1
|
Tumba NL, Owen GR, Killick MA, Papathanasopoulos MA. Immunization with HIV-1 trimeric SOSIP.664 BG505 or Founder Virus C (FVCEnv) covalently complexed to two-domain CD4S60C elicits cross-clade neutralizing antibodies in New Zealand white rabbits. Vaccine X 2022; 12:100222. [PMID: 36262212 PMCID: PMC9573916 DOI: 10.1016/j.jvacx.2022.100222] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 09/21/2022] [Accepted: 09/28/2022] [Indexed: 11/22/2022] Open
Abstract
Background: An ongoing challenge in HIV-1 vaccine research is finding a novel HIV-1 envelope glycoprotein (Env)-based immunogen that elicits broadly cross-neutralizing antibodies (bnAbs) without requiring complex sequential immunization regimens to drive the required antibody affinity maturation. Previous vaccination studies have shown monomeric Env and Env trimers which contain the GCN4 leucine zipper trimerization domain and are covalently bound to the first two domains of CD4 (2dCD4S60C) generate potent bnAbs in small animals. Since SOSIP.664 trimers are considered the most accurate, conformationally intact representation of HIV-1 Env generated to date, this study further evaluated the immunogenicity of SOSIP.664 HIV Env trimers (the well characterized BG505 and FVCEnv) covalently complexed to 2dCD4S60C. Methods: Recombinant BG505 SOSIP.664 and FVCEnv SOSIP.664 were expressed in mammalian cells, purified, covalently coupled to 2dCD4S60C and antigenically characterized for their interaction with HIV-1 bnAbs. The immunogenicity of BG505 SOSIP.664-2dCD4S60C and FVCEnv SOSIP.664-2dCD4S60C was investigated in New Zealand white rabbits and compared to unliganded FVCEnv and 2dCD4S60C. Rabbit sera were tested for the presence of neutralizing antibodies against a panel of 17 pseudoviruses. Results: Both BG505 SOSIP.664-2dCD4S60C and FVCEnv SOSIP.664-2dCD4S60C elicited a potent, HIV-specific response in rabbits with antibodies having considerable potency and breadth (70.5% and 76%, respectively) when tested against a global panel of 17 pseudoviruses mainly composed of harder-to-neutralize multiple clade tier-2 pseudoviruses. Conclusion: BG505 SOSIP.664-2dCD4S60C and FVCEnvSOSIP.664-2dCD4S60C are highly immunogenic and elicit potent, broadly neutralizing antibodies, the extent of which has never been reported previously for SOSIP.664 trimers. Adding to our previous results, the ability to consistently elicit these types of potent, cross-neutralizing antibody responses is dependent on novel epitopes exposed following the covalent binding of Env (independent of sequence and conformation) to 2dCD4S60C. These findings justify further investment into research exploring modified open, CD4-bound Env conformations as novel vaccine immunogens.
Collapse
|
2
|
Kariuki SM, Selhorst P, Abrahams MR, Rebe K, Williamson C, Dorfman JR. Neutralization sensitivity of genital tract HIV-1: shift in selective milieu shapes the population available to transmit. AIDS 2021; 35:1365-1373. [PMID: 33831907 DOI: 10.1097/qad.0000000000002912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
OBJECTIVE Previous studies indicate that transmitted/founder HIV-1 isolates are sensitive to neutralization by the transmitting donor's antibodies. This is true in at least a subset of sexual transmissions. We investigated whether this selection for neutralization-sensitive variants begins in the genital tract of the donor, prior to transmission. DESIGN Laboratory study. METHODS HIV-1 viruses from semen and blood of two male donors living with HIV-1 were tested for neutralization sensitivity to contemporaneous autologous antibodies. RESULTS In one donor, semen-derived clones (n = 10, geometric mean ID50 = 176) were 1.75-fold [95% confidence interval (CI) 1.11-2.76, P = 0.018] more sensitive than blood-derived clones (n = 12, geometric mean ID50 = 111) to the individual's own contemporaneous neutralizing antibodies. Enhanced overall neutralization sensitivity of the semen-derived clones could not explain the difference because these semen-derived isolates showed a trend of being less sensitive to neutralization by a pool of heterologous clade-matched sera. This relative sensitivity of semen-derived clones was not observed in a second donor who did not exhibit obvious independent HIV-1 replication in the genital tract. A Bayesian analysis suggested that the set of semen sequences that we analysed originated from a blood sequence. CONCLUSION In some instances, selection for neutralization-sensitive variants during HIV-1 transmission begins in the genital tract of the donor and this may be driven by independent HIV-1 replication in this compartment. Thus, a shift in the selective milieu in the male genital tract allows outgrowth of neutralization-sensitive HIV-1 variants, shaping the population of isolates available for transmission to a new host.
Collapse
Affiliation(s)
- Samuel Mundia Kariuki
- Division of Immunology, Department of Pathology, University of Cape Town
- International Centre for Genetic Engineering and Biotechnology, Cape Town, Cape Town, South Africa
- Department of Biological Sciences, School of Science, University of Eldoret, Kenya
| | - Philippe Selhorst
- Division of Medical Virology, Department of Pathology, and Institute of Infectious Diseases and Molecular Medicine, University of Cape Town
| | - Melissa-Rose Abrahams
- Division of Medical Virology, Department of Pathology, and Institute of Infectious Diseases and Molecular Medicine, University of Cape Town
| | - Kevin Rebe
- ANOVA Health Institute, Cape Town
- Division of Infectious Diseases and HIV Medicine, Department of Medicine, University of Cape Town
| | - Carolyn Williamson
- Division of Medical Virology, Department of Pathology, and Institute of Infectious Diseases and Molecular Medicine, University of Cape Town
| | - Jeffrey R Dorfman
- Division of Immunology, Department of Pathology, University of Cape Town
- Division of Medical Virology, Department of Pathology, University of Stellenbosch, Cape Town, South Africa
| |
Collapse
|
3
|
Ziani W, Shao J, Fang A, Connolly PJ, Wang X, Veazey RS, Xu H. Mucosal integrin α4β7 blockade fails to reduce the seeding and size of viral reservoirs in SIV-infected rhesus macaques. FASEB J 2021; 35:e21282. [PMID: 33484474 PMCID: PMC7839271 DOI: 10.1096/fj.202002235r] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 11/04/2020] [Accepted: 12/01/2020] [Indexed: 12/18/2022]
Abstract
Cellular viral reservoirs are rapidly established in tissues upon HIV‐1/SIV infection, which persist throughout viral infection, even under long‐term antiretroviral therapy (ART). Specific integrins are involved in the homing of cells to gut‐associated lymphoid tissues (GALT) and inflamed tissues, which may promote the seeding and dissemination of HIV‐1/SIV to these tissue sites. In this study, we investigated the efficacy of prophylactic integrin blockade (α4β7 antibody or α4β7/α4β1 dual antagonist TR‐14035) on viral infection, as well as dissemination and seeding of viral reservoirs in systemic and lymphoid compartments post‐SIV inoculation. The results showed that blockade of α4β7/α4β1 did not decrease viral infection, replication, or reduce viral reservoir size in tissues of rhesus macaques after SIV infection, as indicated by equivalent levels of plasma viremia and cell‐associated SIV RNA/DNA to controls. Surprisingly, TR‐14035 administration in acute SIV infection resulted in consistently higher viremia and more rapid disease progression. These findings suggest that integrin blockade alone fails to effectively control viral infection, replication, dissemination, and reservoir establishment in HIV‐1/SIV infection. The use of integrin blockade for prevention or/and therapeutic strategies requires further investigation.
Collapse
Affiliation(s)
- Widade Ziani
- Tulane National Primate Research Center, Tulane University School of Medicine, Covington, LA, USA
| | - Jiasheng Shao
- Tulane National Primate Research Center, Tulane University School of Medicine, Covington, LA, USA
| | - Angela Fang
- Tulane National Primate Research Center, Tulane University School of Medicine, Covington, LA, USA
| | - Patrick J Connolly
- Tulane National Primate Research Center, Tulane University School of Medicine, Covington, LA, USA
| | - Xiaolei Wang
- Tulane National Primate Research Center, Tulane University School of Medicine, Covington, LA, USA
| | - Ronald S Veazey
- Tulane National Primate Research Center, Tulane University School of Medicine, Covington, LA, USA
| | - Huanbin Xu
- Tulane National Primate Research Center, Tulane University School of Medicine, Covington, LA, USA
| |
Collapse
|
4
|
Akand EH, Maher SJ, Murray JM. Mutational networks of escape from transmitted HIV-1 infection. PLoS One 2020; 15:e0243391. [PMID: 33284837 PMCID: PMC7721145 DOI: 10.1371/journal.pone.0243391] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Accepted: 11/19/2020] [Indexed: 02/08/2023] Open
Abstract
Human immunodeficiency virus (HIV) is subject to immune selective pressure soon after it establishes infection at the founder stage. As an individual progresses from the founder to chronic stage of infection, immune pressure forces a history of mutations that are embedded in envelope sequences. Determining this pathway of coevolving mutations can assist in understanding what is different with the founder virus and the essential pathways it takes to maintain infection. We have combined operations research and bioinformatics methods to extract key networks of mutations that differentiate founder and chronic stages for 156 subtype B and 107 subtype C envelope (gp160) sequences. The chronic networks for both subtypes revealed strikingly different hub-and-spoke topologies compared to the less structured transmission networks. This suggests that the hub nodes are impacted by the immune response and the resulting loss of fitness is compensated by mutations at the spoke positions. The major hubs in the chronic C network occur at positions 12, 137 (within the N136 glycan), and 822, and at position 306 for subtype B. While both founder networks had a more heterogeneous connected network structure, interestingly founder B subnetworks around positions 640 and 837 preferentially contained CD4 and coreceptor binding domains. Finally, we observed a differential effect of glycosylation between founder and chronic subtype B where the latter had mutational pathways significantly driven by N-glycosylation. Our study provides insights into the mutational pathways HIV takes to evade the immune response, and presents features more likely to establish founder infection, valuable for effective vaccine design.
Collapse
Affiliation(s)
- Elma H. Akand
- School of Mathematics and Statistics, UNSW Sydney, Kensington, NSW, Australia
| | - Stephen J. Maher
- College of Engineering, Mathematical and Physical Sciences, University of Exeter, Exeter, United Kingdom
| | - John M. Murray
- School of Mathematics and Statistics, UNSW Sydney, Kensington, NSW, Australia
| |
Collapse
|
5
|
Balena F, Bavaro DF, Volpe A, Lagioia A, Angarano G, Monno L, Saracino A. Influence of HIV-1 V2 sequence variability on bacterial translocation in antiretroviral naïve HIV-1 infected patients. J Med Virol 2020; 92:3271-3278. [PMID: 32609386 DOI: 10.1002/jmv.26246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Accepted: 06/22/2020] [Indexed: 11/09/2022]
Abstract
HIV-1 V2 domain binds α4β7, which assists lymphocyte homing to gut-associated lymphoid tissue. This triggers bacterial translocation, thus contributing to immune activation. We investigated whether variability of V2 179-181 binding site could influence plasma levels of lipopolysaccharide (LPS) and soluble cluster of differentiation 14 (sCD14), markers of microbial translocation/immune activation. HIV gp120 sequences from antiretroviral naïve patients were analyzed for V2 tripeptide composition, length, net charge, and potential N-linked-glycosylation sites. LPS and sCD14 plasma levels were quantified. Clinical/immuno-virologic data were retrieved. Overall, 174 subjects were enrolled, 8% with acute infection, 71% harboring a subtype B. LDV179-181 was detected in 41% and LDI in 27%. No difference was observed between levels of LPS or sCD14 according to different mimotopes or according to other sequence characteristics. By multivariable analysis, only acute infection was significantly associated with higher sCD14 levels. In conclusion, no association was observed between V2 tripeptide composition and extent of bacterial translocation/immune activation.
Collapse
Affiliation(s)
- Flavia Balena
- Clinic of Infectious Diseases, University of Bari, University Hospital Policlinico, Bari, Italy
| | - Davide F Bavaro
- Clinic of Infectious Diseases, University of Bari, University Hospital Policlinico, Bari, Italy
| | - Anna Volpe
- Clinic of Infectious Diseases, University of Bari, University Hospital Policlinico, Bari, Italy
| | - Antonella Lagioia
- Clinic of Infectious Diseases, University of Bari, University Hospital Policlinico, Bari, Italy
| | - Gioacchino Angarano
- Clinic of Infectious Diseases, University of Bari, University Hospital Policlinico, Bari, Italy
| | - Laura Monno
- Clinic of Infectious Diseases, University of Bari, University Hospital Policlinico, Bari, Italy
| | - Annalisa Saracino
- Clinic of Infectious Diseases, University of Bari, University Hospital Policlinico, Bari, Italy
| |
Collapse
|
6
|
Mbuya W, Mcharo R, Mhizde J, Mnkai J, Mahenge A, Mwakatima M, Mwalongo W, Chiwerengo N, Hölscher M, Lennemann T, Saathoff E, Rwegoshora F, Torres L, Kroidl A, Geldmacher C, Held K, Chachage M. Depletion and activation of mucosal CD4 T cells in HIV infected women with HPV-associated lesions of the cervix uteri. PLoS One 2020; 15:e0240154. [PMID: 33007050 PMCID: PMC7531815 DOI: 10.1371/journal.pone.0240154] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Accepted: 09/21/2020] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND The burden of HPV-associated premalignant and malignant cervical lesions remains high in HIV+ women even under ART treatment. In order to identify possible underlying pathophysiologic mechanisms, we studied activation and HIV co-receptor expression in cervical T-cell populations in relation to HIV, HPV and cervical lesion status. METHODS Cervical cytobrush (n = 468: 253 HIV- and 215 HIV+; 71% on ART) and blood (in a subset of 39 women) was collected from women in Mbeya, Tanzania. Clinical data on HIV and HPV infection, as well as ART status was collected. T cell populations were characterized using multiparametric flow cytometry-based on their expression of markers for cellular activation (HLA-DR), and memory (CD45RO), as well as HIV co-receptors (CCR5, α4β7). RESULTS Cervical and blood T cells differed significantly, with higher frequencies of T cells expressing CD45RO, as well as the HIV co-receptors CCR5 and α4β7 in the cervical mucosa. The skewed CD4/CD8 T cell ratio in blood of HIV+ women was mirrored in the cervical mucosa and HPV co-infection was linked to lower levels of mucosal CD4 T cells in HIV+ women (%median: 22 vs 32; p = 0.04). In addition, HIV and HPV infection, and especially HPV-associated cervical lesions were linked to significantly higher frequencies of HLA-DR+ CD4 and CD8 T cells (p-values < 0.05). Interestingly, HPV infection did not significantly alter frequencies of CCR5+ or α4β7+ CD4 T cells. CONCLUSION The increased proportion of activated cervical T cells associated with HPV and HIV infection, as well as HPV-associated lesions, together with the HIV-induced depletion of cervical CD4 T cells, may increase the risk for HPV infection, associated premalignant lesions and cancer in HIV+ women. Further, high levels of activated CD4 T cells associated with HPV and HPV-associated lesions could contribute to a higher susceptibility to HIV in HPV infected women.
Collapse
Affiliation(s)
- Wilbert Mbuya
- National Institute for Medical Research–Mbeya Medical Research Centre (NIMR-MMRC), Mbeya, Tanzania
| | - Ruby Mcharo
- National Institute for Medical Research–Mbeya Medical Research Centre (NIMR-MMRC), Mbeya, Tanzania
- University of Dar es Salaam -Mbeya College of Health and Allied Sciences (UDSM-MCHAS), Mbeya, Tanzania
| | - Jacklina Mhizde
- National Institute for Medical Research–Mbeya Medical Research Centre (NIMR-MMRC), Mbeya, Tanzania
| | - Jonathan Mnkai
- National Institute for Medical Research–Mbeya Medical Research Centre (NIMR-MMRC), Mbeya, Tanzania
| | - Anifrid Mahenge
- National Institute for Medical Research–Mbeya Medical Research Centre (NIMR-MMRC), Mbeya, Tanzania
| | - Maria Mwakatima
- National Institute for Medical Research–Mbeya Medical Research Centre (NIMR-MMRC), Mbeya, Tanzania
| | - Wolfram Mwalongo
- National Institute for Medical Research–Mbeya Medical Research Centre (NIMR-MMRC), Mbeya, Tanzania
| | - Nhamo Chiwerengo
- National Institute for Medical Research–Mbeya Medical Research Centre (NIMR-MMRC), Mbeya, Tanzania
| | - Michael Hölscher
- Division of Infectious Diseases and Tropical Medicine, University Hospital, LMU Munich, Munich, Germany
- German Center for Infection Research (DZIF), Partner site Munich, Munich, Germany
| | - Tessa Lennemann
- National Institute for Medical Research–Mbeya Medical Research Centre (NIMR-MMRC), Mbeya, Tanzania
- Division of Infectious Diseases and Tropical Medicine, University Hospital, LMU Munich, Munich, Germany
| | - Elmar Saathoff
- Division of Infectious Diseases and Tropical Medicine, University Hospital, LMU Munich, Munich, Germany
- German Center for Infection Research (DZIF), Partner site Munich, Munich, Germany
| | | | | | - Arne Kroidl
- Division of Infectious Diseases and Tropical Medicine, University Hospital, LMU Munich, Munich, Germany
- German Center for Infection Research (DZIF), Partner site Munich, Munich, Germany
| | - Christof Geldmacher
- Division of Infectious Diseases and Tropical Medicine, University Hospital, LMU Munich, Munich, Germany
- German Center for Infection Research (DZIF), Partner site Munich, Munich, Germany
| | - Kathrin Held
- Division of Infectious Diseases and Tropical Medicine, University Hospital, LMU Munich, Munich, Germany
- German Center for Infection Research (DZIF), Partner site Munich, Munich, Germany
| | - Mkunde Chachage
- National Institute for Medical Research–Mbeya Medical Research Centre (NIMR-MMRC), Mbeya, Tanzania
- University of Dar es Salaam -Mbeya College of Health and Allied Sciences (UDSM-MCHAS), Mbeya, Tanzania
- Division of Infectious Diseases and Tropical Medicine, University Hospital, LMU Munich, Munich, Germany
| |
Collapse
|
7
|
Bhattacharya P, Ellegård R, Khalid M, Svanberg C, Govender M, Keita ÅV, Söderholm JD, Myrelid P, Shankar EM, Nyström S, Larsson M. Complement opsonization of HIV affects primary infection of human colorectal mucosa and subsequent activation of T cells. eLife 2020; 9:e57869. [PMID: 32876566 PMCID: PMC7492089 DOI: 10.7554/elife.57869] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Accepted: 09/02/2020] [Indexed: 02/06/2023] Open
Abstract
HIV transmission via genital and colorectal mucosa are the most common routes of dissemination. Here, we explored the effects of free and complement-opsonized HIV on colorectal tissue. Initially, there was higher antiviral responses in the free HIV compared to complement-opsonized virus. The mucosal transcriptional response at 24 hr revealed the involvement of activated T cells, which was mirrored in cellular responses observed at 96 hr in isolated mucosal T cells. Further, HIV exposure led to skewing of T cell phenotypes predominantly to inflammatory CD4+ T cells, that is Th17 and Th1Th17 subsets. Of note, HIV exposure created an environment that altered the CD8+ T cell phenotype, for example expression of regulatory factors, especially when the virions were opsonized with complement factors. Our findings suggest that HIV-opsonization alters the activation and signaling pathways in the colorectal mucosa, which promotes viral establishment by creating an environment that stimulates mucosal T cell activation and inflammatory Th cells.
Collapse
Affiliation(s)
- Pradyot Bhattacharya
- Division of Molecular Medicine and Virology, Department of Clinical and Experimental Medicine, Linköping UniversityLinköpingSweden
| | - Rada Ellegård
- Division of Molecular Medicine and Virology, Department of Clinical and Experimental Medicine, Linköping UniversityLinköpingSweden
| | - Mohammad Khalid
- Division of Molecular Medicine and Virology, Department of Clinical and Experimental Medicine, Linköping UniversityLinköpingSweden
| | - Cecilia Svanberg
- Division of Molecular Medicine and Virology, Department of Clinical and Experimental Medicine, Linköping UniversityLinköpingSweden
| | - Melissa Govender
- Division of Molecular Medicine and Virology, Department of Clinical and Experimental Medicine, Linköping UniversityLinköpingSweden
| | - Åsa V Keita
- Division of Surgery, Orthopedics and Oncology, Linköping UniversityLinköpingSweden
| | - Johan D Söderholm
- Division of Surgery, Orthopedics and Oncology, Linköping UniversityLinköpingSweden
| | - Pär Myrelid
- Division of Surgery, Orthopedics and Oncology, Linköping UniversityLinköpingSweden
| | - Esaki M Shankar
- Center of Excellence for Research in AIDS (CERiA), University of Malaya, Lembah PantaiKuala LumpurMalaysia
- Division of Infection Biology and Medical Microbiology, Department of Life Sciences, Central University of Tamil NaduThiruvarurIndia
| | - Sofia Nyström
- Division of Molecular Medicine and Virology, Department of Clinical and Experimental Medicine, Linköping UniversityLinköpingSweden
- Department of Clinical Immunology and Transfusion Medicine and Department of Clinical and Experimental Medicine, Linköping UniversityLinköpingSweden
| | - Marie Larsson
- Division of Molecular Medicine and Virology, Department of Clinical and Experimental Medicine, Linköping UniversityLinköpingSweden
| |
Collapse
|
8
|
Liu Q, Lusso P. Integrin α4β7 in HIV-1 infection: A critical review. J Leukoc Biol 2020; 108:627-632. [PMID: 32272507 DOI: 10.1002/jlb.4mr0120-208r] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2020] [Revised: 01/29/2020] [Accepted: 01/30/2020] [Indexed: 12/14/2022] Open
Abstract
Over the past decade, a series of observations linking α4β7, the principal gut-homing integrin, with various aspects of HIV-1 infection have generated considerable interest in the field of HIV-1 research. After the initial report that the major HIV-1 envelope glycoprotein, gp120, can bind to α4β7, intensive research efforts have been focused on the role of α4β7 as a key factor in HIV-1 pathogenesis and as a potential target for prevention and treatment. The interaction between α4β7 and its natural ligand, MAdCAM-1, directs infected CD4+ T cells and HIV-1 virions carrying incorporated α4β7 to the gut mucosa, which may facilitate HIV-1 seeding and replication in the intestinal compartment during the early stages of infection. In addition, cells that express high levels of α4β7, such as Th17 cells, represent preferential targets for infection, and their frequency in the circulation was shown to correlate with susceptibility to HIV-1 infection and disease progression. A number of in vivo studies in nonhuman primates have investigated whether blockage of α4β7 may affect SIV transmission and pathogenesis. Administration of a primatized anti-α4β7 antibody that blocks MAdCAM-1 binding to α4β7 was reported to reduce SIV mucosal transmission in rhesus macaques. However, the mechanism responsible for such a protective effect is still undefined, and conflicting results have been reported on the effects of the same antibody, in combination with ART, during the early chronic phase of SIV infection. Thus, despite a series of tantalizing results accrued over the past decade, the jury is still out on the role of α4β7 in HIV-1 infection.
Collapse
Affiliation(s)
- Qingbo Liu
- Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Paolo Lusso
- Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| |
Collapse
|
9
|
Lumngwena EN, Abrahams B, Shuping L, Cicala C, Arthos J, Woodman Z. Selective transmission of some HIV-1 subtype C variants might depend on Envelope stimulating dendritic cells to secrete IL-10. PLoS One 2020; 15:e0227533. [PMID: 31978062 PMCID: PMC6980567 DOI: 10.1371/journal.pone.0227533] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Accepted: 12/20/2019] [Indexed: 11/21/2022] Open
Abstract
Envelope (Env) phenotype(s) that provide transmitted founders (TF) with a selective advantage during HIV-1 transmission would be the ideal target for preventative therapy. We generated Env clones from four individuals infected with a single virus and one participant infected with multiple variants at transmission and compared phenotype with matched Envs from chronic infection (CI). When we determined whether pseudovirus (PSV) of the five TF and thirteen matched CI Env clones differed in their ability to 1) enter TZM-bl cells, 2) bind DC-SIGN, and 3) trans-infect CD4+ cells there was no association between time post-infection and variation in Env phenotype. However, when we compared the ability of PSV to induce monocyte-derived dendritic cells (MDDCs) to secrete Interleukin-10 (IL-10), we found that only TF Envs from single variant transmission cases induced MDDCs to secrete either higher or similar levels of IL-10 as the CI clones. Furthermore, interaction between MDDC DC-SIGN and Env was required for secretion of IL-10. When variants were grouped according to time post-infection, TF PSV induced the release of higher levels of IL-10 than their CI counterparts although this relationship varied across MDDC donors. The selection of variants during transmission is therefore likely a complex event dependent on both virus and host genetics. Our findings suggest that, potentially due to overall variation in N-glycosylation across variants, nuanced differences in binding of TF Env to DC-SIGN might trigger alternative DC immune responses (IRs) in the female genital tract (FGT) that favour HIV-1 survival and facilitate transmission.
Collapse
Affiliation(s)
- Evelyn Ngwa Lumngwena
- Department of Medicine, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
- Institute of Infectious Disease and Molecular Medicine, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
- Institute for Medical Research and Medicinal Plants studies (IMPM), Ministry of Scientific Research and Innovation (MINRESI), Yaounde, Cameroon
- * E-mail: (ZW); (ENL)
| | - Bianca Abrahams
- Department of Integrative Biomedical Sciences, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| | - Liliwe Shuping
- National Institute for Communicable Diseases, National Health Laboratory Services, Johannesburg, South Africa
| | - Claudia Cicala
- National Institute of Allergy and Infectious Diseases (NIAID), NIH, Bethesda, Maryland, United States of America
| | - James Arthos
- National Institute of Allergy and Infectious Diseases (NIAID), NIH, Bethesda, Maryland, United States of America
| | - Zenda Woodman
- Department of Integrative Biomedical Sciences, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
- * E-mail: (ZW); (ENL)
| |
Collapse
|
10
|
Sivro A, Schuetz A, Sheward D, Joag V, Yegorov S, Liebenberg LJ, Yende-Zuma N, Stalker A, Mwatelah RS, Selhorst P, Garrett N, Samsunder N, Balgobin A, Nawaz F, Cicala C, Arthos J, Fauci AS, Anzala AO, Kimani J, Bagaya BS, Kiwanuka N, Williamson C, Kaul R, Passmore JAS, Phanuphak N, Ananworanich J, Ansari A, Abdool Karim Q, Abdool Karim SS, McKinnon LR. Integrin α 4β 7 expression on peripheral blood CD4 + T cells predicts HIV acquisition and disease progression outcomes. Sci Transl Med 2019; 10:10/425/eaam6354. [PMID: 29367348 DOI: 10.1126/scitranslmed.aam6354] [Citation(s) in RCA: 70] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2016] [Revised: 08/29/2017] [Accepted: 12/01/2017] [Indexed: 11/02/2022]
Abstract
The gastrointestinal (GI) mucosa is central to HIV pathogenesis, and the integrin α4β7 promotes the homing of immune cells to this site, including those that serve as viral targets. Data from simian immunodeficiency virus (SIV) animal models suggest that α4β7 blockade provides prophylactic and therapeutic benefits. We show that pre-HIV infection frequencies of α4β7+ peripheral blood CD4+ T cells, independent of other T cell phenotypes and genital inflammation, were associated with increased rates of HIV acquisition in South African women. A similar acquisition effect was observed in a Kenyan cohort and in nonhuman primates (NHPs) after intravaginal SIV challenge. This association was stronger when infection was caused by HIV strains containing V2 envelope motifs with a preference for α4β7 binding. In addition, pre-HIV α4β7+ CD4+ T cells predicted a higher set-point viral load and a greater than twofold increased rate of CD4+ T cell decline. These results were confirmed in SIV-infected NHPs. Increased frequencies of pre-HIV α4β7+ CD4+ T cells were also associated with higher postinfection expression of lipopolysaccharide binding protein, a microbial translocation marker, suggestive of more extensive gut damage. CD4+ T cells expressing α4β7 were rapidly depleted very early in HIV infection, particularly from the GI mucosa, and were not restored by early antiretroviral therapy. This study provides a link between α4β7 expression and HIV clinical outcomes in humans, in line with observations made in NHPs. Given the availability of a clinically approved anti-α4β7 monoclonal antibody for treatment of inflammatory bowel disease, these data support further evaluation of targeting α4β7 integrin as a clinical intervention during HIV infection.
Collapse
Affiliation(s)
- Aida Sivro
- Centre for the AIDS Programme of Research in South Africa (CAPRISA), Durban 4013, South Africa.,Department of Medical Microbiology, University of Manitoba, Winnipeg, Manitoba R3E 0J9, Canada
| | - Alexandra Schuetz
- Department of Retrovirology, Armed Forces Research Institute of Medical Sciences, Bangkok 10400, Thailand.,U.S. Military HIV Research Program, Henry M. Jackson Foundation for the Advancement of Military Medicine, Walter Reed Army Institute, Silver Spring, MD 20817, USA.,Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD 20817, USA
| | - Daniel Sheward
- Division of Medical Virology and Institute of Infectious Diseases and Molecular Medicine, University of Cape Town and National Health Laboratory Service, Cape Town 7925, South Africa
| | - Vineet Joag
- Department of Immunology, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| | - Sergey Yegorov
- Department of Immunology, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| | - Lenine J Liebenberg
- Centre for the AIDS Programme of Research in South Africa (CAPRISA), Durban 4013, South Africa
| | - Nonhlanhla Yende-Zuma
- Centre for the AIDS Programme of Research in South Africa (CAPRISA), Durban 4013, South Africa
| | - Andrew Stalker
- Department of Medical Microbiology, University of Manitoba, Winnipeg, Manitoba R3E 0J9, Canada
| | - Ruth S Mwatelah
- Department of Medical Microbiology, University of Manitoba, Winnipeg, Manitoba R3E 0J9, Canada
| | - Philippe Selhorst
- Division of Medical Virology and Institute of Infectious Diseases and Molecular Medicine, University of Cape Town and National Health Laboratory Service, Cape Town 7925, South Africa
| | - Nigel Garrett
- Centre for the AIDS Programme of Research in South Africa (CAPRISA), Durban 4013, South Africa
| | - Natasha Samsunder
- Centre for the AIDS Programme of Research in South Africa (CAPRISA), Durban 4013, South Africa
| | - Anisha Balgobin
- Centre for the AIDS Programme of Research in South Africa (CAPRISA), Durban 4013, South Africa
| | - Fatima Nawaz
- Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892-9806, USA
| | - Claudia Cicala
- Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892-9806, USA
| | - James Arthos
- Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892-9806, USA
| | - Anthony S Fauci
- Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892-9806, USA
| | - Aggrey Omu Anzala
- Kenyan AIDS Vaccine Initiative, Nairobi 00202, Kenya.,Department of Medical Microbiology, University of Nairobi, Nairobi 00202, Kenya
| | - Joshua Kimani
- Department of Medical Microbiology, University of Manitoba, Winnipeg, Manitoba R3E 0J9, Canada.,Department of Medical Microbiology, University of Nairobi, Nairobi 00202, Kenya
| | - Bernard S Bagaya
- Uganda Virus Research Institute-International AIDS Vaccine Initiative HIV Vaccine Program, Plot 51-59, Nakiwogo Road, Entebbe, Uganda.,Department of Epidemiology and Biostatistics, Makerere University, P.O. Box 7062, Kampala, Uganda
| | - Noah Kiwanuka
- Uganda Virus Research Institute-International AIDS Vaccine Initiative HIV Vaccine Program, Plot 51-59, Nakiwogo Road, Entebbe, Uganda.,Department of Immunology and Molecular Biology, Makerere University, P.O. Box 7062, Kampala, Uganda
| | - Carolyn Williamson
- Centre for the AIDS Programme of Research in South Africa (CAPRISA), Durban 4013, South Africa.,Division of Medical Virology and Institute of Infectious Diseases and Molecular Medicine, University of Cape Town and National Health Laboratory Service, Cape Town 7925, South Africa
| | - Rupert Kaul
- Department of Immunology, University of Toronto, Toronto, Ontario M5S 1A8, Canada.,Department of Medicine, University of Toronto, Toronto, Ontario M5S 1A8, Canada.,University Health Network, Toronto, Ontario M5G IL7, Canada
| | - Jo-Ann S Passmore
- Centre for the AIDS Programme of Research in South Africa (CAPRISA), Durban 4013, South Africa.,Division of Medical Virology and Institute of Infectious Diseases and Molecular Medicine, University of Cape Town and National Health Laboratory Service, Cape Town 7925, South Africa.,National Health Laboratory Services, Cape Town 8005, South Africa
| | - Nittaya Phanuphak
- South East Asia Research Collaboration in HIV (SEARCH), The Thai Red Cross AIDS Research Centre, Bangkok 10330, Thailand
| | - Jintanat Ananworanich
- U.S. Military HIV Research Program, Henry M. Jackson Foundation for the Advancement of Military Medicine, Walter Reed Army Institute, Silver Spring, MD 20817, USA.,South East Asia Research Collaboration in HIV (SEARCH), The Thai Red Cross AIDS Research Centre, Bangkok 10330, Thailand.,University of Amsterdam, 1000 GG Amsterdam, Netherlands
| | - Aftab Ansari
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Quarraisha Abdool Karim
- Centre for the AIDS Programme of Research in South Africa (CAPRISA), Durban 4013, South Africa.,Department of Epidemiology, Columbia University, New York, NY 10032, USA
| | - Salim S Abdool Karim
- Centre for the AIDS Programme of Research in South Africa (CAPRISA), Durban 4013, South Africa.,Department of Epidemiology, Columbia University, New York, NY 10032, USA
| | - Lyle R McKinnon
- Centre for the AIDS Programme of Research in South Africa (CAPRISA), Durban 4013, South Africa.,Department of Medical Microbiology, University of Manitoba, Winnipeg, Manitoba R3E 0J9, Canada.,Department of Medical Microbiology, University of Nairobi, Nairobi 00202, Kenya
| | | |
Collapse
|
11
|
Duerr R, Gorny MK. V2-Specific Antibodies in HIV-1 Vaccine Research and Natural Infection: Controllers or Surrogate Markers. Vaccines (Basel) 2019; 7:vaccines7030082. [PMID: 31390725 PMCID: PMC6789775 DOI: 10.3390/vaccines7030082] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Revised: 07/26/2019] [Accepted: 07/27/2019] [Indexed: 12/20/2022] Open
Abstract
Most human immunodeficiency virus (HIV) vaccine trials have lacked efficacy and empirical vaccine lead targets are scarce. Thus far, the only independent correlate of reduced risk of HIV-1 acquisition in humans is elevated levels of V2-specific antibodies identified in the modestly protective RV144 vaccine trial. Ten years after RV144, human and non-human primate vaccine studies have reassessed the potential contribution of V2-specific antibodies to vaccine efficacy. In addition, studies of natural HIV-1 infection in humans have provided insight into the development of V1V2-directed antibody responses and their impact on clinical parameters and disease progression. Functionally diverse anti-V2 monoclonal antibodies were isolated and their structurally distinct V2 epitope regions characterized. After RV144, a plethora of research studies were performed using different model systems, immunogens, protocols, and challenge viruses. These diverse studies failed to provide a clear picture regarding the contribution of V2 antibodies to vaccine efficacy. Here, we summarize the biological functions and clinical findings associated with V2-specific antibodies and discuss their impact on HIV vaccine research.
Collapse
Affiliation(s)
- Ralf Duerr
- Department of Pathology, New York University School of Medicine, New York, NY 10016, USA.
| | - Miroslaw K Gorny
- Department of Pathology, New York University School of Medicine, New York, NY 10016, USA
| |
Collapse
|
12
|
Fabrizio C, Bavaro DF, Scudeller L, Lepore L, Balena F, Lagioia A, Angarano G, Monno L, Saracino A. Variability OF HIV-1 V2 env domain for integrin binding: Clinical correlates. Virology 2019; 535:266-271. [PMID: 31357165 DOI: 10.1016/j.virol.2019.07.019] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Revised: 07/18/2019] [Accepted: 07/23/2019] [Indexed: 11/27/2022]
Abstract
The HIV V2179-181 (HXB2 numbering) tripeptide mediates binding to α4β7 integrin, which is responsible for GALT homing. Our study aimed to assess V2 variability in naive HIV-1 infected patients and its association with clinical and viro-immunological features. Gp120 sequences were obtained from 322 subjects; length, potential N-linked glycosylation sites (PNGs), net-charge (NC) and 179-181tripeptide α4β7-binding-motif of V2 were evaluated. At multivariate analysis, lower V2 length and higher NC correlated with low CD4 cells; no association was found with PNGs. A greater variability pertained positions 162-163, 164-167, 169, 175-179, 187, 194 and 195 in B sequences, and 163 and 177 in X4 tropic viruses. LDV was the most common tripeptide. Asp180 was highly conserved; Leu179 was more frequently observed in non-B and in recent infections compared to others, while Val181 was found in recent infections and in MSM. Further studies to deeply explore the clinical significance of these associations are warranted.
Collapse
Affiliation(s)
- Claudia Fabrizio
- Clinic of Infectious Diseases, University of Bari, University Hospital Policlinico, Piazza Giulio Cesare n. 11, 70124, Bari, Italy; Malattie Infettive e Tropicali Ospedale Oncologico San Giuseppe Moscati, Taranto, Italy
| | - Davide F Bavaro
- Clinic of Infectious Diseases, University of Bari, University Hospital Policlinico, Piazza Giulio Cesare n. 11, 70124, Bari, Italy
| | - Luigia Scudeller
- Scientific Direction, Clinical Epidemiology Unit, IRCCS San Matteo Foundation, Viale Camillo Golgi, 19, 27100, Pavia, Italy
| | - Luciana Lepore
- Clinic of Infectious Diseases, University of Bari, University Hospital Policlinico, Piazza Giulio Cesare n. 11, 70124, Bari, Italy
| | - Flavia Balena
- Clinic of Infectious Diseases, University of Bari, University Hospital Policlinico, Piazza Giulio Cesare n. 11, 70124, Bari, Italy
| | - Antonella Lagioia
- Clinic of Infectious Diseases, University of Bari, University Hospital Policlinico, Piazza Giulio Cesare n. 11, 70124, Bari, Italy
| | - Gioacchino Angarano
- Clinic of Infectious Diseases, University of Bari, University Hospital Policlinico, Piazza Giulio Cesare n. 11, 70124, Bari, Italy
| | - Laura Monno
- Clinic of Infectious Diseases, University of Bari, University Hospital Policlinico, Piazza Giulio Cesare n. 11, 70124, Bari, Italy
| | - Annalisa Saracino
- Clinic of Infectious Diseases, University of Bari, University Hospital Policlinico, Piazza Giulio Cesare n. 11, 70124, Bari, Italy.
| |
Collapse
|
13
|
Lumngwena EN, Shuping L, Bernitz N, Woodman Z. HIV-1 subtype C Envelope function becomes less sensitive to N-glycosylation deletion during disease progression. BMC Res Notes 2019; 12:340. [PMID: 31208438 PMCID: PMC6580609 DOI: 10.1186/s13104-019-4375-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2019] [Revised: 06/04/2019] [Accepted: 06/07/2019] [Indexed: 12/27/2022] Open
Abstract
Objective As part of a larger study to understand how Envelope N-glycosylation influences HIV-1 pathogenesis, we selected a participant infected with a single Subtype C variant and determined whether deletion of specific potential N-glycan sites (PNGs) impacted Envelope function longitudinally. Results We deleted five PNGs previously linked to HIV-1 transmission of two matched Envelope clones representing variants at 5 and 173 weeks post-infection. The transmitted founder (TF) had significantly better pseudovirus entry efficiency than the chronic infection (CI) variant. Deletion of all PNGs significantly reduced TF entry efficiency, binding to dendritic cell-specific intracellular adhesion molecule 3 grabbing non-integrin (DC-SIGN) receptor and trans-infection. However, mutational analysis did not affect the phenotype of the CI Envelope to the same extent. Notably, deletion of the PNGs at N241 and N448 had no effect on CI Envelope function, suggesting that some PNGs might only be important during acute infection. Therefore, vaccines that elicit antibodies against N-glycans important for TF Envelope function could drive the loss of PNGs during immune escape, abrogating viral replication. Conversely, changes in N-glycosylation might have no effect on some variants, reducing vaccine efficacy. This finding highlights the need for further investigation into the role of Envelope N-glycosylation in HIV-1 pathogenesis.
Collapse
Affiliation(s)
- Evelyn Ngwa Lumngwena
- Department of Medicine, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa.,Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Cape Town, South Africa.,Centre for the Study of Emerging and Re-Emerging Infections (CREMER), Institute for Medical Research and Medicinal Plants Studies (IMPM), Ministry of Scientific Research and Innovation (MINRESI), Yaoundé, Cameroon
| | - Liliwe Shuping
- Division of the National Laboratory Service, National Institute for Communicable Diseases, Johannesburg, South Africa
| | - Netanya Bernitz
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Stellenbosch University, Stellenbosch, South Africa
| | - Zenda Woodman
- Department of Integrative Biomedical Sciences, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa.
| |
Collapse
|
14
|
Abstract
BACKGROUND Early steps of HIV infection are mediated by the binding of the envelope to mucosal receptors as α4β7 and the C-type lectins DC-SIGN and langerin. Previously Env-specific B-cell responses have been reported in highly exposed seronegative individuals (HESN). METHOD Here, we studied gp120-specific antibodies ability to block HIV interaction with α4β7, DC-SIGN and/or langerinin HESN. New cell-based assays were developed to analyze whether antibodies that can alter gp120 binding to α4β7, DC-SIGN and/or langerin are induced in HESN. A mucosal blocking score (MBS) was defined based on the ability of antibodies to interfere with gp120/α4β7, gp120/DC-SIGN, and gp120/langerin binding. A new MBS was evaluated in a cohort of 86 HESN individuals and compared with HIV+ patients or HIV- unexposed healthy individuals. RESULTS Antibodies reducing gp120 binding to both α4β7 and DC-SIGN were present in HESN serum but also in mucosal secretions, whereas antibodies from HIV+ patients facilitated gp120 binding to DC-SIGN. Any correlation was observed between MBS and the capacity of antibodies to neutralize infection of α4β7 CD4+ T cells with primary isolates. CONCLUSIONS MBS is significantly associated with protection in HESN and might reflect altered HIV spreading to mucosal-associated lymphoid tissues.
Collapse
|
15
|
Common helical V1V2 conformations of HIV-1 Envelope expose the α4β7 binding site on intact virions. Nat Commun 2018; 9:4489. [PMID: 30367034 PMCID: PMC6203816 DOI: 10.1038/s41467-018-06794-x] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2018] [Accepted: 09/13/2018] [Indexed: 01/10/2023] Open
Abstract
The α4β7 integrin is a non-essential HIV-1 adhesion receptor, bound by the gp120 V1V2 domain, facilitating rapid viral dissemination into gut-associated lymphoid tissues. Antibodies blocking this interaction early in infection can improve disease outcome, and V1V2-targeted antibodies were correlated with moderate efficacy reported from the RV144 HIV-1 vaccine trial. Monoclonal α4β7-blocking antibodies recognise two slightly different helical V2 conformations, and current structural data suggests their binding sites are occluded in prefusion envelope trimers. Here, we report cocrystal structures of two α4β7-blocking antibodies from an infected donor complexed with scaffolded V1V2 or V2 peptides. Both antibodies recognised the same helix-coil V2 conformation as RV144 antibody CH58, identifying a frequently sampled alternative conformation of full-length V1V2. In the context of Envelope, this α-helical form of V1V2 displays highly exposed α4β7-binding sites, potentially providing a functional role for non-native Envelope on virion or infected cell surfaces in HIV-1 dissemination, pathogenesis, and vaccine design. Antibodies blocking the V1V2 domain of HIV Envelope from binding integrin are associated with positive disease outcomes. Here, Wibmer et al. determine the structure of full length V1V2 bound to these antibodies, revealing an alternative fold of V1V2 with exposed integrin-binding sites that functions on non-native Envelope.
Collapse
|
16
|
Lertjuthaporn S, Cicala C, Van Ryk D, Liu M, Yolitz J, Wei D, Nawaz F, Doyle A, Horowitch B, Park C, Lu S, Lou Y, Wang S, Pan R, Jiang X, Villinger F, Byrareddy SN, Santangelo PJ, Morris L, Wibmer CK, Biris K, Mason RD, Gorman J, Hiatt J, Martinelli E, Roederer M, Fujikawa D, Gorini G, Franchini G, Arakelyan A, Ansari AA, Pattanapanyasat K, Kong XP, Fauci AS, Arthos J. Select gp120 V2 domain specific antibodies derived from HIV and SIV infection and vaccination inhibit gp120 binding to α4β7. PLoS Pathog 2018; 14:e1007278. [PMID: 30153309 PMCID: PMC6130882 DOI: 10.1371/journal.ppat.1007278] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2018] [Revised: 09/10/2018] [Accepted: 08/12/2018] [Indexed: 01/16/2023] Open
Abstract
The GI tract is preferentially targeted during acute/early HIV-1 infection. Consequent damage to the gut plays a central role in HIV pathogenesis. The basis for preferential targeting of gut tissues is not well defined. Recombinant proteins and synthetic peptides derived from HIV and SIV gp120 bind directly to integrin α4β7, a gut-homing receptor. Using both cell-surface expressed α4β7 and a soluble α4β7 heterodimer we demonstrate that its specific affinity for gp120 is similar to its affinity for MAdCAM (its natural ligand). The gp120 V2 domain preferentially engages extended forms of α4β7 in a cation -sensitive manner and is inhibited by soluble MAdCAM. Thus, V2 mimics MAdCAM in the way that it binds to α4β7, providing HIV a potential mechanism to discriminate between functionally distinct subsets of lymphocytes, including those with gut-homing potential. Furthermore, α4β7 antagonists developed for the treatment of inflammatory bowel diseases, block V2 binding to α4β7. A 15-amino acid V2 -derived peptide is sufficient to mediate binding to α4β7. It includes the canonical LDV/I α4β7 binding site, a cryptic epitope that lies 7-9 amino acids amino terminal to the LDV/I, and residues K169 and I181. These two residues were identified in a sieve analysis of the RV144 vaccine trial as sites of vaccine -mediated immune pressure. HIV and SIV V2 mAbs elicited by both vaccination and infection that recognize this peptide block V2-α4β7 interactions. These mAbs recognize conformations absent from the β- barrel presented in a stabilized HIV SOSIP gp120/41 trimer. The mimicry of MAdCAM-α4β7 interactions by V2 may influence early events in HIV infection, particularly the rapid seeding of gut tissues, and supports the view that HIV replication in gut tissue is a central feature of HIV pathogenesis.
Collapse
Affiliation(s)
- Sakaorat Lertjuthaporn
- Department of Immunology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
- Department of Research and Development, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Claudia Cicala
- Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, United States of America
| | - Donald Van Ryk
- Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, United States of America
| | - Matthew Liu
- Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, United States of America
| | - Jason Yolitz
- Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, United States of America
| | - Danlan Wei
- Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, United States of America
| | - Fatima Nawaz
- Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, United States of America
| | - Allison Doyle
- Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, United States of America
| | - Brooke Horowitch
- Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, United States of America
| | - Chung Park
- Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, United States of America
| | - Shan Lu
- Department of Medicine, University of Massachusetts Medical School, Worcester, MA, United States of America
| | - Yang Lou
- Department of Medicine, University of Massachusetts Medical School, Worcester, MA, United States of America
| | - Shixia Wang
- Department of Medicine, University of Massachusetts Medical School, Worcester, MA, United States of America
| | - Ruimin Pan
- Department of Biochemistry and Molecular Pharmacology, NYU School of Medicine, New York, NY, United States of America
| | - Xunqing Jiang
- Department of Biochemistry and Molecular Pharmacology, NYU School of Medicine, New York, NY, United States of America
| | - Francois Villinger
- New Iberia Research Center and Department of Biology, University of Louisiana at Lafayette, Lafayette, LA, United States of America
| | - Siddappa N. Byrareddy
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, United States of America
| | - Philip J. Santangelo
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, Georgia, United States of America
| | - Lynn Morris
- Center for HIV and STIs, National Institute for Communicable Diseases of the National Health Laboratory Service (NHLS), Johannesburg, South Africa
- Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
- Centre for the AIDS Programme of Research in South Africa (CAPRISA), University of KwaZulu-Natal, Congella, South Africa
| | - Constantinos Kurt Wibmer
- Center for HIV and STIs, National Institute for Communicable Diseases of the National Health Laboratory Service (NHLS), Johannesburg, South Africa
- Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Kristin Biris
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, United States of America
| | - Rosemarie D. Mason
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, United States of America
| | - Jason Gorman
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, United States of America
| | - Joseph Hiatt
- Microbiology and Immunology, University of California, San Francisco, CA, United States of America
| | - Elena Martinelli
- Center for Biomedical Research, Population Council, New York, NY, United States of America
| | - Mario Roederer
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, United States of America
| | - Dai Fujikawa
- Animal Models and Vaccine Section, National Cancer Institute, National Institutes of Health, Bethesda, MD, United States of America
| | - Giacomo Gorini
- Animal Models and Vaccine Section, National Cancer Institute, National Institutes of Health, Bethesda, MD, United States of America
| | - Genoveffa Franchini
- Animal Models and Vaccine Section, National Cancer Institute, National Institutes of Health, Bethesda, MD, United States of America
| | - Anush Arakelyan
- Section on Intercellular Interactions, Eunice Kennedy-Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, United States of America
| | - Aftab A. Ansari
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, GA, United States of America
| | - Kovit Pattanapanyasat
- Department of Research and Development, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Xiang-Peng Kong
- Department of Biochemistry and Molecular Pharmacology, NYU School of Medicine, New York, NY, United States of America
| | - Anthony S. Fauci
- Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, United States of America
| | - James Arthos
- Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, United States of America
| |
Collapse
|
17
|
Arthos J, Cicala C, Nawaz F, Byrareddy SN, Villinger F, Santangelo PJ, Ansari AA, Fauci AS. The Role of Integrin α 4β 7 in HIV Pathogenesis and Treatment. Curr HIV/AIDS Rep 2018; 15:127-135. [PMID: 29478152 PMCID: PMC5882766 DOI: 10.1007/s11904-018-0382-3] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
PURPOSE OF REVIEW Acute HIV infection is characterized by high-level viral replication throughout the body's lymphoid system, particularly in gut-associated lymphoid tissues resulting in damage to structural components of gut tissue. This damage is irreversible and believed to contribute to the development of immune deficiencies. Antiretroviral therapy (ART) does not restore gut structure and function. Studies in macaques point to an alternative treatment strategy that may ameliorate gut damage. Integrin α4β7 mediates the homing of lymphocytes to gut tissues. Vedolizumab, a monoclonal antibody (mAb) antagonist of α4β7, has demonstrated efficacy and has been approved for the treatment of inflammatory bowel disease in humans. Here, we describe our current knowledge, and the gaps in our understanding, of the role of α4β7 in HIV pathogenesis and treatment. RECENT FINDINGS When administered to macaques prior to infection, a nonhuman primate analogue of vedolizumab prevents transmission of SIV. In combination with ART, this mAb facilitates durable virologic control following treatment interruption. Targeting α4β7 represents a novel therapeutic approach to prevent and treat HIV infection.
Collapse
Affiliation(s)
- James Arthos
- Laboratory of Immunoregulation, National Institutes of Allergy & Infectious Diseases, National Institutes of Health, 10 Center Drive Rm 6A08, Bethesda, MD, 20814, USA.
| | - Claudia Cicala
- Laboratory of Immunoregulation, National Institutes of Allergy & Infectious Diseases, National Institutes of Health, 10 Center Drive Rm 6A08, Bethesda, MD, 20814, USA
| | - Fatima Nawaz
- Laboratory of Immunoregulation, National Institutes of Allergy & Infectious Diseases, National Institutes of Health, 10 Center Drive Rm 6A08, Bethesda, MD, 20814, USA
| | - Siddappa N Byrareddy
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Francois Villinger
- New Iberia Research Center, University of Louisiana Lafayette, Lafayette, LA, 70560, USA
| | - Philip J Santangelo
- Walter H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, GA, 30680, USA
| | - Aftab A Ansari
- Department of Pathology & Laboratory Medicine, Emory University School of Medicine, Atlanta, GA, 30322, USA
| | - Anthony S Fauci
- Laboratory of Immunoregulation, National Institutes of Allergy & Infectious Diseases, National Institutes of Health, 10 Center Drive Rm 6A08, Bethesda, MD, 20814, USA
| |
Collapse
|
18
|
Fadul N, Couturier J, Yu X, Kozinetz C, Arduino R, Lewis DE. Treatment-Naïve HIV-Infected Patients Have Fewer Gut-Homing β7 Memory CD4 T Cells than Healthy Controls. South Med J 2017; 110:709-713. [PMID: 29100221 DOI: 10.14423/smj.0000000000000730] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
OBJECTIVES The integrin α4β7 is the gut-homing receptor for lymphocytes. It also is an important co-receptor for human immunodeficiency virus (HIV) via glycoprotein (gp)120 binding. Depletion of gut cluster of differentiation (CD)4 T cells is linked to chronic inflammation in patients with HIV; however, measuring CD4 cells in the gut is invasive and not routine. As such, establishing a peripheral marker for CD4 depletion of the gut is needed. We hypothesized that α4β7 CD4 T cells are depleted in the peripheral blood of treatment-naïve patients with HIV compared with healthy controls. METHODS The study groups were treatment-naïve patients with HIV and uninfected controls. Subjects were included if they were 18 years or older with no history of opportunistic infections, active tuberculosis, or cancer. We collected peripheral blood and examined on whole blood using flow cytometry for the following cell surface markers: CD4, CD45RO, chemokine receptor type 5, C-X-C chemokine receptor type 4 (CXCR4), and the integrin β7. We collected demographic information, including age, sex, and ethnicity, as well as viral load (VL) and CD4 count. Two-sample t tests and Fisher exact tests were used to compare the differences between the two groups. Spearman correlation coefficients were calculated between CD4 count and log10- VL and percentage of CD4+/CD45RO+/β7+ and log10- VL in patients. RESULTS Twenty-two subjects were enrolled in the study (12 patients with HIV and 10 controls). There were no differences in age or sex between the two groups. There were more Hispanics and fewer Asians in the group comprising patients with HIV compared with the control group (7 vs 2 and 0 vs 4, P = 0.05, respectively). Patients infected with HIV had significantly lower frequencies of CD4+/CD45RO+/β7+ cells (median 12%, range 5-18 compared with uninfected controls: median 20%, range 11-26, P = 0.0007). There was a statistically significant difference in the percentage of CD4+/CD45RO+/C-X-C chemokine receptor type 4+ cells between patients (72%, range 60%-91%) compared with controls (79%, range 72%-94%, P = 0.04). The percentage of CD4+/CD45RO+/chemokine receptor type 5+ did not differ between the group of patients with HIV and the control groups (22%, range 11%-57% vs 27%, range 14%-31%; P = 0.8, respectively). There was no correlation between percentage of CD4+/CD45RO+/β+ cells and log10- VL as measured by the Spearman correlation coefficient (r = 0.05, P = 0.88) in patients infected with HIV. CONCLUSIONS Memory CD4 β7+ cells are reduced significantly in the peripheral blood of untreated patients infected with HIV, which could be used as a noninvasive indicator of intestinal CD4 T cell loss and recovery. Further studies are needed to examine whether depletion of these CD4+/CD45RO+/β7+ cells in the peripheral blood parallels depletion in the gut of treatment-naïve patients with HIV and whether levels return to control levels after treatment.
Collapse
Affiliation(s)
- Nada Fadul
- From the Department of Internal Medicine, Division of Infectious Diseases, East Carolina University, Greenville, North Carolina, the Department of Internal Medicine, Divison of Infectious Diseases, University of Texas Medical School at Houston, Houston, and the Department of Pediatrics, Section of Epidemiology, Baylor College of Medicine, Houston, Texas
| | - Jacob Couturier
- From the Department of Internal Medicine, Division of Infectious Diseases, East Carolina University, Greenville, North Carolina, the Department of Internal Medicine, Divison of Infectious Diseases, University of Texas Medical School at Houston, Houston, and the Department of Pediatrics, Section of Epidemiology, Baylor College of Medicine, Houston, Texas
| | - Xiaoying Yu
- From the Department of Internal Medicine, Division of Infectious Diseases, East Carolina University, Greenville, North Carolina, the Department of Internal Medicine, Divison of Infectious Diseases, University of Texas Medical School at Houston, Houston, and the Department of Pediatrics, Section of Epidemiology, Baylor College of Medicine, Houston, Texas
| | - Claudia Kozinetz
- From the Department of Internal Medicine, Division of Infectious Diseases, East Carolina University, Greenville, North Carolina, the Department of Internal Medicine, Divison of Infectious Diseases, University of Texas Medical School at Houston, Houston, and the Department of Pediatrics, Section of Epidemiology, Baylor College of Medicine, Houston, Texas
| | - Roberto Arduino
- From the Department of Internal Medicine, Division of Infectious Diseases, East Carolina University, Greenville, North Carolina, the Department of Internal Medicine, Divison of Infectious Diseases, University of Texas Medical School at Houston, Houston, and the Department of Pediatrics, Section of Epidemiology, Baylor College of Medicine, Houston, Texas
| | - Dorothy E Lewis
- From the Department of Internal Medicine, Division of Infectious Diseases, East Carolina University, Greenville, North Carolina, the Department of Internal Medicine, Divison of Infectious Diseases, University of Texas Medical School at Houston, Houston, and the Department of Pediatrics, Section of Epidemiology, Baylor College of Medicine, Houston, Texas
| |
Collapse
|
19
|
Extracellular Matrix Proteins Mediate HIV-1 gp120 Interactions with α 4β 7. J Virol 2017; 91:JVI.01005-17. [PMID: 28814519 DOI: 10.1128/jvi.01005-17] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2017] [Accepted: 08/09/2017] [Indexed: 01/01/2023] Open
Abstract
Gut-homing α4β7high CD4+ T lymphocytes have been shown to be preferentially targeted by human immunodeficiency virus type 1 (HIV-1) and are implicated in HIV-1 pathogenesis. Previous studies demonstrated that HIV-1 envelope protein gp120 binds and signals through α4β7 and that this likely contributes to the infection of α4β7high T cells and promotes cell-to-cell virus transmission. Structures within the second variable loop (V2) of gp120, including the tripeptide motif LDV/I, are thought to mediate gp120-α4β7 binding. However, lack of α4β7 binding has been reported in gp120 proteins containing LDV/I, and the precise determinants of gp120-α4β7 binding are not fully defined. In this work, we report the novel finding that fibronectins mediate indirect gp120-α4β7 interactions. We show that Chinese hamster ovary (CHO) cells used to express recombinant gp120 produced fibronectins and other extracellular matrix proteins that copurified with gp120. CHO cell fibronectins were able to mediate the binding of a diverse panel of gp120 proteins to α4β7 in an in vitro cell binding assay. The V2 loop was not required for fibronectin-mediated binding of gp120 to α4β7, nor did V2-specific antibodies block this interaction. Removal of fibronectin through anion-exchange chromatography abrogated V2-independent gp120-α4β7 binding. Additionally, we showed a recombinant human fibronectin fragment mediated gp120-α4β7 interactions similarly to CHO cell fibronectin. These findings provide an explanation for the apparently contradictory observations regarding the gp120-α4β7 interaction and offer new insights into the potential role of fibronectin and other extracellular matrix proteins in HIV-1 biology.IMPORTANCE Immune tissues within the gut are severely damaged by HIV-1, and this plays an important role in the development of AIDS. Integrin α4β7 plays a major role in the trafficking of lymphocytes, including CD4+ T cells, into gut lymphoid tissues. Previous reports indicate that some HIV-1 gp120 envelope proteins bind to and signal through α4β7, which may help explain the preferential infection of gut CD4+ T cells. In this study, we demonstrate that extracellular matrix proteins can mediate interactions between gp120 and α4β7 This suggests that the extracellular matrix may be an important mediator of HIV-1 interaction with α4β7-expressing cells. These findings provide new insight into the nature of HIV-1-α4β7 interactions and how these interactions may represent targets for therapeutic intervention.
Collapse
|
20
|
Brief Report: A High Rate of β7+ Gut-Homing Lymphocytes in HIV-Infected Immunological Nonresponders is Associated With Poor CD4 T-Cell Recovery During Suppressive HAART. J Acquir Immune Defic Syndr 2017; 72:259-65. [PMID: 27306505 PMCID: PMC4915751 DOI: 10.1097/qai.0000000000000943] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Supplemental Digital Content is Available in the Text. Objective: Correlation between GALT homing markers on lymphocytes and the low blood CD4 T-cell reconstitution in immunological nonresponders (INRs) has been studied. Design: Thirty-one INRs, 19 immunological responders (IRs), and 12 noninfected controls were enrolled in this study. INRs were defined by an undetectable plasma viral load RNA less than 40 copies per milliliter and CD4+ T-cell count <500 cells per cubic milliliter in at least 3 years. Methods: A complete peripheral and mucosal lymphocyte immunophenotyping was performed on these patients with a focus on the CCR9, CCR6, and α4β7 gut-homing markers. Results: A highly significant upregulation of α4β7 on INRs peripheral lymphocytes compared with that of IRs has been observed. This upregulation impacts different lymphocyte subsets namely CD4+, CD8+, and B lymphocytes. The frequency of β7+ Th17 and Treg cells are increased compared with IRs and healthy controls. The frequency of β7+ CD8+ T cells in the blood is negatively correlated with integrated proviral DNA in rectal lymphoid cells in contrast to β7+ CD4+ T cells associated with HIV integration. Conclusions: Alteration of lymphocyte homing abilities would have deleterious effects on GALT reconstitution and could participate to HIV reservoir constitution. These results emphasize the great interest to consider α4β7-targeted therapy in INR patients to block homing of lymphocytes and/or to directly impair gp120-α4β7 interactions.
Collapse
|
21
|
Chand S, Messina EL, AlSalmi W, Ananthaswamy N, Gao G, Uritskiy G, Padilla-Sanchez V, Mahalingam M, Peachman KK, Robb ML, Rao M, Rao VB. Glycosylation and oligomeric state of envelope protein might influence HIV-1 virion capture by α4β7 integrin. Virology 2017; 508:199-212. [PMID: 28577856 PMCID: PMC5526109 DOI: 10.1016/j.virol.2017.05.016] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2017] [Accepted: 05/22/2017] [Indexed: 10/19/2022]
Abstract
The α4ß7 integrin present on host cells recognizes the V1V2 domain of the HIV-1 envelope protein. This interaction might be involved in virus transmission. Administration of α4ß7-specific antibodies inhibit acquisition of SIV in a macaque challenge model. But the molecular details of V1V2: α4ß7 interaction are unknown and its importance in HIV-1 infection remains controversial. Our biochemical and mutational analyses show that glycosylation is a key modulator of V1V2 conformation and binding to α4ß7. Partially glycosylated, but not fully glycosylated, envelope proteins are preferred substrates for α4ß7 binding. Surprisingly, monomers of the envelope protein bound strongly to α4ß7 whereas trimers bound poorly. Our results suggest that a conformationally flexible V1V2 domain allows binding of the HIV-1 virion to the α4ß7 integrin, which might impart selectivity for the poorly glycosylated HIV-1 envelope containing monomers to be more efficiently captured by α4ß7 integrin present on mucosal cells at the time of HIV-1 transmission.
Collapse
Affiliation(s)
- Subhash Chand
- Department of Biology, The Catholic University of America, Washington DC 20064
| | - Emily L Messina
- Department of Biology, The Catholic University of America, Washington DC 20064
| | - Wadad AlSalmi
- Department of Biology, The Catholic University of America, Washington DC 20064
| | - Neeti Ananthaswamy
- Department of Biology, The Catholic University of America, Washington DC 20064
| | - Guofen Gao
- Department of Biology, The Catholic University of America, Washington DC 20064
| | - Gherman Uritskiy
- Department of Biology, The Catholic University of America, Washington DC 20064
| | | | | | - Kristina K Peachman
- Henry M Jackson Foundation for the Advancement of Military Medicine, Silver Spring, MD 20910; US Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD 20910
| | - Merlin L Robb
- Henry M Jackson Foundation for the Advancement of Military Medicine, Silver Spring, MD 20910; US Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD 20910
| | - Mangala Rao
- US Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD 20910
| | - Venigalla B Rao
- Department of Biology, The Catholic University of America, Washington DC 20064.
| |
Collapse
|
22
|
Girard A, Jelicic K, Van Ryk D, Rochereau N, Cicala C, Arthos J, Noailly B, Genin C, Verrier B, Laurant S, Razanajaoana-Doll D, Pin JJ, Paul S. Neutralizing and Targeting Properties of a New Set of α4β7-Specific Antibodies Are Influenced by Their Isotype. J Acquir Immune Defic Syndr 2017; 75:118-127. [PMID: 28177967 DOI: 10.1097/qai.0000000000001307] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
The homing of lymphocytes to the mucosa is mainly controlled by α4β7 integrin, and it is amplified during gut chronic inflammation, as occurs with HIV and/or inflammatory bowel diseases. We designed and applied an improved immunization strategy based on an innovative selection process to isolate new α4β7 lymphocyte-specific monoclonal antibodies that are able to prevent their migration into inflamed gut tissues and/or to counteract HIV infection in vitro. First, 5 monoclonal antibodies (1 IgA, 1 IgM, and 4 IgGs) were selected based on their capacity to recognize α4 or β7 homodimers and α4β7 heterodimers in transfected human cells. Their ability to block gp120/α4β7 or MAdCAM-1/α4β7 interactions was then measured in vitro with human T and B lymphocytes. In vitro, the anti-α4β7 IgA isotype was found to have the highest affinity for the α4β7 heterodimer, and it significantly reduced HIV replication in retinoic acid-treated α4β7 CD4 human T cells. This α4β7-specific IgA also displayed a high avidity for human and mouse α4β7 lymphocytes in both mouse and human inflammatory colitis tissues. These new antibodies, and in particular those with mucosa-targeting isotypes such as IgA, could therefore be potential novel therapeutic tools for treating HIV and inflammatory bowel disease.
Collapse
Affiliation(s)
- Alexandre Girard
- *GIMAP/EA3064, Université de Lyon, Saint-Etienne, France; †NIH/NIAID Laboratory of Immunoregulation, Bethesda, MD; ‡Institut de Biologie et Chimie des Protéines, FRE3310/CNRS, Universités de Lyon, Lyon, France; and §Dendritics SA, Lyon, France
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Efficacy of carbosilane dendrimers with an antiretroviral combination against HIV-1 in the presence of semen-derived enhancer of viral infection. Eur J Pharmacol 2017; 811:155-163. [PMID: 28577966 DOI: 10.1016/j.ejphar.2017.05.060] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2016] [Revised: 05/30/2017] [Accepted: 05/30/2017] [Indexed: 12/21/2022]
Abstract
Amyloid fibrils, which are present in semen, were considered to be a cause of topical vaginal gel ineffectiveness in vivo after microbicides failed as HIV-1 prophylaxis. Therefore, it was necessary to determine whether a dendrimer was suitable for further evaluation in an in vitro model of semen-enhanced viral infection (SEVI). We demonstrated that SEVI in TZM.bl cell cultures increased the infectivity of R5-HIV-1NL(AD8), pTHRO.c and pCH058.c isolates, causing higher IC50 values for two polyanionic carbosilane dendrimers, G2-STE16 and G3-S16. However, both dendrimers maintained protection rates of 90% at non-toxic concentrations. When dendrimers were combined with Tenofovir/Maraviroc (TDF/MVC), the anti-HIV-1 effect remained at a minimum IC50 increase between 1- and 7-fold in the presence of amyloid fibrils. In peripheral blood mononuclear cells (PBMC), IC50 values were slightly influenced by the presence of semen. In brief, dendrimers combined with antiretrovirals showed a synergistic effect. This result plays a crucial role in new microbicide formulations, as it overcomes the negative effects of amyloid fibrils.
Collapse
|
24
|
Rathore U, Saha P, Kesavardhana S, Kumar AA, Datta R, Devanarayanan S, Das R, Mascola JR, Varadarajan R. Glycosylation of the core of the HIV-1 envelope subunit protein gp120 is not required for native trimer formation or viral infectivity. J Biol Chem 2017; 292:10197-10219. [PMID: 28446609 DOI: 10.1074/jbc.m117.788919] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2017] [Revised: 04/26/2017] [Indexed: 01/05/2023] Open
Abstract
The gp120 subunit of the HIV-1 envelope (Env) protein is heavily glycosylated at ∼25 glycosylation sites, of which ∼7-8 are located in the V1/V2 and V3 variable loops and the others in the remaining core gp120 region. Glycans partially shield Env from recognition by the host immune system and also are believed to be indispensable for proper folding of gp120 and for viral infectivity. Previous attempts to alter glycosylation sites in Env typically involved mutating the glycosylated asparagine residues to structurally similar glutamines or alanines. Here, we confirmed that such mutations at multiple glycosylation sites greatly diminish viral infectivity and result in significantly reduced binding to both neutralizing and non-neutralizing antibodies. Therefore, using an alternative approach, we combined evolutionary information with structure-guided design and yeast surface display to produce properly cleaved HIV-1 Env variants that lack all 15 core gp120 glycans, yet retain conformational integrity and multiple-cycle viral infectivity and bind to several broadly neutralizing antibodies (bNAbs), including trimer-specific antibodies and a germline-reverted version of the bNAb VRC01. Our observations demonstrate that core gp120 glycans are not essential for folding, and hence their likely primary role is enabling immune evasion. We also show that our glycan removal approach is not strain restricted. Glycan-deficient Env derivatives can be used as priming immunogens because they should engage and activate a more divergent set of germlines than fully glycosylated Env. In conclusion, these results clarify the role of core gp120 glycosylation and illustrate a general method for designing glycan-free folded protein derivatives.
Collapse
Affiliation(s)
- Ujjwal Rathore
- From the Molecular Biophysics Unit, Indian Institute of Science, 560012 Bangalore, India
| | - Piyali Saha
- From the Molecular Biophysics Unit, Indian Institute of Science, 560012 Bangalore, India
| | - Sannula Kesavardhana
- From the Molecular Biophysics Unit, Indian Institute of Science, 560012 Bangalore, India
| | - Aditya Arun Kumar
- From the Molecular Biophysics Unit, Indian Institute of Science, 560012 Bangalore, India
| | - Rohini Datta
- From the Molecular Biophysics Unit, Indian Institute of Science, 560012 Bangalore, India
| | | | - Raksha Das
- From the Molecular Biophysics Unit, Indian Institute of Science, 560012 Bangalore, India
| | - John R Mascola
- the Vaccine Research Center, NIAID, National Institutes of Health, Bethesda, Maryland 20814, and
| | - Raghavan Varadarajan
- From the Molecular Biophysics Unit, Indian Institute of Science, 560012 Bangalore, India, .,the Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, 560064 Bangalore, India
| |
Collapse
|
25
|
Monoclonal Antibodies Specific for the V2, V3, CD4-Binding Site, and gp41 of HIV-1 Mediate Phagocytosis in a Dose-Dependent Manner. J Virol 2017; 91:JVI.02325-16. [PMID: 28122974 DOI: 10.1128/jvi.02325-16] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2016] [Accepted: 01/13/2017] [Indexed: 11/20/2022] Open
Abstract
In light of the weak or absent neutralizing activity mediated by anti-V2 monoclonal antibodies (MAbs), we tested whether they can mediate Ab-dependent cellular phagocytosis (ADCP), which is an important element of anti-HIV-1 immunity. We tested six anti-V2 MAbs and compared them with 21 MAbs specific for V3, the CD4-binding site (CD4bs), and gp41 derived from chronically HIV-1-infected individuals and produced by hybridoma cells. ADCP activity was measured by flow cytometry using uptake by THP-1 monocytic cells of fluorescent beads coated with gp120, gp41, BG505 SOSIP.664, or BG505 DS-SOSIP.664 complexed with MAbs. The measurement of ADCP activity by the area under the curve showed significantly higher activity of anti-gp41 MAbs than of the members of the three other groups of MAbs tested using beads coated with monomeric gp41 or gp120; anti-V2 MAbs were dominant compared to anti-V3 and anti-CD4bs MAbs against clade C gp120ZM109 ADCP activity mediated by V2 and V3 MAbs was positive against stabilized DS-SOSIP.664 trimer but negligible against SOSIP.664 targets, suggesting that a closed envelope conformation better exposes the variable loops. Two IgG3 MAbs against the V2 and V3 regions displayed dominant ADCP activity compared to a panel of IgG1 MAbs. This superior ADCP activity was confirmed when two of three recombinant IgG3 anti-V2 MAbs were compared to their IgG1 counterparts. The study demonstrated dominant ADCP activity of anti-gp41 against monomers but not trimers, with some higher activity of anti-V2 MAbs than of anti-V3 and anti-CD4bs MAbs. The ability to mediate ADCP suggests a mechanism by which anti-HIV-1 envelope Abs can contribute to protective efficacy.IMPORTANCE Anti-V2 antibodies (Abs) correlated with reduced risk of HIV-1 infection in recipients of the RV144 vaccine, suggesting that they play a protective role, but a mechanism providing such protection remains to be determined. The rare and weak neutralizing activities of anti-V2 MAbs prompted us to study Fc-mediated activities. We compared anti-V2 MAbs with other MAbs specific for V3, CD4bs, and gp41 for Ab-dependent cellular phagocytosis (ADCP) activity, implicated in protective immunity. The anti-V2 MAbs displayed stronger activity than other anti-gp120 MAbs in screening against one of two gp120s and against DS-SOSIP, which mimics the native trimer. The activity of anti-gp41 MAbs was superior in targeting monomeric gp41 but was comparable to that seen against trimers, which may not adequately expose gp41 epitopes. While anti-envelope MAbs in general mediated ADCP activity, anti-V2 MAbs displayed some dominance compared to other MAbs. Our demonstration that anti-V2 MAbs mediate ADCP activity suggests a functional mechanism for their contribution to protective efficacy.
Collapse
|
26
|
Kariuki SM, Selhorst P, Ariën KK, Dorfman JR. The HIV-1 transmission bottleneck. Retrovirology 2017; 14:22. [PMID: 28335782 PMCID: PMC5364581 DOI: 10.1186/s12977-017-0343-8] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2017] [Accepted: 03/05/2017] [Indexed: 02/07/2023] Open
Abstract
It is well established that most new systemic infections of HIV-1 can be traced back to one or a limited number of founder viruses. Usually, these founders are more closely related to minor HIV-1 populations in the blood of the presumed donor than to more abundant lineages. This has led to the widely accepted idea that transmission selects for viral characteristics that facilitate crossing the mucosal barrier of the recipient’s genital tract, although the specific selective forces or advantages are not completely defined. However, there are other steps along the way to becoming a founder virus at which selection may occur. These steps include the transition from the donor’s general circulation to the genital tract compartment, survival within the transmission fluid, and establishment of a nascent stable local infection in the recipient’s genital tract. Finally, there is the possibility that important narrowing events may also occur during establishment of systemic infection. This is suggested by the surprising observation that the number of founder viruses detected after transmission in intravenous drug users is also limited. Although some of these steps may be heavily selective, others may result mostly in a stochastic narrowing of the available founder pool. Collectively, they shape the initial infection in each recipient.
Collapse
Affiliation(s)
- Samuel Mundia Kariuki
- Division of Immunology, Department of Pathology, Falmouth 3.25, University of Cape Town, Anzio Rd, Observatory, Cape Town, 7925, South Africa.,International Centre for Genetic Engineering and Biotechnology, Cape Town, South Africa.,Department of Biological Sciences, University of Eldoret, Eldoret, Kenya
| | - Philippe Selhorst
- Division of Medical Virology, Department of Pathology, University of Cape Town, Cape Town, South Africa
| | - Kevin K Ariën
- Virology Unit, Department of Biomedical Sciences, Institute of Tropical Medicine, Antwerp, Belgium.,Department of Biomedical Sciences, University of Antwerp, Antwerp, Belgium
| | - Jeffrey R Dorfman
- Division of Immunology, Department of Pathology, Falmouth 3.25, University of Cape Town, Anzio Rd, Observatory, Cape Town, 7925, South Africa.
| |
Collapse
|
27
|
Murray JM, Maher S, Mota T, Suzuki K, Kelleher AD, Center RJ, Purcell D. Differentiating founder and chronic HIV envelope sequences. PLoS One 2017; 12:e0171572. [PMID: 28187204 PMCID: PMC5302377 DOI: 10.1371/journal.pone.0171572] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2016] [Accepted: 01/23/2017] [Indexed: 11/27/2022] Open
Abstract
Significant progress has been made in characterizing broadly neutralizing antibodies against the HIV envelope glycoprotein Env, but an effective vaccine has proven elusive. Vaccine development would be facilitated if common features of early founder virus required for transmission could be identified. Here we employ a combination of bioinformatic and operations research methods to determine the most prevalent features that distinguish 78 subtype B and 55 subtype C founder Env sequences from an equal number of chronic sequences. There were a number of equivalent optimal networks (based on the fewest covarying amino acid (AA) pairs or a measure of maximal covariance) that separated founders from chronics: 13 pairs for subtype B and 75 for subtype C. Every subtype B optimal solution contained the founder pairs 178–346 Asn-Val, 232–236 Thr-Ser, 240–340 Lys-Lys, 279–315 Asp-Lys, 291–792 Ala-Ile, 322–347 Asp-Thr, 535–620 Leu-Asp, 742–837 Arg-Phe, and 750–836 Asp-Ile; the most common optimal pairs for subtype C were 644–781 Lys-Ala (74 of 75 networks), 133–287 Ala-Gln (73/75) and 307–337 Ile-Gln (73/75). No pair was present in all optimal subtype C solutions highlighting the difficulty in targeting transmission with a single vaccine strain. Relative to the size of its domain (0.35% of Env), the α4β7 binding site occurred most frequently among optimal pairs, especially for subtype C: 4.2% of optimal pairs (1.2% for subtype B). Early sequences from 5 subtype B pre-seroconverters each exhibited at least one clone containing an optimal feature 553–624 (Ser-Asn), 724–747 (Arg-Arg), or 46–293 (Arg-Glu).
Collapse
Affiliation(s)
- John M. Murray
- School of Mathematics and Statistics, UNSW Sydney, Sydney, New South Wales, Australia
- * E-mail:
| | - Stephen Maher
- School of Mathematics and Statistics, UNSW Sydney, Sydney, New South Wales, Australia
- Zuse Institute Berlin, Berlin, Germany
| | - Talia Mota
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, Victoria, Australia
| | - Kazuo Suzuki
- The Kirby Institute, UNSW Sydney, Sydney, New South Wales, Australia
| | | | - Rob J. Center
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, Victoria, Australia
| | - Damian Purcell
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, Victoria, Australia
| |
Collapse
|
28
|
Nakamura KJ, Heath L, Sobrera ER, Wilkinson TA, Semrau K, Kankasa C, Tobin NH, Webb NE, Lee B, Thea DM, Kuhn L, Mullins JI, Aldrovandi GM. Breast milk and in utero transmission of HIV-1 select for envelope variants with unique molecular signatures. Retrovirology 2017; 14:6. [PMID: 28122636 PMCID: PMC5267468 DOI: 10.1186/s12977-017-0331-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2016] [Accepted: 01/12/2017] [Indexed: 01/06/2023] Open
Abstract
Background Mother-to-child transmission of human immunodeficiency virus-type 1 (HIV-1) poses a serious health threat in developing countries, and adequate interventions are as yet unrealized. HIV-1 infection is frequently initiated by a single founder viral variant, but the factors that influence particular variant selection are poorly understood. Results Our analysis of 647 full-length HIV-1 subtype C and G viral envelope sequences from 22 mother–infant pairs reveals unique genotypic and phenotypic signatures that depend upon transmission route. Relative to maternal strains, intrauterine HIV transmission selects infant variants that have shorter, less-glycosylated V1 loops that are more resistant to soluble CD4 (sCD4) neutralization. Transmission through breastfeeding selects for variants with fewer potential glycosylation sites in gp41, are more sensitive to the broadly neutralizing antibodies PG9 and PG16, and that bind sCD4 with reduced cooperativity. Furthermore, experiments with Affinofile cells indicate that infant viruses, regardless of transmission route, require increased levels of surface CD4 receptor for productive infection. Conclusions These data provide the first evidence for transmission route-specific selection of HIV-1 variants, potentially informing therapeutic strategies and vaccine designs that can be tailored to specific modes of vertical HIV transmission. Electronic supplementary material The online version of this article (doi:10.1186/s12977-017-0331-z) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Kyle J Nakamura
- Division of Infectious Diseases, Children's Hospital Los Angeles, Los Angeles, CA, USA.,Systems Biology and Disease Program, USC Keck School of Medicine, Los Angeles, CA, USA
| | - Laura Heath
- Department of Microbiology, University of Washington, Seattle, WA, USA
| | - Edwin R Sobrera
- Division of Infectious Diseases, Children's Hospital Los Angeles, Los Angeles, CA, USA
| | - Thomas A Wilkinson
- Division of Infectious Diseases, Children's Hospital Los Angeles, Los Angeles, CA, USA
| | - Katherine Semrau
- Division of Global Health Equity, Brigham and Women's Hospital, Harvard Medical School, and Ariadne Labs, Boston, MA, USA
| | - Chipepo Kankasa
- University Teaching Hospital, University of Zambia, Lusaka, Zambia
| | - Nicole H Tobin
- Division of Pediatric Infectious Diseases, Department of Pediatrics, David Geffen School of Medicine at the University of California at Los Angeles, Los Angeles, CA, USA
| | - Nicholas E Webb
- Division of Pediatric Infectious Diseases, Department of Pediatrics, David Geffen School of Medicine at the University of California at Los Angeles, Los Angeles, CA, USA
| | - Benhur Lee
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Donald M Thea
- Division of Global Health Equity, Brigham and Women's Hospital, Harvard Medical School, and Ariadne Labs, Boston, MA, USA
| | - Louise Kuhn
- Department of Epidemiology, Columbia University, New York, NY, USA
| | - James I Mullins
- Department of Microbiology, University of Washington, Seattle, WA, USA
| | - Grace M Aldrovandi
- Division of Pediatric Infectious Diseases, Department of Pediatrics, David Geffen School of Medicine at the University of California at Los Angeles, Los Angeles, CA, USA.
| |
Collapse
|
29
|
Abstract
In this chapter, we will review recent research on the virology of HIV-1 transmission and the impact of the transmitted virus genotype on subsequent disease progression. In most instances of HIV-1 sexual transmission, a single genetic variant, or a very limited number of variants from the diverse viral quasi-species present in the transmitting partner establishes systemic infection. Transmission involves both stochastic and selective processes, such that in general a minority variant in the donor is transmitted. While there is clear evidence for selection, the biological properties that mediate transmission remain incompletely defined. Nevertheless, the genotype of the transmitted founder virus, which reflects prior exposure to and escape from host immune responses, clearly influences disease progression. Some escape mutations impact replicative capacity, while others effectively cloak the virus from the newly infected host's immune response by preventing recognition. It is the balance between the impact of escape mutations on viral fitness and susceptibility to the host immunogenetics that defines HIV-1 disease progression.
Collapse
|
30
|
Infection of rhesus macaques with a pool of simian immunodeficiency virus with the envelope genes from acute HIV-1 infections. AIDS Res Ther 2016; 13:41. [PMID: 27906032 PMCID: PMC5124249 DOI: 10.1186/s12981-016-0125-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2016] [Accepted: 11/16/2016] [Indexed: 01/29/2023] Open
Abstract
Background New simian–human immunodeficiency chimeric viruses with an HIV-1 env (SHIVenv) are critical for studies on HIV pathogenesis, vaccine development, and microbicide testing. Macaques are typically exposed to single CCR5-using SHIVenv which in most instances does not reflect the conditions during acute/early HIV infection (AHI) in humans. Instead of individual and serial testing new SHIV constructs, a pool of SHIVenv_B derived from 16 acute HIV-1 infections were constructed using a novel yeast-based SHIV cloning approach and then used to infect macaques. Results Even though none of the 16 SHIVenvs contained the recently reported mutations in env genes that could significantly enhance their binding affinity to RhCD4, one SHIVenv (i.e. SHIVenv_B3-PRB926) established infection in macaques exposed to this pool. AHI SHIVenv_B viruses as well as their HIVenv_B counterparts were analyzed for viral protein content, function, and fitness to identify possible difference between SHIVenv_B3-PRB926 and the other 15 SHIVenvs in the pool. All of the constructs produced SHIV or HIV chimeric with wild type levels of capsid (p27 and p24) content, reverse transcriptase (RT) activity, and expressed envelope glycoproteins that could bind to cell receptors CD4/CCR5 and mediate virus entry. HIV-1env_B chimeric viruses were propagated in susceptible cell lines but the 16 SHIVenv_B variants showed only limited replication in macaque peripheral blood mononuclear cells (PBMCs) and 174×CEM.CCR5 cell line. AHI chimeric viruses including HIVenv_B3 showed only minor variations in cell entry efficiency and kinetics as well as replicative fitness in human PBMCs. Reduced number of N-link glycosylation sites and slightly greater CCR5 affinity/avidity was the only distinguishing feature of env_B3 versus other AHI env’s in the pool, a feature also observed in the HIV establishing new infections in humans. Conclusion Despite the inability to propagate in primary cells and cell lines, a pool of 16 SHIVenv viruses could establish infection but only one virus, SHIVenv_B3 was isolated in the macaque and then shown to repeatedly infected macaques. This SHIVenv_B3 virus did not show any distinct phenotypic property from the other 15 SHIVenv viruses but did have the fewest N-linked glycosylation sites. Electronic supplementary material The online version of this article (doi:10.1186/s12981-016-0125-8) contains supplementary material, which is available to authorized users.
Collapse
|
31
|
Becerra JC, Bildstein LS, Gach JS. Recent Insights into the HIV/AIDS Pandemic. MICROBIAL CELL (GRAZ, AUSTRIA) 2016; 3:451-475. [PMID: 28357381 PMCID: PMC5354571 DOI: 10.15698/mic2016.09.529] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/17/2016] [Accepted: 04/27/2016] [Indexed: 12/21/2022]
Abstract
Etiology, transmission and protection: Transmission of HIV, the causative agent of AIDS, occurs predominantly through bodily fluids. Factors that significantly alter the risk of HIV transmission include male circumcision, condom use, high viral load, and the presence of other sexually transmitted diseases. Pathology/Symptomatology: HIV infects preferentially CD4+ T lymphocytes, and Monocytes. Because of their central role in regulating the immune response, depletion of CD4+ T cells renders the infected individual incapable of adequately responding to microorganisms otherwise inconsequential. Epidemiology, incidence and prevalence: New HIV infections affect predominantly young heterosexual women and homosexual men. While the mortality rates of AIDS related causes have decreased globally in recent years due to the use of highly active antiretroviral therapy (HAART) treatment, a vaccine remains an elusive goal. Treatment and curability: For those afflicted HIV infection remains a serious illness. Nonetheless, the use of advanced therapeutics have transformed a dire scenario into a chronic condition with near average life spans. When to apply those remedies appears to be as important as the remedies themselves. The high rate of HIV replication and the ability to generate variants are central to the viral survival strategy and major barriers to be overcome. Molecular mechanisms of infection: In this review, we assemble new details on the molecular events from the attachment of the virus, to the assembly and release of the viral progeny. Yet, much remains to be learned as understanding of the molecular mechanisms used in viral replication and the measures engaged in the evasion of immune surveillance will be important to develop effective interventions to address the global HIV pandemic.
Collapse
Affiliation(s)
- Juan C. Becerra
- Department of Medicine, Division of Infectious Diseases, University
of California, Irvine, Irvine, CA 92697, USA
| | | | - Johannes S. Gach
- Department of Medicine, Division of Infectious Diseases, University
of California, Irvine, Irvine, CA 92697, USA
| |
Collapse
|
32
|
Oberle CS, Joos B, Rusert P, Campbell NK, Beauparlant D, Kuster H, Weber J, Schenkel CD, Scherrer AU, Magnus C, Kouyos R, Rieder P, Niederöst B, Braun DL, Pavlovic J, Böni J, Yerly S, Klimkait T, Aubert V, Trkola A, Metzner KJ, Günthard HF. Tracing HIV-1 transmission: envelope traits of HIV-1 transmitter and recipient pairs. Retrovirology 2016; 13:62. [PMID: 27595568 PMCID: PMC5011806 DOI: 10.1186/s12977-016-0299-0] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2016] [Accepted: 08/22/2016] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Mucosal HIV-1 transmission predominantly results in a single transmitted/founder (T/F) virus establishing infection in the new host despite the generally high genetic diversity of the transmitter virus population. To what extent HIV-1 transmission is a stochastic process or driven by selective forces that allow T/F viruses best to overcome bottlenecks in transmission has not been conclusively resolved. Building on prior investigations that suggest HIV-1 envelope (Env) features to contribute in the selection process during transmission, we compared phenotypic virus characteristics of nine HIV-1 subtype B transmission pairs, six men who have sex with men and three male-to-female transmission pairs. RESULTS All recipients were identified early in acute infection and harbored based on extensive sequencing analysis a single T/F virus allowing a controlled analysis of virus properties in matched transmission pairs. Recipient and transmitter viruses from the closest time point to transmission showed no signs of selection for specific Env modifications such as variable loop length and glycosylation. Recipient viruses were resistant to circulating plasma antibodies of the transmitter and also showed no altered sensitivity to a large panel of entry inhibitors and neutralizing antibodies. The recipient virus did not consistently differ from the transmitter virus in terms of entry kinetics, cell-cell transmission and replicative capacity in primary cells. Our paired analysis revealed a higher sensitivity of several recipient virus isolates to interferon-α (IFNα) which suggests that resistance to IFNα cannot be a general driving force in T/F establishment. CONCLUSIONS With the exception of increased IFNα sensitivity, none of the phenotypic virus properties we investigated clearly distinguished T/F viruses from their matched transmitter viruses supporting the notion that at least in subtype B infection HIV-1 transmission is to a considerable extent stochastic.
Collapse
Affiliation(s)
- Corinna S Oberle
- Division of Infectious Diseases and Hospital Epidemiology, University Hospital Zurich, University of Zurich, Zurich, Switzerland.,Institute of Medical Virology, University of Zurich, Zurich, Switzerland
| | - Beda Joos
- Division of Infectious Diseases and Hospital Epidemiology, University Hospital Zurich, University of Zurich, Zurich, Switzerland.,Institute of Medical Virology, University of Zurich, Zurich, Switzerland
| | - Peter Rusert
- Institute of Medical Virology, University of Zurich, Zurich, Switzerland
| | - Nottania K Campbell
- Division of Infectious Diseases and Hospital Epidemiology, University Hospital Zurich, University of Zurich, Zurich, Switzerland.,Institute of Medical Virology, University of Zurich, Zurich, Switzerland
| | - David Beauparlant
- Institute of Medical Virology, University of Zurich, Zurich, Switzerland
| | - Herbert Kuster
- Division of Infectious Diseases and Hospital Epidemiology, University Hospital Zurich, University of Zurich, Zurich, Switzerland.,Institute of Medical Virology, University of Zurich, Zurich, Switzerland
| | - Jacqueline Weber
- Institute of Medical Virology, University of Zurich, Zurich, Switzerland
| | - Corinne D Schenkel
- Division of Infectious Diseases and Hospital Epidemiology, University Hospital Zurich, University of Zurich, Zurich, Switzerland.,Institute of Medical Virology, University of Zurich, Zurich, Switzerland
| | - Alexandra U Scherrer
- Division of Infectious Diseases and Hospital Epidemiology, University Hospital Zurich, University of Zurich, Zurich, Switzerland.,Institute of Medical Virology, University of Zurich, Zurich, Switzerland
| | - Carsten Magnus
- Institute of Medical Virology, University of Zurich, Zurich, Switzerland
| | - Roger Kouyos
- Division of Infectious Diseases and Hospital Epidemiology, University Hospital Zurich, University of Zurich, Zurich, Switzerland.,Institute of Medical Virology, University of Zurich, Zurich, Switzerland
| | - Philip Rieder
- Division of Infectious Diseases and Hospital Epidemiology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Barbara Niederöst
- Division of Infectious Diseases and Hospital Epidemiology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Dominique L Braun
- Division of Infectious Diseases and Hospital Epidemiology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Jovan Pavlovic
- Institute of Medical Virology, University of Zurich, Zurich, Switzerland
| | - Jürg Böni
- Institute of Medical Virology, University of Zurich, Zurich, Switzerland
| | - Sabine Yerly
- Laboratory of Virology, University Hospital Geneva, University of Geneva, Geneva, Switzerland
| | - Thomas Klimkait
- Department of Biomedicine, University of Basel, Basel, Switzerland
| | - Vincent Aubert
- Division of Immunology and Allergy, University Hospital Lausanne, University of Lausanne, Lausanne, Switzerland
| | - Alexandra Trkola
- Institute of Medical Virology, University of Zurich, Zurich, Switzerland
| | - Karin J Metzner
- Division of Infectious Diseases and Hospital Epidemiology, University Hospital Zurich, University of Zurich, Zurich, Switzerland.,Institute of Medical Virology, University of Zurich, Zurich, Switzerland
| | - Huldrych F Günthard
- Division of Infectious Diseases and Hospital Epidemiology, University Hospital Zurich, University of Zurich, Zurich, Switzerland. .,Institute of Medical Virology, University of Zurich, Zurich, Switzerland.
| | | |
Collapse
|
33
|
In Vitro Exposure to PC-1005 and Cervicovaginal Lavage Fluid from Women Vaginally Administered PC-1005 Inhibits HIV-1 and HSV-2 Infection in Human Cervical Mucosa. Antimicrob Agents Chemother 2016; 60:5459-66. [PMID: 27381393 DOI: 10.1128/aac.00392-16] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2016] [Accepted: 06/26/2016] [Indexed: 01/07/2023] Open
Abstract
Our recent phase 1 trial demonstrated that PC-1005 gel containing 50 μM MIV-150, 14 mM zinc acetate dihydrate, and carrageenan (CG) applied daily vaginally for 14 days is safe and well tolerated. Importantly, cervicovaginal lavage fluid samples (CVLs) collected 4 or 24 h after the last gel application inhibited HIV-1 and human papillomavirus (HPV) in cell-based assays in a dose-dependent manner (MIV-150 for HIV-1 and CG for HPV). Herein we aimed to determine the anti-HIV and anti-herpes simplex virus 2 (anti-HSV-2) activity of PC-1005 in human cervical explants after in vitro exposure to the gel and to CVLs from participants in the phase 1 trial. Single HIV-1BaL infection and HIV-1BaL-HSV-2 coinfection explant models were utilized. Coinfection with HSV-2 enhanced tissue HIV-1BaL infection. In vitro exposure to PC-1005 protected cervical mucosa against HIV-1BaL (up to a 1:300 dilution) in single-challenge and cochallenge models. CG gel (PC-525) provided some barrier effect against HIV-1BaL at the 1:100 dilution in a single-challenge model but not in the cochallenge model. Both PC-1005 and PC-525 at the 1:100 dilution inhibited HSV-2 infection, pointing to a CG-mediated protection. MIV-150 and CG in CVLs inhibited HIV (single-challenge or cochallenge models) and HSV-2 infections in explants in a dose-dependent manner (P < 0.05). Stronger inhibition of HIV-1 infection by CVLs collected 4 h after the last gel administration was observed compared to infection detected in the presence of baseline CVLs. The anti-HIV and anti-HSV-2 activity of PC-1005 gel in vitro and CVLs in human ectocervical explants supports the further development of PC-1005 gel as a broad-spectrum on-demand microbicide.
Collapse
|
34
|
Villegas G, Calenda G, Ugaonkar S, Zhang S, Kizima L, Mizenina O, Gettie A, Blanchard J, Cooney ML, Robbiani M, Fernández-Romero JA, Zydowsky TM, Teleshova N. A Novel Microbicide/Contraceptive Intravaginal Ring Protects Macaque Genital Mucosa against SHIV-RT Infection Ex Vivo. PLoS One 2016; 11:e0159332. [PMID: 27428377 PMCID: PMC4948912 DOI: 10.1371/journal.pone.0159332] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2016] [Accepted: 06/30/2016] [Indexed: 01/27/2023] Open
Abstract
Women need multipurpose prevention products (MPTs) that protect against sexually transmitted infections (STIs) and provide contraception. The Population Council has developed a prototype intravaginal ring (IVR) releasing the non-nucleoside reverse transcriptase inhibitor (NNRTI) MIV-150 (M), zinc acetate (ZA), carrageenan (CG) and levonorgestrel (LNG) (MZCL IVR) to protect against HIV, HSV-2, HPV and unintended pregnancy. Our objective was to evaluate the anti-SHIV-RT activity of MZCL IVR in genital mucosa. First, macaque vaginal tissues were challenged with SHIV-RT in the presence of (i) MIV-150 ± LNG or (ii) vaginal fluids (VF); available from studies completed earlier) collected at various time points post insertion of MZCL and MZC IVRs. Then, (iii) MZCL IVRs (vs. LNG IVRs) were inserted in non-Depo Provera-treated macaques for 24h and VF, genital biopsies, and blood were collected and tissues were challenged with SHIV-RT. Infection was monitored with one step SIV gag qRT-PCR or p27 ELISA. MIV-150 (LCMS/MS, RIA), LNG (RIA) and CG (ELISA) were measured in different compartments. Log-normal generalized mixed linear models were used for analysis. LNG did not affect the anti-SHIV-RT activity of MIV-150 in vitro. MIV-150 in VF from MZC/MZCL IVR-treated macaques inhibited SHIV-RT in vaginal mucosa in a dose-dependent manner (p<0.05). MIV-150 in vaginal tissue from MZCL IVR-treated animals inhibited ex vivo infection relative to baseline (96%; p<0.0001) and post LNG IVR group (90%, p<0.001). No MIV-150 dose-dependent protection was observed, likely because of high MIV-150 concentrations in all vaginal tissue samples. In cervical tissue, MIV-150 inhibited infection vs. baseline (99%; p<0.05). No cervical tissue was available for MIV-150 measurement. Exposure to LNG IVR did not change tissue infection level. These observations support further development of MZCL IVR as a multipurpose prevention technology to improve women's sexual and reproductive health.
Collapse
Affiliation(s)
| | - Giulia Calenda
- Population Council, New York, New York, United States of America
| | - Shweta Ugaonkar
- Population Council, New York, New York, United States of America
| | - Shimin Zhang
- Population Council, New York, New York, United States of America
| | - Larisa Kizima
- Population Council, New York, New York, United States of America
| | - Olga Mizenina
- Population Council, New York, New York, United States of America
| | - Agegnehu Gettie
- Aaron Diamond AIDS Research Center, Rockefeller University, New York, New York, United States of America
| | - James Blanchard
- Tulane National Primate Research Center, Tulane University, Covington, Louisiana, United States of America
| | | | - Melissa Robbiani
- Population Council, New York, New York, United States of America
| | | | | | | |
Collapse
|
35
|
Woodham AW, Skeate JG, Sanna AM, Taylor JR, Da Silva DM, Cannon PM, Kast WM. Human Immunodeficiency Virus Immune Cell Receptors, Coreceptors, and Cofactors: Implications for Prevention and Treatment. AIDS Patient Care STDS 2016; 30:291-306. [PMID: 27410493 DOI: 10.1089/apc.2016.0100] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
In the last three decades, extensive research on human immunodeficiency virus (HIV) has highlighted its capability to exploit a variety of strategies to enter and infect immune cells. Although CD4(+) T cells are well known as the major HIV target, with infection occurring through the canonical combination of the cluster of differentiation 4 (CD4) receptor and either the C-C chemokine receptor type 5 (CCR5) or C-X-C chemokine receptor type 4 (CXCR4) coreceptors, HIV has also been found to enter other important immune cell types such as macrophages, dendritic cells, Langerhans cells, B cells, and granulocytes. Interestingly, the expression of distinct cellular cofactors partially regulates the rate in which HIV infects each distinct cell type. Furthermore, HIV can benefit from the acquisition of new proteins incorporated into its envelope during budding events. While several publications have investigated details of how HIV manipulates particular cell types or subtypes, an up-to-date comprehensive review on HIV tropism for different immune cells is lacking. Therefore, this review is meant to focus on the different receptors, coreceptors, and cofactors that HIV exploits to enter particular immune cells. Additionally, prophylactic approaches that have targeted particular molecules associated with HIV entry and infection of different immune cells will be discussed. Unveiling the underlying cellular receptors and cofactors that lead to HIV preference for specific immune cell populations is crucial in identifying novel preventative/therapeutic targets for comprehensive strategies to eliminate viral infection.
Collapse
Affiliation(s)
- Andrew W. Woodham
- Department of Molecular Microbiology and Immunology, University of Southern California, Los Angeles, California
| | - Joseph G. Skeate
- Department of Molecular Microbiology and Immunology, University of Southern California, Los Angeles, California
| | - Adriana M. Sanna
- Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, California
| | - Julia R. Taylor
- Department of Molecular Microbiology and Immunology, University of Southern California, Los Angeles, California
| | - Diane M. Da Silva
- Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, California
- Department of Obstetrics & Gynecology, University of Southern California, Los Angeles, California
| | - Paula M. Cannon
- Department of Molecular Microbiology and Immunology, University of Southern California, Los Angeles, California
| | - W. Martin Kast
- Department of Molecular Microbiology and Immunology, University of Southern California, Los Angeles, California
- Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, California
- Department of Obstetrics & Gynecology, University of Southern California, Los Angeles, California
| |
Collapse
|
36
|
Liu F, Fan X, Auclair S, Ferguson M, Sun J, Soong L, Hou W, Redfield RR, Birx DL, Ratto-Kim S, Robb ML, Kim JH, Michael NL, Hu H. Sequential Dysfunction and Progressive Depletion of Candida albicans-Specific CD4 T Cell Response in HIV-1 Infection. PLoS Pathog 2016; 12:e1005663. [PMID: 27280548 PMCID: PMC4900544 DOI: 10.1371/journal.ppat.1005663] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2016] [Accepted: 05/06/2016] [Indexed: 11/22/2022] Open
Abstract
Loss of immune control over opportunistic infections can occur at different stages of HIV-1 (HIV) disease, among which mucosal candidiasis caused by the fungal pathogen Candida albicans (C. albicans) is one of the early and common manifestations in HIV-infected human subjects. The underlying immunological basis is not well defined. We have previously shown that compared to cytomegalovirus (CMV)-specific CD4 cells, C. albicans-specific CD4 T cells are highly permissive to HIV in vitro. Here, based on an antiretroviral treatment (ART) naïve HIV infection cohort (RV21), we investigated longitudinally the impact of HIV on C. albicans- and CMV-specific CD4 T-cell immunity in vivo. We found a sequential dysfunction and preferential depletion for C. albicans-specific CD4 T cell response during progressive HIV infection. Compared to Th1 (IFN-γ, MIP-1β) functional subsets, the Th17 functional subsets (IL-17, IL-22) of C. albicans-specific CD4 T cells were more permissive to HIV in vitro and impaired earlier in HIV-infected subjects. Infection history analysis showed that C. albicans-specific CD4 T cells were more susceptible to HIV in vivo, harboring modestly but significantly higher levels of HIV DNA, than CMV-specific CD4 T cells. Longitudinal analysis of HIV-infected individuals with ongoing CD4 depletion demonstrated that C. albicans-specific CD4 T-cell response was preferentially and progressively depleted. Taken together, these data suggest a potential mechanism for earlier loss of immune control over mucosal candidiasis in HIV-infected patients and provide new insights into pathogen-specific immune failure in AIDS pathogenesis. HIV infection is closely associated with enhanced host susceptibility to various opportunistic infections (OIs), among which mucosal candidiasis caused by the fungal pathogen Candida albicans (C. albicans) is an early and common manifestation. Even in the era of effective ART, mucosal candidiasis is still a clinically relevant presentation in HIV-infected patients. The underlying mechanisms are not well defined. CD4-mediated immunity is the major host defense mechanism against C. albicans. We here investigated a group of ART naïve, HIV-infected human subjects and examined longitudinally the impact of HIV on C. albicans-specific CD4 T-cell immunity as compared to CD4 T-cell immunity specific for CMV, another opportunistic pathogen that usually does not cause active disease in early HIV infection. We found that C. albicans-specific CD4 T cells were more susceptible to HIV in vivo and were preferentially depleted in progressive HIV-infected individuals as compared to CMV-specific CD4 T cells. Of importance, we also found that in these HIV-infected subjects C. albicans-specific CD4 T cell response manifested a sequential dysfunction with earlier impairment of Th17, but not Th1, functions. Our study suggests an immunological basis that helps explain the earlier and more common onsets of mucosal candidiasis in progressive HIV-infected patients.
Collapse
Affiliation(s)
- Fengliang Liu
- Department of Microbiology & Immunology and Sealy Center for Vaccine Development, University of Texas Medical Branch, Galveston, Texas, United States of America
| | - Xiuzhen Fan
- Department of Microbiology & Immunology and Sealy Center for Vaccine Development, University of Texas Medical Branch, Galveston, Texas, United States of America
| | - Sarah Auclair
- Department of Microbiology & Immunology and Sealy Center for Vaccine Development, University of Texas Medical Branch, Galveston, Texas, United States of America
| | - Monique Ferguson
- Division of Infectious Diseases, University of Texas Medical Branch, Galveston, Texas, United States of America
| | - Jiaren Sun
- Department of Microbiology & Immunology and Sealy Center for Vaccine Development, University of Texas Medical Branch, Galveston, Texas, United States of America
| | - Lynn Soong
- Department of Microbiology & Immunology and Sealy Center for Vaccine Development, University of Texas Medical Branch, Galveston, Texas, United States of America
| | - Wei Hou
- School of Basic Medical Sciences, Wuhan University, Wuhan, Hubei, China
| | - Robert R. Redfield
- Institute of Human Virology and Division of Infectious Diseases, University of Maryland School of Medicine, Baltimore, Maryland, United States of America
| | - Deborah L. Birx
- U.S. Military HIV Research Program, Water Reed Army Institute of Research, Silver Spring, Maryland, United States of America
| | - Silvia Ratto-Kim
- U.S. Military HIV Research Program, Henry M. Jackson Foundation, Silver Spring, Maryland, United States of America
| | - Merlin L. Robb
- U.S. Military HIV Research Program, Henry M. Jackson Foundation, Silver Spring, Maryland, United States of America
| | - Jerome H. Kim
- International Vaccine Institute, Seoul, Republic of Korea; U.S. Military HIV Research Program, Water Reed Army Institute of Research, Silver Spring, Maryland, United States of America
| | - Nelson L. Michael
- U.S. Military HIV Research Program, Water Reed Army Institute of Research, Silver Spring, Maryland, United States of America
| | - Haitao Hu
- Department of Microbiology & Immunology and Sealy Center for Vaccine Development, University of Texas Medical Branch, Galveston, Texas, United States of America
- * E-mail:
| |
Collapse
|
37
|
Arrode-Brusés G, Goode D, Kleinbeck K, Wilk J, Frank I, Byrareddy S, Arthos J, Grasperge B, Blanchard J, Zydowsky T, Gettie A, Martinelli E. A Small Molecule, Which Competes with MAdCAM-1, Activates Integrin α4β7 and Fails to Prevent Mucosal Transmission of SHIV-SF162P3. PLoS Pathog 2016; 12:e1005720. [PMID: 27348748 PMCID: PMC4922556 DOI: 10.1371/journal.ppat.1005720] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2016] [Accepted: 06/02/2016] [Indexed: 11/30/2022] Open
Abstract
Mucosal HIV-1 transmission is inefficient. However, certain viral and host characteristics may play a role in facilitating HIV acquisition and systemic expansion. Cells expressing high levels of integrin α4β7 have been implicated in favoring the transmission process and the infusion of an anti-α4β7 mAb (RM-Act-1) prior to, and during a repeated low-dose vaginal challenge (RLDC) regimen with SIVmac251 reduced SIV acquisition and protected the gut-associated lymphoid tissues (GALT) in the macaques that acquired SIV. α4β7 expression is required for lymphocyte trafficking to the gut lamina propria and gut inductive sites. Several therapeutic strategies that target α4β7 have been shown to be effective in treating inflammatory conditions of the intestine, such as inflammatory bowel disease (IBD). To determine if blocking α4β7 with ELN, an orally available anti-α4 small molecule, would inhibit SHIV-SF162P3 acquisition, we tested its ability to block MAdCAM-1 (α4β7 natural ligand) and HIV-gp120 binding in vitro. We studied the pharmacokinetic profile of ELN after oral and vaginal delivery in macaques. Twenty-six macaques were divided into 3 groups: 9 animals were treated with ELN orally, 9 orally and vaginally and 8 were used as controls. All animals were challenged intra-vaginally with SHIV-SF162P3 using the RLDC regimen. We found that ELN did not protect macaques from SHIV acquisition although it reduced the SHIV-induced inflammatory status during the acute phase of infection. Notably, integrins can exist in different activation states and, comparing the effect of ELN and the anti-α4β7 mAb RM-Act-1 that reduced susceptibility to SIV infection, we determined that ELN induces the active conformation of α4β7, while RM-Act-1 inhibits its activation through an allosteric mechanism. These results suggest that inhibition of α4β7 activation may be necessary to reduce susceptibility to SIV/SHIV infection and highlight the complexity of anti-integrins therapeutic approach in HIV as well as in IBD and other autoimmune diseases.
Collapse
Affiliation(s)
- Géraldine Arrode-Brusés
- Center for Biomedical Research, Population Council, New York, New York, United States of America
| | - Diana Goode
- Center for Biomedical Research, Population Council, New York, New York, United States of America
| | - Kyle Kleinbeck
- Center for Biomedical Research, Population Council, New York, New York, United States of America
| | - Jolanta Wilk
- Center for Biomedical Research, Population Council, New York, New York, United States of America
| | - Ines Frank
- Center for Biomedical Research, Population Council, New York, New York, United States of America
| | - Siddappa Byrareddy
- University of Nebraska Medical Center, Omaha, Nebraska, United States of America
| | - James Arthos
- Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases, Bethesda, Maryland, United States of America
| | - Brooke Grasperge
- Tulane National Primate Research Center, Tulane University, Covington, Louisiana, United States of America
| | - James Blanchard
- Tulane National Primate Research Center, Tulane University, Covington, Louisiana, United States of America
| | - Thomas Zydowsky
- Center for Biomedical Research, Population Council, New York, New York, United States of America
| | - Agegnehu Gettie
- Aaron Diamond AIDS Research Center, Rockefeller University, New York, New York, United States of America
| | - Elena Martinelli
- Center for Biomedical Research, Population Council, New York, New York, United States of America
| |
Collapse
|
38
|
Differences in the Selection Bottleneck between Modes of Sexual Transmission Influence the Genetic Composition of the HIV-1 Founder Virus. PLoS Pathog 2016; 12:e1005619. [PMID: 27163788 PMCID: PMC4862634 DOI: 10.1371/journal.ppat.1005619] [Citation(s) in RCA: 75] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2015] [Accepted: 04/18/2016] [Indexed: 01/18/2023] Open
Abstract
Due to the stringent population bottleneck that occurs during sexual HIV-1 transmission, systemic infection is typically established by a limited number of founder viruses. Elucidation of the precise forces influencing the selection of founder viruses may reveal key vulnerabilities that could aid in the development of a vaccine or other clinical interventions. Here, we utilize deep sequencing data and apply a genetic distance-based method to investigate whether the mode of sexual transmission shapes the nascent founder viral genome. Analysis of 74 acute and early HIV-1 infected subjects revealed that 83% of men who have sex with men (MSM) exhibit a single founder virus, levels similar to those previously observed in heterosexual (HSX) transmission. In a metadata analysis of a total of 354 subjects, including HSX, MSM and injecting drug users (IDU), we also observed no significant differences in the frequency of single founder virus infections between HSX and MSM transmissions. However, comparison of HIV-1 envelope sequences revealed that HSX founder viruses exhibited a greater number of codon sites under positive selection, as well as stronger transmission indices possibly reflective of higher fitness variants. Moreover, specific genetic “signatures” within MSM and HSX founder viruses were identified, with single polymorphisms within gp41 enriched among HSX viruses while more complex patterns, including clustered polymorphisms surrounding the CD4 binding site, were enriched in MSM viruses. While our findings do not support an influence of the mode of sexual transmission on the number of founder viruses, they do demonstrate that there are marked differences in the selection bottleneck that can significantly shape their genetic composition. This study illustrates the complex dynamics of the transmission bottleneck and reveals that distinct genetic bottleneck processes exist dependent upon the mode of HIV-1 transmission. While the global spread of HIV-1 has been fueled by sexual transmission the genetic determinants underlying the transmission bottleneck remains poorly understood. Here we characterized founder virus population diversity from next generation sequencing data in a cohort of 74 acute and early HIV-1 infected individuals. We observe that the risk of multi-variant infection in men-who-have-sex-with-men (MSM) is not greater than that observed for heterosexuals (HSX), contrary to reports of higher rates of multiple founder virus infections in higher-risk MSM transmissions. These findings were further supported through a metadata analysis of 354 acute and early HIV-1 subjects. We did, however, observe differences between HSM and MSM founder viruses, including a higher selection barrier in HSX transmission with founder viruses being more cohort consensus-like that may be reflective of increased replicative fitness. We also identified a number of residues within Envelope that behave in a risk-dependent manner and could be key for HIV-1 transmission. These novel insights improve our understanding of the HIV-1 transmission bottleneck and underscore the differential selective pressures that founder viruses within the two major transmission risk groups are subjected to.
Collapse
|
39
|
Abstract
Human immunodeficiency virus type 1 (HIV-1) gives rise to a chronic infection that progressively depletes CD4(+) T lymphocytes. CD4(+) T lymphocytes play a central coordinating role in adaptive cellular and humoral immune responses, and to do so they migrate and interact within lymphoid compartments and at effector sites to mount immune responses. While cell-free virus serves as an excellent prognostic indicator for patient survival, interactions of infected T cells or virus-scavenging immune cells with uninfected T cells can greatly enhance viral spread. HIV can induce interactions between infected and uninfected T cells that are triggered by cell surface expression of viral Env, which serves as a cell adhesion molecule that interacts with CD4 on the target cell, before it acts as the viral membrane fusion protein. These interactions are called virological synapses and promote replication in the face of selective pressure of humoral immune responses and antiretroviral therapy. Other infection-enhancing cell-cell interactions occur between virus-concentrating antigen-presenting cells and recipient T cells, called infectious synapses. The exact roles that these cell-cell interactions play in each stage of infection, from viral acquisition, systemic dissemination, to chronic persistence are still being determined. Infection-promoting immune cell interactions are likely to contribute to viral persistence and enhance the ability of HIV-1 to evade adaptive immune responses.
Collapse
Affiliation(s)
- K M Law
- Immunology Institute Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - N Satija
- Immunology Institute Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - A M Esposito
- Immunology Institute Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - B K Chen
- Immunology Institute Icahn School of Medicine at Mount Sinai, New York, NY, United States.
| |
Collapse
|
40
|
Hait SH, Soares EA, Sprinz E, Arthos J, Machado ES, Soares MA. Worldwide Genetic Features of HIV-1 Env α4β7 Binding Motif: The Local Dissemination Impact of the LDI Tripeptide. J Acquir Immune Defic Syndr 2016; 70:463-71. [PMID: 26569174 DOI: 10.1097/qai.0000000000000802] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
BACKGROUND HIV-1 gp120 binds to integrin α4β7, a homing receptor of lymphocytes to gut-associated lymphoid tissues. This interaction is mediated by the LDI/V tripeptide encoded in the V2-loop. This tripeptide mimics similar motifs in mucosal addressin cellular adhesion molecule (MAdCAM) and vascular CAM (VCAM), the natural ligands of α4β7. In this study, we explored the association of V2-loop LDI/V mimotopes with transmission routes and patterns of disease progression in HIV-infected adult and pediatric patients. HIV-1 env sequences available in the Los Alamos HIV Sequence database were included in the analyses. METHODS HIV-1 V2-loop sequences generated from infected adults and infants from South and Southeast Brazil, and also retrieved from the Los Alamos database, were assessed for α4β7 binding tripeptide composition. Chi-Square/Fisher Exact test and Mann Whitney U test were used for tripeptide comparisons. Shannon entropy was assessed for conservancy of the α4β7 tripeptide mimotope. RESULTS We observed no association between the tripeptide composition or conservation and virus transmission route or disease progression. However, LDI was linked to successful epidemic dissemination of HIV-1 subtype C in South America, and further to other expanding non-B subtypes in Europe and Asia. In Africa, subtypes showing increased LDV prevalence evidenced an ongoing process of selection toward LDI expansion, an observation also extended to subtype B in the Americas and Western Europe. CONCLUSIONS The V2-loop LDI mimotope was conserved in HIV-1C from South America and other expanding subtypes across the globe, which suggests that LDI may promote successful dissemination of HIV at local geographic levels by means of increased transmission fitness.
Collapse
Affiliation(s)
- Sabrina H Hait
- *Departamento de Genética, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil; †Programa de Oncovirologia, Instituto Nacional de Câncer, Rio de Janeiro, Brazil; ‡Hospital de Clínicas de Porto Alegre, Universidade Federal do Rio Grande do Sul, Rio Grande do Sul, Brazil; §Laboratory of Immune Regulation, National Institutes of Health, Bethesda, MD; and ‖Instituto de Puericultura e Pediatria Martagão Gesteira, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | | | | | | | | | | |
Collapse
|
41
|
Olesen R, Swanson MD, Kovarova M, Nochi T, Chateau M, Honeycutt JB, Long JM, Denton PW, Hudgens MG, Richardson A, Tolstrup M, Østergaard L, Wahl A, Garcia JV. ART influences HIV persistence in the female reproductive tract and cervicovaginal secretions. J Clin Invest 2016; 126:892-904. [PMID: 26854925 DOI: 10.1172/jci64212] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2012] [Accepted: 12/10/2015] [Indexed: 11/17/2022] Open
Abstract
The recently completed HIV prevention trials network study 052 is a landmark collaboration demonstrating that HIV transmission in discordant couples can be dramatically reduced by treating the infected individual with antiretroviral therapy (ART). However, the cellular and virological events that occur in the female reproductive tract (FRT) during ART that result in such a drastic decrease in transmission were not studied and remain unknown. Here, we implemented an in vivo model of ART in BM/liver/thymus (BLT) humanized mice in order to better understand the ability of ART to prevent secondary HIV transmission. We demonstrated that the entire FRT of BLT mice is reconstituted with human CD4+ cells that are shed into cervicovaginal secretions (CVS). A high percentage of the CD4+ T cells in the FRT and CVS expressed CCR5 and therefore are potential HIV target cells. Infection with HIV increased the numbers of CD4+ and CD8+ T cells in CVS of BLT mice. Furthermore, HIV was present in CVS during infection. Finally, we evaluated the effect of ART on HIV levels in the FRT and CVS and demonstrated that ART can efficiently suppress cell-free HIV-RNA in CVS, despite residual levels of HIV-RNA+ cells in both the FRT and CVS.
Collapse
|
42
|
Joag VR, McKinnon LR, Liu J, Kidane ST, Yudin MH, Nyanga B, Kimwaki S, Besel KE, Obila JO, Huibner S, Oyugi JO, Arthos J, Anzala O, Kimani J, Ostrowski MA, Kaul R. Identification of preferential CD4+ T-cell targets for HIV infection in the cervix. Mucosal Immunol 2016; 9:1-12. [PMID: 25872482 DOI: 10.1038/mi.2015.28] [Citation(s) in RCA: 68] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2014] [Accepted: 03/18/2015] [Indexed: 02/04/2023]
Abstract
A better understanding of the cellular targets of HIV infection in the female genital tract may inform HIV prevention efforts. Proposed correlates of cellular susceptibility include the HIV co-receptor CCR5, peripheral homing integrins, and immune activation. We used a CCR5-tropic pseudovirus to quantify HIV entry into unstimulated endocervical CD4(+) T cells collected by cytobrush. Virus entry was threefold higher into cervix-derived CD4(+) T cells than blood, but was strongly correlated between these two compartments. Cervix-derived CD4(+) T cells expressing CD69, α(4)β(7), or α(4)β(1) were preferential HIV targets; this enhanced susceptibility was strongly correlated with increased CCR5 expression in α(4)β(7)(+) and CD69(+) CD4(+) T cells, and to a lesser extent in α(4)β(1)(+) CD4(+) T cells. Direct binding of gp140 to integrins was not observed, integrin inhibitors had no effect on virus entry, and pseudotypes with an env that preferentially binds α(4)β(7) still demonstrated enhanced entry into α(4)β(1)(+) cells. In summary, a rapid and sensitive HIV entry assay demonstrated enhanced susceptibility of activated endocervical CD4(+) T cells, and those expressing α(4)β(7) or α(4)β(1). This may relate to increased CCR5 expression by these cell subsets, but did not appear to be due to direct interaction of α(4)β(7) or α(4)β(1) with HIV envelope.
Collapse
MESH Headings
- Adult
- Antigens, CD/genetics
- Antigens, CD/immunology
- Antigens, Differentiation, T-Lymphocyte/genetics
- Antigens, Differentiation, T-Lymphocyte/immunology
- CD4-Positive T-Lymphocytes/immunology
- CD4-Positive T-Lymphocytes/virology
- Cervix Uteri/immunology
- Cervix Uteri/virology
- Female
- Gene Expression Regulation
- HIV-1/genetics
- HIV-1/immunology
- Host-Pathogen Interactions
- Humans
- Immunity, Mucosal
- Integrin alpha4beta1/genetics
- Integrin alpha4beta1/immunology
- Integrins/genetics
- Integrins/immunology
- Lectins, C-Type/genetics
- Lectins, C-Type/immunology
- Middle Aged
- Organ Specificity
- Primary Cell Culture
- Receptors, CCR5/genetics
- Receptors, CCR5/immunology
- Receptors, Virus/genetics
- Receptors, Virus/immunology
- Signal Transduction
- Virus Internalization
- env Gene Products, Human Immunodeficiency Virus/genetics
- env Gene Products, Human Immunodeficiency Virus/immunology
Collapse
Affiliation(s)
- V R Joag
- Department of Immunology, University of Toronto, Toronto, Ontario, Canada
| | - L R McKinnon
- Centre for the AIDS Program of Research in South Africa, University of KwaZulu-Natal, Durban, South Africa
- Department of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - J Liu
- Department of Immunology, University of Toronto, Toronto, Ontario, Canada
| | - S T Kidane
- Department of Immunology, University of Toronto, Toronto, Ontario, Canada
| | - M H Yudin
- Department of Obstetrics and Gynecology, St Michael's Hospital, University of Toronto, Toronto, Ontario, Canada
| | - B Nyanga
- Department of Medical Microbiology, University of Nairobi, Nairobi, Kenya
| | - S Kimwaki
- Department of Medical Microbiology, University of Nairobi, Nairobi, Kenya
| | - K E Besel
- Department of Obstetrics and Gynecology, St Michael's Hospital, University of Toronto, Toronto, Ontario, Canada
| | - J O Obila
- Kenyan AIDS Vaccine Initiative, Nairobi, Kenya
| | - S Huibner
- Department of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - J O Oyugi
- Department of Medical Microbiology, University of Nairobi, Nairobi, Kenya
- Department of Medical Microbiology, University of Manitoba, Winnipeg, Manitoba, Canada
| | - J Arthos
- Laboratory of Immune Regulation, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - O Anzala
- Department of Medical Microbiology, University of Nairobi, Nairobi, Kenya
- Kenyan AIDS Vaccine Initiative, Nairobi, Kenya
| | - J Kimani
- Department of Medical Microbiology, University of Manitoba, Winnipeg, Manitoba, Canada
| | - M A Ostrowski
- Department of Immunology, University of Toronto, Toronto, Ontario, Canada
- Li Ka Shing Knowledge Institute, St Michael's Hospital, Toronto, Ontario, Canada
| | | | - R Kaul
- Department of Immunology, University of Toronto, Toronto, Ontario, Canada
- Department of Medicine, University of Toronto, Toronto, Ontario, Canada
- Department of Medicine, University Health Network, Toronto, Ontario, Canada
| |
Collapse
|
43
|
Human Mucosal Mast Cells Capture HIV-1 and Mediate Viral trans-Infection of CD4+ T Cells. J Virol 2015; 90:2928-37. [PMID: 26719250 DOI: 10.1128/jvi.03008-15] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2015] [Accepted: 12/21/2015] [Indexed: 12/31/2022] Open
Abstract
UNLABELLED The gastrointestinal mucosa is the primary site where human immunodeficiency virus type 1 (HIV-1) invades, amplifies, and becomes persistently established, and cell-to-cell transmission of HIV-1 plays a pivotal role in mucosal viral dissemination. Mast cells are widely distributed in the gastrointestinal tract and are early targets for invasive pathogens, and they have been shown to have increased density in the genital mucosa in HIV-infected women. Intestinal mast cells express numerous pathogen-associated molecular patterns (PAMPs) and have been shown to combat various viral, parasitic, and bacterial infections. However, the role of mast cells in HIV-1 infection is poorly defined. In this study, we investigated their potential contributions to HIV-1 transmission. Mast cells isolated from gut mucosal tissues were found to express a variety of HIV-1 attachment factors (HAFs), such as DC-SIGN, heparan sulfate proteoglycan (HSPG), and α4β7 integrin, which mediate capture of HIV-1 on the cell surface. Intriguingly, following coculture with CD4(+) T cells, mast cell surface-bound viruses were efficiently transferred to target T cells. Prior blocking with anti-HAF antibody or mannan before coculture impaired viral trans-infection. Cell-cell conjunctions formed between mast cells and T cells, to which viral particles were recruited, and these were required for efficient cell-to-cell HIV-1 transmission. Our results reveal a potential function of gut mucosal mast cells in HIV-1 dissemination in tissues. Strategies aimed at preventing viral capture and transfer mediated by mast cells could be beneficial in combating primary HIV-1 infection. IMPORTANCE In this study, we demonstrate the role of human mast cells isolated from mucosal tissues in mediating HIV-1 trans-infection of CD4(+) T cells. This finding facilitates our understanding of HIV-1 mucosal infection and will benefit the development of strategies to combat primary HIV-1 dissemination.
Collapse
|
44
|
Peachman KK, Karasavvas N, Chenine AL, McLinden R, Rerks-Ngarm S, Jaranit K, Nitayaphan S, Pitisuttithum P, Tovanabutra S, Zolla-Pazner S, Michael NL, Kim JH, Alving CR, Rao M. Identification of New Regions in HIV-1 gp120 Variable 2 and 3 Loops that Bind to α4β7 Integrin Receptor. PLoS One 2015; 10:e0143895. [PMID: 26625359 PMCID: PMC4666614 DOI: 10.1371/journal.pone.0143895] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2015] [Accepted: 11/10/2015] [Indexed: 11/19/2022] Open
Abstract
Background The gut mucosal homing integrin receptor α4β7 present on activated CD4+ T cells interacts with the HIV-1 gp120 second variable loop (V2). Case control analysis of the RV144 phase III vaccine trial demonstrated that plasma IgG binding antibodies specific to scaffolded proteins expressing the first and second variable regions (V1V2) of HIV envelope protein gp120 containing the α4β7 binding motif correlated inversely with risk of infection. Subsequently antibodies to the V3 region were also shown to correlate with protection. The integrin receptor α4β7 was shown to interact with the LDI/V motif on V2 loop but recent studies suggest that additional regions of V2 loop could interact with the α4β7. Thus, there may be several regions on the V2 and possibly V3 loops that may be involved in this binding. Using a cell line, that constitutively expressed α4β7 receptors but lacked CD4, we examined the contribution of V2 and V3 loops and the ability of V2 peptide-, V2 integrin-, V3-specific monoclonal antibodies (mAbs), and purified IgG from RV144 vaccinees to block the V2/V3-α4β7 interaction. Results We demonstrate that α4β7 on RPMI8866 cells bound specifically to its natural ligand mucosal addressin cell adhesion molecule-1 (MAdCAM-1) as well as to cyclic-V2 and cyclic-V3 peptides. This binding was inhibited by anti-α4β7-specific monoclonal antibody (mAb) ACT-1, mAbs specific to either V2 or V3 loops, and by purified primary virions or infectious molecular clones expressing envelopes from acute or chronic subtypes A, C, and CRF01_AE viruses. Plasma from HIV-1 infected Thai individuals as well as purified IgG from uninfected RV144 vaccinees inhibited (0–50%) the binding of V2 and V3 peptides to α4β7. Conclusion Our results indicate that in addition to the tripeptide LDI/V motif, other regions of the V2 and V3 loops of gp120 were involved in binding to α4β7 receptors and this interaction was blocked by anti-V2 peptide, anti-V2 integrin, and anti-V3 antibodies. The ability of purified IgG from some of the uninfected RV144 vaccinees to inhibit α4β7 raises the hypothesis that anti-V2 and anti-V3 antibodies may play a role in blocking the gp120-α4β7 interaction after vaccination and thus prevent HIV-1 acquisition.
Collapse
Affiliation(s)
- Kristina K. Peachman
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD, United States of America
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD, United States of America
| | - Nicos Karasavvas
- United States Army Medical Component, Armed Forces Research Institute of Medical Sciences, Bangkok, Thailand
| | - Agnes-Laurence Chenine
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD, United States of America
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD, United States of America
| | - Robert McLinden
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD, United States of America
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD, United States of America
| | | | | | - Sorachai Nitayaphan
- Royal Thai Army, Armed Forces Research Institute of Medical Sciences, Bangkok, Thailand
| | | | - Sodsai Tovanabutra
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD, United States of America
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD, United States of America
| | - Susan Zolla-Pazner
- Veterans Administration New York Harbor Health Care System and NYU School of Medicine, New York, United States of America
| | - Nelson L. Michael
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD, United States of America
| | - Jerome H. Kim
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD, United States of America
| | - Carl R. Alving
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD, United States of America
| | - Mangala Rao
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD, United States of America
- * E-mail:
| |
Collapse
|
45
|
Abstract
Rigorous testing of new HIV-prevention strategies is a time-consuming and expensive undertaking. Thus, making well informed decisions on which candidate-prevention approaches are most likely to provide the most benefit is critical to appropriately prioritizing clinical testing. In the case of biological interventions, the decision to test a given prevention approach in human trials rests largely on evidence of protection in preclinical studies. The ability of preclinical studies to predict efficacy in humans may depend on how well the model recapitulates key biological features of HIV transmission relevant to the question at hand. Here, we review our current understanding of the biology of HIV transmission based on data from animal models, cell culture, and viral sequence analysis from human infection. We summarize studies of the bottleneck in viral transmission; the characteristics of transmitted viruses; the establishment of infection; and the contribution of cell-free and cell-associated virus. We seek to highlight the implications of HIV-transmission biology for development of prevention interventions, and to discuss the limitations of existing preclinical models.
Collapse
|
46
|
Girard A, Rochereau N, Roblin X, Genin C, Paul S. [Targeting and role of α4β7 integrin in the pathophysiology of IBD and HIV infection]. Med Sci (Paris) 2015; 31:895-903. [PMID: 26481029 DOI: 10.1051/medsci/20153110016] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Integrins are a large family of heterodimeric cell adhesion molecules that are key regulators in multiple biological functions. They orchestrate cell-cell and cell-extracellular matrix (ECM) adhesive interactions from embryonic development to mature tissue function, and are thus involved in cell migration, proliferation, differentiation, and survival. As such, they are also involved in human diseases, such as thrombotic diseases, inflammation, cancer, fibrosis and infectious diseases. Integrins are exciting pharmacological targets because they are exposed on the cell surface. Indeed, several compounds have been developed that block integrins function, and five have been approved as therapeutic drugs for use in clinic. This review will detail the role of α4β7, an integrin of particular relevance for mucosal diseases such as IBD (inflammatory bowel disease) and also, as reported more recently, HIV infection.
Collapse
Affiliation(s)
- Alexandre Girard
- Groupe immunité des muqueuses et agents pathogènes - GIMAP EA 3064, CIC 1408, Université de Saint-Étienne, Université de Lyon, Faculté de médecine Jacques Lisfranc, 15, rue Ambroise Paré, 42023 Saint-Étienne Cedex 2, France
| | - Nicolas Rochereau
- Groupe immunité des muqueuses et agents pathogènes - GIMAP EA 3064, CIC 1408, Université de Saint-Étienne, Université de Lyon, Faculté de médecine Jacques Lisfranc, 15, rue Ambroise Paré, 42023 Saint-Étienne Cedex 2, France
| | - Xavier Roblin
- Groupe immunité des muqueuses et agents pathogènes - GIMAP EA 3064, CIC 1408, Université de Saint-Étienne, Université de Lyon, Faculté de médecine Jacques Lisfranc, 15, rue Ambroise Paré, 42023 Saint-Étienne Cedex 2, France
| | - Christian Genin
- Groupe immunité des muqueuses et agents pathogènes - GIMAP EA 3064, CIC 1408, Université de Saint-Étienne, Université de Lyon, Faculté de médecine Jacques Lisfranc, 15, rue Ambroise Paré, 42023 Saint-Étienne Cedex 2, France
| | - Stéphane Paul
- Groupe immunité des muqueuses et agents pathogènes - GIMAP EA 3064, CIC 1408, Université de Saint-Étienne, Université de Lyon, Faculté de médecine Jacques Lisfranc, 15, rue Ambroise Paré, 42023 Saint-Étienne Cedex 2, France
| |
Collapse
|
47
|
Integrin α4β7 Expression Increases HIV Susceptibility in Activated Cervical CD4+ T Cells by an HIV Attachment-Independent Mechanism. J Acquir Immune Defic Syndr 2015; 69:509-18. [PMID: 26167616 DOI: 10.1097/qai.0000000000000676] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
BACKGROUND CD4 T cells are crucial for the establishment and dissemination of HIV in mucosal tissues during acute infection. Studies indicate that integrin α4β7 CD4 T cells are preferentially infected by HIV in vitro and during acute SIV infection. The integrin α4β7 is thought to promote HIV capture by target cells; however, the role of integrin α4β7 in HIV transmission remains controversial. In this study, we characterized immune phenotypes of human cervical T cells and examined HIV preference in integrin α4β7 CD4 T cells. In vitro all-trans retinoic acid-differentiated peripheral CD4 T cells (atRA-differentiated cells) were included as a comparison. RESULTS In both peripheral and cervical cells, the majority of HIV p24 cells were activated CD4 T cells expressing integrin α4β7. Among infected atRA-differentiated cells, the frequency of CCR5 expression was higher in HIV p24 cells than in HIV p24 cells; no such difference was observed in cervical cells. Neither the cyclic hexapeptide CWLDVC nor a monoclonal antibody against integrin α4β7 blocked HIV attachment or gp120 binding to target cells regardless of the presence of CD4, indicating that integrin α4β7 did not facilitate HIV capture by target cells. CONCLUSIONS Integrin α4β7 expression increases HIV susceptibility, but the mechanism is not through promoting HIV binding to target cells.
Collapse
|
48
|
Deymier MJ, Ende Z, Fenton-May AE, Dilernia DA, Kilembe W, Allen SA, Borrow P, Hunter E. Heterosexual Transmission of Subtype C HIV-1 Selects Consensus-Like Variants without Increased Replicative Capacity or Interferon-α Resistance. PLoS Pathog 2015; 11:e1005154. [PMID: 26378795 PMCID: PMC4574710 DOI: 10.1371/journal.ppat.1005154] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2015] [Accepted: 08/17/2015] [Indexed: 12/21/2022] Open
Abstract
Heterosexual transmission of HIV-1 is characterized by a genetic bottleneck that selects a single viral variant, the transmitted/founder (TF), during most transmission events. To assess viral characteristics influencing HIV-1 transmission, we sequenced 167 near full-length viral genomes and generated 40 infectious molecular clones (IMC) including TF variants and multiple non-transmitted (NT) HIV-1 subtype C variants from six linked heterosexual transmission pairs near the time of transmission. Consensus-like genomes sensitive to donor antibodies were selected for during transmission in these six transmission pairs. However, TF variants did not demonstrate increased viral fitness in terms of particle infectivity or viral replicative capacity in activated peripheral blood mononuclear cells (PBMC) and monocyte-derived dendritic cells (MDDC). In addition, resistance of the TF variant to the antiviral effects of interferon-α (IFN-α) was not significantly different from that of non-transmitted variants from the same transmission pair. Thus neither in vitro viral replicative capacity nor IFN-α resistance discriminated the transmission potential of viruses in the quasispecies of these chronically infected individuals. However, our findings support the hypothesis that within-host evolution of HIV-1 in response to adaptive immune responses reduces viral transmission potential. Despite the available HIV-1 diversity present in a chronically infected individual, single viral variants are transmitted in 80–90% of heterosexual transmission events. These breakthrough viruses may have unique properties that confer a higher capacity to transmit. Determining these properties could help inform the rational design of vaccines and enhance our understanding of viral transmission. We isolated the transmitted variant and a set of related non-transmitted variants from the transmitting partner near the estimated date of transmission from six epidemiologically linked transmission pairs to investigate viral correlates of transmission. The simplest explanation that transmitted variants are inherently more infectious or faster replicators in vitro did not hold true. In addition, transmitted variants did not replicate more efficiently than their non-transmitted counterparts in dendritic cells or in the presence of interferon-alpha in vitro, suggesting that they are not uniquely adapted to these components of the innate immune system. More ancestral genomes that were relatively sensitive to antibody neutralization tended to transmit, supporting previous reports that mutational escape away from the adaptive immune response likely reduces the ability to transmit. Our investigation into the traits of transmitted HIV-1 variants adds to the understanding of viral determinants of transmission.
Collapse
Affiliation(s)
- Martin J. Deymier
- Emory Vaccine Center at Yerkes National Primate Research Center, Emory University, Atlanta, Georgia, United States of America
| | - Zachary Ende
- Emory Vaccine Center at Yerkes National Primate Research Center, Emory University, Atlanta, Georgia, United States of America
| | | | - Dario A. Dilernia
- Emory Vaccine Center at Yerkes National Primate Research Center, Emory University, Atlanta, Georgia, United States of America
| | | | - Susan A. Allen
- Department of Pathology and Laboratory Medicine, Emory University, Atlanta, Georgia, United States of America
| | - Persephone Borrow
- Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Eric Hunter
- Emory Vaccine Center at Yerkes National Primate Research Center, Emory University, Atlanta, Georgia, United States of America
- Department of Pathology and Laboratory Medicine, Emory University, Atlanta, Georgia, United States of America
- * E-mail:
| |
Collapse
|
49
|
Desai DV, Kulkarni SS. Herpes Simplex Virus: The Interplay Between HSV, Host, and HIV-1. Viral Immunol 2015; 28:546-55. [PMID: 26331265 DOI: 10.1089/vim.2015.0012] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Herpes simplex virus proteins interact with host (human) proteins and create an environment conducive for its replication. Genital ulceration due to herpes simplex virus type 2 (HSV-2) infections is an important clinical manifestation reported to increase the risk of human immunodeficiency virus type 1 (HIV-1) acquisition and replication in HIV-1/HSV-2 coinfection. Dampening the innate and adaptive immune responses of the skin-resident dendritic cells, HSV-2 not only helps itself, but creates a "yellow brick road" for one of the most dreaded viruses HIV, which is transmitted mainly through the sexual route. Although, data from clinical trials show that HSV-2 suppression reduces HIV-1 viral load, there are hardly any reports presenting conclusive evidence on the impact of HSV-2 coinfection on HIV-1 disease progression. Be that as it may, understanding the interplay between these three characters (HSV, host, and HIV-1) is imperative. This review endeavors to collate studies on the influence of HSV-derived proteins on the host response and HIV-1 replication. Studying such complex interactions may help in designing and developing common strategies for the two viruses to keep these "partners in crime" at bay.
Collapse
Affiliation(s)
- Dipen Vijay Desai
- Department of Virology, ICMR-National AIDS Research Institute , Pune, India
| | | |
Collapse
|
50
|
Park C, Arthos J, Cicala C, Kehrl JH. The HIV-1 envelope protein gp120 is captured and displayed for B cell recognition by SIGN-R1(+) lymph node macrophages. eLife 2015; 4. [PMID: 26258881 PMCID: PMC4574315 DOI: 10.7554/elife.06467] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2015] [Accepted: 08/08/2015] [Indexed: 01/08/2023] Open
Abstract
The HIV-1 envelope protein gp120 is both the target of neutralizing antibodies and a
major focus of vaccine efforts; however how it is delivered to B cells to elicit an
antibody response is unknown. Here, we show that following local gp120 injection
lymph node (LN) SIGN-R1+ sinus macrophages located in
interfollicular pockets and underlying SIGN-R1+ macrophages form a
cellular network that rapidly captures gp120 from the afferent lymph. In contrast,
two other antigens, phycoerythrin and hen egg lysozyme, were not captured by these
cells. Intravital imaging of mouse LNs revealed persistent, but transient
interactions between gp120 bearing interfollicular network cells and both trafficking
and LN follicle resident gp120 specific B cells. The gp120 specific, but not the
control B cells repetitively extracted gp120 from the network cells. Our findings
reveal a specialized LN antigen delivery system poised to deliver gp120 and likely
other pathogen derived glycoproteins to B cells. DOI:http://dx.doi.org/10.7554/eLife.06467.001 The human immune system contains many different cell types, which play specific roles
in defending the body from invading pathogens, such as bacteria and viruses. For
example, macrophages engulf and digest foreign material, whereas specialized B cells
termed plasma cells produce molecules called antibodies that help to destroy specific
pathogens. However, specific antibodies are only produced if naive B cells have
already encountered the pathogen or its surface proteins. Attempts to improve how the immune system responds to the human immunodeficiency
virus (HIV-1) have failed to control and prevent infection. One of the main
components of many prospective HIV-1 vaccines is a protein called gp120, which is
located on the surface of the virus. Specific B cells recognize this protein and can
develop into plasma cells that produce antibodies against HIV-1. However, little is
known about how these specific B cells initially get exposed to gp120. Park et al. injected gp120 into mice, and used sophisticated microscopy to track its
movement through the animal. This revealed that gp120 is rapidly transported to
nearby lymph nodes—organs that are spread throughout the body, and play an
important role in maintaining the immune response. Specialized macrophages can then
capture and deliver gp120 to other macrophages in the lymph node. These specialized macrophages serve as a gp120 reservoir and are located in part of
the lymph node that is a bit like a traffic hub, in that other immune cells
constantly pass through it. As such, B cells that specifically recognize gp120 have a
high likelihood of encountering these gp120-bearing macrophages, thereby allowing the
specific B cells to extract gp120, develop into plasma cells, and produce HIV-1
specific antibodies. Manipulating this macrophage network may help to optimize the
antibody responses to gp120 and so, in the future, could provide a way of treating or
preventing HIV-1 infections. DOI:http://dx.doi.org/10.7554/eLife.06467.002
Collapse
Affiliation(s)
- Chung Park
- B-cell Molecular Immunology Section, Laboratory of Immunoregulation, National Institutes of Allergy and Infectious Diseases, Bethesda, United States
| | - James Arthos
- Immunopathogenesis Section, Laboratory of Immunoregulation, National Institutes of Allergy and Infectious Diseases, Bethesda, United States
| | - Claudia Cicala
- Immunopathogenesis Section, Laboratory of Immunoregulation, National Institutes of Allergy and Infectious Diseases, Bethesda, United States
| | - John H Kehrl
- B-cell Molecular Immunology Section, Laboratory of Immunoregulation, National Institutes of Allergy and Infectious Diseases, Bethesda, United States
| |
Collapse
|