1
|
Rouvray S, Drummond RA. The role of lipids in regulating macrophage antifungal immunity. mBio 2024; 15:e0305723. [PMID: 39207168 PMCID: PMC11481918 DOI: 10.1128/mbio.03057-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/04/2024] Open
Abstract
Macrophages are critical components of the antifungal immune response. Disturbance in the number or function of these innate immune cells can significantly increase susceptibility to invasive fungal infections. Pathogenic fungi cause billions of infections every year and have an unmet clinical need, with many infections associated with unacceptably high mortality rates that primarily affect vulnerable patients with underlying immune defects. Lipid metabolism has been increasingly appreciated to significantly influence macrophage function, particularly of macrophages residing in lipid-rich organs, such as the brain, or macrophages specialized at clearing dead cells including alveolar macrophages in the lungs. In this review, we provide an overview of macrophage lipid metabolism, and discuss how lipid recycling and dysregulation affect key macrophage functions relevant for antifungal immunity including phagocytosis, functional polarization, and inflammasome activation. We focus on the fungal pathogen Cryptococcus neoformans, as this is the most common cause of death from fungal infection in humans and because several lines of evidence have already linked lipid metabolism in the regulation of C. neoformans and macrophage interactions.
Collapse
Affiliation(s)
- Sophie Rouvray
- Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, United Kingdom
| | - Rebecca A. Drummond
- Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, United Kingdom
| |
Collapse
|
2
|
Soraci L, Beccacece A, Princiotto M, Villalta Savedra E, Gambuzza ME, Aguennouz M, Corsonello A, Luciani F, Muglia L, Filicetti E, Greco GI, Volpentesta M, Biscetti L. The emerging links between immunosenescence in innate immune system and neurocryptococcosis. Front Immunol 2024; 15:1410090. [PMID: 39229268 PMCID: PMC11369721 DOI: 10.3389/fimmu.2024.1410090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Accepted: 07/29/2024] [Indexed: 09/05/2024] Open
Abstract
Immunosenescence refers to the age-related progressive decline of immune function contributing to the increased susceptibility to infectious diseases in older people. Neurocryptococcosis, an infectious disease of central nervous system (CNS) caused by Cryptococcus neoformans (C. Neoformans) and C. gattii, has been observed with increased frequency in aged people, as result of the reactivation of a latent infection or community acquisition. These opportunistic microorganisms belonging to kingdom of fungi are capable of surviving and replicating within macrophages. Typically, cryptococcus is expelled by vomocytosis, a non-lytic expulsive mechanism also promoted by interferon (IFN)-I, or by cell lysis. However, whereas in a first phase cryptococcal vomocytosis leads to a latent asymptomatic infection confined to the lung, an enhancement in vomocytosis, promoted by IFN-I overproduction, can be deleterious, leading the fungus to reach the blood stream and invade the CNS. Cryptococcus may not be easy to diagnose in older individuals and, if not timely treated, could be potentially lethal. Therefore, this review aims to elucidate the putative causes of the increased incidence of cryptococcal CNS infection in older people discussing in depth the mechanisms of immunosenscence potentially able to predispose to neurocryptococcosis, laying the foundations for future research. A deepest understanding of this relationship could provide new ways to improve the prevention and recognition of neurocryptococcosis in aged frail people, in order to quickly manage pharmacological interventions and to adopt further preventive measures able to reduce the main risk factors.
Collapse
Affiliation(s)
- Luca Soraci
- Unit of Geriatric Medicine, Italian National Research Center on Aging (IRCCS INRCA), Cosenza, Italy
| | - Alessia Beccacece
- Centre for Biostatistics and Applied Geriatric Clinical Epidemiology, Italian National Research Center on Aging (IRCCS INRCA), Ancona, Italy
| | | | | | | | - M’Hammed Aguennouz
- Department of Clinical and Experimental Medicine, Unit of Neurology and Neuromuscular Diseases, University of Messina, Messina, Italy
| | - Andrea Corsonello
- Unit of Geriatric Medicine, Italian National Research Center on Aging (IRCCS INRCA), Cosenza, Italy
- Department of Pharmacy, Health and Nutritional Sciences, School of Medicine and Digital Technologies, University of Calabria, Arcavacata di Rende, Italy
| | | | - Lucia Muglia
- Centre for Biostatistics and Applied Geriatric Clinical Epidemiology, Italian National Research Center on Aging (IRCCS INRCA), Cosenza, Italy
| | - Elvira Filicetti
- Unit of Geriatric Medicine, Italian National Research Center on Aging (IRCCS INRCA), Cosenza, Italy
| | - Giada Ida Greco
- Unit of Geriatric Medicine, Italian National Research Center on Aging (IRCCS INRCA), Cosenza, Italy
| | - Mara Volpentesta
- Unit of Geriatric Medicine, Italian National Research Center on Aging (IRCCS INRCA), Cosenza, Italy
| | - Leonardo Biscetti
- Section of Neurology, Italian National Research Center on Aging (IRCCS INRCA), Ancona, Italy
| |
Collapse
|
3
|
Fang B, Yang T, Chen Y, Duan Z, Hu J, Wang Q, He Y, Zhang Y, Dong W, Zhang Q, Zhao X. Activation of ARP2/3 and HSP70 Expression by Lipoteichoic Acid: Potential Bidirectional Regulation of Apoptosis in a Mastitis Inflammation Model. Biomolecules 2024; 14:901. [PMID: 39199289 PMCID: PMC11352453 DOI: 10.3390/biom14080901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 07/20/2024] [Accepted: 07/23/2024] [Indexed: 09/01/2024] Open
Abstract
Mastitis typically arises from bacterial invasion, where host cell apoptosis significantly contributes to the inflammatory response. Gram-positive bacteria predominantly utilize the virulence factor lipoteichoic acid (LTA), which frequently leads to chronic breast infections, thereby impacting dairy production and animal husbandry adversely. This study employed LTA to develop models of mastitis in cow mammary gland cells and mice. Transcriptomic analysis identified 120 mRNAs associated with endocytosis and apoptosis pathways that were enriched in the LTA-induced inflammation of the Mammary Alveolar Cells-large T antigen (MAC-T), with numerous differential proteins also concentrated in the endocytosis pathway. Notably, actin-related protein 2/3 complex subunit 3 (ARPC3), actin-related protein 2/3 complex subunit 4 (ARPC4), and the heat shock protein 70 (HSP70) are closely related. STRING analysis revealed interactions among ARPC3, ARPC4, and HSP70 with components of the apoptosis pathway. Histological and molecular biological assessments confirmed that ARPC3, ARPC4, and HSP70 were mainly localized to the cell membrane of mammary epithelial cells. ARPC3 and ARPC4 are implicated in the mechanisms of bacterial invasion and the initiation of inflammation. Compared to the control group, the expression levels of these proteins were markedly increased, alongside the significant upregulation of apoptosis-related factors. While HSP70 appears to inhibit apoptosis and alleviate inflammation, its upregulation presents novel research opportunities. In conclusion, we deduced the development mechanism of ARPC3, ARPC4, and HSP70 in breast inflammation, laying the foundation for further exploring the interaction mechanism between the actin-related protein 2/3 (ARP2/3) complex and HSP70.
Collapse
Affiliation(s)
- Bo Fang
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou 730070, China; (B.F.); (T.Y.); (Y.C.); (Z.D.); (J.H.); (Q.W.); (Y.H.); (Y.Z.)
- Gansu Key Laboratory of Animal Generational Physiology and Reproductive Regulation, Lanzhou 730070, China;
| | - Tingji Yang
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou 730070, China; (B.F.); (T.Y.); (Y.C.); (Z.D.); (J.H.); (Q.W.); (Y.H.); (Y.Z.)
- Gansu Key Laboratory of Animal Generational Physiology and Reproductive Regulation, Lanzhou 730070, China;
| | - Yan Chen
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou 730070, China; (B.F.); (T.Y.); (Y.C.); (Z.D.); (J.H.); (Q.W.); (Y.H.); (Y.Z.)
- Gansu Key Laboratory of Animal Generational Physiology and Reproductive Regulation, Lanzhou 730070, China;
| | - Zhiwei Duan
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou 730070, China; (B.F.); (T.Y.); (Y.C.); (Z.D.); (J.H.); (Q.W.); (Y.H.); (Y.Z.)
- Gansu Key Laboratory of Animal Generational Physiology and Reproductive Regulation, Lanzhou 730070, China;
| | - Junjie Hu
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou 730070, China; (B.F.); (T.Y.); (Y.C.); (Z.D.); (J.H.); (Q.W.); (Y.H.); (Y.Z.)
- Gansu Key Laboratory of Animal Generational Physiology and Reproductive Regulation, Lanzhou 730070, China;
| | - Qi Wang
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou 730070, China; (B.F.); (T.Y.); (Y.C.); (Z.D.); (J.H.); (Q.W.); (Y.H.); (Y.Z.)
- Gansu Key Laboratory of Animal Generational Physiology and Reproductive Regulation, Lanzhou 730070, China;
| | - Yuxuan He
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou 730070, China; (B.F.); (T.Y.); (Y.C.); (Z.D.); (J.H.); (Q.W.); (Y.H.); (Y.Z.)
- Gansu Key Laboratory of Animal Generational Physiology and Reproductive Regulation, Lanzhou 730070, China;
| | - Yong Zhang
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou 730070, China; (B.F.); (T.Y.); (Y.C.); (Z.D.); (J.H.); (Q.W.); (Y.H.); (Y.Z.)
- Gansu Key Laboratory of Animal Generational Physiology and Reproductive Regulation, Lanzhou 730070, China;
| | - Weitao Dong
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou 730070, China; (B.F.); (T.Y.); (Y.C.); (Z.D.); (J.H.); (Q.W.); (Y.H.); (Y.Z.)
- Gansu Key Laboratory of Animal Generational Physiology and Reproductive Regulation, Lanzhou 730070, China;
| | - Quanwei Zhang
- Gansu Key Laboratory of Animal Generational Physiology and Reproductive Regulation, Lanzhou 730070, China;
- College of Life Sciences and Biotechnology, Gansu Agricultural University, Lanzhou 730030, China
| | - Xingxu Zhao
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou 730070, China; (B.F.); (T.Y.); (Y.C.); (Z.D.); (J.H.); (Q.W.); (Y.H.); (Y.Z.)
- Gansu Key Laboratory of Animal Generational Physiology and Reproductive Regulation, Lanzhou 730070, China;
| |
Collapse
|
4
|
Onyishi CU, Jeon Y, Fejer G, Mukhopadhyay S, Gordon S, May RC. Loss of the scavenger receptor MARCO results in uncontrolled vomocytosis of fungi from macrophages. Eur J Immunol 2024; 54:e2350771. [PMID: 38494423 DOI: 10.1002/eji.202350771] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 03/03/2024] [Accepted: 03/05/2024] [Indexed: 03/19/2024]
Abstract
Vomocytosis, also known as nonlytic exocytosis, is a process whereby fully phagocytosed microbes are expelled from phagocytes without discernible damage to either the phagocyte or microbe. Although this phenomenon was first described in the opportunistic fungal pathogen Cryptococcus neoformans in 2006, to date, mechanistic studies have been hampered by an inability to reliably stimulate or inhibit vomocytosis. Here we present the fortuitous discovery that macrophages lacking the scavenger receptor MAcrophage Receptor with COllagenous domain (MARCO), exhibit near-total vomocytosis of internalised cryptococci within a few hours of infection. Marco-/- macrophages also showed elevated vomocytosis of a yeast-locked C. albicans strain, suggesting this to be a broadly relevant observation. We go on to show that MARCO's role in modulating vomocytosis is independent of its role as a phagocytic receptor, suggesting that this protein may play an important and hitherto unrecognised role in modulating macrophage behaviour.
Collapse
Affiliation(s)
- Chinaemerem U Onyishi
- Institute of Microbiology & Infection and School of Biosciences, University of Birmingham, Edgbaston, Birmingham, UK
- Molecular Mycology and Immunity Section, Laboratory of Host Immunity and Microbiome, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health, Bethesda, MD, USA
| | - Yusun Jeon
- Peter Gorer Department of Immunobiology, School of Immunology & Microbial Sciences, King's College London, London, UK
| | - Gyorgy Fejer
- School of Biomedical Sciences, Faculty of Health, University of Plymouth, Plymouth, UK
| | - Subhankar Mukhopadhyay
- Peter Gorer Department of Immunobiology, School of Immunology & Microbial Sciences, King's College London, London, UK
| | - Siamon Gordon
- Department of Microbiology and Immunology, College of Medicine, Chang Gung University, Taoyuan, Taiwan
- Sir William Dunn School of Pathology, University of Oxford, Oxford, UK
| | - Robin C May
- Institute of Microbiology & Infection and School of Biosciences, University of Birmingham, Edgbaston, Birmingham, UK
| |
Collapse
|
5
|
Pacifici N, Rojalin T, Carney RP, Lewis JS. A Multi-Fluorophore Staining Scheme for Identification and Quantification of Vomocytosis. CHEMICAL & BIOMEDICAL IMAGING 2023; 1:725-737. [PMID: 38037611 PMCID: PMC10685718 DOI: 10.1021/cbmi.3c00050] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 07/24/2023] [Accepted: 07/26/2023] [Indexed: 12/02/2023]
Abstract
Vomocytosis is a process by which fungal pathogens, for instance, Cryptococcus neoformans (CN), escape from the digestive phagolysosome of phagocytic cells after ingestion. Interestingly, this expulsion leaves both the pathogen and phagocyte unharmed, and is believed to be an important mechanism by which CNs disseminate throughout infected hosts. This phenomenon was discovered in 2006, and research to date has relied almost entirely on quantification via manual counting of vomocytosis events in time-lapse microscopy videos. This archaic method has the significant disadvantages of requiring excessive labor in manual analysis, limited throughput capabilities, and low accuracy due to subjectivity. Here, we present an alternative method to measure vomocytosis rates using a multi-fluorophore reporter system comprised of two in situ staining steps during infection and a flow cytometry readout. This approach overcomes the limitations of conventional time lapse microscopy methods, with key advantages of high throughput capability, simple procedural steps, and accurate objective readouts. This study rigorously characterizes this vomocytosis reporter system in CN-infected MΦ and DC cultures via fluorescence microscopy, confocal microscopy, and flow cytometry. Here, this fluorescent tool is used to observe differences in expulsion rates after phagosome-modifying drug treatments and additionally utilized to distinguish differences in biochemical compositions among fluorescence-activated cell sorted fungal populations via Raman spectroscopy. Furthermore, this reporter scheme is demonstrated to be adaptable for use in measuring potential biomaterial particle expulsion events. Ultimately, the fluorescent reporter system presented here provides a universal tool for vomocytosis rate measurement of phagocytosed material. This facile approach opens the door to previously unfeasible types of vomocytosis-related studies such as high throughput treatment mechanistic screening and downstream characterization of expelled material.
Collapse
Affiliation(s)
- Noah Pacifici
- Department
of Biomedical Engineering, University of
California-Davis, Davis, California 95616, United States
| | - Tatu Rojalin
- Department
of Biomedical Engineering, University of
California-Davis, Davis, California 95616, United States
| | - Randy P. Carney
- Department
of Biomedical Engineering, University of
California-Davis, Davis, California 95616, United States
| | - Jamal S. Lewis
- Department
of Biomedical Engineering, University of
California-Davis, Davis, California 95616, United States
- J.
Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, Florida 32611, United States
| |
Collapse
|
6
|
Stuckey PV, Santiago-Tirado FH. Fungal mechanisms of intracellular survival: what can we learn from bacterial pathogens? Infect Immun 2023; 91:e0043422. [PMID: 37506189 PMCID: PMC10501222 DOI: 10.1128/iai.00434-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Accepted: 06/23/2023] [Indexed: 07/30/2023] Open
Abstract
Fungal infections represent a major, albeit neglected, public health threat with serious medical and economic burdens globally. With unacceptably high mortality rates, invasive fungal pathogens are responsible for millions of deaths each year, with a steadily increasing incidence primarily in immunocompromised individuals. The poor therapeutic options and rise of antifungal drug resistance pose further challenges in controlling these infections. These fungal pathogens have adapted to survive within mammalian hosts and can establish intracellular niches to promote survival within host immune cells. To do that, they have developed diverse methods to circumvent the innate immune system attack. This includes strategies such as altering their morphology, counteracting macrophage antimicrobial action, and metabolic adaptation. This is reminiscent of how bacterial pathogens have adapted to survive within host cells and cause disease. However, relative to the great deal of information available concerning intracellular bacterial pathogenesis, less is known about the mechanisms fungal pathogens employ. Therefore, here we review our current knowledge and recent advances in our understanding of how fungi can evade and persist within host immune cells. This review will focus on the major fungal pathogens, including Cryptococcus neoformans, Candida albicans, and Aspergillus fumigatus, among others. As we discover and understand the strategies used by these fungi, similarities with their bacterial counterparts are becoming apparent, hence we can use the abundant information from bacteria to guide our studies in fungi. By understanding these strategies, new lines of research will open that can improve the treatments of these devastating fungal diseases.
Collapse
Affiliation(s)
- Peter V. Stuckey
- Department of Biological Sciences, University of Notre Dame, Notre Dame, Indiana, USA
| | - Felipe H. Santiago-Tirado
- Department of Biological Sciences, University of Notre Dame, Notre Dame, Indiana, USA
- Eck Institute for Global Health, University of Notre Dame, Notre Dame, Indiana, USA
- Warren Center for Drug Discovery, University of Notre Dame, Notre Dame, Indiana, USA
| |
Collapse
|
7
|
Carvalho JHDS, Nascimento JKC, Silva KGV, Silveira Neto S, Macedo ATD, Lima França H, Ferreira LDR, Silva RDS, Sa JC, Ramos DG, Marques DDAV, Furst C, Santos DA, Santos JRA, Holanda RA. Yeast-amoeba interaction influences murine cryptococcosis. Microbes Infect 2023; 25:105153. [PMID: 37244475 DOI: 10.1016/j.micinf.2023.105153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 05/21/2023] [Accepted: 05/22/2023] [Indexed: 05/29/2023]
Abstract
The virulence of Cryptococcus spp. is modulated in the natural environment through interaction with abiotic and biotic factors, and this can occasionally have implications for the progression of cryptococcosis in mammals. Hence, we evaluated whether the prior interaction of highly virulent Cryptococcus gattii strain R265 with Acanthamoeba castellanii influenced the progression of cryptococcosis. The influence of the capsule on endocytosis was evaluated using amoeba and yeast morphometrics. Mice were intratracheally infected with yeast re-isolated from the amoeba (Interaction), yeast without prior contact with the amoeba (Non-Interaction), or sterile phosphate-buffered saline (SHAM). Morbidity signs and symptoms were monitored during the survival curve, while cytokine and fungal burden measurements and histopathological analysis were performed on the 10th day post infection. Morbidity and mortality parameters in experimental cryptococcosis were influenced by the prior interaction of yeast with amoeba, which led to phenotypic changes in the cryptococcal cells, polysaccharide secretion, and their tolerance to oxidative stress. Our results suggest that a prior yeast-amoeba interaction modulates yeast virulence, which is associated with a greater tolerance to oxidative stress related to the exo-polysaccharide content and influences the progression of cryptococcal infection.
Collapse
Affiliation(s)
| | | | | | - Sebastiao Silveira Neto
- Laboratório de Biologia Molecular de Microrganismos Patogênicos, Universidade CEUMA, São Luís, Maranhão, Brazil
| | | | - Hermeson Lima França
- Laboratório de Biologia Molecular de Microrganismos Patogênicos, Universidade CEUMA, São Luís, Maranhão, Brazil
| | - Larissa Dos Reis Ferreira
- Laboratório de Biologia Molecular de Microrganismos Patogênicos, Universidade CEUMA, São Luís, Maranhão, Brazil
| | - Rayssa de Sousa Silva
- Laboratório de Biologia Molecular de Microrganismos Patogênicos, Universidade CEUMA, São Luís, Maranhão, Brazil
| | - Joicy Cortez Sa
- Laboratório de Imunologia, Universidade CEUMA, São Luís, Maranhão, Brazil
| | - Diego Gomes Ramos
- Laboratório Integrado de Biotecnologia Aplicada, Universidade de Pernambuco, Recife, Pernambuco, Brazil
| | | | - Cinthia Furst
- Departamento de Patologia, Universidade Federal do Espírito Santo, Vitória, Espírito Santo, Brazil
| | - Daniel Assis Santos
- Departamento de Microbiologia, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | | | - Rodrigo Assuncao Holanda
- Laboratório de Biologia Molecular de Microrganismos Patogênicos, Universidade CEUMA, São Luís, Maranhão, Brazil.
| |
Collapse
|
8
|
Lionakis MS, Drummond RA, Hohl TM. Immune responses to human fungal pathogens and therapeutic prospects. Nat Rev Immunol 2023; 23:433-452. [PMID: 36600071 PMCID: PMC9812358 DOI: 10.1038/s41577-022-00826-w] [Citation(s) in RCA: 60] [Impact Index Per Article: 60.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/01/2022] [Indexed: 01/06/2023]
Abstract
Pathogenic fungi have emerged as significant causes of infectious morbidity and death in patients with acquired immunodeficiency conditions such as HIV/AIDS and following receipt of chemotherapy, immunosuppressive agents or targeted biologics for neoplastic or autoimmune diseases, or transplants for end organ failure. Furthermore, in recent years, the spread of multidrug-resistant Candida auris has caused life-threatening outbreaks in health-care facilities worldwide and raised serious concerns for global public health. Rapid progress in the discovery and functional characterization of inborn errors of immunity that predispose to fungal disease and the development of clinically relevant animal models have enhanced our understanding of fungal recognition and effector pathways and adaptive immune responses. In this Review, we synthesize our current understanding of the cellular and molecular determinants of mammalian antifungal immunity, focusing on observations that show promise for informing risk stratification, prognosis, prophylaxis and therapies to combat life-threatening fungal infections in vulnerable patient populations.
Collapse
Affiliation(s)
- Michail S Lionakis
- Fungal Pathogenesis Section, Laboratory of Clinical Immunology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA.
| | - Rebecca A Drummond
- Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, UK
- Institute of Microbiology and Infection, University of Birmingham, Birmingham, UK
| | - Tobias M Hohl
- Infectious Disease Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Immunology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Department of Medicine, Weill Cornell Medical College, New York, NY, USA
| |
Collapse
|
9
|
Conn BN, Wozniak KL. Innate Pulmonary Phagocytes and Their Interactions with Pathogenic Cryptococcus Species. J Fungi (Basel) 2023; 9:617. [PMID: 37367553 PMCID: PMC10299524 DOI: 10.3390/jof9060617] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 05/23/2023] [Accepted: 05/25/2023] [Indexed: 06/28/2023] Open
Abstract
Cryptococcus neoformans is an opportunistic fungal pathogen that causes over 180,000 annual deaths in HIV/AIDS patients. Innate phagocytes in the lungs, such as dendritic cells (DCs) and macrophages, are the first cells to interact with the pathogen. Neutrophils, another innate phagocyte, are recruited to the lungs during cryptococcal infection. These innate cells are involved in early detection of C. neoformans, as well as the removal and clearance of cryptococcal infections. However, C. neoformans has developed ways to interfere with these processes, allowing for the evasion of the host's innate immune system. Additionally, the innate immune cells have the ability to aid in cryptococcal pathogenesis. This review discusses recent literature on the interactions of innate pulmonary phagocytes with C. neoformans.
Collapse
Affiliation(s)
| | - Karen L. Wozniak
- Department of Microbiology and Molecular Genetics, Oklahoma State University, 307 Life Science East, Stillwater, OK 74078, USA;
| |
Collapse
|
10
|
Lange T, Kasper L, Gresnigt MS, Brunke S, Hube B. "Under Pressure" - How fungi evade, exploit, and modulate cells of the innate immune system. Semin Immunol 2023; 66:101738. [PMID: 36878023 PMCID: PMC10109127 DOI: 10.1016/j.smim.2023.101738] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Indexed: 03/06/2023]
Abstract
The human immune system uses an arsenal of effector mechanisms to prevent and counteract infections. Yet, some fungal species are extremely successful as human pathogens, which can be attributed to a wide variety of strategies by which these fungi evade, exploit, and modulate the immune system. These fungal pathogens normally are either harmless commensals or environmental fungi. In this review we discuss how commensalism, but also life in an environmental niche without human contact, can drive the evolution of diverse and specialized immune evasion mechanisms. Correspondingly, we discuss the mechanisms contributing to the ability of these fungi to cause superficial to life-threatening infections.
Collapse
Affiliation(s)
- Theresa Lange
- Department of Microbial Pathogenicity Mechanisms, Hans Knoell Institute, Jena, Germany
| | - Lydia Kasper
- Department of Microbial Pathogenicity Mechanisms, Hans Knoell Institute, Jena, Germany
| | - Mark S Gresnigt
- Junior Research Group Adaptive Pathogenicity Strategies, Hans Knoell Institute, Jena, Germany
| | - Sascha Brunke
- Department of Microbial Pathogenicity Mechanisms, Hans Knoell Institute, Jena, Germany
| | - Bernhard Hube
- Department of Microbial Pathogenicity Mechanisms, Hans Knoell Institute, Jena, Germany; Institute of Microbiology, Friedrich Schiller University, Jena, Germany.
| |
Collapse
|
11
|
Hansakon A, Ngamphiw C, Tongsima S, Angkasekwinai P. Arginase 1 Expression by Macrophages Promotes Cryptococcus neoformans Proliferation and Invasion into Brain Microvascular Endothelial Cells. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2023; 210:408-419. [PMID: 36548474 DOI: 10.4049/jimmunol.2200592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Accepted: 11/30/2022] [Indexed: 12/24/2022]
Abstract
Cryptococcal meningoencephalitis caused by Cryptococcus neoformans infection is the most common cause of death in HIV/AIDS patients. Macrophages are pivotal for the regulation of immune responses to cryptococcal infection by either playing protective function or facilitating fungal dissemination. However, the mechanisms underlying macrophage responses to C. neoformans remain unclear. To analyze the transcriptomic changes and identify the pathogenic factors of macrophages, we performed a comparative transcriptomic analysis of alveolar macrophage responses during C. neoformans infection. Alveolar macrophages isolated from C. neoformans-infected mice showed dynamic gene expression patterns, with expression change from a protective M1 (classically activated)-like to a pathogenic M2 (alternatively activated)-like phenotype. Arg1, the gene encoding the enzyme arginase 1, was found as the most upregulated gene in alveolar macrophages during the chronic infection phase. The in vitro inhibition of arginase activity resulted in a reduction of cryptococcal phagocytosis, intracellular growth, and proliferation, coupled with an altered macrophage response from pathogenic M2 to a protective M1 phenotype. In an in vitro model of the blood-brain barrier, macrophage-derived arginase was found to be required for C. neoformans invasion of brain microvascular endothelium. Further analysis of the degree of virulence indicated a positive correlation between arginase 1 expression in macrophages and cryptococcal brain dissemination in vivo. Thus, our data suggest that a dynamic macrophage activation that involves arginase expression may contribute to the cryptococcal disease by promoting cryptococcal growth, proliferation, and the invasion to the brain endothelium.
Collapse
Affiliation(s)
- Adithap Hansakon
- Department of Medical Technology, Faculty of Allied Health Sciences, Thammasat University, Pathum Thani, Thailand.,Chulabhorn International College of Medicine, Thammasat University, Pathum Thani, Thailand
| | - Chumpol Ngamphiw
- National Biobank of Thailand, National Science and Technology Development Agency, Pathum Thani, Thailand; and
| | - Sissades Tongsima
- National Biobank of Thailand, National Science and Technology Development Agency, Pathum Thani, Thailand; and
| | - Pornpimon Angkasekwinai
- Department of Medical Technology, Faculty of Allied Health Sciences, Thammasat University, Pathum Thani, Thailand.,Research Unit in Molecular Pathogenesis and Immunology of Infectious Diseases, Thammasat University, Pathum Thani, Thailand
| |
Collapse
|
12
|
Brown AJP. Fungal resilience and host-pathogen interactions: Future perspectives and opportunities. Parasite Immunol 2023; 45:e12946. [PMID: 35962618 PMCID: PMC10078341 DOI: 10.1111/pim.12946] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Revised: 08/08/2022] [Accepted: 08/10/2022] [Indexed: 01/31/2023]
Abstract
We are constantly exposed to the threat of fungal infection. The outcome-clearance, commensalism or infection-depends largely on the ability of our innate immune defences to clear infecting fungal cells versus the success of the fungus in mounting compensatory adaptive responses. As each seeks to gain advantage during these skirmishes, the interactions between host and fungal pathogen are complex and dynamic. Nevertheless, simply compromising the physiological robustness of fungal pathogens reduces their ability to evade antifungal immunity, their virulence, and their tolerance against antifungal therapy. In this article I argue that this physiological robustness is based on a 'Resilience Network' which mechanistically links and controls fungal growth, metabolism, stress resistance and drug tolerance. The elasticity of this network probably underlies the phenotypic variability of fungal isolates and the heterogeneity of individual cells within clonal populations. Consequently, I suggest that the definition of the fungal Resilience Network represents an important goal for the future which offers the clear potential to reveal drug targets that compromise drug tolerance and synergise with current antifungal therapies.
Collapse
Affiliation(s)
- Alistair J P Brown
- Medical Research Council Centre for Medical Mycology at the University of Exeter, Exeter, UK
| |
Collapse
|
13
|
Pacifici N, Cruz-Acuña M, Diener A, Tu A, Senthil N, Han H, Lewis JS. Vomocytosis of Cryptococcus neoformans cells from murine, bone marrow-derived dendritic cells. PLoS One 2023; 18:e0280692. [PMID: 36928392 PMCID: PMC10019626 DOI: 10.1371/journal.pone.0280692] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Accepted: 01/05/2023] [Indexed: 03/18/2023] Open
Abstract
Cryptococcus neoformans (CN) cells survive within the acidic phagolysosome of macrophages (MΦ) for extended times, then escape without impacting the viability of the host cell via a phenomenon that has been coined 'vomocytosis'. Through this mechanism, CN disseminate throughout the body, sometimes resulting in a potentially fatal condition-Cryptococcal Meningitis (CM). Justifiably, vomocytosis studies have focused primarily on MΦ, as alveolar MΦ within the lung act as first responders that ultimately expel this fungal pathogen. Herein, we hypothesize that dendritic cells (DCs), an innate immune cell with attributes that include phagocytosis and antigen presentation, can also act as 'vomocytes'. Presciently, this report shows that vomocytosis of CN indeed occurs from murine, bone marrow-derived DCs. Primarily through time-lapse microscopy imaging, we show that rates of vomocytosis events from DCs are comparable to those seen from MΦ and further, are independent of the presence of the CN capsule and infection ratios. Moreover, the phagosome-altering drug bafilomycin A inhibits this phenomenon from DCs. Although DC immunophenotype does not affect the total number of vomocytic events, we observed differences in the numbers of CN per phagosome and expulsion times. Interestingly, these observations were similar in murine, bone marrow-derived MΦ. This work not only demonstrates the vomocytic ability of DCs, but also investigates the complexity of vomocytosis regulation in this cell type and MΦ under multiple modulatory conditions. Understanding the vomocytic behavior of different phagocytes and their phenotypic subtypes is needed to help elucidate the full picture of the dynamic interplay between CN and the immune system. Critically, deeper insight into vomocytosis could reveal novel approaches to treat CM, as well as other immune-related conditions.
Collapse
Affiliation(s)
- Noah Pacifici
- Department of Biomedical Engineering, University of California—Davis, Davis, CA, United States of America
| | - Melissa Cruz-Acuña
- Department of Biomedical Engineering, University of California—Davis, Davis, CA, United States of America
| | - Agustina Diener
- Department of Biomedical Engineering, University of California—Davis, Davis, CA, United States of America
| | - Allen Tu
- Department of Biomedical Engineering, University of California—Davis, Davis, CA, United States of America
| | - Neeraj Senthil
- Department of Biomedical Engineering, University of California—Davis, Davis, CA, United States of America
| | - Hyunsoo Han
- Department of Biomedical Engineering, University of California—Davis, Davis, CA, United States of America
| | - Jamal S. Lewis
- Department of Biomedical Engineering, University of California—Davis, Davis, CA, United States of America
- J. Crayton Pruitt Family Department of Biomedical Engineering, Gainesville, FL, United States of America
- * E-mail:
| |
Collapse
|
14
|
Li H, Han X, Du W, Meng Y, Li Y, Sun T, Liang Q, Li C, Suo C, Gao X, Qiu Y, Tian W, An M, Zhang H, Fu Y, Li X, Lan T, Yang S, Zhang Z, Geng W, Ding C, Shang H. Comparative miRNA transcriptomics of macaques and mice reveals MYOC is an inhibitor for Cryptococcus neoformans invasion into the brain. Emerg Microbes Infect 2022; 11:1572-1585. [PMID: 35621025 PMCID: PMC9176638 DOI: 10.1080/22221751.2022.2081619] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Cryptococcal meningoencephalitis (CM) is emerging as an infection in HIV/AIDS patients shifted from primarily ARTnaive to ART-experienced individuals, as well as patients with COVID-19 and immunocompetent hosts. This fungal infection is mainly caused by the opportunistic human pathogen Cryptococcus neoformans. Brain or central nervous system (CNS) dissemination is the deadliest process for this disease; however, mechanisms underlying this process have yet to be elucidated. Moreover, illustrations of clinically relevant responses in cryptococcosis are currently limited due to the low availability of clinical samples. In this study, to explore the clinically relevant responses during C. neoformans infection, macaque and mouse infection models were employed and miRNA-mRNA transcriptomes were performed and combined, which revealed cytoskeleton, a major feature of HIV/AIDS patients, was a centric pathway regulated in both infection models. Notably, assays of clinical immune cells confirmed an enhanced macrophage “Trojan Horse” in patients with HIV/AIDS, which could be shut down by cytoskeleton inhibitors. Furthermore, myocilin, encoded by MYOC, was found to be a novel enhancer for the macrophage “Trojan Horse,” and an enhanced fungal burden was achieved in the brains of MYOC-transgenic mice. Taken together, the findings from this study reveal fundamental roles of the cytoskeleton and MYOC in fungal CNS dissemination, which not only helps to understand the high prevalence of CM in HIV/AIDS but also facilitates the development of novel therapeutics for meningoencephalitis caused by C. neoformans and other pathogenic microorganisms.
Collapse
Affiliation(s)
- Hailong Li
- NHC Key Laboratory of AIDS Immunology, National Clinical Research Center for Laboratory Medicine, The First Affiliated Hospital of China Medical University, Shenyang, People's Republic of China
| | - Xiaoxu Han
- NHC Key Laboratory of AIDS Immunology, National Clinical Research Center for Laboratory Medicine, The First Affiliated Hospital of China Medical University, Shenyang, People's Republic of China
| | - Wei Du
- College of Life and Health Sciences, Northeastern University, Shenyang, People's Republic of China
| | - Yang Meng
- College of Life and Health Sciences, Northeastern University, Shenyang, People's Republic of China
| | - Yanjian Li
- College of Life and Health Sciences, Northeastern University, Shenyang, People's Republic of China
| | - Tianshu Sun
- Medical Research Centre, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science, Beijing, People's Republic of China.,Beijing Key Laboratory for Mechanisms Research and Precision Diagnosis of Invasive Fungal Diseases, Beijing, People's Republic of China
| | - Qiaojing Liang
- College of Life and Health Sciences, Northeastern University, Shenyang, People's Republic of China
| | - Chao Li
- College of Life and Health Sciences, Northeastern University, Shenyang, People's Republic of China
| | - Chenhao Suo
- College of Life and Health Sciences, Northeastern University, Shenyang, People's Republic of China
| | - Xindi Gao
- College of Life and Health Sciences, Northeastern University, Shenyang, People's Republic of China
| | - Yu Qiu
- NHC Key Laboratory of AIDS Immunology, National Clinical Research Center for Laboratory Medicine, The First Affiliated Hospital of China Medical University, Shenyang, People's Republic of China
| | - Wen Tian
- NHC Key Laboratory of AIDS Immunology, National Clinical Research Center for Laboratory Medicine, The First Affiliated Hospital of China Medical University, Shenyang, People's Republic of China
| | - Minghui An
- NHC Key Laboratory of AIDS Immunology, National Clinical Research Center for Laboratory Medicine, The First Affiliated Hospital of China Medical University, Shenyang, People's Republic of China
| | - Hui Zhang
- NHC Key Laboratory of AIDS Immunology, National Clinical Research Center for Laboratory Medicine, The First Affiliated Hospital of China Medical University, Shenyang, People's Republic of China
| | - Yajing Fu
- NHC Key Laboratory of AIDS Immunology, National Clinical Research Center for Laboratory Medicine, The First Affiliated Hospital of China Medical University, Shenyang, People's Republic of China
| | - Xiaolin Li
- NHC Key Laboratory of AIDS Immunology, National Clinical Research Center for Laboratory Medicine, The First Affiliated Hospital of China Medical University, Shenyang, People's Republic of China
| | - Tian Lan
- College of Life and Health Sciences, Northeastern University, Shenyang, People's Republic of China
| | - Sheng Yang
- College of Life and Health Sciences, Northeastern University, Shenyang, People's Republic of China
| | - Zining Zhang
- NHC Key Laboratory of AIDS Immunology, National Clinical Research Center for Laboratory Medicine, The First Affiliated Hospital of China Medical University, Shenyang, People's Republic of China
| | - Wenqing Geng
- NHC Key Laboratory of AIDS Immunology, National Clinical Research Center for Laboratory Medicine, The First Affiliated Hospital of China Medical University, Shenyang, People's Republic of China
| | - Chen Ding
- College of Life and Health Sciences, Northeastern University, Shenyang, People's Republic of China
| | - Hong Shang
- NHC Key Laboratory of AIDS Immunology, National Clinical Research Center for Laboratory Medicine, The First Affiliated Hospital of China Medical University, Shenyang, People's Republic of China
| |
Collapse
|
15
|
Nelson BN, Daugherty CS, Sharp RR, Booth JL, Patel VI, Metcalf JP, Jones KL, Wozniak KL. Protective interaction of human phagocytic APC subsets with Cryptococcus neoformans induces genes associated with metabolism and antigen presentation. Front Immunol 2022; 13:1054477. [PMID: 36466930 PMCID: PMC9709479 DOI: 10.3389/fimmu.2022.1054477] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Accepted: 10/25/2022] [Indexed: 09/01/2023] Open
Abstract
Cryptococcal meningitis is the most common cause of meningitis among HIV/AIDS patients in sub-Saharan Africa, and worldwide causes over 223,000 cases leading to more than 181,000 annual deaths. Usually, the fungus gets inhaled into the lungs where the initial interactions occur with pulmonary phagocytes such as dendritic cells and macrophages. Following phagocytosis, the pathogen can be killed or can replicate intracellularly. Previous studies in mice showed that different subsets of these innate immune cells can either be antifungal or permissive for intracellular fungal growth. Our studies tested phagocytic antigen-presenting cell (APC) subsets from the human lung against C. neoformans. Human bronchoalveolar lavage was processed for phagocytic APCs and incubated with C. neoformans for two hours to analyze the initial interactions and fate of the fungus, living or killed. Results showed all subsets (3 macrophage and 3 dendritic cell subsets) interacted with the fungus, and both living and killed morphologies were discernable within the subsets using imaging flow cytometry. Single cell RNA-seq identified several different clusters of cells which more closely related to interactions with C. neoformans and its protective capacity against the pathogen rather than discrete cellular subsets. Differential gene expression analyses identified several changes in the innate immune cell's transcriptome as it kills the fungus including increases of TNF-α (TNF) and the switch to using fatty acid metabolism by upregulation of the gene FABP4. Also, increases of TNF-α correlated to cryptococcal interactions and uptake. Together, these analyses implicated signaling networks that regulate expression of many different genes - both metabolic and immune - as certain clusters of cells mount a protective response and kill the pathogen. Future studies will examine these genes and networks to understand the exact mechanism(s) these phagocytic APC subsets use to kill C. neoformans in order to develop immunotherapeutic strategies to combat this deadly disease.
Collapse
Affiliation(s)
- Benjamin N. Nelson
- Department of Microbiology and Molecular Genetics, Oklahoma State University, Stillwater, OK, United States
| | - Cheyenne S. Daugherty
- Department of Microbiology and Molecular Genetics, Oklahoma State University, Stillwater, OK, United States
| | - Rachel R. Sharp
- Harold Hamm Diabetes Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States
| | - J. Leland Booth
- Department of Medicine, Pulmonary, Critical Care & Sleep Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States
| | - Vineet I. Patel
- Department of Medicine, Pulmonary, Critical Care & Sleep Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States
- Department of Cell Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States
| | - Jordan P. Metcalf
- Department of Medicine, Pulmonary, Critical Care & Sleep Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States
- Department of Microbiology and Immunology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States
- Veterans Affairs Medical Center, Oklahoma City, OK, United States
| | - Kenneth L. Jones
- Harold Hamm Diabetes Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States
- Department of Cell Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States
| | - Karen L. Wozniak
- Department of Microbiology and Molecular Genetics, Oklahoma State University, Stillwater, OK, United States
| |
Collapse
|
16
|
Jung EH, Park YD, Dragotakes Q, Ramirez LS, Smith DQ, Reis FCG, Dziedzic A, Rodrigues ML, Baker RP, Williamson PR, Jedlicka A, Casadevall A, Coelho C. Cryptococcus neoformans releases proteins during intracellular residence that affect the outcome of the fungal-macrophage interaction. MICROLIFE 2022; 3:uqac015. [PMID: 36247839 PMCID: PMC9552768 DOI: 10.1093/femsml/uqac015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Accepted: 09/13/2022] [Indexed: 05/26/2023]
Abstract
Cryptococcus neoformans is a facultative intracellular pathogen that can replicate and disseminate in mammalian macrophages. In this study, we analyzed fungal proteins identified in murine macrophage-like cells after infection with C. neoformans. To accomplish this, we developed a protocol to identify proteins released from cryptococcal cells inside macrophage-like cells; we identified 127 proteins of fungal origin in infected macrophage-like cells. Among the proteins identified was urease, a known virulence factor, and others such as transaldolase and phospholipase D, which have catalytic activities that could contribute to virulence. This method provides a straightforward methodology to study host-pathogen interactions. We chose to study further Yeast Oligomycin Resistance (Yor1), a relatively uncharacterized protein belonging to the large family of ATP binding cassette transporter (ABC transporters). These transporters belong to a large and ancient protein family found in all extant phyla. While ABC transporters have an enormous diversity of functions across varied species, in pathogenic fungi they are better studied as drug efflux pumps. Analysis of C. neoformans yor1Δ strains revealed defects in nonlytic exocytosis, capsule size, and dimensions of extracellular vesicles, when compared to wild-type strains. We detected no difference in growth rates and cell body size. Our results indicate that C. neoformans releases a large suite of proteins during macrophage infection, some of which can modulate fungal virulence and are likely to affect the fungal-macrophage interaction.
Collapse
Affiliation(s)
- Eric H Jung
- Department of Molecular Microbiology and Immunology, Johns Hopkins School of Public Health, 615 North Wolfe Street, Baltimore, MD 21205, United States
| | - Yoon-Dong Park
- Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Disease, National Institutes of Health, Memorial Drive, Bethesda, MD 20814, United States
| | - Quigly Dragotakes
- Department of Molecular Microbiology and Immunology, Johns Hopkins School of Public Health, 615 North Wolfe Street, Baltimore, MD 21205, United States
| | - Lia S Ramirez
- Department of Molecular and Cell Biology, Johns Hopkins University, 615 North Wolfe Street, Baltimore, MD 21205, United States
| | - Daniel Q Smith
- Department of Molecular Microbiology and Immunology, Johns Hopkins School of Public Health, 615 North Wolfe Street, Baltimore, MD 21205, United States
| | - Flavia C G Reis
- Instituto Carlos Chagas, Fundação Oswaldo Cruz (Fiocruz), Rua Professor Algacyr Munhoz Mader, 3775, Curitiba - PR, 81310-020, Brazil
- Centro de Desenvolvimento Tecnológico em Saúde (CDTS), Fundação Oswaldo Cruz Av. Brasil 4036. Room 814, Rio de Janeiro - RJ, 21040-361, Brazil
| | - Amanda Dziedzic
- Department of Molecular Microbiology and Immunology, Johns Hopkins School of Public Health, 615 North Wolfe Street, Baltimore, MD 21205, United States
| | - Marcio L Rodrigues
- Instituto Carlos Chagas, Fundação Oswaldo Cruz (Fiocruz), Rua Professor Algacyr Munhoz Mader, 3775, Curitiba - PR, 81310-020, Brazil
- Instituto de Microbiologia Paulo de Góes (IMPG), Universidade Federal do Rio de Janeiro, Rio de Janeiro Cidade Universitária da Universidade Federal do Rio de Janeiro,, Rio de Janeiro - RJ, 21941-902, Brazil
| | - Rosanna P Baker
- Department of Molecular Microbiology and Immunology, Johns Hopkins School of Public Health, 615 North Wolfe Street, Baltimore, MD 21205, United States
| | - Peter R Williamson
- Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Disease, National Institutes of Health, Memorial Drive, Bethesda, MD 20814, United States
| | - Anne Jedlicka
- Department of Molecular Microbiology and Immunology, Johns Hopkins School of Public Health, 615 North Wolfe Street, Baltimore, MD 21205, United States
| | - Arturo Casadevall
- Corresponding author: Department of Molecular Microbiology and Immunology, Johns Hopkins School of Public Health, 615 N, Wolfe Street, Room E5132, Baltimore, MD 21205, United States. E-mail:
| | - Carolina Coelho
- Corresponding author: Medical Research Council Centre for Medical Mycology at University of Exeter, College of Health and Medicine, Geoffrey Pope Building, Room 325, University of Exeter, Stocker Road, Exeter EX4 4QD, Devon, United Kingdom. E-mail:
| |
Collapse
|
17
|
Pereira IS, Pais SV, Borges V, Borrego MJ, Gomes JP, Mota LJ. The Type III Secretion Effector CteG Mediates Host Cell Lytic Exit of Chlamydia trachomatis. Front Cell Infect Microbiol 2022; 12:902210. [PMID: 35903198 PMCID: PMC9318579 DOI: 10.3389/fcimb.2022.902210] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Accepted: 05/25/2022] [Indexed: 11/17/2022] Open
Abstract
Chlamydia trachomatis is an obligate intracellular bacterium causing ocular and urogenital infections in humans that are a significant burden worldwide. The completion of its characteristic infectious cycle relies on the manipulation of several host cell processes by numerous chlamydial type III secretion effector proteins. We previously identified the C. trachomatis CteG effector and showed it localizes at the host cell plasma membrane at late stages of infection. Here, we showed that, from 48 h post-infection, mammalian cells infected by wild-type C. trachomatis contained more infectious chlamydiae in the culture supernatant than cells infected by a CteG-deficient strain. This phenotype was CteG-dependent as it could be complemented in cells infected by the CteG-deficient strain carrying a plasmid encoding CteG. Furthermore, we detected a CteG-dependent defect on host cell cytotoxicity, indicating that CteG mediates chlamydial lytic exit. Previous studies showed that Pgp4, a global regulator of transcription encoded in the C. trachomatis virulence plasmid, also mediates chlamydial lytic exit. However, by using C. trachomatis strains encoding or lacking Pgp4, we showed that production and localization of CteG are not regulated by Pgp4. A C. trachomatis strain lacking both CteG and Pgp4 was as defective in promoting host cell cytotoxicity as mutant strains lacking only CteG or Pgp4. Furthermore, CteG overproduction in a plasmid suppressed the host cell cytotoxic defect of CteG- and Pgp4-deficient chlamydiae. Overall, we revealed the first chlamydial type III secretion effector involved in host cell lytic exit. Our data indicates that CteG and Pgp4 participate in a single cascade of events, but involving multiple layers of regulation, leading to lysis of host cells and release of the infectious chlamydiae.
Collapse
Affiliation(s)
- Inês Serrano Pereira
- Associate Laboratory i4HB - Institute for Health and Bioeconomy, NOVA School of Science and Technology, NOVA University Lisbon, Caparica, Portugal
- UCIBIO – Applied Molecular Biosciences Unit, Department of Life Sciences, NOVA School of Science and Technology, NOVA University Lisbon, Caparica, Portugal
| | - Sara Vilela Pais
- UCIBIO – Applied Molecular Biosciences Unit, Department of Life Sciences, NOVA School of Science and Technology, NOVA University Lisbon, Caparica, Portugal
| | - Vítor Borges
- Bioinformatics Unit, Department of Infectious Diseases, National Institute of Health Dr. Ricardo Jorge (INSA), Lisbon, Portugal
| | - Maria José Borrego
- Bioinformatics Unit, Department of Infectious Diseases, National Institute of Health Dr. Ricardo Jorge (INSA), Lisbon, Portugal
| | - João Paulo Gomes
- Bioinformatics Unit, Department of Infectious Diseases, National Institute of Health Dr. Ricardo Jorge (INSA), Lisbon, Portugal
| | - Luís Jaime Mota
- Associate Laboratory i4HB - Institute for Health and Bioeconomy, NOVA School of Science and Technology, NOVA University Lisbon, Caparica, Portugal
- UCIBIO – Applied Molecular Biosciences Unit, Department of Life Sciences, NOVA School of Science and Technology, NOVA University Lisbon, Caparica, Portugal
- *Correspondence: Luís Jaime Mota,
| |
Collapse
|
18
|
Dragotakes Q, Jacobs E, Ramirez LS, Yoon OI, Perez-Stable C, Eden H, Pagnotta J, Vij R, Bergman A, D’Alessio F, Casadevall A. Bet-hedging antimicrobial strategies in macrophage phagosome acidification drive the dynamics of Cryptococcus neoformans intracellular escape mechanisms. PLoS Pathog 2022; 18:e1010697. [PMID: 35816543 PMCID: PMC9302974 DOI: 10.1371/journal.ppat.1010697] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 07/21/2022] [Accepted: 06/23/2022] [Indexed: 11/19/2022] Open
Abstract
The fungus Cryptococcus neoformans is a major human pathogen with a remarkable intracellular survival strategy that includes exiting macrophages through non-lytic exocytosis (Vomocytosis) and transferring between macrophages (Dragotcytosis) by a mechanism that involves sequential events of non-lytic exocytosis and phagocytosis. Vomocytosis and Dragotcytosis are fungal driven processes, but their triggers are not understood. We hypothesized that the dynamics of Dragotcytosis could inherit the stochasticity of phagolysosome acidification and that Dragotcytosis was triggered by fungal cell stress. Consistent with this view, fungal cells involved in Dragotcytosis reside in phagolysosomes characterized by low pH and/or high oxidative stress. Using fluorescent microscopy, qPCR, live cell video microscopy, and fungal growth assays we found that the that mitigating pH or oxidative stress reduced Dragotcytosis frequency, whereas ROS susceptible mutants of C. neoformans underwent Dragotcytosis more frequently. Dragotcytosis initiation was linked to phagolysosomal pH, oxidative stresses, and macrophage polarization state. Dragotcytosis manifested stochastic dynamics thus paralleling the dynamics of phagosomal acidification, which correlated with the inhospitality of phagolysosomes in differently polarized macrophages. Hence, randomness in phagosomal acidification randomly created a population of inhospitable phagosomes where fungal cell stress triggered stochastic C. neoformans non-lytic exocytosis dynamics to escape a non-permissive intracellular macrophage environment.
Collapse
Affiliation(s)
- Quigly Dragotakes
- Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, United States of America
| | - Ella Jacobs
- Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, United States of America
| | - Lia Sanchez Ramirez
- Department of Molecular and Cell Biology, Johns Hopkins University, Baltimore, Maryland, United States of America
| | - Olivia Insun Yoon
- Department of Molecular and Cell Biology, Johns Hopkins University, Baltimore, Maryland, United States of America
| | - Caitlin Perez-Stable
- Department of Molecular and Cell Biology, Johns Hopkins University, Baltimore, Maryland, United States of America
| | - Hope Eden
- Department of Cellular and Molecular Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| | - Jenlu Pagnotta
- Department of Molecular and Cell Biology, Johns Hopkins University, Baltimore, Maryland, United States of America
| | - Raghav Vij
- Leibniz Institute for Natural Product Research and Infection Biology, Hans Knöll Institute, Jena, Germany
| | - Aviv Bergman
- Department of Systems and Computational Biology, Albert Einstein College of Medicine, New York City, New York, United States of America
- Santa Fe Institute, Santa Fe, New Mexico, United States of America
| | - Franco D’Alessio
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, United States of America
| | - Arturo Casadevall
- Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, United States of America
| |
Collapse
|
19
|
Lachat J, Pascault A, Thibaut D, Le Borgne R, Verbavatz JM, Weiner A. Trans-cellular tunnels induced by the fungal pathogen Candida albicans facilitate invasion through successive epithelial cells without host damage. Nat Commun 2022; 13:3781. [PMID: 35773250 PMCID: PMC9246882 DOI: 10.1038/s41467-022-31237-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Accepted: 06/09/2022] [Indexed: 11/09/2022] Open
Abstract
The opportunistic fungal pathogen Candida albicans is normally commensal, residing in the mucosa of most healthy individuals. In susceptible hosts, its filamentous hyphal form can invade epithelial layers leading to superficial or severe systemic infection. Although invasion is mainly intracellular, it causes no apparent damage to host cells at early stages of infection. Here, we investigate C. albicans invasion in vitro using live-cell imaging and the damage-sensitive reporter galectin-3. Quantitative single cell analysis shows that invasion can result in host membrane breaching at different stages and host cell death, or in traversal of host cells without membrane breaching. Membrane labelling and three-dimensional 'volume' electron microscopy reveal that hyphae can traverse several host cells within trans-cellular tunnels that are progressively remodelled and may undergo 'inflations' linked to host glycogen stores. Thus, C. albicans early invasion of epithelial tissues can lead to either host membrane breaching or trans-cellular tunnelling.
Collapse
Affiliation(s)
- Joy Lachat
- Sorbonne Université, Inserm, CNRS, Centre d'Immunologie et des Maladies Infectieuses, Cimi-Paris, 75013, Paris, France
| | - Alice Pascault
- Sorbonne Université, Inserm, CNRS, Centre d'Immunologie et des Maladies Infectieuses, Cimi-Paris, 75013, Paris, France
| | - Delphine Thibaut
- Sorbonne Université, Inserm, CNRS, Centre d'Immunologie et des Maladies Infectieuses, Cimi-Paris, 75013, Paris, France
| | - Rémi Le Borgne
- Université Paris Cité, CNRS, Institut Jacques Monod, 75013, Paris, France
| | | | - Allon Weiner
- Sorbonne Université, Inserm, CNRS, Centre d'Immunologie et des Maladies Infectieuses, Cimi-Paris, 75013, Paris, France.
| |
Collapse
|
20
|
Wang Y, Pawar S, Dutta O, Wang K, Rivera A, Xue C. Macrophage Mediated Immunomodulation During Cryptococcus Pulmonary Infection. Front Cell Infect Microbiol 2022; 12:859049. [PMID: 35402316 PMCID: PMC8987709 DOI: 10.3389/fcimb.2022.859049] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Accepted: 02/28/2022] [Indexed: 12/21/2022] Open
Abstract
Macrophages are key cellular components of innate immunity, acting as the first line of defense against pathogens to modulate homeostatic and inflammatory responses. They help clear pathogens and shape the T-cell response through the production of cytokines and chemokines. The facultative intracellular fungal pathogen Cryptococcus neoformans has developed a unique ability to interact with and manipulate host macrophages. These interactions dictate how Cryptococcus infection can remain latent or how dissemination within the host is achieved. In addition, differences in the activities of macrophages have been correlated with differential susceptibilities of hosts to Cryptococcus infection, highlighting the importance of macrophages in determining disease outcomes. There is now abundant information on the interaction between Cryptococcus and macrophages. In this review we discuss recent advances regarding macrophage origin, polarization, activation, and effector functions during Cryptococcus infection. The importance of these strategies in pathogenesis and the potential of immunotherapy for cryptococcosis treatment is also discussed.
Collapse
Affiliation(s)
- Yan Wang
- Public Health Research Institute, New Jersey Medical School, Rutgers University, Newark, NJ, United States
- Department of Microbiology and Immunology , Guangdong Medical University, Dongguan, China
| | - Siddhi Pawar
- Public Health Research Institute, New Jersey Medical School, Rutgers University, Newark, NJ, United States
| | - Orchi Dutta
- Public Health Research Institute, New Jersey Medical School, Rutgers University, Newark, NJ, United States
| | - Keyi Wang
- Center for Immunity and Inflammation, New Jersey Medical School, Rutgers University, Newark, NJ, United States
| | - Amariliz Rivera
- Center for Immunity and Inflammation, New Jersey Medical School, Rutgers University, Newark, NJ, United States
| | - Chaoyang Xue
- Public Health Research Institute, New Jersey Medical School, Rutgers University, Newark, NJ, United States
| |
Collapse
|
21
|
Hawkins AN, Determann BF, Nelson BN, Wozniak KL. Transcriptional Changes in Pulmonary Phagocyte Subsets Dictate the Outcome Following Interaction With The Fungal Pathogen Cryptococcus neoformans. Front Immunol 2021; 12:722500. [PMID: 34650554 PMCID: PMC8505728 DOI: 10.3389/fimmu.2021.722500] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Accepted: 08/31/2021] [Indexed: 12/24/2022] Open
Abstract
With over 220,000 cases and 180,000 deaths annually, Cryptococcus neoformans is the most common cause of fungal meningitis and a leading cause of death in HIV/AIDS patients in Sub-Saharan Africa. Either C. neoformans can be killed by innate airway phagocytes, or it can survive intracellularly. Pulmonary murine macrophage and dendritic cell (DC) subsets have been identified in the naïve lung, and we hypothesize that each subset has different interactions with C. neoformans. For these studies, we purified murine pulmonary macrophage and DC subsets from naïve mice - alveolar macrophages, Ly6c- and Ly6c+ monocyte-like macrophages, interstitial macrophages, CD11b+ and CD103+ DCs. With each subset, we examined cryptococcal association (binding/internalization), fungicidal activity, intracellular fungal morphology, cytokine secretion and transcriptional profiling in an ex vivo model using these pulmonary phagocyte subsets. Results showed that all subsets associate with C. neoformans, but only female Ly6c- monocyte-like macrophages significantly inhibited growth, while male CD11b+ DCs significantly enhanced fungal growth. In addition, cytokine analysis revealed that some subsets from female mice produced increased amounts of cytokines compared to their counterparts in male mice following exposure to C. neoformans. In addition, although cells were analyzed ex vivo without the influence of the lung microenviroment, we did not find evidence of phagocyte polarization following incubation with C. neoformans. Imaging flow cytometry showed differing ratios of cryptococcal morphologies, c-shaped or budding, depending on phagocyte subset. RNA sequencing analysis revealed the up- and down-regulation of many genes, from immunological pathways (including differential regulation of MHC class I in the antigen processing pathway and the cell adhesion pathway) and pathways relating to relating to metabolic activity (genes in the Cytochrome P450 family, genes related to actin binding, calcium voltage channels, serine proteases, and phospholipases). Future studies gaining a more in-depth understanding on the functionality of individual genes and pathways specific to permissive and non-permissive pulmonary phagocytes will allow identification of key targets when developing therapeutic strategies to prevent cryptococcal meningitis.
Collapse
Affiliation(s)
- Ashlee N Hawkins
- Department of Microbiology and Molecular Genetics, Oklahoma State University, Stillwater, OK, United States
| | - Brenden F Determann
- Department of Microbiology and Molecular Genetics, Oklahoma State University, Stillwater, OK, United States
| | - Benjamin N Nelson
- Department of Microbiology and Molecular Genetics, Oklahoma State University, Stillwater, OK, United States
| | - Karen L Wozniak
- Department of Microbiology and Molecular Genetics, Oklahoma State University, Stillwater, OK, United States
| |
Collapse
|
22
|
Jacobovitz MR, Rupp S, Voss PA, Maegele I, Gornik SG, Guse A. Dinoflagellate symbionts escape vomocytosis by host cell immune suppression. Nat Microbiol 2021; 6:769-782. [PMID: 33927382 PMCID: PMC7611106 DOI: 10.1038/s41564-021-00897-w] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Accepted: 03/25/2021] [Indexed: 02/02/2023]
Abstract
Alveolata comprises diverse taxa of single-celled eukaryotes, many of which are renowned for their ability to live inside animal cells. Notable examples are apicomplexan parasites and dinoflagellate symbionts, the latter of which power coral reef ecosystems. Although functionally distinct, they evolved from a common, free-living ancestor and must evade their host's immune response for persistence. Both the initial cellular events that gave rise to this intracellular lifestyle and the role of host immune modulation in coral-dinoflagellate endosymbiosis are poorly understood. Here, we use a comparative approach in the cnidarian endosymbiosis model Aiptasia, which re-establishes endosymbiosis with free-living dinoflagellates every generation. We find that uptake of microalgae is largely indiscriminate, but non-symbiotic microalgae are expelled by vomocytosis, while symbionts induce host cell innate immune suppression and form a lysosomal-associated membrane protein 1-positive niche. We demonstrate that exogenous immune stimulation results in symbiont expulsion and, conversely, inhibition of canonical Toll-like receptor signalling enhances infection of host animals. Our findings indicate that symbiosis establishment is dictated by local innate immune suppression, to circumvent expulsion and promote niche formation. This work provides insight into the evolution of the cellular immune response and key steps involved in mediating endosymbiotic interactions.
Collapse
Affiliation(s)
- Marie R Jacobovitz
- Centre for Organismal Studies (COS), Heidelberg University, Heidelberg, Germany
| | - Sebastian Rupp
- Centre for Organismal Studies (COS), Heidelberg University, Heidelberg, Germany
| | - Philipp A Voss
- Centre for Organismal Studies (COS), Heidelberg University, Heidelberg, Germany
| | - Ira Maegele
- Centre for Organismal Studies (COS), Heidelberg University, Heidelberg, Germany
| | - Sebastian G Gornik
- Centre for Organismal Studies (COS), Heidelberg University, Heidelberg, Germany
| | - Annika Guse
- Centre for Organismal Studies (COS), Heidelberg University, Heidelberg, Germany.
| |
Collapse
|
23
|
Pradhan A, Ma Q, de Assis LJ, Leaves I, Larcombe DE, Rodriguez Rondon AV, Nev OA, Brown AJP. Anticipatory Stress Responses and Immune Evasion in Fungal Pathogens. Trends Microbiol 2021; 29:416-427. [PMID: 33059975 DOI: 10.1016/j.tim.2020.09.010] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Revised: 09/10/2020] [Accepted: 09/22/2020] [Indexed: 12/17/2022]
Abstract
In certain niches, microbes encounter environmental challenges that are temporally linked. In such cases, microbial fitness is enhanced by the evolution of anticipatory responses where the initial challenge simultaneously activates pre-emptive protection against the second impending challenge. The accumulation of anticipatory responses in domesticated yeasts, which have been termed 'adaptive prediction', has led to the emergence of 'core stress responses' that provide stress cross-protection. Protective anticipatory responses also seem to be common in fungal pathogens of humans. These responses reflect the selective pressures that these fungi have faced relatively recently in their evolutionary history. Consequently, some pathogens have evolved 'core environmental responses' which exploit host signals to trigger immune evasion strategies that protect them against imminent immune attack.
Collapse
Affiliation(s)
- Arnab Pradhan
- Medical Research Council Centre for Medical Mycology, University of Exeter, Geoffrey Pope Building, Stocker Road, Exeter EX4 4QD, UK
| | - Qinxi Ma
- Medical Research Council Centre for Medical Mycology, University of Exeter, Geoffrey Pope Building, Stocker Road, Exeter EX4 4QD, UK
| | - Leandro J de Assis
- Medical Research Council Centre for Medical Mycology, University of Exeter, Geoffrey Pope Building, Stocker Road, Exeter EX4 4QD, UK
| | - Ian Leaves
- Medical Research Council Centre for Medical Mycology, University of Exeter, Geoffrey Pope Building, Stocker Road, Exeter EX4 4QD, UK
| | - Daniel E Larcombe
- Medical Research Council Centre for Medical Mycology, University of Exeter, Geoffrey Pope Building, Stocker Road, Exeter EX4 4QD, UK
| | - Alejandra V Rodriguez Rondon
- Medical Research Council Centre for Medical Mycology, University of Exeter, Geoffrey Pope Building, Stocker Road, Exeter EX4 4QD, UK
| | - Olga A Nev
- Medical Research Council Centre for Medical Mycology, University of Exeter, Geoffrey Pope Building, Stocker Road, Exeter EX4 4QD, UK
| | - Alistair J P Brown
- Medical Research Council Centre for Medical Mycology, University of Exeter, Geoffrey Pope Building, Stocker Road, Exeter EX4 4QD, UK.
| |
Collapse
|
24
|
Strickland AB, Shi M. Mechanisms of fungal dissemination. Cell Mol Life Sci 2021; 78:3219-3238. [PMID: 33449153 PMCID: PMC8044058 DOI: 10.1007/s00018-020-03736-z] [Citation(s) in RCA: 54] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Revised: 11/23/2020] [Accepted: 12/08/2020] [Indexed: 12/13/2022]
Abstract
Fungal infections are an increasing threat to global public health. There are more than six million fungal species worldwide, but less than 1% are known to infect humans. Most of these fungal infections are superficial, affecting the hair, skin and nails, but some species are capable of causing life-threatening diseases. The most common of these include Cryptococcus neoformans, Aspergillus fumigatus and Candida albicans. These fungi are typically innocuous and even constitute a part of the human microbiome, but if these pathogens disseminate throughout the body, they can cause fatal infections which account for more than one million deaths worldwide each year. Thus, systemic dissemination of fungi is a critical step in the development of these deadly infections. In this review, we discuss our current understanding of how fungi disseminate from the initial infection sites to the bloodstream, how immune cells eliminate fungi from circulation and how fungi leave the blood and enter distant organs, highlighting some recent advances and offering some perspectives on future directions.
Collapse
Affiliation(s)
- Ashley B Strickland
- Division of Immunology, Virginia-Maryland College of Veterinary Medicine and Maryland Pathogen Research Institute, University of Maryland, College Park, MD, USA.
| | - Meiqing Shi
- Division of Immunology, Virginia-Maryland College of Veterinary Medicine and Maryland Pathogen Research Institute, University of Maryland, College Park, MD, USA.
| |
Collapse
|
25
|
Ding S, Yang J, Feng X, Pandey A, Barhoumi R, Zhang D, Bell SL, Liu Y, da Costa LF, Rice-Ficht A, Watson RO, Patrick KL, Qin QM, Ficht TA, de Figueiredo P. Interactions between fungal hyaluronic acid and host CD44 promote internalization by recruiting host autophagy proteins to forming phagosomes. iScience 2021; 24:102192. [PMID: 33718841 PMCID: PMC7920835 DOI: 10.1016/j.isci.2021.102192] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Revised: 01/06/2021] [Accepted: 02/09/2021] [Indexed: 01/22/2023] Open
Abstract
Phagocytosis and autophagy play critical roles in immune defense. The human fungal pathogen Cryptococcus neoformans (Cn) subverts host autophagy-initiation complex (AIC)-related proteins, to promote its phagocytosis and intracellular parasitism of host cells. The mechanisms by which the pathogen engages host AIC-related proteins remain obscure. Here, we show that the recruitment of host AIC proteins to forming phagosomes is dependent upon the activity of CD44, a host cell surface receptor that engages fungal hyaluronic acid (HA). This interaction elevates intracellular Ca2+ concentrations and activates CaMKKβ and its downstream target AMPKα, which results in activation of ULK1 and the recruitment of AIC components. Moreover, we demonstrate that HA-coated beads efficiently recruit AIC components to phagosomes and CD44 interacts with AIC components. Taken together, these findings show that fungal HA plays a critical role in directing the internalization and productive intracellular membrane trafficking of a fungal pathogen of global importance. Fungal HA drives non-canonical and ligand-induced autophagy in phagocytic cells Cn recruits host CD44 to forming phagocytic cups to initiate fungal internalization Fungal HA-CD44 interactions elevate intracellular Ca2+ levels and activate CaMKKβ A Ca2+-CaMKKβ-AMPK-ULK1 signaling axis is involved in HA-CD44 induced autophagy
Collapse
Affiliation(s)
- Shengli Ding
- College of Plant Sciences & Key Laboratory of Zoonosis Research, Ministry of Education, Jilin University, Changchun, Jilin 130062, China.,Department of Microbial Pathogenesis and Immunology, Texas A&M Health Science Center, Bryan, TX 77807, USA.,Department of Plant Pathology, College of Plant Protection, Henan Agricultural University, Zhengzhou, Henan 450002, China
| | - Jing Yang
- Department of Microbial Pathogenesis and Immunology, Texas A&M Health Science Center, Bryan, TX 77807, USA
| | - Xuehuan Feng
- Department of Microbial Pathogenesis and Immunology, Texas A&M Health Science Center, Bryan, TX 77807, USA
| | - Aseem Pandey
- Department of Microbial Pathogenesis and Immunology, Texas A&M Health Science Center, Bryan, TX 77807, USA.,Department of Veterinary Pathobiology, Texas A&M University, College Station, TX 77843, USA
| | - Rola Barhoumi
- Department of Veterinary Integrative Biosciences, Texas A&M University, College Station, TX 77843-4458, USA
| | - Dongmei Zhang
- Department of Microbial Pathogenesis and Immunology, Texas A&M Health Science Center, Bryan, TX 77807, USA
| | - Samantha L Bell
- Department of Microbial Pathogenesis and Immunology, Texas A&M Health Science Center, Bryan, TX 77807, USA
| | - Yue Liu
- College of Plant Sciences & Key Laboratory of Zoonosis Research, Ministry of Education, Jilin University, Changchun, Jilin 130062, China
| | - Luciana Fachini da Costa
- Department of Microbial Pathogenesis and Immunology, Texas A&M Health Science Center, Bryan, TX 77807, USA.,Department of Molecular and Cellular Medicine, College of Medicine, Texas A&M Health Science Center, College Station, TX 77843, USA
| | - Allison Rice-Ficht
- Department of Molecular and Cellular Medicine, College of Medicine, Texas A&M Health Science Center, College Station, TX 77843, USA
| | - Robert O Watson
- Department of Microbial Pathogenesis and Immunology, Texas A&M Health Science Center, Bryan, TX 77807, USA
| | - Kristin L Patrick
- Department of Microbial Pathogenesis and Immunology, Texas A&M Health Science Center, Bryan, TX 77807, USA
| | - Qing-Ming Qin
- College of Plant Sciences & Key Laboratory of Zoonosis Research, Ministry of Education, Jilin University, Changchun, Jilin 130062, China.,Department of Microbial Pathogenesis and Immunology, Texas A&M Health Science Center, Bryan, TX 77807, USA
| | - Thomas A Ficht
- Department of Veterinary Pathobiology, Texas A&M University, College Station, TX 77843, USA
| | - Paul de Figueiredo
- Department of Microbial Pathogenesis and Immunology, Texas A&M Health Science Center, Bryan, TX 77807, USA.,Department of Veterinary Pathobiology, Texas A&M University, College Station, TX 77843, USA
| |
Collapse
|
26
|
Baranov MV, Kumar M, Sacanna S, Thutupalli S, van den Bogaart G. Modulation of Immune Responses by Particle Size and Shape. Front Immunol 2021; 11:607945. [PMID: 33679696 PMCID: PMC7927956 DOI: 10.3389/fimmu.2020.607945] [Citation(s) in RCA: 111] [Impact Index Per Article: 37.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Accepted: 12/23/2020] [Indexed: 12/12/2022] Open
Abstract
The immune system has to cope with a wide range of irregularly shaped pathogens that can actively move (e.g., by flagella) and also dynamically remodel their shape (e.g., transition from yeast-shaped to hyphal fungi). The goal of this review is to draw general conclusions of how the size and geometry of a pathogen affect its uptake and processing by phagocytes of the immune system. We compared both theoretical and experimental studies with different cells, model particles, and pathogenic microbes (particularly fungi) showing that particle size, shape, rigidity, and surface roughness are important parameters for cellular uptake and subsequent immune responses, particularly inflammasome activation and T cell activation. Understanding how the physical properties of particles affect immune responses can aid the design of better vaccines.
Collapse
Affiliation(s)
- Maksim V. Baranov
- Department of Molecular Immunology and Microbiology, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Groningen, Netherlands
| | - Manoj Kumar
- Simons Center for the Study of Living Machines, National Centre for Biological Sciences, Tata Institute for Fundamental Research, Bangalore, India
| | - Stefano Sacanna
- Molecular Design Institute, Department of Chemistry, New York University, New York, NY, United States
| | - Shashi Thutupalli
- Simons Center for the Study of Living Machines, National Centre for Biological Sciences, Tata Institute for Fundamental Research, Bangalore, India
- International Centre for Theoretical Sciences, Tata Institute for Fundamental Research, Bangalore, India
| | - Geert van den Bogaart
- Department of Molecular Immunology and Microbiology, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Groningen, Netherlands
| |
Collapse
|
27
|
Alanio A. Dormancy in Cryptococcus neoformans: 60 years of accumulating evidence. J Clin Invest 2021; 130:3353-3360. [PMID: 32484459 DOI: 10.1172/jci136223] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Cryptococcus neoformans is an opportunistic yeast that is present worldwide and interacts with various organisms. In humans, it is responsible for cryptococcosis, a deadly invasive fungal infection that represents around 220,000 cases per year worldwide. Starting from the natural history of the disease in humans, there is accumulating evidence on the capacity of this organism to enter dormancy. In response to the harsh host environment, the yeast is able to adapt dramatically and escape the vigilance of the host's immune cells to survive. Indeed, the yeast exposed to the host takes on pleiotropic phenotypes, enabling the generation of populations in heterogeneous states, including dormancy, to eventually survive at low metabolic cost and revive in favorable conditions. The concept of dormancy has been validated in C. neoformans from both epidemiological and genotyping data, and more recently from the biological point of view with the characterization of dormancy through the description of viable but nonculturable cells.
Collapse
Affiliation(s)
- Alexandre Alanio
- Laboratoire de Parasitologie-Mycologie, Groupe Hospitalier Saint-Louis-Lariboisière-Fernand-Widal, Assistance Publique-Hôpitaux de Paris (AP-HP), Paris, France.,Molecular Mycology Unit, CNRS UMR 2000, National Reference Center for Invasive Mycoses and Antifungals (NRCMA), Institut Pasteur, Paris, France.,Université de Paris, Paris, France
| |
Collapse
|
28
|
Abstract
Cryptococcus yeast species typically display characteristics of opportunistic pathogens, with the exception of C. gattii, which can cause life-threatening respiratory and disseminated brain infections in otherwise healthy people. The pathogenesis of C. gattii is not well understood, but an important characteristic is that C. gattii is capable of evading host cell-mediated immune defenses initiated by DCs. Here, we report that when virulent C. gattii becomes ingested by a DC, the intracellular compartment containing the fungi is covered by a persistent protein cage structure consisting of F-actin. This F-actin cage acts as a barrier to prevent interaction with other intracellular compartments, and as a result, the DC fails to kill the fungi and activate important cell-mediated immune responses. We propose that this unique immune evasion mechanism permits C. gattii to remain unchallenged within host cells, leading to persistent infection. Cryptococcus gattii is a major cause of life-threatening mycosis in immunocompetent individuals and responsible for the ongoing epidemic outbreak of cryptococcosis in the Pacific Northwest of North America. This deadly fungus is known to evade important host immune responses, including dendritic cell (DC) maturation and concomitant T cell immunity, via immune evasion mechanisms that remain unclear. Here, we demonstrate that primary human DCs phagocytose C. gattii but the maturation of phagosomes to phagolysosomes was blocked as a result of sustained filamentous actin (F-actin) that entrapped and concealed the phagosomes from recognition. Superresolution structured illumination microscopy (SR-SIM) revealed that the persistent phagosomal F-actin formed a cage-like structure that sterically hindered and functionally blocked the fusion of lysosomes. Blocking lysosome fusion was sufficient to inhibit phagosomal acidification and subsequent intracellular fungal killing by DCs. Retention of phagosomal F-actin by C. gattii also caused DC immunoparalysis. Disrupting the retained F-actin cage with cytochalasin D not only restored DC phagosomal maturation but also promoted DC costimulatory maturation and robust T cell activation and proliferation. Collectively, these results reveal a unique mechanism of DC immune evasion that enhances intracellular fungal pathogenicity and may explain suppressed cell-mediated immunity.
Collapse
|
29
|
Gaylord EA, Choy HL, Doering TL. Dangerous Liaisons: Interactions of Cryptococcus neoformans with Host Phagocytes. Pathogens 2020; 9:E891. [PMID: 33121050 PMCID: PMC7692806 DOI: 10.3390/pathogens9110891] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2020] [Revised: 10/22/2020] [Accepted: 10/25/2020] [Indexed: 02/07/2023] Open
Abstract
Cryptococcus neoformans is an opportunistic fungal pathogen and a leading cause of death in immunocompromised individuals. The interactions of this yeast with host phagocytes are critical to disease outcome, and C. neoformans is equipped with an array of factors to modulate these processes. Cryptococcal infection begins with the deposition of infectious particles into the lungs, where the fungal cells deploy various antiphagocytic factors to resist internalization by host cells. If the cryptococci are still engulfed, they can survive and proliferate within host cells by modulating the phagolysosome environment in which they reside. Lastly, cryptococcal cells may escape from phagocytes by host cell lysis, nonlytic exocytosis, or lateral cell-to-cell transfer. The interactions between C. neoformans and host phagocytes also influence the dissemination of this pathogen to the brain, where it may cross the blood-brain barrier and cause an often-fatal meningoencephalitis. In this review, we highlight key cryptococcal factors involved in various stages of cryptococcal-host interaction and pathogenesis.
Collapse
Affiliation(s)
| | | | - Tamara L. Doering
- Department of Molecular Microbiology, Washington University School of Medicine, Saint Louis, MO 63110, USA; (E.A.G.); (H.L.C.)
| |
Collapse
|
30
|
König A, Müller R, Mogavero S, Hube B. Fungal factors involved in host immune evasion, modulation and exploitation during infection. Cell Microbiol 2020; 23:e13272. [PMID: 32978997 DOI: 10.1111/cmi.13272] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Revised: 07/20/2020] [Accepted: 07/26/2020] [Indexed: 01/09/2023]
Abstract
Human and plant pathogenic fungi have a major impact on public health and agriculture. Although these fungi infect very diverse hosts and are often highly adapted to specific host niches, they share surprisingly similar mechanisms that mediate immune evasion, modulation of distinct host targets and exploitation of host nutrients, highlighting that successful strategies have evolved independently among diverse fungal pathogens. These attributes are facilitated by an arsenal of fungal factors. However, not a single molecule, but rather the combined effects of several factors enable these pathogens to establish infection. In this review, we discuss the principles of human and plant fungal pathogenicity mechanisms and discuss recent discoveries made in this field.
Collapse
Affiliation(s)
- Annika König
- Department of Microbial Pathogenicity Mechanisms, Leibniz Institute for Natural Product Research and Infection Biology - Hans Knoell Institute, Jena, Germany
| | - Rita Müller
- Department of Microbial Pathogenicity Mechanisms, Leibniz Institute for Natural Product Research and Infection Biology - Hans Knoell Institute, Jena, Germany
| | - Selene Mogavero
- Department of Microbial Pathogenicity Mechanisms, Leibniz Institute for Natural Product Research and Infection Biology - Hans Knoell Institute, Jena, Germany
| | - Bernhard Hube
- Department of Microbial Pathogenicity Mechanisms, Leibniz Institute for Natural Product Research and Infection Biology - Hans Knoell Institute, Jena, Germany.,Center for Sepsis Control and Care, University Hospital Jena, Jena, Germany.,Institute of Microbiology, Friedrich Schiller University, Jena, Germany
| |
Collapse
|
31
|
Opportunistic Cryptococcal Antigenemia in the HAART Era at HIV Epidemic Settings of Northwest Ethiopia. CANADIAN JOURNAL OF INFECTIOUS DISEASES & MEDICAL MICROBIOLOGY 2020; 2020:5017120. [PMID: 32963654 PMCID: PMC7492940 DOI: 10.1155/2020/5017120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Revised: 07/23/2020] [Accepted: 08/28/2020] [Indexed: 11/20/2022]
Abstract
Background Cryptococcus neoformans is a frequent opportunistic infection in patients with the acquired immunodeficiency syndrome. While the advent of ART reduces the occurrence of cryptococcal meningitis in HIV patients, cryptococcal disease remains a leading cause of morbidity and mortality in the developing world especially in sub-Saharan Africa which is the epicenter of HIV. This study aimed to assess the cryptococcal antigenemia, CD4+ Th cell counts, HIV RNA viral load, and clinical presentations among HIV-positive patients in Northwest Ethiopia. Method A total of two hundred (200) HIV-positive patients were recruited for this study. Cryptococcus antigenemia prevalence in plasma samples of HIV‐positive patients was determined by using Antigen lateral flow assay (CrAg‐LFA) also, and CD4+ Th cell counts and HIV‐RNA levels were quantified from blood specimen. Patients' demographic data, clinical manifestation, and concurrent opportunistic infection were recorded. Result The sex distributions of study participants were 105(52.5%) male and 94(47.5%) female with an age range of 15–65 (mean 39.42 ± 9) years. All patients had a CD4+ T-cell count <100 cells/µl with the median 54 cells/μl and median HIV-RNA viral load 2.16 × 105 RNA copies/ml (50–3.66 × 105 RNA copies/ml); the prevalence of cryptococcal antigenemia was found to be 4% in HIV-positive patients. More than half and two third of CrAg‐positive patients had a CD4 count <25 cells/μl and HIV viral load >10,000 copies/ml, respectively, as well; Tuberculosis, Candidiasis, and herpes zoster are the most often observed concurrent infections while cryptococcal antigenemia is significantly associated with oral candidiasis (p < 0.001). Conclusion Although the advent of ART, early diagnosis of cryptococcosis, and application of antifungal interventions, HIV-induced cryptococcal antigenemia positivity in HIV infected individuals is still the countries' big challenge. Thus, stringent follow-up and case management should be considered.
Collapse
|
32
|
Berry SB, Haack AJ, Theberge AB, Brighenti S, Svensson M. Host and Pathogen Communication in the Respiratory Tract: Mechanisms and Models of a Complex Signaling Microenvironment. Front Med (Lausanne) 2020; 7:537. [PMID: 33015094 PMCID: PMC7511576 DOI: 10.3389/fmed.2020.00537] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2020] [Accepted: 07/29/2020] [Indexed: 01/15/2023] Open
Abstract
Chronic lung diseases are a leading cause of morbidity and mortality across the globe, encompassing a diverse range of conditions from infections with pathogenic microorganisms to underlying genetic disorders. The respiratory tract represents an active interface with the external environment having the primary immune function of resisting pathogen intrusion and maintaining homeostasis in response to the myriad of stimuli encountered within its microenvironment. To perform these vital functions and prevent lung disorders, a chemical and biological cross-talk occurs in the complex milieu of the lung that mediates and regulates the numerous cellular processes contributing to lung health. In this review, we will focus on the role of cross-talk in chronic lung infections, and discuss how different cell types and signaling pathways contribute to the chronicity of infection(s) and prevent effective immune clearance of pathogens. In the lung microenvironment, pathogens have developed the capacity to evade mucosal immunity using different mechanisms or virulence factors, leading to colonization and infection of the host; such mechanisms include the release of soluble and volatile factors, as well as contact dependent (juxtracrine) interactions. We explore the diverse modes of communication between the host and pathogen in the lung tissue milieu in the context of chronic lung infections. Lastly, we review current methods and approaches used to model and study these host-pathogen interactions in vitro, and the role of these technological platforms in advancing our knowledge about chronic lung diseases.
Collapse
Affiliation(s)
- Samuel B. Berry
- Department of Medicine, Center for Infectious Medicine, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
- Department of Chemistry, University of Washington, Seattle, WA, United States
| | - Amanda J. Haack
- Department of Chemistry, University of Washington, Seattle, WA, United States
| | | | - Susanna Brighenti
- Department of Medicine, Center for Infectious Medicine, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Mattias Svensson
- Department of Medicine, Center for Infectious Medicine, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| |
Collapse
|
33
|
Lindenbergh MFS, Wubbolts R, Borg EGF, van ’T Veld EM, Boes M, Stoorvogel W. Dendritic cells release exosomes together with phagocytosed pathogen; potential implications for the role of exosomes in antigen presentation. J Extracell Vesicles 2020; 9:1798606. [PMID: 32944186 PMCID: PMC7480536 DOI: 10.1080/20013078.2020.1798606] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Revised: 06/12/2020] [Accepted: 06/29/2020] [Indexed: 12/11/2022] Open
Abstract
Dendritic cells (DC) have the unique capacity to activate naïve T cells by presenting T cell receptor specific peptides from exogenously acquired antigens bound to Major Histocompatibility Complex (MHC) molecules. MHC molecules are displayed on the DC plasma membrane as well as on extracellular vesicles (EV) that are released by DC, and both have antigen-presenting capacities. However, the physiological role of antigen presentation by EV is still unclear. We here demonstrate that the release of small EV by activated DC is strongly stimulated by phagocytic events. We show that, concomitant with the enhanced release of EV, a significant proportion of phagocytosed bacteria was expulsed back into the medium. High-resolution fluorescence microscopic images revealed that bacteria in phagosomes were surrounded by EV marker-proteins. Moreover, expulsed bacteria were often found associated with clustered HLA II and CD63. Together, these observations suggest that exosomes may be formed by the inward budding into phagosomes, whereupon they are secreted together with the phagosomal content. These findings may have important implications for selective loading of peptides derived from phagocytosed pathogens onto exosome associated HLA molecules, and have important implications for vaccine design.
Collapse
Affiliation(s)
- Marthe F. S. Lindenbergh
- Department Biomolecular Health Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
- Department of Pediatrics and Laboratory of Translational Immunology, University Medical Center Utrecht, University Utrecht, Utrecht, The Netherlands
| | - Richard Wubbolts
- Department Biomolecular Health Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| | - Ellen G. F. Borg
- Department Biomolecular Health Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| | - Esther M. van ’T Veld
- Department Biomolecular Health Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| | - Marianne Boes
- Department of Pediatrics and Laboratory of Translational Immunology, University Medical Center Utrecht, University Utrecht, Utrecht, The Netherlands
| | - W. Stoorvogel
- Department Biomolecular Health Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| |
Collapse
|
34
|
Linnerz T, Hall CJ. The Diverse Roles of Phagocytes During Bacterial and Fungal Infections and Sterile Inflammation: Lessons From Zebrafish. Front Immunol 2020; 11:1094. [PMID: 32582182 PMCID: PMC7289964 DOI: 10.3389/fimmu.2020.01094] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2020] [Accepted: 05/06/2020] [Indexed: 12/23/2022] Open
Abstract
The immediate and natural reaction to both infectious challenges and sterile insults (wounds, tissue trauma or crystal deposition) is an acute inflammatory response. This inflammatory response is mediated by activation of the innate immune system largely comprising professional phagocytes (neutrophils and macrophages). Zebrafish (danio rerio) larvae possess many advantages as a model organism, including their genetic tractability and highly conserved innate immune system. Exploiting these attributes and the live imaging potential of optically transparent zebrafish larvae has greatly contributed to our understanding of how neutrophils and macrophages orchestrate the initiation and resolution phases of inflammatory responses. Numerous bacterial and fungal infection models have been successfully established using zebrafish as an animal model and studies investigating neutrophil and macrophage behavior to sterile insults have also provided unique insights. In this review we highlight how examining the larval zebrafish response to specific bacterial and fungal pathogens has uncovered cellular and molecular mechanisms behind a variety of phagocyte responses, from those that protect the host to those that are detrimental. We also describe how modeling sterile inflammation in larval zebrafish has provided an opportunity to dissect signaling pathways that control the recruitment, and fate, of phagocytes at inflammatory sites. Finally, we briefly discuss some current limitations, and opportunities to improve, the zebrafish model system for studying phagocyte biology.
Collapse
Affiliation(s)
- Tanja Linnerz
- Department of Molecular Medicine and Pathology, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
| | - Christopher J Hall
- Department of Molecular Medicine and Pathology, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
| |
Collapse
|
35
|
Griffiths NW, Del Bel LM, Wilk R, Brill JA. Cellular homeostasis in the Drosophila retina requires the lipid phosphatase Sac1. Mol Biol Cell 2020; 31:1183-1199. [PMID: 32186963 PMCID: PMC7353163 DOI: 10.1091/mbc.e20-02-0161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The complex functions of cellular membranes, and thus overall cell physiology, depend on the distribution of crucial lipid species. Sac1 is an essential, conserved, ER-localized phosphatase whose substrate, phosphatidylinositol 4-phosphate (PI4P), coordinates secretory trafficking and plasma membrane function. PI4P from multiple pools is delivered to Sac1 by oxysterol-binding protein and related proteins in exchange for other lipids and sterols, which places Sac1 at the intersection of multiple lipid distribution pathways. However, much remains unknown about the roles of Sac1 in subcellular homeostasis and organismal development. Using a temperature-sensitive allele (Sac1ts), we show that Sac1 is required for structural integrity of the Drosophila retinal floor. The βps-integrin Myospheroid, which is necessary for basal cell adhesion, is mislocalized in Sac1ts retinas. In addition, the adhesion proteins Roughest and Kirre, which coordinate apical retinal cell patterning at an earlier stage, accumulate within Sac1ts retinal cells due to impaired endo-lysosomal degradation. Moreover, Sac1 is required for ER homeostasis in Drosophila retinal cells. Together, our data illustrate the importance of Sac1 in regulating multiple aspects of cellular homeostasis during tissue development.
Collapse
Affiliation(s)
- Nigel W Griffiths
- Cell Biology Program, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada.,Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Lauren M Del Bel
- Cell Biology Program, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada.,Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Ronit Wilk
- Cell Biology Program, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada
| | - Julie A Brill
- Cell Biology Program, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada.,Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 1A8, Canada
| |
Collapse
|
36
|
Fungal kinases and transcription factors regulating brain infection in Cryptococcus neoformans. Nat Commun 2020; 11:1521. [PMID: 32251295 PMCID: PMC7090016 DOI: 10.1038/s41467-020-15329-2] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Accepted: 03/03/2020] [Indexed: 12/19/2022] Open
Abstract
Cryptococcus neoformans causes fatal fungal meningoencephalitis. Here, we study the roles played by fungal kinases and transcription factors (TFs) in blood-brain barrier (BBB) crossing and brain infection in mice. We use a brain infectivity assay to screen signature-tagged mutagenesis (STM)-based libraries of mutants defective in kinases and TFs, generated in the C. neoformans H99 strain. We also monitor in vivo transcription profiles of kinases and TFs during host infection using NanoString technology. These analyses identify signalling components involved in BBB adhesion and crossing, or survival in the brain parenchyma. The TFs Pdr802, Hob1, and Sre1 are required for infection under all the conditions tested here. Hob1 controls the expression of several factors involved in brain infection, including inositol transporters, a metalloprotease, PDR802, and SRE1. However, Hob1 is dispensable for most cellular functions in Cryptococcus deuterogattii R265, a strain that does not target the brain during infection. Our results indicate that Hob1 is a master regulator of brain infectivity in C. neoformans. Cryptococcus neoformans causes fatal fungal meningoencephalitis. Here, the authors identify fungal kinases and transcription factors involved in blood-brain barrier crossing and brain infection in mice.
Collapse
|
37
|
Nelson BN, Hawkins AN, Wozniak KL. Pulmonary Macrophage and Dendritic Cell Responses to Cryptococcus neoformans. Front Cell Infect Microbiol 2020; 10:37. [PMID: 32117810 PMCID: PMC7026008 DOI: 10.3389/fcimb.2020.00037] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Accepted: 01/20/2020] [Indexed: 12/12/2022] Open
Abstract
The fungal pathogen Cryptococcus neoformans can cause life-threatening infections in immune compromised individuals. This pathogen is typically acquired via inhalation, and enters the respiratory tract. Innate immune cells such as macrophages and dendritic cells (DCs) are the first host cells that encounter C. neoformans, and the interactions between Cryptococcus and innate immune cells play a critical role in the progression of disease. Cryptococcus possesses several virulence factors and evasion strategies to prevent its killing and destruction by pulmonary phagocytes, but these phagocytic cells can also contribute to anti-cryptococcal responses. This review will focus on the interactions between Cryptococcus and primary macrophages and dendritic cells (DCs), dealing specifically with the cryptococcal/pulmonary cell interface.
Collapse
Affiliation(s)
- Benjamin N Nelson
- Department of Microbiology and Molecular Genetics, Oklahoma State University, Stillwater, OK, United States
| | - Ashlee N Hawkins
- Department of Microbiology and Molecular Genetics, Oklahoma State University, Stillwater, OK, United States
| | - Karen L Wozniak
- Department of Microbiology and Molecular Genetics, Oklahoma State University, Stillwater, OK, United States
| |
Collapse
|
38
|
Anti-Cryptococcal activity of a furanone derivative-antibiofilm and opsonophagocytic potential. J Mycol Med 2020; 30:100924. [PMID: 32037102 DOI: 10.1016/j.mycmed.2020.100924] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2019] [Revised: 12/31/2019] [Accepted: 01/02/2020] [Indexed: 11/20/2022]
Abstract
Cryptococcus neoformans, an encapsulated fungal pathogen is evolving as a major threat to immune-compromised patients and rarely to healthy individuals also. The cell wall bound capsular polysaccharide, melanin pigment and biofilm formation are major virulence factors that are known to contribute to cryptococcal meningitis. In the present study, a furanone derivative, (E)-5-benzylidenedihydrofuran-2(3H)-one (compound-6) was evaluated against biofilm of seven different strains of C. neoformans in melanized and non-melanized condition. In addition, the efficacy of compound-6 in activation of TLR-2, opsonophagocytosis, and modulation of cytokine expression during phagocytosis were studied. During the biofilm study, we found that moderate capsule size favored biofilm formation. Interestingly, the minimum biofilm eradication concentration (MBEC0.5) of melanized biofilm was found to be achieved at 1- to 1.7-fold higher MBEC0.5 of non-melanized cells. The maximum eradication of 77% and 69% of non-melanized and melanized biofilm were observed. The capsule size was reduced to half of its size with marked changes in morphology. Furthermore, expression of TLR2, iNOS and pro-inflammatory cytokines such as TNF-α, IL-12, and IFN-γ were also facilitated by compound-6. The correlation analysis showed a positive correlation between phagocytosis and the expression of TLR-2, iNOS, IL-6, IL-12. Collectively, the significant effect of compound-6, anti-melanization activity, antibiofilmand effective immunomodulant could be an interesting dual strategy drug agonist against cryptococcal meningitis.
Collapse
|
39
|
Abstract
Macrophages are well known for their phagocytic activity and their role in innate immune responses. Macrophages eat non-self particles, via a variety of mechanisms, and typically break down internalized cargo into small macromolecules. However, some pathogenic agents have the ability to evade this endosomal degradation through a nonlytic exocytosis process termed vomocytosis. Macrophages are well known for their phagocytic activity and their role in innate immune responses. Macrophages eat non-self particles, via a variety of mechanisms, and typically break down internalized cargo into small macromolecules. However, some pathogenic agents have the ability to evade this endosomal degradation through a nonlytic exocytosis process termed vomocytosis. This phenomenon has been most often studied for Cryptococcus neoformans, a yeast that causes roughly 180,000 deaths per year, primarily in immunocompromised (e.g., human immunodeficiency virus [HIV]) patients. Existing dogma purports that vomocytosis involves distinctive cellular pathways and intracellular physicochemical cues in the host cell during phagosomal maturation. Moreover, it has been observed that the immunological state of the individual and macrophage phenotype affect vomocytosis outcomes. Here we compile the current knowledge on the factors (with respect to the phagocytic cell) that promote vomocytosis of C. neoformans from macrophages.
Collapse
|
40
|
Chukwuanukwu RC, Uchenna N, Mbagwu SI, Chukwuanukwu TO, Charles O. Cryptococcus neoformans seropositivity and some haematological parameters in HIV seropositive subjects. J Infect Public Health 2019; 13:1042-1046. [PMID: 31831399 DOI: 10.1016/j.jiph.2019.10.011] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2018] [Revised: 01/20/2019] [Accepted: 10/03/2019] [Indexed: 10/25/2022] Open
Abstract
BACKGROUND Cryptococcus neoformans is an opportunistic fungal pathogen that causes meningitis worldwide and may be fatal in immunocompromised subjects. In Nigeria, cases have been reported with prevalence between 4 and 13.1% in Human Immunodeficiency virus (HIV) patients depending on the study subjects. This study was designed to assess the prevalence of cryptococcosis, CD4+T cell counts and possible effect on haematological parameters in HIV seropositive subject in Nnewi, South-Eastern Nigeria. METHOD A total of four hundred and twenty-nine (429) subjects were recruited for the study. Of these, two hundred and ninety (290) were HIV positive and one hundred and thirty-nine (139) were HIV seronegative subjects recruited from the voluntary counseling and testing (VCT) unit and HIV care clinic at Nnamdi Azikiwe University Teaching Hospital Nnewi, Anambra State, Nigeria. Their ages were between 18-80 years. One hundred and thirty nine (139) apparently healthy HIV seronegative subjects were recruited as controls. Blood samples were taken for C. neoformans by Antigen lateral flow assay (CrAgLFA), HIV testing, CD4+T cell, platelet and Full blood count (FBC). RESULTS Our results show that of the two hundred and ninety (290) who were HIV positive subjects investigated for cryptococcosis, 4 (1.4%) tested positive for CrAg of whom 1(25%) were male and 3(75%) were female. All those with cryptococcosis had their CD4 count below 200 cells/μL, three of them were on ART and one was not. There were significant differences in the CD4 counts (P<0.05) between those infected and not infected with C. neoformans. None of the control group tested positive to cryptococcosis. CONCLUSION Widespread use of anti-retroviral therapy may have reduced C. neoformans infection. However, the threat remains and there may be a possibility that women may be a more vulnerable population.
Collapse
Affiliation(s)
- Rebecca C Chukwuanukwu
- Department of Medical Laboratory Science, Nnamdi Azikiwe University, Nnewi Campus, Nigeria.
| | - Nkemjika Uchenna
- Department of Hematology, Nnamdi Azikiwe University Teaching Hospital, Nnewi, Nigeria
| | - Smart I Mbagwu
- Department of Anatomy, Nnamdi Azikiwe University, Nnewi Campus, Nigeria
| | | | - Onyenekwe Charles
- Department of Medical Laboratory Science, Nnamdi Azikiwe University, Nnewi Campus, Nigeria
| |
Collapse
|
41
|
Seoane PI, May RC. Vomocytosis: What we know so far. Cell Microbiol 2019; 22:e13145. [PMID: 31730731 DOI: 10.1111/cmi.13145] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2019] [Revised: 10/23/2019] [Accepted: 10/26/2019] [Indexed: 01/10/2023]
Abstract
Vomocytosis, or nonlytic exocytosis, has been reported for Cryptococcus neoformans since 2006. Since then, the repertoire of vomocytosing pathogens and host cells has increased and so have the molecular components linked to vomocytosis occurrence. Nonetheless, the mechanism underlying this phenomenon, whether it is triggered by the host or the pathogen, and how it affects disease progression are still unresolved. This review contains a summary of the main findings regarding vomocytosis and the outstanding questions puzzling scientists to this day.
Collapse
Affiliation(s)
- Paula I Seoane
- Laboratory of Host and Pathogen Interactions, Institute of Microbiology and Infection, School of Biosciences, University of Birmingham, Birmingham, UK
| | - Robin C May
- Laboratory of Host and Pathogen Interactions, Institute of Microbiology and Infection, School of Biosciences, University of Birmingham, Birmingham, UK
| |
Collapse
|
42
|
Rudman J, Evans RJ, Johnston SA. Are macrophages the heroes or villains during cryptococcosis? Fungal Genet Biol 2019; 132:103261. [DOI: 10.1016/j.fgb.2019.103261] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Revised: 08/06/2019] [Accepted: 08/06/2019] [Indexed: 10/26/2022]
|
43
|
Nonlytic exocytosis of Cryptococcus neoformans from neutrophils in the brain vasculature. Cell Commun Signal 2019; 17:117. [PMID: 31500648 PMCID: PMC6734394 DOI: 10.1186/s12964-019-0429-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2019] [Accepted: 08/29/2019] [Indexed: 12/31/2022] Open
Abstract
Background Cryptococcus neoformans (C. neoformans) is an encapsulated budding yeast that causes life-threatening meningoencephalitis in immunocompromised individuals, especially those with acquired immunodeficiency syndrome (AIDS). To cause meningoencephalitis, C. neoformans circulating in the bloodstream must first be arrested in the brain microvasculature. Neutrophils, the most abundant phagocytes in the bloodstream and the first leukocytes to be recruited to an infection site, can ingest C. neoformans. Little is known about how neutrophils interact with arrested fungal cells in the brain microvasculature. Methods A blood-brain barrier (BBB) in vitro model was established. The interactions between neutrophils adhering to brain endothelial cells and fungi were observed under a live cell imaging microscope. A flow cytometry assay was developed to explore the mechanisms. Immunofluorescence staining of brain tissues was utilized to validate the in vitro phenomena. Results Using real-time imaging, we observed that neutrophils adhered to a monolayer of mouse brain endothelial cells could expel ingested C. neoformans without lysis of the neutrophils or fungi in vitro, demonstrating nonlytic exocytosis of fungal cells from neutrophils. Furthermore, nonlytic exocytosis of C. neoformans from neutrophils was influenced by either the fungus (capsule and viability) or the neutrophil (phagosomal pH and actin polymerization). Moreover, nonlytic exocytosis of C. neoformans from neutrophils was recorded in brain tissue. Conclusion These results highlight a novel function by which neutrophils extrude C. neoformans in the brain vasculature. Graphical abstract ![]()
Electronic supplementary material The online version of this article (10.1186/s12964-019-0429-0) contains supplementary material, which is available to authorized users.
Collapse
|
44
|
Decote-Ricardo D, LaRocque-de-Freitas IF, Rocha JDB, Nascimento DO, Nunes MP, Morrot A, Freire-de-Lima L, Previato JO, Mendonça-Previato L, Freire-de-Lima CG. Immunomodulatory Role of Capsular Polysaccharides Constituents of Cryptococcus neoformans. Front Med (Lausanne) 2019; 6:129. [PMID: 31275938 PMCID: PMC6593061 DOI: 10.3389/fmed.2019.00129] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Accepted: 05/24/2019] [Indexed: 12/13/2022] Open
Abstract
Cryptococcosis is a systemic fungal infection caused by Cryptococcus neoformans. In immunocompetent patients, cryptococcal infection is often confined to the lungs. In immunocompromised individuals, C. neoformans may cause life-threatening illness, either from novel exposure or through reactivation of a previously acquired latent infection. For example, cryptococcal meningitis is a severe clinical disease that can manifest in people that are immunocompromised due to AIDS. The major constituents of the Cryptococcus polysaccharide capsule, glucuronoxylomannan (GXM), and galactoxylomannan (GalXM), also known as glucuronoxylomanogalactan (GXMGal), are considered the primary virulence factors of Cryptococcus. Despite the predominance of GXM in the polysaccharide capsule, GalXM has more robust immunomodulatory effects on host cellular immunity. This review summarizes current knowledge regarding host-Crytococcus neoformans interactions and the role of capsular polysaccharides in host immunomodulation. Future studies will likely facilitate a better understanding of the mechanisms involved in antigenic recognition and host immune response to C. neoformans and lead to the development of new therapeutic pathways for cryptococcal infection.
Collapse
Affiliation(s)
- Debora Decote-Ricardo
- Instituto de Veterinária, Universidade Federal Rural do Rio de Janeiro, Seropédica, Brazil
| | | | - Juliana Dutra B Rocha
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Danielle O Nascimento
- Instituto de Veterinária, Universidade Federal Rural do Rio de Janeiro, Seropédica, Brazil.,Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Marise P Nunes
- Laboratório de Imunoparasitologia, Instituto Oswaldo Cruz, FIOCRUZ, Rio de Janeiro, Brazil
| | - Alexandre Morrot
- Laboratório de Imunoparasitologia, Instituto Oswaldo Cruz, FIOCRUZ, Rio de Janeiro, Brazil.,Faculdade de Medicina, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Leonardo Freire-de-Lima
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Jose Osvaldo Previato
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Lucia Mendonça-Previato
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | | |
Collapse
|
45
|
Ray SC, Rappleye CA. Flying under the radar: Histoplasma capsulatum avoidance of innate immune recognition. Semin Cell Dev Biol 2019; 89:91-98. [PMID: 29551572 PMCID: PMC6150853 DOI: 10.1016/j.semcdb.2018.03.009] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2017] [Accepted: 03/14/2018] [Indexed: 10/17/2022]
Abstract
The dimorphic fungal pathogen Histoplasma capsulatum takes advantage of the innate immune system, utilizing host macrophages as a proliferative niche while largely avoiding stimulation of signaling host receptors. As a result, innate immune cells are unable to control H. capsulatum on their own. Not all host phagocytes respond to H. capsulatum in the same way, with neutrophils and dendritic cells playing important roles in impeding fungal growth and initiating a protective TH1 response, respectively. Dendritic cells prime T-cell differentiation after internalization of yeasts via VLA-5 receptors and subsequent degradation of the yeasts. Dendritic cell-expressed TLR7 and TLR9 promote a type I interferon response for TH1 polarization. In contrast to dendritic cells, macrophages provide a hospitable intracellular environment. H. capsulatum yeasts enter macrophages via binding to phagocytic receptors. Simultaneously, α-glucan masks immunostimulatory cell wall β-glucans and a secreted endoglucanase removes exposed β-glucans to minimize recognition of yeasts by Dectin-1. This review highlights how phagocytes interact with H. capsulatum yeasts and the mechanisms H. capsulatum uses to limit the innate immune response.
Collapse
|
46
|
Westman J, Hube B, Fairn GD. Integrity under stress: Host membrane remodelling and damage by fungal pathogens. Cell Microbiol 2019; 21:e13016. [DOI: 10.1111/cmi.13016] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Revised: 01/30/2019] [Accepted: 02/05/2019] [Indexed: 12/28/2022]
Affiliation(s)
- Johannes Westman
- Program in Cell Biology The Hospital for Sick Children Toronto Ontario Canada
| | - Bernhard Hube
- Department Microbial Pathogenicity Mechanisms Hans Knoell Institute Jena Germany
- Institute of Microbiology Microbial Pathogenicity Friedrich Schiller University Jena Germany
| | - Gregory D. Fairn
- Keenan Research Centre for Biomedical Sciences St. Michael's Hospital Toronto Ontario Canada
- Department of Surgery University of Toronto Toronto Ontario Canada
| |
Collapse
|
47
|
Visser JG, Van Staden ADP, Smith C. Harnessing Macrophages for Controlled-Release Drug Delivery: Lessons From Microbes. Front Pharmacol 2019; 10:22. [PMID: 30740053 PMCID: PMC6355695 DOI: 10.3389/fphar.2019.00022] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2018] [Accepted: 01/09/2019] [Indexed: 01/15/2023] Open
Abstract
With the effectiveness of therapeutic agents ever decreasing and the increased incidence of multi-drug resistant pathogens, there is a clear need for administration of more potent, potentially more toxic, drugs. Alternatively, biopharmaceuticals may hold potential but require specialized protection from premature in vivo degradation. Thus, a paralleled need for specialized drug delivery systems has arisen. Although cell-mediated drug delivery is not a completely novel concept, the few applications described to date are not yet ready for in vivo application, for various reasons such as drug-induced carrier cell death, limited control over the site and timing of drug release and/or drug degradation by the host immune system. Here, we present our hypothesis for a new drug delivery system, which aims to negate these limitations. We propose transport of nanoparticle-encapsulated drugs inside autologous macrophages polarized to M1 phenotype for high mobility and treated to induce transient phagosome maturation arrest. In addition, we propose a significant shift of existing paradigms in the study of host-microbe interactions, in order to study microbial host immune evasion and dissemination patterns for their therapeutic utilization in the context of drug delivery. We describe a system in which microbial strategies may be adopted to facilitate absolute control over drug delivery, and without sacrificing the host carrier cells. We provide a comprehensive summary of the lessons we can learn from microbes in the context of drug delivery and discuss their feasibility for in vivo therapeutic application. We then describe our proposed "synthetic microbe drug delivery system" in detail. In our opinion, this multidisciplinary approach may hold the solution to effective, controlled drug delivery.
Collapse
Affiliation(s)
- Johan Georg Visser
- Department of Physiological Sciences, Stellenbosch University, Matieland, South Africa
| | | | - Carine Smith
- Department of Physiological Sciences, Stellenbosch University, Matieland, South Africa
| |
Collapse
|
48
|
Flieger A, Frischknecht F, Häcker G, Hornef MW, Pradel G. Pathways of host cell exit by intracellular pathogens. MICROBIAL CELL 2018; 5:525-544. [PMID: 30533418 PMCID: PMC6282021 DOI: 10.15698/mic2018.12.659] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Host cell exit is a critical step in the life-cycle of intracellular pathogens, intimately linked to barrier penetration, tissue dissemination, inflammation, and pathogen transmission. Like cell invasion and intracellular survival, host cell exit represents a well-regulated program that has evolved during host-pathogen co-evolution and that relies on the dynamic and intricate interplay between multiple host and microbial factors. Three distinct pathways of host cell exit have been identified that are employed by three different taxa of intracellular pathogens, bacteria, fungi and protozoa, namely (i) the initiation of programmed cell death, (ii) the active breaching of host cellderived membranes, and (iii) the induced membrane-dependent exit without host cell lysis. Strikingly, an increasing number of studies show that the majority of intracellular pathogens utilize more than one of these strategies, dependent on life-cycle stage, environmental factors and/or host cell type. This review summarizes the diverse exit strategies of intracellular-living bacterial, fungal and protozoan pathogens and discusses the convergently evolved commonalities as well as system-specific variations thereof. Key microbial molecules involved in host cell exit are highlighted and discussed as potential targets for future interventional approaches.
Collapse
Affiliation(s)
- Antje Flieger
- Division of Enteropathogenic Bacteria and Legionella, Robert Koch Institute, Wernigerode, Germany
| | | | - Georg Häcker
- Institute of Medical Microbiology and Hygiene, Medical Center - University of Freiburg, Germany
| | - Mathias W Hornef
- Institute of Medical Microbiology, RWTH Aachen University Hospital, Germany
| | - Gabriele Pradel
- Division of Cellular and Applied Infection Biology, Institute of Biology II, RWTH Aachen University, Germany
| |
Collapse
|
49
|
Fu MS, Coelho C, De Leon-Rodriguez CM, Rossi DCP, Camacho E, Jung EH, Kulkarni M, Casadevall A. Cryptococcus neoformans urease affects the outcome of intracellular pathogenesis by modulating phagolysosomal pH. PLoS Pathog 2018; 14:e1007144. [PMID: 29906292 PMCID: PMC6021110 DOI: 10.1371/journal.ppat.1007144] [Citation(s) in RCA: 81] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2018] [Revised: 06/27/2018] [Accepted: 06/05/2018] [Indexed: 01/22/2023] Open
Abstract
Cryptococcus neoformans is a facultative intracellular pathogen and its interaction with macrophages is a key event determining the outcome of infection. Urease is a major virulence factor in C. neoformans but its role during macrophage interaction has not been characterized. Consequently, we analyzed the effect of urease on fungal-macrophage interaction using wild-type, urease-deficient and urease-complemented strains of C. neoformans. The frequency of non-lytic exocytosis events was reduced in the absence of urease. Urease-positive C. neoformans manifested reduced and delayed intracellular replication with fewer macrophages displaying phagolysosomal membrane permeabilization. The production of urease was associated with increased phagolysosomal pH, which in turn reduced growth of urease-positive C. neoformans inside macrophages. Interestingly, the ure1 mutant strain grew slower in fungal growth medium which was buffered to neutral pH (pH 7.4). Mice inoculated with macrophages carrying urease-deficient C. neoformans had lower fungal burden in the brain than mice infected with macrophages carrying wild-type strain. In contrast, the absence of urease did not affect survival of yeast when interacting with amoebae. Because of the inability of the urease deletion mutant to grow on urea as a sole nitrogen source, we hypothesize urease plays a nutritional role involved in nitrogen acquisition in the environment. Taken together, our data demonstrate that urease affects fitness within the mammalian phagosome, promoting non-lytic exocytosis while delaying intracellular replication and thus reducing phagolysosomal membrane damage, events that could facilitate cryptococcal dissemination when transported inside macrophages. This system provides an example where an enzyme involved in nutrient acquisition modulates virulence during mammalian infection.
Collapse
Affiliation(s)
- Man Shun Fu
- Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, United States of America
| | - Carolina Coelho
- Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, United States of America
| | - Carlos M. De Leon-Rodriguez
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, New York, United States of America
| | - Diego C. P. Rossi
- Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, United States of America
| | - Emma Camacho
- Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, United States of America
| | - Eric H. Jung
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, New York, United States of America
| | - Madhura Kulkarni
- Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, United States of America
| | - Arturo Casadevall
- Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, United States of America
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, New York, United States of America
| |
Collapse
|
50
|
Casadevall A, Coelho C, Alanio A. Mechanisms of Cryptococcus neoformans-Mediated Host Damage. Front Immunol 2018; 9:855. [PMID: 29760698 PMCID: PMC5936990 DOI: 10.3389/fimmu.2018.00855] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2018] [Accepted: 04/06/2018] [Indexed: 01/22/2023] Open
Abstract
Cryptococcus neoformans is not usually considered a cytotoxic fungal pathogen but there is considerable evidence that this microbe can damage host cells and tissues. In this essay, we review the evidence that C. neoformans damages host cells and note that the mechanisms involved are diverse. We consider C. neoformans-mediated host damage at the molecular, cellular, tissue, and organism level. Direct mechanisms of cytotoxicity include lytic exocytosis, organelle dysfunction, phagolysosomal membrane damage, and cytoskeletal alterations. Cytotoxicity contributes to pathogenesis by interfering with immune effector cell function and disrupting endothelial barriers thus allowing dissemination. When C. neoformans-mediated and immune-mediated host damage is sufficient to affect homeostasis, cryptococcosis occurs at the organism level.
Collapse
Affiliation(s)
- Arturo Casadevall
- Department of Molecular Microbiology and Immunology, Johns Hopkins School of Public Health, Baltimore, MD, United States
| | - Carolina Coelho
- Department of Molecular Microbiology and Immunology, Johns Hopkins School of Public Health, Baltimore, MD, United States
| | - Alexandre Alanio
- Department of Molecular Microbiology and Immunology, Johns Hopkins School of Public Health, Baltimore, MD, United States
- Institut Pasteur, Molecular Mycology Unit, CNRS UMR2000, Paris, France
- Laboratoire de Parasitologie-Mycologie, Hôpital Saint-Louis, Groupe Hospitalier Lariboisière, Saint-Louis, Fernand Widal, Assistance Publique-Hôpitaux de Paris (AP-HP), Université Paris Diderot, Sorbonne Paris Cité, Paris, France
| |
Collapse
|