sinica and National Chung-Hsing University, Taipei, 11529, Taiwan.,Graduate Institute of Biotechnology, National Chung-Hsing University, Taichung, 40227, Taiwan
| | - Andualem Bahiru Abera
- Institute of Biological Chemistry, Academia Sinica, No. 128 Academic Road Section 2, Nan-Kang, Taipei, 11529, Taiwan.,Molecular and Biological Agricultural Sciences, Taiwan International Graduate Program, Academia Sinica and National Chung-Hsing University, Taipei, 11529, Taiwan.,Graduate Institute of Biotechnology, National Chung-Hsing University, Taichung, 40227, Taiwan
| | - Ming-Shiang Wu
- Division of Gastroenterology, Department of Internal Medicine, National Taiwan University Hospital, Taipei, 10002, Taiwan
| | | | - Kwok-Kong Tony Mong
- Department of Applied Chemistry, National Chiao Tung University, Hsin-Chu, 30010, Taiwan.
| | - Chun-Hung Lin
- Institute of Biological Chemistry, Academia Sinica, No. 128 Academic Road Section 2, Nan-Kang, Taipei, 11529, Taiwan. .,Department of Chemistry and Institute of Biochemical Sciences, National Taiwan University, Taipei, 10617, Taiwan.
| |
Collapse
|
29
|
Zeng B, Chen C, Yi Q, Zhang X, Wu X, Zheng S, Li N, She F. N-terminal region of Helicobacter pylori CagA induces IL-8 production in gastric epithelial cells via the β1 integrin receptor. J Med Microbiol 2020; 69:457-464. [DOI: 10.1099/jmm.0.001088] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Introduction.
Helicobacter pylori
is associated with gastrointestinal disease, most notably gastric cancer. Cytotoxin-associated antigen A (CagA), an important virulence factor for
H. pylori
pathogenicity, induces host cells to release inflammatory factors, especially interleukin-8 (IL-8). The mechanism by which C-terminal CagA induces IL-8 production has been studied extensively, but little is known about the role of the N-terminus.
Aim. To investigate the effect of CagA303–456aa (a peptide in the N-terminal CagA) on IL-8 production by gastric epithelial cells.
Methodology. CagA303-456aa was produced by a prokaryotic expression system and purified by Strep-tag affinity chromatography. An integrin β1 (ITGB1)-deficient AGS cell line was constructed using the CRISPR/Cas9 technique, and NCTC 11637 cagA and/or cagL knockout mutants were constructed via homologous recombination. The levels of IL-8 production were determined by enzyme-linked immunosorbent assay (ELISA), and p38 and ERK1/2 phosphorylation were examined by Western blot.
Results. CagA303-456aa induced IL-8 expression by AGS cells. IL-8 induction by CagA303-456aawas specifically inhibited by ITGB1 deficiency. Notably, CagA303-456aa activated the phosphorylation of both p38 and ERK1/2, and blocking p38 and ERK1/2 activity significantly reduced IL-8 induction by CagA303-456aa. ITGB1 deficiency also inhibited the activation of p38 phosphorylation by CagA303-456aa. Finally, experiments in CagA and/or CagL knockout bacterial lines demonstrated that extracellular CagA might induce IL-8 production by AGS cells.
Conclusion. Residues 303–456 of the N-terminal region of CagA induce IL-8 production via a CagA303-456–ITGB1–p38–IL-8 pathway, and ERK1/2 is also involved in the release of IL-8. Extracellular CagA might induce IL-8 production before translocation into AGS cells.
Collapse
Affiliation(s)
- Bangwei Zeng
- Fujian Medical University Union Hospital, 29 Xinquan Road, Fuzhou, Fujian Province 350001, PR China
- Key Laboratory of Ministry of Education for Gastrointestinal Cancer, Fujian Medical University, 1 Xuefu North Road, University Town, Fuzhou, Fujian Province 350122, PR China
- Fujian Key Laboratory of Tumor Microbiology, School of Basic Medical Sciences, Fujian Medical University, 1 Xuefu North Road, University Town, Fuzhou, Fujian Province 350122, PR China
| | - Chu Chen
- Fujian Key Laboratory of Tumor Microbiology, School of Basic Medical Sciences, Fujian Medical University, 1 Xuefu North Road, University Town, Fuzhou, Fujian Province 350122, PR China
- Key Laboratory of Ministry of Education for Gastrointestinal Cancer, Fujian Medical University, 1 Xuefu North Road, University Town, Fuzhou, Fujian Province 350122, PR China
| | - Qingfeng Yi
- Fujian Key Laboratory of Tumor Microbiology, School of Basic Medical Sciences, Fujian Medical University, 1 Xuefu North Road, University Town, Fuzhou, Fujian Province 350122, PR China
- Key Laboratory of Ministry of Education for Gastrointestinal Cancer, Fujian Medical University, 1 Xuefu North Road, University Town, Fuzhou, Fujian Province 350122, PR China
| | - Xiaoyan Zhang
- Fujian Key Laboratory of Tumor Microbiology, School of Basic Medical Sciences, Fujian Medical University, 1 Xuefu North Road, University Town, Fuzhou, Fujian Province 350122, PR China
- Key Laboratory of Ministry of Education for Gastrointestinal Cancer, Fujian Medical University, 1 Xuefu North Road, University Town, Fuzhou, Fujian Province 350122, PR China
| | - Xiangyan Wu
- Fujian Key Laboratory of Tumor Microbiology, School of Basic Medical Sciences, Fujian Medical University, 1 Xuefu North Road, University Town, Fuzhou, Fujian Province 350122, PR China
- Key Laboratory of Ministry of Education for Gastrointestinal Cancer, Fujian Medical University, 1 Xuefu North Road, University Town, Fuzhou, Fujian Province 350122, PR China
| | - Shurong Zheng
- Fujian Key Laboratory of Tumor Microbiology, School of Basic Medical Sciences, Fujian Medical University, 1 Xuefu North Road, University Town, Fuzhou, Fujian Province 350122, PR China
- Key Laboratory of Ministry of Education for Gastrointestinal Cancer, Fujian Medical University, 1 Xuefu North Road, University Town, Fuzhou, Fujian Province 350122, PR China
| | - Neng Li
- Fujian Key Laboratory of Tumor Microbiology, School of Basic Medical Sciences, Fujian Medical University, 1 Xuefu North Road, University Town, Fuzhou, Fujian Province 350122, PR China
- Key Laboratory of Ministry of Education for Gastrointestinal Cancer, Fujian Medical University, 1 Xuefu North Road, University Town, Fuzhou, Fujian Province 350122, PR China
| | - Feifei She
- Key Laboratory of Ministry of Education for Gastrointestinal Cancer, Fujian Medical University, 1 Xuefu North Road, University Town, Fuzhou, Fujian Province 350122, PR China
- Fujian Key Laboratory of Tumor Microbiology, School of Basic Medical Sciences, Fujian Medical University, 1 Xuefu North Road, University Town, Fuzhou, Fujian Province 350122, PR China
| |
Collapse
|
30
|
The HopQ-CEACAM Interaction Controls CagA Translocation, Phosphorylation, and Phagocytosis of Helicobacter pylori in Neutrophils. mBio 2020; 11:mBio.03256-19. [PMID: 32019805 PMCID: PMC7002351 DOI: 10.1128/mbio.03256-19] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Helicobacter pylori is highly adapted to humans and evades host immunity to allow its lifelong colonization. However, the H. pylori mouse model is artificial for H. pylori, and few adapted strains allow gastric colonization. Here, we show that human or CEACAM-humanized, but not mouse neutrophils are manipulated by the H. pylori HopQ-CEACAM interaction. Human CEACAMs are responsible for CagA phosphorylation, activation, and processing in neutrophils, whereas CagA translocation and tyrosine phosphorylation in DCs and macrophages is independent of the HopQ-CEACAM interaction. H. pylori affects the secretion of distinct chemokines in CEACAM-humanized neutrophils and macrophages. Most importantly, human CEACAMs on neutrophils enhance binding, oxidative burst, and phagocytosis of H. pylori and enhance bacterial survival in the phagosome. The H. pylori-CEACAM interaction modulates PMNs to reduce the H. pylori CagA translocation efficiency in vivo and to fine-tune the expression of CEACAM receptors on neutrophils to limit translocation of CagA and gastric pathology. The cag type IV secretion system (cag-T4SS) of Helicobacter pylori exploits specific cellular carcinoembryonic antigen-related cell adhesion molecules (CEACAMs), such as CEACAM1, -3, -5, and -6, as cellular receptors for CagA translocation into human gastric epithelial cells. We studied the interaction of H. pylori with human CEACAM1, CEACAM3, and CEACAM6 receptors (hCEACAMs) expressed on myeloid cells from CEACAM-humanized mice. Human and CEACAM-humanized mouse polymorphonuclear neutrophils (PMNs) allowed a specific HopQ-dependent interaction strongly enhancing CagA translocation. Translocated CagA was tyrosine phosphorylated, which was not seen in wild-type (wt) murine neutrophils. In contrast, human or murine bone marrow-derived macrophages and dendritic cells (DCs) revealed a low hCEACAM expression and bacterial binding. CagA translocation and tyrosine-phosphorylation was low and independent of the HopQ-CEACAM interaction. Neutrophils, but not macrophages or DCs, from CEACAM-humanized mice, significantly upregulated the proinflammatory chemokine MIP-1α. However, macrophages showed a significantly reduced amount of CXCL1 (KC) and CCL2 (MCP-1) secretion in CEACAM-humanized versus wt cells. Thus, H. pylori, via the HopQ-CEACAM interaction, controls the production and secretion of chemokines differently in PMNs, macrophages, and DCs. We further show that upon H. pylori contact the oxidative burst of neutrophils and phagocytosis of H. pylori was strongly enhanced, but hCEACAM3/6 expression on neutrophils allowed the extended survival of H. pylori within neutrophils in a HopQ-dependent manner. Finally, we demonstrate that during a chronic mouse infection, H. pylori is able to systemically downregulate hCEACAM1 and hCEACAM6 receptor expression on neutrophils, probably to limit CagA translocation efficiency and most likely gastric pathology.
Collapse
|
31
|
Sit WY, Chen YA, Chen YL, Lai CH, Wang WC. Cellular evasion strategies of Helicobacter pylori in regulating its intracellular fate. Semin Cell Dev Biol 2020; 101:59-67. [PMID: 32033828 PMCID: PMC7102552 DOI: 10.1016/j.semcdb.2020.01.007] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Accepted: 01/27/2020] [Indexed: 12/19/2022]
Abstract
Helicobacter pylori colonizes human stomach mucosa and its infection causes gastrointestinal diseases with variable severity. Bacterial infection stimulates autophagy, which is a part of innate immunity used to eliminate intracellular pathogens. Several intracellular bacteria have evolved multipronged strategies to circumvent this conserved system and thereby enhance their chance of intracellular survival. Nonetheless, studies on H. pylori have produced inconsistent results, showing either elevated or reduced clearance efficiency of intracellular bacteria through autophagy. In this review, we summarize recent studies on the mechanisms involved in autophagy induced by H. pylori and the fate of intracellular bacteria.
Collapse
Affiliation(s)
- Wei Yang Sit
- Biomedical Science and Engineering Center, National Tsing Hua University, Hsinchu, Taiwan; Institute of Molecular and Cellular Biology & Department of Life Science, National Tsing Hua University, Hsinchu, Taiwan
| | - Yu-An Chen
- Department of Urology, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA; Department of Microbiology and Immunology, Graduate Institute of Biomedical Sciences, Chang Gung University, Taoyuan, Taiwan
| | - Yu-Lun Chen
- Biomedical Science and Engineering Center, National Tsing Hua University, Hsinchu, Taiwan; Institute of Molecular and Cellular Biology & Department of Life Science, National Tsing Hua University, Hsinchu, Taiwan
| | - Chih-Ho Lai
- Department of Microbiology and Immunology, Graduate Institute of Biomedical Sciences, Chang Gung University, Taoyuan, Taiwan; Department of Microbiology, School of Medicine, China Medical University, Taichung, Taiwan; Department of Nursing, Asia University, Taichung, Taiwan; Molecular Infectious Disease Research Center, Department of Pediatrics, Chang Gung Memorial Hospital, Linkuo, Taiwan.
| | - Wen-Ching Wang
- Biomedical Science and Engineering Center, National Tsing Hua University, Hsinchu, Taiwan; Institute of Molecular and Cellular Biology & Department of Life Science, National Tsing Hua University, Hsinchu, Taiwan.
| |
Collapse
|
32
|
Molecular anatomy and pathogenic actions of Helicobacter pylori CagA that underpin gastric carcinogenesis. Cell Mol Immunol 2019; 17:50-63. [PMID: 31804619 PMCID: PMC6952403 DOI: 10.1038/s41423-019-0339-5] [Citation(s) in RCA: 143] [Impact Index Per Article: 23.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Revised: 11/13/2019] [Accepted: 11/13/2019] [Indexed: 12/15/2022] Open
Abstract
Chronic infection with Helicobacter pylori cagA-positive strains is the strongest risk factor for gastric cancer. The cagA gene product, CagA, is delivered into gastric epithelial cells via the bacterial type IV secretion system. Delivered CagA then undergoes tyrosine phosphorylation at the Glu-Pro-Ile-Tyr-Ala (EPIYA) motifs in its C-terminal region and acts as an oncogenic scaffold protein that physically interacts with multiple host signaling proteins in both tyrosine phosphorylation-dependent and -independent manners. Analysis of CagA using in vitro cultured gastric epithelial cells has indicated that the nonphysiological scaffolding actions of CagA cell-autonomously promote the malignant transformation of the cells by endowing the cells with multiple phenotypic cancer hallmarks: sustained proliferation, evasion of growth suppressors, invasiveness, resistance to cell death, and genomic instability. Transgenic expression of CagA in mice leads to in vivo oncogenic action of CagA without any overt inflammation. The in vivo oncogenic activity of CagA is further potentiated in the presence of chronic inflammation. Since Helicobacter pylori infection triggers a proinflammatory response in host cells, a feedforward stimulation loop that augments the oncogenic actions of CagA and inflammation is created in CagA-injected gastric mucosa. Given that Helicobacter pylori is no longer colonized in established gastric cancer lesions, the multistep nature of gastric cancer development should include a “hit-and-run” process of CagA action. Thus, acquisition of genetic and epigenetic alterations that compensate for CagA-directed cancer hallmarks may be required for completion of the “hit-and-run” process of gastric carcinogenesis.
Collapse
|
33
|
Activity and Functional Importance of Helicobacter pylori Virulence Factors. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1149:35-56. [PMID: 31016624 DOI: 10.1007/5584_2019_358] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Helicobacter pylori is a very successful Gram-negative pathogen colonizing the stomach of humans worldwide. Infections with this bacterium can generate pathologies ranging from chronic gastritis and peptic ulceration to gastric cancer. The best characterized H. pylori virulence factors that cause direct cell damage include an effector protein encoded by the cytotoxin-associated gene A (CagA), a type IV secretion system (T4SS) encoded in the cag-pathogenicity island (cag PAI), vacuolating cytotoxin A (VacA), γ-glutamyl transpeptidase (GGT), high temperature requirement A (HtrA, a serine protease) and cholesterol glycosyl-transferase (CGT). Since these H. pylori factors are either surface-exposed, secreted or translocated, they can directly interact with host cell molecules and are able to hijack cellular functions. Studies on these bacterial factors have progressed substantially in recent years. Here, we review the current status in the characterization of signaling cascades by these factors in vivo and in vitro, which comprise the disruption of cell-to-cell junctions, induction of membrane rearrangements, cytoskeletal dynamics, proliferative, pro-inflammatory, as well as, pro-apoptotic and anti-apoptotic responses or immune evasion. The impact of these signal transduction modules in the pathogenesis of H. pylori infections is discussed.
Collapse
|
34
|
Chichirau BE, Diechler S, Posselt G, Wessler S. Tyrosine Kinases in Helicobacter pylori Infections and Gastric Cancer. Toxins (Basel) 2019; 11:toxins11100591. [PMID: 31614680 PMCID: PMC6832112 DOI: 10.3390/toxins11100591] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Revised: 10/02/2019] [Accepted: 10/09/2019] [Indexed: 12/11/2022] Open
Abstract
Helicobacter pylori (H. pylori) has been identified as a leading cause of gastric cancer, which is one of the most frequent and malignant types of tumor. It is characterized by its rapid progression, distant metastases, and resistance to conventional chemotherapy. A number of receptor tyrosine kinases and non-receptor tyrosine kinases have been implicated in H. pylori-mediated pathogenesis and tumorigenesis. In this review, recent findings of deregulated EGFR, c-Met, JAK, FAK, Src, and c-Abl and their functions in H. pylori pathogenesis are summarized.
Collapse
Affiliation(s)
- Bianca E Chichirau
- Department of Biosciences, Paris-Lodron University of Salzburg, 5020 Salzburg, Austria.
| | - Sebastian Diechler
- Department of Biosciences, Paris-Lodron University of Salzburg, 5020 Salzburg, Austria.
| | - Gernot Posselt
- Department of Biosciences, Paris-Lodron University of Salzburg, 5020 Salzburg, Austria.
| | - Silja Wessler
- Cancer Cluster Salzburg, Department of Biosciences, Paris-Lodron University of Salzburg, 5020 Salzburg, Austria.
| |
Collapse
|
35
|
Chang YW, Shaffer CL, Rettberg LA, Ghosal D, Jensen GJ. In Vivo Structures of the Helicobacter pylori cag Type IV Secretion System. Cell Rep 2019; 23:673-681. [PMID: 29669273 PMCID: PMC5931392 DOI: 10.1016/j.celrep.2018.03.085] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2017] [Revised: 01/16/2018] [Accepted: 03/19/2018] [Indexed: 02/06/2023] Open
Abstract
The type IV secretion system (T4SS) is a versatile nanomachine that translocates diverse effector molecules between microbes and into eukaryotic cells. Here, using electron cryotomography, we reveal the molecular architecture of the Helicobacter pylori cag T4SS. Although most components are unique to H. pylori, the cag T4SS exhibits remarkable architectural similarity to other T4SSs. Our images revealed that, when H. pylori encounters host cells, the bacterium elaborates membranous tubes perforated by lateral ports. Sub-tomogram averaging of the cag T4SS machinery revealed periplasmic densities associated with the outer membrane, a central stalk, and peripheral wing-like densities. Additionally, we resolved pilus-like rod structures extending from the cag T4SS into the inner membrane, as well as densities within the cytoplasmic apparatus corresponding to a short central barrel surrounded by four longer barrels. Collectively, these studies reveal the structure of a dynamic molecular machine that evolved to function in the human gastric niche.
Collapse
Affiliation(s)
- Yi-Wei Chang
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Carrie L Shaffer
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Lee A Rettberg
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA; Howard Hughes Medical Institute, Pasadena, CA 91125, USA
| | - Debnath Ghosal
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Grant J Jensen
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA; Howard Hughes Medical Institute, Pasadena, CA 91125, USA.
| |
Collapse
|
36
|
Affiliation(s)
- Sidhant Jain
- Department of Zoology, University of Delhi, North Campus, New Delhi, India
| | - Madhumita Sengupta
- Department of Zoology, University of Delhi, North Campus, New Delhi, India
| | - Pooja Jain
- Department of Obstetrics and Gynaecology, Bhagwati Hospital, New Delhi, India
| |
Collapse
|
37
|
Buß M, Tegtmeyer N, Schnieder J, Dong X, Li J, Springer TA, Backert S, Niemann HH. Specific high affinity interaction of Helicobacter pylori CagL with integrin α V β 6 promotes type IV secretion of CagA into human cells. FEBS J 2019; 286:3980-3997. [PMID: 31197920 DOI: 10.1111/febs.14962] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2018] [Revised: 04/12/2019] [Accepted: 06/10/2019] [Indexed: 12/21/2022]
Abstract
CagL is an essential pilus surface component of the virulence-associated type IV secretion system (T4SS) employed by Helicobacter pylori to translocate the oncogenic effector protein CagA into human gastric epithelial cells. CagL contains an RGD motif and integrin α5 β1 is widely accepted as its host cell receptor. Here, we show that CagL binds integrin αV β6 with substantially higher affinity and that this interaction is functionally important. Cell surface expression of αV β6 on various cell lines correlated perfectly with cell adhesion to immobilized CagL and with binding of soluble CagL to cells. We found no such correlation for α5 β1 . The purified αV β6 ectodomain bound CagL with high affinity. This interaction was highly specific, as the affinity of CagL for other RGD-binding integrins was two to three orders of magnitude weaker. Mutation of either conserved leucine in the CagL RGDLXXL motif, a motif that generally confers specificity for integrin αV β6 and αV β8 , lowered the affinity of CagL for αV β6 . Stable expression of αV β6 in αV β6 -negative but α5 β1 -expressing human cells promoted two hallmarks of the functional H. pylori T4SS, namely translocation of CagA into host cells and induction of interleukin-8 secretion by host cells. These findings suggest that integrin αV β6 , although not essential for T4SS function, represents an important host cell receptor for CagL.
Collapse
Affiliation(s)
- Maren Buß
- Structural Biochemistry, Department of Chemistry, Bielefeld University, Germany
| | - Nicole Tegtmeyer
- Division of Microbiology, Department of Biology, Friedrich-Alexander-University, Erlangen-Nuremberg, Germany
| | - Jennifer Schnieder
- Structural Biochemistry, Department of Chemistry, Bielefeld University, Germany
| | - Xianchi Dong
- Children's Hospital Boston, MA, USA.,Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, USA
| | - Jing Li
- Children's Hospital Boston, MA, USA.,Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, USA
| | - Timothy A Springer
- Children's Hospital Boston, MA, USA.,Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, USA
| | - Steffen Backert
- Division of Microbiology, Department of Biology, Friedrich-Alexander-University, Erlangen-Nuremberg, Germany
| | - Hartmut H Niemann
- Structural Biochemistry, Department of Chemistry, Bielefeld University, Germany
| |
Collapse
|
38
|
Abstract
Type IV secretion systems (T4SSs) are nanomachines that Gram-negative, Gram-positive bacteria, and some archaea use to transport macromolecules across their membranes into bacterial or eukaryotic host targets or into the extracellular milieu. They are the most versatile secretion systems, being able to deliver both proteins and nucleoprotein complexes into targeted cells. By mediating conjugation and/or competence, T4SSs play important roles in determining bacterial genome plasticity and diversity; they also play a pivotal role in the spread of antibiotic resistance within bacterial populations. T4SSs are also used by human pathogens such as Legionella pneumophila, Bordetella pertussis, Brucella sp., or Helicobacter pylori to sustain infection. Since they are essential virulence factors for these important pathogens, T4SSs might represent attractive targets for vaccines and therapeutics. The best-characterized conjugative T4SSs of Gram-negative bacteria are composed of twelve components that are conserved across many T4SSs. In this chapter, we will review our current structural knowledge on the T4SSs by describing the structures of the individual components and how they assemble into large macromolecular assemblies. With the combined efforts of X-ray crystallography, nuclear magnetic resonance (NMR), and more recently electron microscopy, structural biology of the T4SS has made spectacular progress during the past fifteen years and has unraveled the properties of unique proteins and complexes that assemble dynamically in a highly sophisticated manner.
Collapse
|
39
|
Yadegar A, Mohabati Mobarez A, Zali MR. Genetic diversity and amino acid sequence polymorphism in Helicobacter pylori CagL hypervariable motif and its association with virulence markers and gastroduodenal diseases. Cancer Med 2019; 8:1619-1632. [PMID: 30873747 PMCID: PMC6488209 DOI: 10.1002/cam4.1941] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2018] [Revised: 11/22/2018] [Accepted: 12/03/2018] [Indexed: 12/19/2022] Open
Abstract
Genetic variability in cagL gene especially within the Helicobacter pylori CagL hypervariable motif (CagLHM) may affect the development of gastric cancer. Therefore, this study was conducted to investigate the association of CagL diversity with clinical outcomes and with H pylori virulence markers. A total of 126 patients with different gastric diseases including non-ulcer dyspepsia (NUD), peptic ulcer disease (PUD), gastric erosion (GE), and gastric cancer (GC) were enrolled. H pylori was cultured from gastric biopsies, and the isolates were screened for the presence of cagL, cagA, vacA, babA2, sabA, and cagPAI integrity by PCR. The amino acid polymorphisms of cagL were analyzed using DNA sequencing. We isolated 61 (48.4%) H pylori strains from 36 NUD, eight PUD, 12 GE, and five GC patients. Almost all isolates were cagL positive (97%), and their RGD, RHS, and SKIIVK motifs were highly conserved. Among 10 CagLHM variants identified, NEIGQ and NKIGQ were detected as the most prevalent sequences. Interestingly, a significant association was found between the presence of NKMGK and PUD (P = 0.002). Notably, the NEIGQ isolates with multiple C-type EPIYA repeat that carried intact cagPAI correlated with disease risk for PUD, GE, and GC (P = 0.021). In conclusion, we identified novel variants of H pylori CagLHM sequences in Iranian population such as NKMGK, which was associated with disease risk for PUD. Further studies using a large number of strains are required to better clarify the function of certain CagLHM motifs in gastric carcinogenesis and disease outcome.
Collapse
Affiliation(s)
- Abbas Yadegar
- Foodborne and Waterborne Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Ashraf Mohabati Mobarez
- Department of Bacteriology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Mohammad Reza Zali
- Gastroenterology and Liver Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
40
|
Posselt G, Wiesauer M, Chichirau BE, Engler D, Krisch LM, Gadermaier G, Briza P, Schneider S, Boccellato F, Meyer TF, Hauser-Kronberger C, Neureiter D, Müller A, Wessler S. Helicobacter pylori-controlled c-Abl localization promotes cell migration and limits apoptosis. Cell Commun Signal 2019; 17:10. [PMID: 30704478 PMCID: PMC6357398 DOI: 10.1186/s12964-019-0323-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2018] [Accepted: 01/22/2019] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Deregulated c-Abl activity has been intensively studied in a variety of solid tumors and leukemia. The class-I carcinogen Helicobacter pylori (Hp) activates the non-receptor tyrosine kinase c-Abl to phosphorylate the oncoprotein cytotoxin-associated gene A (CagA). The role of c-Abl in CagA-dependent pathways is well established; however, the knowledge of CagA-independent c-Abl processes is scarce. METHODS c-Abl phosphorylation and localization were analyzed by immunostaining and immunofluorescence. Interaction partners were identified by tandem-affinity purification. Cell elongation and migration were analyzed in transwell-filter experiments. Apoptosis and cell survival were examined by FACS analyses and MTT assays. In mice experiments and human biopsies, the involvement of c-Abl in Hp pathogenesis was investigated. RESULTS Here, we investigated the activity and subcellular localization of c-Abl in vitro and in vivo and unraveled the contribution of c-Abl in CagA-dependent and -independent pathways to gastric Hp pathogenesis. We report a novel mechanism and identified strong c-Abl threonine 735 phosphorylation (pAblT735) mediated by the type-IV secretion system (T4SS) effector D-glycero-β-D-manno-heptose-1,7-bisphosphate (βHBP) and protein kinase C (PKC) as a new c-Abl kinase. pAblT735 interacted with 14-3-3 proteins, which caused cytoplasmic retention of c-Abl, where it potentiated Hp-mediated cell elongation and migration. Further, the nuclear exclusion of pAblT735 attenuated caspase-8 and caspase-9-dependent apoptosis. Importantly, in human patients suffering from Hp-mediated gastritis c-Abl expression and pAblT735 phosphorylation were drastically enhanced as compared to type C gastritis patients or healthy individuals. Pharmacological inhibition using the selective c-Abl kinase inhibitor Gleevec confirmed that c-Abl plays an important role in Hp pathogenesis in a murine in vivo model. CONCLUSIONS In this study, we identified a novel regulatory mechanism in Hp-infected gastric epithelial cells by which Hp determines the subcellular localization of activated c-Abl to control Hp-mediated EMT-like processes while decreasing cell death.
Collapse
Affiliation(s)
- Gernot Posselt
- Department of Biosciences, Division of Microbiology, University of Salzburg, Paris-Lodron University of Salzburg, Billroth Str. 11, A-5020 Salzburg, Austria
| | - Maria Wiesauer
- Department of Biosciences, Division of Microbiology, University of Salzburg, Paris-Lodron University of Salzburg, Billroth Str. 11, A-5020 Salzburg, Austria
| | - Bianca E. Chichirau
- Department of Biosciences, Division of Microbiology, University of Salzburg, Paris-Lodron University of Salzburg, Billroth Str. 11, A-5020 Salzburg, Austria
| | - Daniela Engler
- Institute of Molecular Cancer Research, University of Zurich, Winterthurerstrasse 190, CH-8057 Zürich, Switzerland
| | - Linda M. Krisch
- Department of Biosciences, Division of Microbiology, University of Salzburg, Paris-Lodron University of Salzburg, Billroth Str. 11, A-5020 Salzburg, Austria
| | - Gabriele Gadermaier
- Department of Biosciences, Division of Allergy and Immunology, University of Salzburg, Paris-Lodron University of Salzburg, Hellbrunner Str. 34, A-5020 Salzburg, Austria
| | - Peter Briza
- Department of Biosciences, Division of Allergy and Immunology, University of Salzburg, Paris-Lodron University of Salzburg, Hellbrunner Str. 34, A-5020 Salzburg, Austria
| | - Sabine Schneider
- Paul-Ehrlich-Institute, Paul-Ehrlich-Str. 51-59, D-63225 Langen, Germany
| | - Francesco Boccellato
- Max Planck Institute for Infection Biology, Charitéplatz 1, D-10117 Berlin, Germany
| | - Thomas F. Meyer
- Max Planck Institute for Infection Biology, Charitéplatz 1, D-10117 Berlin, Germany
| | - Cornelia Hauser-Kronberger
- Department of Pathology, Paracelsus Medical University Salzburg, Müllner Hauptstraße 48, A-5020 Salzburg, Austria
| | - Daniel Neureiter
- Department of Pathology, Paracelsus Medical University Salzburg, Müllner Hauptstraße 48, A-5020 Salzburg, Austria
- Cancer Cluster Salzburg, University of Salzburg, A-5020 Salzburg, Austria
| | - Anne Müller
- Institute of Molecular Cancer Research, University of Zurich, Winterthurerstrasse 190, CH-8057 Zürich, Switzerland
| | - Silja Wessler
- Department of Biosciences, Division of Microbiology, University of Salzburg, Paris-Lodron University of Salzburg, Billroth Str. 11, A-5020 Salzburg, Austria
- Cancer Cluster Salzburg, University of Salzburg, A-5020 Salzburg, Austria
| |
Collapse
|
41
|
Morey P, Meyer TF. The Sweeping Role of Cholesterol Depletion in the Persistence of Helicobacter pylori Infections. Curr Top Microbiol Immunol 2019; 421:209-227. [PMID: 31123891 DOI: 10.1007/978-3-030-15138-6_9] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The ability of Helicobacter pylori to persist lifelong in the human gastric mucosa is a striking phenomenon. It is even more surprising since infection is typically associated with a vivid inflammatory response. Recent studies revealed the mechanism by which this pathogen inhibits the epithelial responses to IFN-γ and other central inflammatory cytokines in order to abolish an effective antimicrobial defense. The mechanism is based on the modification and depletion of cholesterol by the pathogen's cholesterol-α-glucosyltransferase. It abrogates the assembly of numerous cytokine receptors due to the reduction of lipid rafts. Particularly, the receptors for IFN-γ, IL-22, and IL-6 then fail to assemble properly and to activate JAK/STAT signaling. Consequently, cholesterol depletion prevents the release of antimicrobial peptides, including the highly effective β-defensin-3. Intriguingly, the inhibition is spatially restricted to heavily infected cells, while the surrounding epithelium continues to respond normally to cytokine stimulation, thus providing a platform of the intense inflammation typically observed in H. pylori infections. It appears that pathogen and host establish a homeostatic balance between tightly colonized and rather inflamed sites. This homeostasis is influenced by the levels of available cholesterol, which potentially exacerbate H. pylori-induced inflammation. The observed blockage of epithelial effector mechanisms by H. pylori constitutes a convincing explanation for the previous failures of T-cell-based vaccination against H. pylori, since infected epithelial cells remain inert upon stimulation by effector cytokines. Moreover, the mechanism provides a rationale for the carcinogenic action of this pathogen in that persistent infection and chronic inflammation represent a pro-carcinogenic environment. Thus, cholesterol-α-glucosyltransferase has been revealed as a central pathogenesis determinant of H. pylori.
Collapse
Affiliation(s)
- Pau Morey
- Instituto Universitario de Investigación en Ciencias de la Salud (IUNICS), Universidad de las Islas Baleares, Palma de Mallorca, Spain.
| | - Thomas F Meyer
- Department of Molecular Biology, Max Planck Institute for Infection Biology, Berlin, Germany.
| |
Collapse
|
42
|
Javed S, Skoog EC, Solnick JV. Impact of Helicobacter pylori Virulence Factors on the Host Immune Response and Gastric Pathology. Curr Top Microbiol Immunol 2019; 421:21-52. [PMID: 31123884 DOI: 10.1007/978-3-030-15138-6_2] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Helicobacter pylori chronically infects nearly half the world's population, yet most of those infected remain asymptomatic throughout their lifetime. The outcome of infection-peptic ulcer disease or gastric cancer versus asymptomatic colonization-is a product of host genetics, environmental influences, and differences in bacterial virulence factors. Here, we review the current understanding of the cag pathogenicity island (cagPAI), the vacuolating cytotoxin (VacA), and a large family of outer membrane proteins (OMPs), which are among the best understood H. pylori virulence determinants that contribute to disease. Each of these virulence factors is characterized by allelic and phenotypic diversity that is apparent within and across individuals, as well as over time, and modulates inflammation. From the bacterial perspective, inflammation is probably a necessary evil because it promotes nutrient acquisition, but at the cost of reduction in bacterial load and therefore decreases the chance of transmission to a new host. The general picture that emerges is one of a chronic bacterial infection that is dependent on both inducing and carefully regulating the host inflammatory response. A better understanding of these regulatory mechanisms may have implications for the control of chronic inflammatory diseases that are increasingly common causes of human morbidity and mortality.
Collapse
Affiliation(s)
- Sundus Javed
- Department of Medicine, Department of Microbiology & Immunology, Center for Comparative Medicine, University of California, Davis School of Medicine, Davis, CA, 95616, USA.,Department of Biosciences, COMSATS Institute of Information Technology, Islamabad, Pakistan
| | - Emma C Skoog
- Department of Medicine, Department of Microbiology & Immunology, Center for Comparative Medicine, University of California, Davis School of Medicine, Davis, CA, 95616, USA
| | - Jay V Solnick
- Department of Medicine, Department of Microbiology & Immunology, Center for Comparative Medicine, University of California, Davis School of Medicine, Davis, CA, 95616, USA. .,Center for Comparative Medicine, University of California, Davis, Davis, CA, 95616, USA.
| |
Collapse
|
43
|
Maleki Kakelar H, Barzegari A, Dehghani J, Hanifian S, Saeedi N, Barar J, Omidi Y. Pathogenicity of Helicobacter pylori in cancer development and impacts of vaccination. Gastric Cancer 2019; 22:23-36. [PMID: 30145749 DOI: 10.1007/s10120-018-0867-1] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/12/2018] [Accepted: 08/14/2018] [Indexed: 02/07/2023]
Abstract
Helicobacter pylori affect around 50% of the population worldwide. More importantly, the gastric infection induced by this bacterium is deemed to be associated with the progression of distal gastric carcinoma and gastric mucosal lymphoma in the human. H. pylori infection and its prevalent genotype significantly differ across various geographical regions. Based on numerous virulence factors, H. pylori can target different cellular proteins to modulate the variety of inflammatory responses and initiate numerous "hits" on the gastric mucosa. Such reactions lead to serious complications, including gastritis and peptic ulceration, gastric cancer and gastric mucosa-associated lymphoid structure lymphoma. Therefore, H. pylori have been considered as the type I carcinogen by the Global Firm for Research on Cancer. During the two past decades, different reports revealed that H. pylori possess oncogenic potentials in the gastric mucosa through a complicated interplay between the bacterial factors, various facets, and the environmental factors. Accordingly, numerous signaling pathways could be triggered in the development of gastrointestinal diseases (e.g., gastric cancer). Therefore, the main strategy for the treatment of gastric cancer is controlling the disease far before its onset using preventive/curative vaccination. Increasing the efficiency of vaccines may be achieved by new trials of vaccine modalities, which is used to optimize the cellular immunity. Taken all, H. pylori infection may impose severe complications, for resolving of which extensive researches are essential in terms of immune responses to H. pylori. We envision that H. pylori-mediated diseases can be controlled by advanced vaccines and immunotherapies.
Collapse
Affiliation(s)
- Hadi Maleki Kakelar
- Research Center for Pharmaceutical Nanotechnology, Biomedicine Institute, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Abolfazl Barzegari
- Research Center for Pharmaceutical Nanotechnology, Biomedicine Institute, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Jaber Dehghani
- Research Center for Pharmaceutical Nanotechnology, Biomedicine Institute, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Shahram Hanifian
- Department of Food Science and Technology, Tabriz Branch, Islamic Azad University, Tabriz, Iran
| | - Nazli Saeedi
- Research Center for Pharmaceutical Nanotechnology, Biomedicine Institute, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Jaleh Barar
- Research Center for Pharmaceutical Nanotechnology, Biomedicine Institute, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Pharmaceutics, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, 5165665811, Iran
| | - Yadollah Omidi
- Research Center for Pharmaceutical Nanotechnology, Biomedicine Institute, Tabriz University of Medical Sciences, Tabriz, Iran.
- Department of Pharmaceutics, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, 5165665811, Iran.
| |
Collapse
|
44
|
Ying L, Ferrero RL. Role of NOD1 and ALPK1/TIFA Signalling in Innate Immunity Against Helicobacter pylori Infection. Curr Top Microbiol Immunol 2019; 421:159-177. [PMID: 31123889 DOI: 10.1007/978-3-030-15138-6_7] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The human pathogen Helicobacter pylori interacts intimately with gastric epithelial cells to induce inflammatory responses that are a hallmark of the infection. This inflammation is a critical precursor to the development of peptic ulcer disease and gastric cancer. A major driver of this inflammation is a type IV secretion system (T4SS) encoded by the cag pathogenicity island (cagPAI), present in a subpopulation of more virulent H. pylori strains. The cagPAI T4SS specifically activates signalling pathways in gastric epithelial cells that converge on the transcription factor, nuclear factor-κB (NF-κB), which in turn upregulates key immune and inflammatory genes, resulting in various host responses. It is now clear that H. pylori possesses several mechanisms to activate NF-κB in gastric epithelial cells and, moreover, that multiple signalling pathways are involved in these responses. Two of the dominant signalling pathways implicated in NF-κB-dependent responses in epithelial cells are nucleotide-binding oligomerisation domain 1 (NOD1) and a newly described pathway involving alpha-kinase 1 (ALPK1) and tumour necrosis factor (TNF) receptor-associated factor (TRAF)-interacting protein with forkhead-associated domain (TIFA). Although the relative roles of these two pathways in regulating NF-κB-dependent responses still need to be clearly defined, it is likely that they work cooperatively and non-redundantly. This chapter will give an overview of the various mechanisms and pathways involved in H. pylori induction of NF-κB-dependent responses in gastric epithelial cells, including a 'state-of-the-art' review on the respective roles of NOD1 and ALPK1/TIFA pathways in these responses.
Collapse
Affiliation(s)
- Le Ying
- Centre for Innate Immunity and Infectious Diseases, Hudson Institute of Medical Research, Monash University, Clayton, VIC, Australia
| | - Richard L Ferrero
- Centre for Innate Immunity and Infectious Diseases, Hudson Institute of Medical Research, Monash University, Clayton, VIC, Australia.
- Department of Molecular and Translational Medicine, Monash University, Clayton, VIC, Australia.
- Department of Microbiology, Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia.
| |
Collapse
|
45
|
Bonsor DA, Sundberg EJ. Roles of Adhesion to Epithelial Cells in Gastric Colonization by Helicobacter pylori. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1149:57-75. [PMID: 31016628 DOI: 10.1007/5584_2019_359] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Helicobacter pylori adherence to host epithelial cells is essential for its survival against the harsh conditions of the stomach and for successful colonization. Adherence of H. pylori is achieved through several related families of outer membrane proteins and proteins of a type IV secretion system (T4SS), which bridge H. pylori to host cells through protein-protein and other protein-ligand interactions. Local environmental conditions such as cell type, available host cell surface proteins and/or ligands, as well as responses by the host immune system force H. pylori to alter expression of these proteins to adapt quickly to the local environment in order to colonize and survive. Some of these host-pathogen interactions appear to function in a "catch-and-release" manner, regulated by reversible binding at varying pH and allowing H. pylori to detach itself from cells or debris sloughed off the gastric epithelial lining in order to return for subsequent productive interactions. Other interactions between bacterial adhesin proteins and host adhesion molecules, however, appear to function as a committed step in certain pathogenic processes, such as translocation of the CagA oncoprotein through the H. pylori T4SS and into host gastric epithelial cells. Understanding these adhesion interactions is critical for devising new therapeutic strategies, as they are responsible for the earliest stage of infection and its maintenance. This review will discuss the expression and regulation of several outer membrane proteins and CagL, how they engage their known host cell protein/ligand targets, and their effects on clinical outcome.
Collapse
Affiliation(s)
- Daniel A Bonsor
- Institute of Human Virology, University of Maryland School of Medicine, University of Maryland, Baltimore, MD, USA
| | - Eric J Sundberg
- Institute of Human Virology, University of Maryland School of Medicine, University of Maryland, Baltimore, MD, USA. .,Department of Medicine, University of Maryland School of Medicine, University of Maryland, Baltimore, MD, USA. .,Department of Microbiology and Immunology, University of Maryland School of Medicine, University of Maryland, Baltimore, MD, USA.
| |
Collapse
|
46
|
Tegtmeyer N, Harrer A, Schmitt V, Singer BB, Backert S. Expression of CEACAM1 or CEACAM5 in AZ-521 cells restores the type IV secretion deficiency for translocation of CagA byHelicobacter pylori. Cell Microbiol 2018; 21:e12965. [DOI: 10.1111/cmi.12965] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2018] [Revised: 10/04/2018] [Accepted: 10/08/2018] [Indexed: 02/06/2023]
Affiliation(s)
- Nicole Tegtmeyer
- Department of Biology, Division of Microbiology; Friedrich Alexander University Erlangen; Erlangen Germany
| | - Aileen Harrer
- Department of Biology, Division of Microbiology; Friedrich Alexander University Erlangen; Erlangen Germany
| | - Verena Schmitt
- Medical Faculty, Institute of Anatomy; University of Duisburg-Essen; Essen Germany
| | - Bernhard B. Singer
- Medical Faculty, Institute of Anatomy; University of Duisburg-Essen; Essen Germany
| | - Steffen Backert
- Department of Biology, Division of Microbiology; Friedrich Alexander University Erlangen; Erlangen Germany
| |
Collapse
|
47
|
Pozdeev ОК, Pozdeeva АО, Valeeva YV, Gulyaev PE. MECHANISMS OF INTERRACTION OF HELICOBACTER PYLORI WITH EPITHELIUM OF GASTRIC MUCOSA. I. PATHOGENIC FACTORS PROMOTING SUCCESSFUL COLONIZATION. RUSSIAN JOURNAL OF INFECTION AND IMMUNITY 2018; 8:273-283. [DOI: 10.15789/2220-7619-2018-3-273-283] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2025]
Abstract
H. pylori is a Gram-negative, crimp and motile bacterium that colonizes the hostile microniche of the human stomach roughly one half of the human population. Then persists for the host’s entire life, but only causes overt gastric disease in a subset of infected hosts. To the reasons contributing to the development of diseases, usually include: concomitant infections of the gastrointestinal tract, improper sterilization of medical instruments, usually endoscopes, nonobservance of personal hygiene rules, prolonged contact with infected or carriers, including family members and a number of other factors. Clinically, H. pylori plays a causative role in the development of a wide spectrum of diseases including chronic active gastritis, peptic and duodenal ulceration, gastric adenocarcinoma, and gastric mucosa-associated lymphoid tissue lymphoma. Due to the global distribution of H. pylori, we are able to conclude that smart strategies are contributing to adaptation of the bacterium in an aggressive environment of a stomach and lifelong permanent circulation in its host. Thirty-four years after the discovery of this bacterium, there are still many unanswered questions. For example, which strategies help the bacterium to survive in this inhospitable conditions? Understanding the mechanisms governing H. pylori persistence will improve identification of the increased risk of different gastric diseases in persons infected with this bacterium. A well-defined and long-term equilibrium between the human host and H. pylori allows bacterial persistence in the gastric microniche; although this coexistence leads to a high risk of severe diseases the diseases which are listed above. In this review, we discuss the pathogenesis of this bacterium and the mechanisms it uses to promote persistent colonization of the gastric mucosa, with a focus on recent insights into the role of some virulence factors like urease, LPS, outer membrane proteins, cytotoxins, factors, promoting invasion. Information on the mechanisms related to H. pylori persistence can also provide the direction for future research concerning effective therapy and management of gastroduodenal disorders. The topics presented in the current review are important for elucidating the strategies used by H. pylori to help the bacterium persist in relation to the many unfavorable features of living in the gastric microniche.
Collapse
|
48
|
Zhao Q, Busch B, Jiménez-Soto LF, Ishikawa-Ankerhold H, Massberg S, Terradot L, Fischer W, Haas R. Integrin but not CEACAM receptors are dispensable for Helicobacter pylori CagA translocation. PLoS Pathog 2018; 14:e1007359. [PMID: 30365569 PMCID: PMC6231679 DOI: 10.1371/journal.ppat.1007359] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2018] [Revised: 11/12/2018] [Accepted: 09/26/2018] [Indexed: 02/08/2023] Open
Abstract
Translocation of the Helicobacter pylori (Hp) cytotoxin-associated gene A (CagA) effector protein via the cag-Type IV Secretion System (cag-T4SS) into host cells is a hallmark of infection with Hp and a major risk factor for severe gastric diseases, including gastric cancer. To mediate the injection of CagA, Hp uses a membrane-embedded syringe-like molecular apparatus extended by an external pilus-like rod structure that binds host cell surface integrin heterodimers. It is still largely unclear how the interaction of the cag-T4SS finally mediates translocation of the CagA protein into the cell cytoplasm. Recently certain carcinoembryonic antigen-related cell adhesion molecules (CEACAMs), acting as receptor for the Hp outer membrane adhesin HopQ, have been identified to be involved in the process of CagA host cell injection. Here, we applied the CRISPR/Cas9-knockout technology to generate defined human gastric AGS and KatoIII integrin knockout cell lines. Although confocal laser scanning microscopy revealed a co-localization of Hp and β1 integrin heterodimers on gastric epithelial cells, Hp infection studies using the quantitative and highly sensitive Hp β-lactamase reporter system clearly show that neither β1 integrin heterodimers (α1β1, α2β1 or α5β1), nor any other αβ integrin heterodimers on the cell surface are essential for CagA translocation. In contrast, deletion of the HopQ adhesin in Hp, or the simultaneous knockout of the receptors CEACAM1, CEACAM5 and CEACAM6 in KatoIII cells abolished CagA injection nearly completely, although bacterial binding was only reduced to 50%. These data provide genetic evidence that the cag-T4SS-mediated interaction of Hp with cell surface integrins on human gastric epithelial cells is not essential for CagA translocation, but interaction of Hp with CEACAM receptors is facilitating CagA translocation by the cag-T4SS of this important microbe.
Collapse
Affiliation(s)
- Qing Zhao
- Chair of Medical Microbiology and Hospital Epidemiology, Max von Pettenkofer Institute, Faculty of Medicine, LMU Munich, Germany
| | - Benjamin Busch
- Chair of Medical Microbiology and Hospital Epidemiology, Max von Pettenkofer Institute, Faculty of Medicine, LMU Munich, Germany
| | - Luisa Fernanda Jiménez-Soto
- Chair of Medical Microbiology and Hospital Epidemiology, Max von Pettenkofer Institute, Faculty of Medicine, LMU Munich, Germany
| | | | - Steffen Massberg
- Medizinische Klinik und Poliklinik I, Ludwig-Maximilians-Universität, Munich, Germany
| | - Laurent Terradot
- UMR 5086 Molecular Microbiology and Structural Biochemistry, Institut de Biologie et Chimie des Protéines, CNRS-Université de Lyon, France
| | - Wolfgang Fischer
- Chair of Medical Microbiology and Hospital Epidemiology, Max von Pettenkofer Institute, Faculty of Medicine, LMU Munich, Germany
| | - Rainer Haas
- Chair of Medical Microbiology and Hospital Epidemiology, Max von Pettenkofer Institute, Faculty of Medicine, LMU Munich, Germany
- German Center for Infection Research (DZIF), Munich Site, Munich, Germany
| |
Collapse
|
49
|
Yuan XY, Wang Y, Wang MY. The type IV secretion system in Helicobacter pylori. Future Microbiol 2018; 13:1041-1054. [PMID: 29927340 DOI: 10.2217/fmb-2018-0038] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Helicobacter pylori (H. pylori) has an essential role in the pathogenesis of gastritis, peptic ulcer disease, mucosa-associated lymphoid tissue lymphoma and gastric cancer. The severity of the host inflammatory responses against the bacteria have been straightly associated with a special bacterial virulence factor, the cag pathogenicity island, which is a type IV secretion system (T4SS) to deliver CagA into the host cells. Besides cag-T4SS, the chromosomes of H. pylori can encode another three T4SSs, including comB, tfs3 and tfs4. In this review, we systematically reviewed the four T4SSs of H. pylori and explored their roles in the pathogenesis of gastroduodenal diseases. The information summarized in this review might provide valuable insights into the pathogenic mechanism for H. pylori.
Collapse
Affiliation(s)
- Xiao-Yan Yuan
- Department of Central Lab, Weihai Municipal Hospital Affiliated to Dalian Medical University, Weihai, Shandong, 264200, PR China
| | - Ying Wang
- Department of Central Lab, Weihai Municipal Hospital Affiliated to Dalian Medical University, Weihai, Shandong, 264200, PR China
| | - Ming-Yi Wang
- Department of Central Lab, Weihai Municipal Hospital Affiliated to Dalian Medical University, Weihai, Shandong, 264200, PR China
| |
Collapse
|
50
|
CagY-Dependent Regulation of Type IV Secretion in Helicobacter pylori Is Associated with Alterations in Integrin Binding. mBio 2018; 9:mBio.00717-18. [PMID: 29764950 PMCID: PMC5954226 DOI: 10.1128/mbio.00717-18] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Strains of Helicobacter pylori that cause ulcer or gastric cancer typically express a type IV secretion system (T4SS) encoded by the cag pathogenicity island (cagPAI). CagY is an ortholog of VirB10 that, unlike other VirB10 orthologs, has a large middle repeat region (MRR) with extensive repetitive sequence motifs, which undergo CD4+ T cell-dependent recombination during infection of mice. Recombination in the CagY MRR reduces T4SS function, diminishes the host inflammatory response, and enables the bacteria to colonize at a higher density. Since CagY is known to bind human α5β1 integrin, we tested the hypothesis that recombination in the CagY MRR regulates T4SS function by modulating binding to α5β1 integrin. Using a cell-free microfluidic assay, we found that H. pylori binding to α5β1 integrin under shear flow is dependent on the CagY MRR, but independent of the presence of the T4SS pili, which are only formed when H. pylori is in contact with host cells. Similarly, expression of CagY in the absence of other T4SS genes was necessary and sufficient for whole bacterial cell binding to α5β1 integrin. Bacteria with variant cagY alleles that reduced T4SS function showed comparable reduction in binding to α5β1 integrin, although CagY was still expressed on the bacterial surface. We speculate that cagY-dependent modulation of H. pylori T4SS function is mediated by alterations in binding to α5β1 integrin, which in turn regulates the host inflammatory response so as to maximize persistent infection.IMPORTANCE Infection with H. pylori can cause peptic ulcers and is the most important risk factor for gastric cancer, the third most common cause of cancer death worldwide. The major H. pylori virulence factor that determines whether infection causes disease or asymptomatic colonization is the type IV secretion system (T4SS), a sort of molecular syringe that injects bacterial products into gastric epithelial cells and alters host cell physiology. We previously showed that recombination in CagY, an essential T4SS component, modulates the function of the T4SS. Here we found that these recombination events produce parallel changes in specific binding to α5β1 integrin, a host cell receptor that is essential for T4SS-dependent translocation of bacterial effectors. We propose that CagY-dependent binding to α5β1 integrin acts like a molecular rheostat that alters T4SS function and modulates the host immune response to promote persistent infection.
Collapse
|