1
|
Dirkx L, Loyens M, Van Acker SI, Bulté D, Claes M, Radwanska M, Magez S, Caljon G. Effect of Leishmania infantum infection on B cell lymphopoiesis and memory in the bone marrow and spleen. FASEB J 2024; 38:e23893. [PMID: 39177943 DOI: 10.1096/fj.202400715r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Revised: 07/15/2024] [Accepted: 08/05/2024] [Indexed: 08/24/2024]
Abstract
Visceral leishmaniasis (VL) is characterized by an uncontrolled infection of internal organs such as the spleen, liver and bone marrow (BM) and can be lethal when left untreated. No effective vaccination is currently available for humans. The importance of B cells in infection and VL protective immunity has been controversial, with both detrimental and protective effects described. VL infection was found in this study to increase not only all analyzed B cell subsets in the spleen but also the B cell progenitors in the BM. The enhanced B lymphopoiesis aligns with the clinical manifestation of polyclonal hypergammaglobulinemia and the occurrence of autoantibodies. In line with earlier reports, flow cytometric and microscopic examination identified parasite attachment to B cells of the BM and spleen without internalization, and transformation of promastigotes into amastigote morphotypes. The interaction appears independent of IgM expression and is associated with an increased detection of activated lysosomes. Furthermore, the extracellularly attached amastigotes could be efficiently transferred to infect macrophages. The observed interaction underscores the potentially crucial role of B cells during VL infection. Additionally, using immunization against a fluorescent heterologous antigen, it was shown that the infection does not impair immune memory, which is reassuring for vaccination campaigns in VL endemic areas.
Collapse
Affiliation(s)
- Laura Dirkx
- Laboratory of Microbiology, Parasitology and Hygiene (LMPH), Infla-Med Centre of Excellence, University of Antwerp, Antwerp, Belgium
| | - Marlotte Loyens
- Laboratory of Microbiology, Parasitology and Hygiene (LMPH), Infla-Med Centre of Excellence, University of Antwerp, Antwerp, Belgium
| | - Sara I Van Acker
- Laboratory of Microbiology, Parasitology and Hygiene (LMPH), Infla-Med Centre of Excellence, University of Antwerp, Antwerp, Belgium
| | - Dimitri Bulté
- Laboratory of Microbiology, Parasitology and Hygiene (LMPH), Infla-Med Centre of Excellence, University of Antwerp, Antwerp, Belgium
- San Raffaele Telethon Institute for Gene Therapy (SR-Tiget), IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Mathieu Claes
- Laboratory of Microbiology, Parasitology and Hygiene (LMPH), Infla-Med Centre of Excellence, University of Antwerp, Antwerp, Belgium
| | - Magdalena Radwanska
- Laboratory for Biomedical Research, Department of Environmental Technology, Food Technology and Molecular Biotechnology, Ghent University Global Campus, Incheon, South Korea
- Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - Stefan Magez
- Laboratory for Biomedical Research, Department of Environmental Technology, Food Technology and Molecular Biotechnology, Ghent University Global Campus, Incheon, South Korea
- Brussels Center for Immunology (BCIM), Vrije Universiteit Brussel, Brussels, Belgium
| | - Guy Caljon
- Laboratory of Microbiology, Parasitology and Hygiene (LMPH), Infla-Med Centre of Excellence, University of Antwerp, Antwerp, Belgium
| |
Collapse
|
2
|
Hussen J, Althagafi H, Alalai MA, Alrabiah NA, Al Abdulsalam NK, Falemban B, Alouffi A, Al-Salem WS, Desquesnes M, Hébert L. Surra-affected dromedary camels show reduced numbers of blood B-cells and in vitro evidence of Trypanosoma-induced B cell death. Trop Anim Health Prod 2024; 56:223. [PMID: 39060802 DOI: 10.1007/s11250-024-04078-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Accepted: 07/18/2024] [Indexed: 07/28/2024]
Abstract
Trypanosomosis due to Trypanosoma evansi (surra) is one of the most important diseases with a significant impact on camel health and production. Trypanosoma-induced immunosuppression mechanisms, which are key factors of disease pathogenesis, have been characterized in several animal species. The present study investigated, therefore, the impact of trypanosomosis on the immunophenotype of blood leukocytes in camels. For this, the relative and absolute values of blood leukocyte populations, their expression pattern of cell surface molecules, and the numbers of the main lymphocyte subsets were compared between healthy camels and camels with clinical symptoms of chronic surra and serological evidence of exposure to Trypanosoma infection. Leukocytes were separated from the blood of healthy and diseased camels, labeled with fluorochrome-conjugated antibodies, and analyzed by flow cytometry. Compared to healthy camels, the leukogram of diseased camels was characterized by a slightly increased leukocyte count with moderate neutrophilia and monocytosis indicating a chronic inflammatory pattern that may reflect tissue injury due to the long-lasting inflammation. In addition, the analysis of lymphocyte subsets revealed a lower number and percentage of B cells in diseased than healthy camels. In vitro incubation of camel mononuclear cells with fluorochrome-labeled T. evansi revealed a higher capacity of camel B cells than T cells to bind the parasite in vitro. Furthermore, cell viability analysis of camel PBMC incubated in vitro with T. evansi whole parasites but not the purified antigens resulted in Trypanosoma-induced apoptosis and necrosis of camel B cells. Here we demonstrate an association between trypanosomosis in camels and reduced numbers of blood B cells. In vitro analysis supports a high potential of T. evansi to bind to camel B cells and induce their elimination by apoptosis and necrosis.
Collapse
Affiliation(s)
- Jamal Hussen
- Department of Microbiology, College of Veterinary Medicine, King Faisal University, Al-Ahsa 31982, Al Hofuf, Saudi Arabia.
| | - Hind Althagafi
- Biology Department, College of Science, Princess Nourah Bint Abdulrahman University, 11671, Riyadh, Saudi Arabia
| | - Mohammed Ameer Alalai
- Department of Microbiology, College of Veterinary Medicine, King Faisal University, Al-Ahsa 31982, Al Hofuf, Saudi Arabia
| | - Noof Abdulrahman Alrabiah
- Department of Biological Sciences, College of Science, King Faisal University, Al-Ahsa 31982, Al Hofuf, Saudi Arabia
| | - Najla K Al Abdulsalam
- Department of Biological Sciences, College of Science, King Faisal University, Al-Ahsa 31982, Al Hofuf, Saudi Arabia
| | - Baraa Falemban
- Department of Microbiology, College of Veterinary Medicine, King Faisal University, Al-Ahsa 31982, Al Hofuf, Saudi Arabia
| | - Abdulaziz Alouffi
- King Abdulaziz City for Science and Technology, 12354, Riyadh, Saudi Arabia
| | - Waleed S Al-Salem
- Ministry of Environment, Water and Agriculture, 11195, Riyadh, Saudi Arabia
| | - Marc Desquesnes
- CIRAD, UMR INTERTRYP, 31076, Ecole Nationale Vétérinaire de Toulouse (ENVT), 23 Chemin Des Capelles, 31300, Toulouse, France
- INTERTRYP, Univ Montpellier, CIRAD, Montpellier, IRD, France
| | - Laurent Hébert
- ANSES, Laboratory for Animal Health, Normandy site, Physiopathology and Epidemiology of Equine Diseases (PhEED) Unit, ANSES, 1080 L'Église, 14430, Goustranville, France
| |
Collapse
|
3
|
John L, Vijay R. Role of TAM Receptors in Antimalarial Humoral Immune Response. Pathogens 2024; 13:298. [PMID: 38668253 PMCID: PMC11054553 DOI: 10.3390/pathogens13040298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 03/29/2024] [Accepted: 03/31/2024] [Indexed: 04/29/2024] Open
Abstract
Immune response against malaria and the clearance of Plasmodium parasite relies on germinal-center-derived B cell responses that are temporally and histologically layered. Despite a well-orchestrated germinal center response, anti-Plasmodium immune response seldom offers sterilizing immunity. Recent studies report that certain pathophysiological features of malaria such as extensive hemolysis, hypoxia as well as the extrafollicular accumulation of short-lived plasmablasts may contribute to this suboptimal immune response. In this review, we summarize some of those studies and attempt to connect certain host intrinsic features in response to the malarial disease and the resultant gaps in the immune response.
Collapse
Affiliation(s)
- Lijo John
- Department of Veterinary Biochemistry, Kerala Veterinary and Animal Sciences University, Pookode 673576, Kerala, India
- Center for Cancer Cell Biology, Immunology and Infection, Rosalind Franklin University of Medicine and Science, North Chicago, IL 60047, USA
| | - Rahul Vijay
- Center for Cancer Cell Biology, Immunology and Infection, Rosalind Franklin University of Medicine and Science, North Chicago, IL 60047, USA
- Department of Microbiology and Immunology, Rosalind Franklin University of Medicine and Science, North Chicago, IL 60047, USA
| |
Collapse
|
4
|
Choi B, Vu HT, Vu HT, Radwanska M, Magez S. Advances in the Immunology of the Host-Parasite Interactions in African Trypanosomosis, including Single-Cell Transcriptomics. Pathogens 2024; 13:188. [PMID: 38535532 PMCID: PMC10975194 DOI: 10.3390/pathogens13030188] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 02/14/2024] [Accepted: 02/15/2024] [Indexed: 02/11/2025] Open
Abstract
Trypanosomes are single-celled extracellular parasites that infect mammals, including humans and livestock, causing global public health concerns and economic losses. These parasites cycle between insect vectors, such as tsetse flies and vertebrate hosts, undergoing morphological, cellular, and biochemical changes. They have remarkable immune evasion mechanisms to escape the host's innate and adaptive immune responses, such as surface coat antigenic variation and the induction of the loss of specificity and memory of antibody responses, enabling the prolongation of infection. Since trypanosomes circulate through the host body in blood and lymph fluid and invade various organs, understanding the interaction between trypanosomes and tissue niches is essential. Here, we present an up-to-date overview of host-parasite interactions and survival strategies for trypanosomes by introducing and discussing the latest studies investigating the transcriptomics of parasites according to life cycle stages, as well as host cells in various tissues and organs, using single-cell and spatial sequencing applications. In recent years, this information has improved our understanding of trypanosomosis by deciphering the diverse populations of parasites in the developmental process, as well as the highly heterogeneous immune and tissue-resident cells involved in anti-trypanosome responses. Ultimately, the goal of these approaches is to gain an in-depth understanding of parasite biology and host immunity, potentially leading to new vaccination and therapeutic strategies against trypanosomosis.
Collapse
Affiliation(s)
- Boyoon Choi
- Laboratory for Biomedical Research, Department of Environmental Technology, Food Technology and Molecular Biotechnology KR01, Ghent University Global Campus, Incheon 21985, Republic of Korea; (B.C.); (H.T.V.); (H.T.V.); (M.R.)
- Brussels Center for Immunology (BCIM), Department of Bioengineering Sciences (DBIT), Vrije Universiteit Brussel (VUB), 1050 Brussels, Belgium
- Department of Biochemistry and Microbiology WE10, Ghent University, 9000 Ghent, Belgium
| | - Hien Thi Vu
- Laboratory for Biomedical Research, Department of Environmental Technology, Food Technology and Molecular Biotechnology KR01, Ghent University Global Campus, Incheon 21985, Republic of Korea; (B.C.); (H.T.V.); (H.T.V.); (M.R.)
- Department of Biomedical Molecular Biology WE14, Ghent University, 9052 Ghent, Belgium
| | - Hai Thi Vu
- Laboratory for Biomedical Research, Department of Environmental Technology, Food Technology and Molecular Biotechnology KR01, Ghent University Global Campus, Incheon 21985, Republic of Korea; (B.C.); (H.T.V.); (H.T.V.); (M.R.)
- Department of Biomedical Molecular Biology WE14, Ghent University, 9052 Ghent, Belgium
| | - Magdalena Radwanska
- Laboratory for Biomedical Research, Department of Environmental Technology, Food Technology and Molecular Biotechnology KR01, Ghent University Global Campus, Incheon 21985, Republic of Korea; (B.C.); (H.T.V.); (H.T.V.); (M.R.)
- Department of Biomedical Molecular Biology WE14, Ghent University, 9052 Ghent, Belgium
| | - Stefan Magez
- Laboratory for Biomedical Research, Department of Environmental Technology, Food Technology and Molecular Biotechnology KR01, Ghent University Global Campus, Incheon 21985, Republic of Korea; (B.C.); (H.T.V.); (H.T.V.); (M.R.)
- Brussels Center for Immunology (BCIM), Department of Bioengineering Sciences (DBIT), Vrije Universiteit Brussel (VUB), 1050 Brussels, Belgium
- Department of Biochemistry and Microbiology WE10, Ghent University, 9000 Ghent, Belgium
| |
Collapse
|
5
|
Pham HTT, Magez S, Choi B, Baatar B, Jung J, Radwanska M. Neutrophil metalloproteinase driven spleen damage hampers infection control of trypanosomiasis. Nat Commun 2023; 14:5418. [PMID: 37669943 PMCID: PMC10480172 DOI: 10.1038/s41467-023-41089-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Accepted: 08/18/2023] [Indexed: 09/07/2023] Open
Abstract
Recent blood transcriptomic analysis of rhodesiense sleeping sickness patients has revealed that neutrophil signature genes and activation markers constitute the top indicators of trypanosomiasis-associated inflammation. Here, we show that Trypanosoma brucei infection results in expansion and differentiation of four splenic neutrophil subpopulations, including Mki67+Birc5+Gfi1+Cebpe+ proliferation-competent precursors, two intermediate immature subpopulations and Cebpb+Spi1+Irf7+Mcl1+Csf3r+ inflammation reprogrammed mature neutrophils. Transcriptomic scRNA-seq profiling identified the largest immature subpopulation by Mmp8/9 positive tertiary granule markers. We confirmed the presence of both metalloproteinases in extracellular spleen homogenates and plasma. During infection, these enzymes digest extracellular matrix components in the absence of sufficient TIMP inhibitory activity, driving remodeling of the spleen follicular architecture. Neutrophil depletion prevents the occurrence of organ damage, resulting in increased plasma cell numbers and prolonged host survival. We conclude that trypanosomiasis-associated neutrophil activation is a major contributor to the destruction of the secondary lymphoid architecture, required for maintaining an efficient adaptive immune response.
Collapse
Affiliation(s)
- Hien Thi Thu Pham
- Laboratory for Biomedical Research, Department of Environmental Technology, Food Technology and Molecular Biotechnology KR01, Ghent University Global Campus, Incheon, South Korea
- Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
- Laboratory of Cellular and Molecular Immunology, Vrije Universiteit Brussel, Brussels, Belgium
| | - Stefan Magez
- Laboratory for Biomedical Research, Department of Environmental Technology, Food Technology and Molecular Biotechnology KR01, Ghent University Global Campus, Incheon, South Korea
- Laboratory of Cellular and Molecular Immunology, Vrije Universiteit Brussel, Brussels, Belgium
- Department of Biochemistry and Microbiology, Ghent University, Ghent, Belgium
| | - Boyoon Choi
- Laboratory for Biomedical Research, Department of Environmental Technology, Food Technology and Molecular Biotechnology KR01, Ghent University Global Campus, Incheon, South Korea
- Laboratory of Cellular and Molecular Immunology, Vrije Universiteit Brussel, Brussels, Belgium
- Department of Biochemistry and Microbiology, Ghent University, Ghent, Belgium
| | - Bolortsetseg Baatar
- Laboratory for Biomedical Research, Department of Environmental Technology, Food Technology and Molecular Biotechnology KR01, Ghent University Global Campus, Incheon, South Korea
| | - Joohee Jung
- Duksung Women's University, Seoul, South Korea
| | - Magdalena Radwanska
- Laboratory for Biomedical Research, Department of Environmental Technology, Food Technology and Molecular Biotechnology KR01, Ghent University Global Campus, Incheon, South Korea.
- Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium.
| |
Collapse
|
6
|
Nguyen HTT, Magez S, Radwanska M. From helping to regulating – A transcriptomic profile of Ifng+ Il10+ Il21+ Cd4+ Th1 cells indicates their role in regulating inflammation during experimental trypanosomosis. FRONTIERS IN TROPICAL DISEASES 2023. [DOI: 10.3389/fitd.2023.1127022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/24/2023] Open
Abstract
IntroductionTrypanosoma evansi parasite infections cause a chronic animal wasting disease called Surra, and cases of atypical Human Trypanosomosis (aHT). In experimental models, T. evansi infections are hallmarked by the early onset of excessive inflammation. Therefore, balancing the production of inflammatory cytokines by anti-inflammatory IL-10 is crucial for prolonged survival.MethodsTo improve the understanding of trypanosomosis induced immunopathology, we used scRNA-seq data from an experimental chronic T. evansi infection mouse model, resembling natural infection in terms of disease characteristics. Results and discussionFor the first time, obtained results allowed to assess the transcriptomic profile and heterogeneity of splenic CD4+ T cell subsets, during a trypanosome infection. Here, the predominant subpopulation of T cells was represented by Tbx21(T-bet)+Ccr5+ Id2+ type 1 helper T cells (Th1), followed by Icos+ Cxcr5+Follicular T helper cells (Tfh) and very minor fraction of Il2ra(CD25)+Foxp3+ regulatory T cells (Tregs). Interestingly, the profile of Th1 cells shows that besides Ifng, these cells express high levels of Il10 and Il21, coding for anti-inflammatory and immunoregulatory cytokines. This coincides with the elevated expression of key genes involved in IL-10 and IL-21 secretion pathway such as Stat1 and Stat3, as well as the transcriptional factors Prdm1 (Blimp 1), and Maf (c-Maf). In contrast, there is virtually no IL-10 transcription detected in the Treg population. Finally, differential gene expression and gene ontology analysis of infection-induced Ifng+ Il10+ Il21+ Th1 cells highlights their suppressive function on T cell activation, differentiation and INF-γ production itself. This indicates that during trypanosome infections, the Ifng+ Il10+ Il21+ Th1 cells, rather than Tregs, assume an immune regulatory role that is needed for dampening inflammation.
Collapse
|
7
|
Abstract
African trypanosomes are bloodstream protozoan parasites that infect mammals including humans, where they cause sleeping sickness. Long-lasting infection is required to favor parasite transmission between hosts. Therefore, trypanosomes have developed strategies to continuously escape innate and adaptive responses of the immune system, while also preventing premature death of the host. The pathology linked to infection mainly results from inflammation and includes anemia and brain dysfunction in addition to loss of specificity and memory of the antibody response. The serum of humans contains an efficient trypanolytic factor, the membrane pore-forming protein apolipoprotein L1 (APOL1). In the two human-infective trypanosomes, specific parasite resistance factors inhibit APOL1 activity. In turn, many African individuals express APOL1 variants that counteract these resistance factors, enabling them to avoid sleeping sickness. However, these variants are associated with chronic kidney disease, particularly in the context of virus-induced inflammation such as coronavirus disease 2019. Vaccination perspectives are discussed.
Collapse
Affiliation(s)
- Etienne Pays
- Laboratory of Molecular Parasitology, Université Libre de Bruxelles, Gosselies, Belgium;
| | - Magdalena Radwanska
- Laboratory for Biomedical Research, Ghent University Global Campus, Incheon, South Korea.,Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium;
| | - Stefan Magez
- Laboratory for Biomedical Research, Ghent University Global Campus, Incheon, South Korea.,Laboratory of Cellular and Molecular Immunology, Vrije Universiteit Brussel, Brussels, Belgium; .,Department of Biochemistry and Microbiology, Ghent University, Ghent, Belgium
| |
Collapse
|
8
|
Álvarez-Rodríguez A, Jin BK, Radwanska M, Magez S. Recent progress in diagnosis and treatment of Human African Trypanosomiasis has made the elimination of this disease a realistic target by 2030. Front Med (Lausanne) 2022; 9:1037094. [PMID: 36405602 PMCID: PMC9669443 DOI: 10.3389/fmed.2022.1037094] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Accepted: 10/19/2022] [Indexed: 11/06/2022] Open
Abstract
Human African Trypanosomiasis (HAT) is caused by unicellular flagellated protozoan parasites of the genus Trypanosoma brucei. The subspecies T. b. gambiense is mainly responsible for mostly chronic anthroponotic infections in West- and Central Africa, accounting for roughly 95% of all HAT cases. Trypanosoma b. rhodesiense results in more acute zoonotic infections in East-Africa. Because HAT has a two-stage pathogenesis, treatment depends on clinical assessment of patients and the determination whether or not parasites have crossed the blood brain barrier. Today, ultimate confirmation of parasitemia is still done by microscopy analysis. However, the introduction of diagnostic lateral flow devices has been a major contributor to the recent dramatic drop in T. b. gambiense HAT. Other techniques such as loop mediated isothermal amplification (LAMP) and recombinant polymerase amplification (RPA)-based tests have been published but are still not widely used in the field. Most recently, CRISPR-Cas technology has been proposed to improve the intrinsic diagnostic characteristics of molecular approaches. This will become crucial in the near future, as preventing the resurgence of HAT will be a priority and will require tools with extreme high positive and negative predicted values, as well as excellent sensitivity and specificity. As for treatment, pentamidine and suramin have historically been the drugs of choice for the treatment of blood-stage gambiense-HAT and rhodesiense-HAT, respectively. For treatment of second-stage infections, drugs that pass the blood brain barrier are needed, and melarsoprol has been effectively used for both forms of HAT in the past. However, due to the high occurrence of post-treatment encephalopathy, the drug is not recommended for use in T. b. gambiense HAT. Here, a combination therapy of eflornithine and nifurtimox (NECT) has been the choice of treatment since 2009. As this treatment requires IV perfusion of eflornithine, efforts were launched in 2003 by the drugs for neglected disease initiative (DNDi) to find an oral-only therapy solution, suitable for rural sub-Saharan Africa treatment conditions. In 2019 this resulted in the introduction of fexinidazole, with a treatment regimen suitable for both the blood-stage and non-severe second-stage T. b. gambiense infections. Experimental treatment of T. b. rhodesiense HAT has now been initiated as well.
Collapse
Affiliation(s)
- Andrés Álvarez-Rodríguez
- Laboratory for Biomedical Research, Ghent University Global Campus, Incheon, South Korea
- Laboratory of Cellular and Molecular Immunology, Vrije Universiteit Brussel, Brussels, Belgium
| | - Bo-Kyung Jin
- Laboratory for Biomedical Research, Ghent University Global Campus, Incheon, South Korea
| | - Magdalena Radwanska
- Laboratory for Biomedical Research, Ghent University Global Campus, Incheon, South Korea
- Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - Stefan Magez
- Laboratory for Biomedical Research, Ghent University Global Campus, Incheon, South Korea
- Laboratory of Cellular and Molecular Immunology, Vrije Universiteit Brussel, Brussels, Belgium
- Department of Biochemistry and Microbiology, Ghent University, Ghent, Belgium
- *Correspondence: Stefan Magez,
| |
Collapse
|
9
|
Stijlemans B, Schoovaerts M, De Baetselier P, Magez S, De Trez C. The Role of MIF and IL-10 as Molecular Yin-Yang in the Modulation of the Host Immune Microenvironment During Infections: African Trypanosome Infections as a Paradigm. Front Immunol 2022; 13:865395. [PMID: 35464430 PMCID: PMC9022210 DOI: 10.3389/fimmu.2022.865395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Accepted: 03/14/2022] [Indexed: 11/13/2022] Open
Abstract
African trypanosomes are extracellular flagellated unicellular protozoan parasites transmitted by tsetse flies and causing Sleeping Sickness disease in humans and Nagana disease in cattle and other livestock. These diseases are usually characterized by the development of a fatal chronic inflammatory disease if left untreated. During African trypanosome infection and many other infectious diseases, the immune response is mediating a see-saw balance between effective/protective immunity and excessive infection-induced inflammation that can cause collateral tissue damage. African trypanosomes are known to trigger a strong type I pro-inflammatory response, which contributes to peak parasitaemia control, but this can culminate into the development of immunopathologies, such as anaemia and liver injury, if not tightly controlled. In this context, the macrophage migration inhibitory factor (MIF) and the interleukin-10 (IL-10) cytokines may operate as a molecular “Yin-Yang” in the modulation of the host immune microenvironment during African trypanosome infection, and possibly other infectious diseases. MIF is a pleiotropic pro-inflammatory cytokine and critical upstream mediator of immune and inflammatory responses, associated with exaggerated inflammation and immunopathology. For example, it plays a crucial role in the pro-inflammatory response against African trypanosomes and other pathogens, thereby promoting the development of immunopathologies. On the other hand, IL-10 is an anti-inflammatory cytokine, acting as a master regulator of inflammation during both African trypanosomiasis and other diseases. IL-10 is crucial to counteract the strong MIF-induced pro-inflammatory response, leading to pathology control. Hence, novel strategies capable of blocking MIF and/or promoting IL-10 receptor signaling pathways, could potentially be used as therapy to counteract immunopathology development during African trypanosome infection, as well as during other infectious conditions. Together, this review aims at summarizing the current knowledge on the opposite immunopathological molecular “Yin-Yang” switch roles of MIF and IL-10 in the modulation of the host immune microenvironment during infection, and more particularly during African trypanosomiasis as a paradigm.
Collapse
Affiliation(s)
- Benoit Stijlemans
- Laboratory of Cellular and Molecular Immunology, Vrije Universiteit Brussel (VUB), Brussels, Belgium.,Myeloid Cell Immunology Laboratory, Vlaams Instituut voor Biotechnologie (VIB) Centre for Inflammation Research, Brussels, Belgium
| | - Maxime Schoovaerts
- Laboratory of Cellular and Molecular Immunology, Vrije Universiteit Brussel (VUB), Brussels, Belgium
| | - Patrick De Baetselier
- Laboratory of Cellular and Molecular Immunology, Vrije Universiteit Brussel (VUB), Brussels, Belgium.,Myeloid Cell Immunology Laboratory, Vlaams Instituut voor Biotechnologie (VIB) Centre for Inflammation Research, Brussels, Belgium
| | - Stefan Magez
- Laboratory of Cellular and Molecular Immunology, Vrije Universiteit Brussel (VUB), Brussels, Belgium.,Laboratory of Biomedical Research, Ghent University Global Campus, Incheon, South Korea
| | - Carl De Trez
- Laboratory of Cellular and Molecular Immunology, Vrije Universiteit Brussel (VUB), Brussels, Belgium
| |
Collapse
|
10
|
|
11
|
Tangie E, Walters A, Hsu NJ, Fisher M, Magez S, Jacobs M, Keeton R. BCG-mediated protection against M. tuberculosis is sustained post-malaria infection independent of parasite virulence. Immunology 2021; 165:219-233. [PMID: 34775598 DOI: 10.1111/imm.13431] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2021] [Revised: 09/15/2021] [Accepted: 09/28/2021] [Indexed: 11/28/2022] Open
Abstract
Tuberculosis (TB) and malaria remain serious threats to global health. Bacillus Calmette-Guerin (BCG), the only licensed vaccine against TB protects against severe disseminated forms of TB in infants but shows poor efficacy against pulmonary TB in adults. Co-infections have been reported as one of the factors implicated in vaccine inefficacy. Given the geographical overlap of malaria and TB in areas where BCG vaccination is routinely administered, we hypothesized that virulence-dependent co-infection with Plasmodium species could alter the BCG-specific immune responses thus resulting in failure to protect against Mycobacterium tuberculosis. We compared virulent Plasmodium berghei and non-virulent Plasmodium chabaudi, their effects on B cells, effector and memory T cells, and the outcome on BCG-induced efficacy against M. tuberculosis infection. We demonstrate that malaria co-infection modulates both B- and T-cell immune responses but does not significantly alter the ability of the BCG vaccine to inhibit the growth of M. tuberculosis irrespective of parasite virulence. This malaria-driven immune regulation may have serious consequences in the early clinical trials of novel vaccines, which rely on vaccine-specific T-cell responses to screen novel vaccines for progression to the more costly vaccine efficacy trials.
Collapse
Affiliation(s)
- Emily Tangie
- Division of Immunology, Department of Pathology, Institute of Infectious Disease and Molecular Medicine, Health Sciences Faculty, University of Cape Town, Observatory, South Africa
| | - Avril Walters
- Division of Immunology, Department of Pathology, Institute of Infectious Disease and Molecular Medicine, Health Sciences Faculty, University of Cape Town, Observatory, South Africa
| | - Nai-Jen Hsu
- Division of Immunology, Department of Pathology, Institute of Infectious Disease and Molecular Medicine, Health Sciences Faculty, University of Cape Town, Observatory, South Africa
| | - Michelle Fisher
- South African Tuberculosis Vaccine Initiative, University of Cape Town, Observatory, South Africa
| | - Stefan Magez
- Laboratory for Cellular and Molecular Immunology (CMIM), Department of Bioengineering Sciences, Vrije Universiteit Brussel, Brussels, Belgium.,Department of Biochemistry and Microbiology, Ghent University, Gent, Belgium.,Laboratory for Biomedical Research, Department of Molecular Biotechnology, Environment Technology and Food Technology, Ghent University Global Campus, Incheon, Korea
| | - Muazzam Jacobs
- Division of Immunology, Department of Pathology, Institute of Infectious Disease and Molecular Medicine, Health Sciences Faculty, University of Cape Town, Observatory, South Africa.,National Health Laboratory Service, Cape Town, South Africa.,Infectious Disease Research Unit, University of Cape Town, Observatory, South Africa
| | - Roanne Keeton
- Division of Immunology, Department of Pathology, Institute of Infectious Disease and Molecular Medicine, Health Sciences Faculty, University of Cape Town, Observatory, South Africa
| |
Collapse
|
12
|
Nguyen HTT, Guevarra RB, Magez S, Radwanska M. Single-cell transcriptome profiling and the use of AID deficient mice reveal that B cell activation combined with antibody class switch recombination and somatic hypermutation do not benefit the control of experimental trypanosomosis. PLoS Pathog 2021; 17:e1010026. [PMID: 34762705 PMCID: PMC8610246 DOI: 10.1371/journal.ppat.1010026] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 11/23/2021] [Accepted: 10/11/2021] [Indexed: 01/02/2023] Open
Abstract
Salivarian trypanosomes are extracellular protozoan parasites causing infections in a wide range of mammalian hosts, with Trypanosoma evansi having the widest geographic distribution, reaching territories far outside Africa and occasionally even Europe. Besides causing the animal diseases, T. evansi can cause atypical Human Trypanosomosis. The success of this parasite is attributed to its capacity to evade and disable the mammalian defense response. To unravel the latter, we applied here for the first time a scRNA-seq analysis on splenocytes from trypanosome infected mice, at two time points during infection, i.e. just after control of the first parasitemia peak (day 14) and a late chronic time point during infection (day 42). This analysis was combined with flow cytometry and ELISA, revealing that T. evansi induces prompt activation of splenic IgM+CD1d+ Marginal Zone and IgMIntIgD+ Follicular B cells, coinciding with an increase in plasma IgG2c Ab levels. Despite the absence of follicles, a rapid accumulation of Aicda+ GC-like B cells followed first parasitemia peak clearance, accompanied by the occurrence of Xbp1+ expressing CD138+ plasma B cells and Tbx21+ atypical CD11c+ memory B cells. Ablation of immature CD93+ bone marrow and Vpreb3+Ly6d+Ighm+ expressing transitional spleen B cells prevented mature peripheral B cell replenishment. Interestingly, AID-/- mice that lack the capacity to mount anti-parasite IgG responses, exhibited a superior defense level against T. evansi infections. Here, elevated natural IgMs were able to exert in vivo and in vitro trypanocidal activity. Hence, we conclude that in immune competent mice, trypanosomosis associated B cell activation and switched IgG production is rapidly induced by T. evansi, facilitating an escape from the detrimental natural IgM killing activity, and resulting in increased host susceptibility. This unique role of IgM and its anti-trypanosome activity are discussed in the context of the dilemma this causes for the future development of anti-trypanosome vaccines.
Collapse
Affiliation(s)
- Hang Thi Thu Nguyen
- Department of Biochemistry and Microbiology, Ghent University, Ghent, Belgium
- Laboratory for Biomedical Research, Ghent University Global Campus, Incheon, South Korea
- Laboratory of Cellular and Molecular Immunology, Vrije Universiteit Brussel, Brussels, Belgium
| | - Robin B. Guevarra
- Laboratory for Biomedical Research, Ghent University Global Campus, Incheon, South Korea
| | - Stefan Magez
- Department of Biochemistry and Microbiology, Ghent University, Ghent, Belgium
- Laboratory for Biomedical Research, Ghent University Global Campus, Incheon, South Korea
- Laboratory of Cellular and Molecular Immunology, Vrije Universiteit Brussel, Brussels, Belgium
| | - Magdalena Radwanska
- Laboratory for Biomedical Research, Ghent University Global Campus, Incheon, South Korea
- Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| |
Collapse
|
13
|
Magez S, Li Z, Nguyen HTT, Pinto Torres JE, Van Wielendaele P, Radwanska M, Began J, Zoll S, Sterckx YGJ. The History of Anti-Trypanosome Vaccine Development Shows That Highly Immunogenic and Exposed Pathogen-Derived Antigens Are Not Necessarily Good Target Candidates: Enolase and ISG75 as Examples. Pathogens 2021; 10:pathogens10081050. [PMID: 34451514 PMCID: PMC8400590 DOI: 10.3390/pathogens10081050] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 08/02/2021] [Accepted: 08/10/2021] [Indexed: 12/02/2022] Open
Abstract
Salivarian trypanosomes comprise a group of extracellular anthroponotic and zoonotic parasites. The only sustainable method for global control of these infection is through vaccination of livestock animals. Despite multiple reports describing promising laboratory results, no single field-applicable solution has been successful so far. Conventionally, vaccine research focusses mostly on exposed immunogenic antigens, or the structural molecular knowledge of surface exposed invariant immunogens. Unfortunately, extracellular parasites (or parasites with extracellular life stages) have devised efficient defense systems against host antibody attacks, so they can deal with the mammalian humoral immune response. In the case of trypanosomes, it appears that these mechanisms have been perfected, leading to vaccine failure in natural hosts. Here, we provide two examples of potential vaccine candidates that, despite being immunogenic and accessible to the immune system, failed to induce a functionally protective memory response. First, trypanosomal enolase was tested as a vaccine candidate, as it was recently characterized as a highly conserved enzyme that is readily recognized during infection by the host antibody response. Secondly, we re-addressed a vaccine approach towards the Invariant Surface Glycoprotein ISG75, and showed that despite being highly immunogenic, trypanosomes can avoid anti-ISG75 mediated parasitemia control.
Collapse
Affiliation(s)
- Stefan Magez
- Laboratory of Cellular and Molecular Immunology, Department of Bioengineering Sciences, Vrije Universiteit Brussel, Pleinlaan 2, 1050 Brussels, Belgium; (Z.L.); (H.T.T.N.); (J.E.P.T.)
- Department of Biochemistry and Microbiology, Ghent University, Ledeganckstraat 35, 9000 Ghent, Belgium
- Laboratory for Biomedical Research, Department of Molecular Biotechnology, Environment Technology and Food Technology, Ghent University Global Campus, Songdomunhwa-Ro 119-5, Yeonsu-Gu, Incheon 406-840, Korea;
- Correspondence:
| | - Zeng Li
- Laboratory of Cellular and Molecular Immunology, Department of Bioengineering Sciences, Vrije Universiteit Brussel, Pleinlaan 2, 1050 Brussels, Belgium; (Z.L.); (H.T.T.N.); (J.E.P.T.)
- Laboratory of Medical Biochemistry (LMB) and the Infla-Med Centre of Excellence, University of Antwerp, Campus Drie Eiken, Universiteitsplein 1, 2610 Wilrijk, Belgium; (P.V.W.); (Y.G.-J.S.)
| | - Hang Thi Thu Nguyen
- Laboratory of Cellular and Molecular Immunology, Department of Bioengineering Sciences, Vrije Universiteit Brussel, Pleinlaan 2, 1050 Brussels, Belgium; (Z.L.); (H.T.T.N.); (J.E.P.T.)
- Department of Biochemistry and Microbiology, Ghent University, Ledeganckstraat 35, 9000 Ghent, Belgium
- Laboratory for Biomedical Research, Department of Molecular Biotechnology, Environment Technology and Food Technology, Ghent University Global Campus, Songdomunhwa-Ro 119-5, Yeonsu-Gu, Incheon 406-840, Korea;
| | - Joar Esteban Pinto Torres
- Laboratory of Cellular and Molecular Immunology, Department of Bioengineering Sciences, Vrije Universiteit Brussel, Pleinlaan 2, 1050 Brussels, Belgium; (Z.L.); (H.T.T.N.); (J.E.P.T.)
| | - Pieter Van Wielendaele
- Laboratory of Medical Biochemistry (LMB) and the Infla-Med Centre of Excellence, University of Antwerp, Campus Drie Eiken, Universiteitsplein 1, 2610 Wilrijk, Belgium; (P.V.W.); (Y.G.-J.S.)
| | - Magdalena Radwanska
- Laboratory for Biomedical Research, Department of Molecular Biotechnology, Environment Technology and Food Technology, Ghent University Global Campus, Songdomunhwa-Ro 119-5, Yeonsu-Gu, Incheon 406-840, Korea;
- Department of Biomedical Molecular Biology, Ghent University, Technologiepark Zwijnaarde 71, 9000 Ghent, Belgium
| | - Jakub Began
- Laboratory of Structural Parasitology, Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, Flemingovo Namesti 2, 16610 Prague 6, Czech Republic; (J.B.); (S.Z.)
| | - Sebastian Zoll
- Laboratory of Structural Parasitology, Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, Flemingovo Namesti 2, 16610 Prague 6, Czech Republic; (J.B.); (S.Z.)
| | - Yann G.-J. Sterckx
- Laboratory of Medical Biochemistry (LMB) and the Infla-Med Centre of Excellence, University of Antwerp, Campus Drie Eiken, Universiteitsplein 1, 2610 Wilrijk, Belgium; (P.V.W.); (Y.G.-J.S.)
| |
Collapse
|
14
|
Chulanetra M, Chaicumpa W. Revisiting the Mechanisms of Immune Evasion Employed by Human Parasites. Front Cell Infect Microbiol 2021; 11:702125. [PMID: 34395313 PMCID: PMC8358743 DOI: 10.3389/fcimb.2021.702125] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Accepted: 06/25/2021] [Indexed: 12/14/2022] Open
Abstract
For the establishment of a successful infection, i.e., long-term parasitism and a complete life cycle, parasites use various diverse mechanisms and factors, which they may be inherently bestowed with, or may acquire from the natural vector biting the host at the infection prelude, or may take over from the infecting host, to outmaneuver, evade, overcome, and/or suppress the host immunity, both innately and adaptively. This narrative review summarizes the up-to-date strategies exploited by a number of representative human parasites (protozoa and helminths) to counteract the target host immune defense. The revisited information should be useful for designing diagnostics and therapeutics as well as vaccines against the respective parasitic infections.
Collapse
Affiliation(s)
- Monrat Chulanetra
- Center of Research Excellence on Therapeutic Proteins and Antibody Engineering, Department of Parasitology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Wanpen Chaicumpa
- Center of Research Excellence on Therapeutic Proteins and Antibody Engineering, Department of Parasitology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| |
Collapse
|
15
|
Autheman D, Crosnier C, Clare S, Goulding DA, Brandt C, Harcourt K, Tolley C, Galaway F, Khushu M, Ong H, Romero-Ramirez A, Duffy CW, Jackson AP, Wright GJ. An invariant Trypanosoma vivax vaccine antigen induces protective immunity. Nature 2021; 595:96-100. [PMID: 34040257 DOI: 10.1038/s41586-021-03597-x] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Accepted: 04/29/2021] [Indexed: 02/05/2023]
Abstract
Trypanosomes are protozoan parasites that cause infectious diseases, including African trypanosomiasis (sleeping sickness) in humans and nagana in economically important livestock1,2. An effective vaccine against trypanosomes would be an important control tool, but the parasite has evolved sophisticated immunoprotective mechanisms-including antigenic variation3-that present an apparently insurmountable barrier to vaccination. Here we show, using a systematic genome-led vaccinology approach and a mouse model of Trypanosoma vivax infection4, that protective invariant subunit vaccine antigens can be identified. Vaccination with a single recombinant protein comprising the extracellular region of a conserved cell-surface protein that is localized to the flagellum membrane (which we term 'invariant flagellum antigen from T. vivax') induced long-lasting protection. Immunity was passively transferred with immune serum, and recombinant monoclonal antibodies to this protein could induce sterile protection and revealed several mechanisms of antibody-mediated immunity, including a major role for complement. Our discovery identifies a vaccine candidate for an important parasitic disease that has constrained socioeconomic development in countries in sub-Saharan Africa5, and provides evidence that highly protective vaccines against trypanosome infections can be achieved.
Collapse
Affiliation(s)
- Delphine Autheman
- Cell Surface Signalling Laboratory, Wellcome Sanger Institute, Hinxton, UK
| | - Cécile Crosnier
- Cell Surface Signalling Laboratory, Wellcome Sanger Institute, Hinxton, UK
| | - Simon Clare
- Pathogen Support Team, Wellcome Sanger Institute, Hinxton, UK
| | - David A Goulding
- Electron and Advanced Light Microscopy, Wellcome Sanger Institute, Hinxton, UK
| | - Cordelia Brandt
- Pathogen Support Team, Wellcome Sanger Institute, Hinxton, UK
| | | | | | - Francis Galaway
- Cell Surface Signalling Laboratory, Wellcome Sanger Institute, Hinxton, UK
| | - Malhar Khushu
- Cell Surface Signalling Laboratory, Wellcome Sanger Institute, Hinxton, UK
| | - Han Ong
- Cell Surface Signalling Laboratory, Wellcome Sanger Institute, Hinxton, UK
| | | | - Craig W Duffy
- Department of Infection Biology and Microbiomes, University of Liverpool, Liverpool, UK
| | - Andrew P Jackson
- Department of Infection Biology and Microbiomes, University of Liverpool, Liverpool, UK
| | - Gavin J Wright
- Cell Surface Signalling Laboratory, Wellcome Sanger Institute, Hinxton, UK.
- Department of Biology, University of York, York, UK.
- Hull York Medical School, University of York, York, UK.
- York Biomedical Research Institute, University of York, York, UK.
| |
Collapse
|
16
|
African Trypanosomosis Obliterates DTPa Vaccine-Induced Functional Memory So That Post-Treatment Bordetella pertussis Challenge Fails to Trigger a Protective Recall Response. Vaccines (Basel) 2021; 9:vaccines9060603. [PMID: 34200074 PMCID: PMC8230080 DOI: 10.3390/vaccines9060603] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 06/01/2021] [Accepted: 06/01/2021] [Indexed: 11/17/2022] Open
Abstract
Salivarian trypanosomes are extracellular parasites causing anthroponotic and zoonotic infections. Anti-parasite vaccination is considered the only sustainable method for global trypanosomosis control. Unfortunately, no single field applicable vaccine solution has been successful so far. The active destruction of the host’s adaptive immune system by trypanosomes is believed to contribute to this problem. Here, we show that Trypanosome brucei brucei infection results in the lasting obliteration of immunological memory, including vaccine-induced memory against non-related pathogens. Using the well-established DTPa vaccine model in combination with a T. b. brucei infection and a diminazene diaceturate anti-parasite treatment scheme, our results demonstrate that while the latter ensured full recovery from the T. b. brucei infection, it failed to restore an efficacious anti-B. pertussis vaccine recall response. The DTPa vaccine failure coincided with a shift in the IgG1/IgG2a anti-B. pertussis antibody ratio in favor of IgG2a, and a striking impact on all of the spleen immune cell populations. Interestingly, an increased plasma IFNγ level in DTPa-vaccinated trypanosome-infected mice coincided with a temporary antibody-independent improvement in early-stage trypanosomosis control. In conclusion, our results are the first to show that trypanosome-inflicted immune damage is not restored by successful anti-parasite treatment.
Collapse
|
17
|
Levy DJ, Goundry A, Laires RSS, Costa TFR, Novo CM, Grab DJ, Mottram JC, Lima APCA. Role of the inhibitor of serine peptidase 2 (ISP2) of Trypanosoma brucei rhodesiense in parasite virulence and modulation of the inflammatory responses of the host. PLoS Negl Trop Dis 2021; 15:e0009526. [PMID: 34153047 PMCID: PMC8248637 DOI: 10.1371/journal.pntd.0009526] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2020] [Revised: 07/01/2021] [Accepted: 06/01/2021] [Indexed: 11/18/2022] Open
Abstract
Trypanosoma brucei rhodesiense is one of the causative agents of Human African Trypanosomiasis (HAT), known as sleeping sickness. The parasite invades the central nervous system and causes severe encephalitis that is fatal if left untreated. We have previously identified ecotin-like inhibitors of serine peptidases, named ISPs, in trypanosomatid parasitic protozoa. Here, we investigated the role of ISP2 in bloodstream form T. b. rhodesiense. We generated gene-deficient mutants lacking ISP2 (Δisp2), which displayed a growth profile in vitro similar to that of wild-type (WT) parasites. C57BL/6 mice infected with Δisp2 displayed lower blood parasitemia, a delayed hind leg pathological phenotype and survived longer. The immune response was examined at two time-points that corresponded with two peaks of parasitemia. At 4 days, the spleens of Δisp2-infected mice had a greater percentage of NOS2+ myeloid cells, IFN-γ+-NK cells and increased TNF-α compared to those infected with WT and parasites re-expressing ISP2 (Δisp2:ISP2). By 13 days the increased NOS2+ population was sustained in Δisp2-infected mice, along with increased percentages of monocyte-derived dendritic cells, as well as CD19+ B lymphocytes, and CD8+ and CD4+ T lymphocytes. Taken together, these findings indicate that ISP2 contributes to T. b. rhodesiense virulence in mice and attenuates the inflammatory response during early infection.
Collapse
Affiliation(s)
- David Jessula Levy
- Instituto de Biofisica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Av. Carlos Chagas Filho 373, Centro de Ciências da Saúde, Ilha do Fundão, Rio de Janeiro, RJ, Brazil
| | - Amy Goundry
- Instituto de Biofisica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Av. Carlos Chagas Filho 373, Centro de Ciências da Saúde, Ilha do Fundão, Rio de Janeiro, RJ, Brazil
| | - Raquel S. S. Laires
- Instituto de Higiene e Medicina Tropical, Universidade Nova de Lisboa, Lisboa, Portugal
- Wellcome Trust Centre for Molecular Parasitology, Institute of Infection, Immunity and Inflammation, University of Glasgow, Glasgow, United Kingdom
| | - Tatiana F. R. Costa
- Instituto de Biofisica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Av. Carlos Chagas Filho 373, Centro de Ciências da Saúde, Ilha do Fundão, Rio de Janeiro, RJ, Brazil
| | - Carlos Mendes Novo
- Instituto de Higiene e Medicina Tropical, Universidade Nova de Lisboa, Lisboa, Portugal
| | - Dennis J. Grab
- Department of Pathology, Uniformed Services University of the Health Sciences, Bethesda, Maryland; Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| | - Jeremy C. Mottram
- Wellcome Trust Centre for Molecular Parasitology, Institute of Infection, Immunity and Inflammation, University of Glasgow, Glasgow, United Kingdom
- York Biomedical Research Institute and Department of Biology, University of York, York, United Kingdom
| | - Ana Paula C. A. Lima
- Instituto de Biofisica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Av. Carlos Chagas Filho 373, Centro de Ciências da Saúde, Ilha do Fundão, Rio de Janeiro, RJ, Brazil
| |
Collapse
|
18
|
Johnson CB, Zhang J, Lucas D. The Role of the Bone Marrow Microenvironment in the Response to Infection. Front Immunol 2020; 11:585402. [PMID: 33324404 PMCID: PMC7723962 DOI: 10.3389/fimmu.2020.585402] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Accepted: 10/26/2020] [Indexed: 01/22/2023] Open
Abstract
Hematopoiesis in the bone marrow (BM) is the primary source of immune cells. Hematopoiesis is regulated by a diverse cellular microenvironment that supports stepwise differentiation of multipotent stem cells and progenitors into mature blood cells. Blood cell production is not static and the bone marrow has evolved to sense and respond to infection by rapidly generating immune cells that are quickly released into the circulation to replenish those that are consumed in the periphery. Unfortunately, infection also has deleterious effects injuring hematopoietic stem cells (HSC), inefficient hematopoiesis, and remodeling and destruction of the microenvironment. Despite its central role in immunity, the role of the microenvironment in the response to infection has not been systematically investigated. Here we summarize the key experimental evidence demonstrating a critical role of the bone marrow microenvironment in orchestrating the bone marrow response to infection and discuss areas of future research.
Collapse
Affiliation(s)
- Courtney B Johnson
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Medical Center, Cincinnati, OH, United States
| | - Jizhou Zhang
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Medical Center, Cincinnati, OH, United States
| | - Daniel Lucas
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Medical Center, Cincinnati, OH, United States.,Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, United States
| |
Collapse
|
19
|
Mice immunization with Trypanosoma brucei gambiense translationally controlled tumor protein modulates immunoglobulin and cytokine production, as well as parasitaemia and mice survival after challenge with the parasite. INFECTION GENETICS AND EVOLUTION 2020; 87:104636. [PMID: 33217546 DOI: 10.1016/j.meegid.2020.104636] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Revised: 11/06/2020] [Accepted: 11/15/2020] [Indexed: 01/01/2023]
Abstract
Fighting trypanosomiasis with an anti-trypanosome vaccine is ineffective, the parasite being protected by a Variable Surface Glycoprotein (VSG) whose structure is modified at each peak of parasitaemia, which allows it to escape the host's immune defenses. However, the host immunization against an essential factor for the survival of the parasite or the expression of its pathogenicity could achieve the same objective. Here we present the results of mouse immunization against the Translationally Controlled Tumor Protein (TCTP), a protein present in the Trypanosoma brucei gambiense (Tbg) secretome, the parasite responsible for human trypanosomiasis. Mice immunization was followed by infection with Tbg parasites. The production of IgG, IgG1 and IgG2a begun after the second TCTP injection and was dose-dependant, the maximum level of anti-TCTP antibodies remained stable up to 4 days post-infection and then decreased. Regarding cytokines (IL-2, 4, 6, 10, INFγ, TNFα), the most striking result was their total suppression after immunization with the highest TCTP dose. Compared to the control group, the immunized mice displayed a reduced first peak of parasitaemia, a 100% increase in the time to onset of the second peak, and an increased time of mice survival. The effect of immunization was only transient but demonstrated the likely important role that TCTP plays in host-parasite interactions and that some key parasite proteins could reduce infection impact.
Collapse
|
20
|
De Trez C, Khan S, Magez S. T. brucei infections abrogate diverse plasma cell-mediated effector B cell responses, independently of their specificity, affinity and host genetic background. PLoS Negl Trop Dis 2020; 14:e0008358. [PMID: 32589656 PMCID: PMC7347239 DOI: 10.1371/journal.pntd.0008358] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2019] [Revised: 07/09/2020] [Accepted: 05/04/2020] [Indexed: 11/18/2022] Open
Abstract
Antibody-mediated parasite killing is considered the most effective host immune response against extracellular trypanosome parasites. However, due to host-parasite co-evolution pressure, these parasites have "learned" how to hijack the host immune system via the development of immune evasion strategies. Hereby they prevent elimination and promote transmission. In the past, our group has shown that African trypanosome parasites are able to "shut down" the host B cell compartment, via the abolishment of the homeostatic B cell compartment. In line with this, we have reported that trypanosome infections result in detrimental outcomes on auto-reactive and cancer B cells. To unravel the immune mechanisms involved in these processes we adopted here a well-defined B cell vaccine model, i.e. the thymo-dependent hapten-carrier NP-CGG (4-Hydroxy-3-nitrophenylacetyl-Chicken Gamma Globulin) emulsified in Alum adjuvant. Results show that T. brucei infections abrogate the circulating titres of vaccine-induced CGG-specific as well as NP-specific IgG1+ antibodies, a hallmark of memory B cell responses in this model. This happens independently of their affinity and IFNɣ signalling. Next, we demonstrate that T. brucei infections also induce a decrease of anti-NP IgG3+ antibodies induced by the administration of NP coupled to Ficoll, a thymo-independent antigen. Confirming the non-specificity of the infection-associated immunopathology, this report also shows that trypanosome infections abolish vaccine-induced memory response against malaria parasite in BALB/c mice. Together, these data indicates that T. brucei infections impair every stages of B cell development, including effector plasma B cells, independently of their specificity and affinity as well as the host genetic background.
Collapse
Affiliation(s)
- Carl De Trez
- Laboratory of Cellular and Molecular Immunology, Vrije Universiteit Brussel, Brussels, Belgium
- * E-mail:
| | - Shahid Khan
- Department of Parasitology, Leiden University Medical Center, Leiden, Netherlands
| | - Stefan Magez
- Laboratory of Cellular and Molecular Immunology, Vrije Universiteit Brussel, Brussels, Belgium
- Ghent University Global Campus, Yeonsu-gu, Incheon, South Korea
| |
Collapse
|
21
|
Gomes AC, Saraiva M, Gomes MS. The bone marrow hematopoietic niche and its adaptation to infection. Semin Cell Dev Biol 2020; 112:37-48. [PMID: 32553581 DOI: 10.1016/j.semcdb.2020.05.014] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2019] [Revised: 05/14/2020] [Accepted: 05/19/2020] [Indexed: 12/13/2022]
Abstract
Hematopoiesis is responsible for the formation of all blood cells from hematopoietic stem cells (HSC) in the bone marrow (BM). It is a highly regulated process, in order to adapt its cellular output to changing body requirements. Specific microenvironmental conditions within the BM must exist in order to maintain HSC pluripotency and self-renewal, as well as to ensure appropriate differentiation of progenitor cells towards each hematopoietic lineage. Those conditions were coined "the hematopoietic niche" and their identity in terms of cell types, location and soluble molecular components has been the subject of intense research in the last decades. Infections are one of the environmental challenges to which hematopoiesis must respond, to feed the immune system with functional cell components and compensate for cellular losses. However, how infections impact the bone marrow hematopoietic niche(s) remains elusive and most of the mechanisms involved are still largely unknown. Here, we review the most recent advances on our knowledge on the hematopoietic niche composition and regulation during homeostasis and also on how the niche responds to infectious stress.
Collapse
Affiliation(s)
- Ana Cordeiro Gomes
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen, 208, 4200-135, Porto, Portugal; IBMC - Instituto de Biologia Molecular e Celular, Universidade do Porto, Rua Alfredo Allen, 208, 4200-135, Porto, Portugal; Departamento de Biologia Molecular, Instituto de Ciências Biomédicas de Abel Salazar, Universidade do Porto, Rua Jorge Viterbo Ferreira, 228, 4050-313, Porto, Portugal
| | - Margarida Saraiva
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen, 208, 4200-135, Porto, Portugal; IBMC - Instituto de Biologia Molecular e Celular, Universidade do Porto, Rua Alfredo Allen, 208, 4200-135, Porto, Portugal
| | - Maria Salomé Gomes
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen, 208, 4200-135, Porto, Portugal; IBMC - Instituto de Biologia Molecular e Celular, Universidade do Porto, Rua Alfredo Allen, 208, 4200-135, Porto, Portugal; Departamento de Biologia Molecular, Instituto de Ciências Biomédicas de Abel Salazar, Universidade do Porto, Rua Jorge Viterbo Ferreira, 228, 4050-313, Porto, Portugal.
| |
Collapse
|
22
|
Isolation of Trypanosoma brucei brucei Infection-Derived Splenic Marginal Zone B Cells Based on CD1d High/B220 High Surface Expression in a Two-Step MACS-FACS Approach. Methods Mol Biol 2020. [PMID: 32221952 DOI: 10.1007/978-1-0716-0294-2_43] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
Abstract
Magnetic- and fluorescent-activated cell sorting (MACS and FACS) are used for isolation of distinct cell populations for subsequent studies including transcriptomics. The latter allows for the analysis of infection-induced alterations in gene expression profiles. MACS and FACS both use antibodies against cell surface molecules to isolate populations of interest. Standardized methods for both approaches exist for use in mouse models. These protocols, however, do not account for the fact that infection-associated immunopathology can significantly modulate the cell surface expression of targeted molecules. This is the case for Trypanosoma brucei brucei infection, where downregulation of CD23 surface expression on B cells has been reported. This hallmark of progressing infection interferes with the commercially available MACS technique for B cell purification, as CD23 expression is the target for the separation between Marginal Zone (MZ) and Follicular (Fo) B cells. Here, we provide a robust alternative method for isolation of infection-derived MZ B cells using CD1d and B220 surface molecules in a two-step MACS-FACS approach. The method yields 99% pure viable infection-derived MZ B cells, allowing extraction of a high quality total RNA suitable for subsequent RNA sequencing.
Collapse
|
23
|
Zhou Y, Zhang Y, Han J, Yang M, Zhu J, Jin T. Transitional B cells involved in autoimmunity and their impact on neuroimmunological diseases. J Transl Med 2020; 18:131. [PMID: 32183811 PMCID: PMC7079408 DOI: 10.1186/s12967-020-02289-w] [Citation(s) in RCA: 62] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Accepted: 02/28/2020] [Indexed: 02/08/2023] Open
Abstract
Transitional B cells (TrB cells) represent a crucial link between immature B cells in the bone marrow and mature peripheral B cells. Although TrB cells represent one of the regulatory B cell subpopulations in healthy individuals, the frequency of CD24hiCD38hi TrB cells in circulation may be altered in individuals with autoimmune diseases, such as multiple sclerosis, neuromyelitisoptica spectrum disorders, systemic lupus erythematosus, Sjögren’s syndrome, rheumatoid arthritis, systemic sclerosis, and juvenile dermatomyositis. Although TrB cells play regulatory roles under inflammatory conditions, consequences of their functional impairment vary across autoimmune diseases. Since the origin, development, and function of TrB cells, especially in humans, remain unclear and controversial, this review aimed to discuss the characteristics of TrB cells at steady state and explore their role in various immune diseases, including autoimmune rheumatic diseases and neuroimmunological diseases.
Collapse
Affiliation(s)
- Yang Zhou
- Department of Neurology and Neuroscience Center, The First Hospital of Jilin University, Xinmin Street 71#, Changchun, 130021, China
| | - Ying Zhang
- Department of Neurology and Neuroscience Center, The First Hospital of Jilin University, Xinmin Street 71#, Changchun, 130021, China
| | - Jinming Han
- Department of Neurology and Neuroscience Center, The First Hospital of Jilin University, Xinmin Street 71#, Changchun, 130021, China
| | - Mengge Yang
- Department of Neurology and Neuroscience Center, The First Hospital of Jilin University, Xinmin Street 71#, Changchun, 130021, China
| | - Jie Zhu
- Department of Neurology and Neuroscience Center, The First Hospital of Jilin University, Xinmin Street 71#, Changchun, 130021, China.,Department of Neurobiology, Care Sciences and Society, Karolinska Institute, Stockholm, Sweden
| | - Tao Jin
- Department of Neurology and Neuroscience Center, The First Hospital of Jilin University, Xinmin Street 71#, Changchun, 130021, China.
| |
Collapse
|
24
|
Magez S, Pinto Torres JE, Obishakin E, Radwanska M. Infections With Extracellular Trypanosomes Require Control by Efficient Innate Immune Mechanisms and Can Result in the Destruction of the Mammalian Humoral Immune System. Front Immunol 2020; 11:382. [PMID: 32218784 PMCID: PMC7078162 DOI: 10.3389/fimmu.2020.00382] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Accepted: 02/18/2020] [Indexed: 12/17/2022] Open
Abstract
Salivarian trypanosomes are extracellular parasites that affect humans, livestock, and game animals around the world. Through co-evolution with the mammalian immune system, trypanosomes have developed defense mechanisms that allow them to thrive in blood, lymphoid vessels, and tissue environments such as the brain, the fat tissue, and testes. Trypanosomes have developed ways to circumvent antibody-mediated killing and block the activation of the lytic arm of the complement pathway. Hence, this makes the innate immune control of the infection a crucial part of the host-parasite interaction, determining infection susceptibility, and parasitemia control. Indeed, trypanosomes use a combination of several independent mechanisms to avoid clearance by the humoral immune system. First, perpetuated antigenic variation of the surface coat allows to escape antibody-mediated elimination. Secondly, when antibodies bind to the coat, they are efficiently transported toward the endocytosis pathway, where they are removed from the coat proteins. Finally, trypanosomes engage in the active destruction of the mammalian humoral immune response. This provides them with a rescue solution in case antigenic variation does not confer total immunological invisibility. Both antigenic variation and B cell destruction pose significant hurdles for the development of anti-trypanosome vaccine strategies. However, developing total immune escape capacity and unlimited growth capabilities within a mammalian host is not beneficial for any parasite, as it will result in the accelerated death of the host itself. Hence, trypanosomes have acquired a system of quorum sensing that results in density-dependent population growth arrest in order to prevent overpopulating the host. The same system could possibly sense the infection-associated host tissue damage resulting from inflammatory innate immune responses, in which case the quorum sensing serves to prevent excessive immunopathology and as such also promotes host survival. In order to put these concepts together, this review summarizes current knowledge on the interaction between trypanosomes and the mammalian innate immune system, the mechanisms involved in population growth regulation, antigenic variation and the immuno-destructive effect of trypanosomes on the humoral immune system. Vaccine trials and a discussion on the role of innate immune modulation in these trials are discussed at the end.
Collapse
Affiliation(s)
- Stefan Magez
- Laboratory for Biomedical Research, Ghent University Global Campus, Incheon, South Korea.,Department of Biochemistry and Microbiology, Ghent University, Ghent, Belgium.,Laboratory of Cellular and Molecular Immunology, Vrije Universiteit Brussel, Brussels, Belgium
| | | | - Emmanuel Obishakin
- Laboratory for Biomedical Research, Ghent University Global Campus, Incheon, South Korea.,Biotechnology Division, National Veterinary Research Institute, Vom, Nigeria
| | - Magdalena Radwanska
- Laboratory for Biomedical Research, Ghent University Global Campus, Incheon, South Korea.,Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| |
Collapse
|
25
|
Establishment of a Standardized Vaccine Protocol for the Analysis of Protective Immune Responses During Experimental Trypanosome Infections in Mice. Methods Mol Biol 2020; 2116:721-738. [PMID: 32221951 DOI: 10.1007/978-1-0716-0294-2_42] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
To date, trypanosomosis control in humans and animals is achieved by a combination of parasitological screening and treatment. While this approach has successfully brought down the number of reported T. b. gambiense Human African Trypanosomosis (HAT) cases, the method does not offer a sustainable solution for animal trypanosomosis (AT). The main reasons for this are (i) the worldwide distribution of AT, (ii) the wide range of insect vectors involved in transmission of AT, and (iii) the existence of a wildlife parasite reservoir that can serve as a source for livestock reinfection. Hence, in order to control livestock trypanosomosis the only viable long-term solution is an effective antitrypanosome vaccination strategy. Over the last decades, multiple vaccine approaches have been proposed. Despite repeated reports of promising experimental approaches, none of those made it to a field applicable vaccine format. This failure can in part be attributed to flaws in the experimental design that favor a positive laboratory result. This chapter provides a vaccine protocol that should allow for a proper outcome prediction in experimental anti-AT vaccine approaches.
Collapse
|
26
|
De Niz M, Meehan GR, Tavares J. Intravital microscopy: Imaging host-parasite interactions in lymphoid organs. Cell Microbiol 2019; 21:e13117. [PMID: 31512335 DOI: 10.1111/cmi.13117] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Revised: 08/25/2019] [Accepted: 09/01/2019] [Indexed: 12/11/2022]
Abstract
Intravital microscopy allows imaging of biological phenomena within living animals, including host-parasite interactions. This has advanced our understanding of both, the function of lymphoid organs during parasitic infections, and the effect of parasites on such organs to allow their survival. In parasitic research, recent developments in this technique have been crucial for the direct study of host-parasite interactions within organs at depths, speeds and resolution previously difficult to achieve. Lymphoid organs have gained more attention as we start to understand their function during parasitic infections and the effect of parasites on them. In this review, we summarise technical and biological findings achieved by intravital microscopy with respect to the interaction of various parasites with host lymphoid organs, namely the bone marrow, thymus, lymph nodes, spleen and the mucosa-associated lymphoid tissue, and present a view into possible future applications.
Collapse
Affiliation(s)
- Mariana De Niz
- Institute of Cell Biology, Heussler Lab, University of Bern, Bern, Switzerland
| | - Gavin R Meehan
- Wellcome Centre for Integrative Parasitology, University of Glasgow, Glasgow, UK
| | - Joana Tavares
- i3S-Instituto de Investigação e Inovação em Saúde, University of Porto, Porto, Portugal.,IBMC-Instituto de Biologia Molecular e Celular, University of Porto, Porto, Portugal
| |
Collapse
|
27
|
Deleeuw V, Phạm HTT, De Poorter I, Janssens I, De Trez C, Radwanska M, Magez S. Trypanosoma brucei brucei causes a rapid and persistent influx of neutrophils in the spleen of infected mice. Parasite Immunol 2019; 41:e12664. [PMID: 31325372 PMCID: PMC6771705 DOI: 10.1111/pim.12664] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Revised: 06/29/2019] [Accepted: 07/16/2019] [Indexed: 12/27/2022]
Abstract
Trypanosomosis is a chronic parasitic infection, affecting both humans and livestock. A common hallmark of experimental murine infections is the occurrence of inflammation and the associated remodelling of the spleen compartment. The latter involves the depletion of several lymphocyte populations, the induction of T‐cell‐mediated immune suppression, and the activation of monocyte/macrophage cell populations. Here, we show that in experimental T b brucei infections in mice, these changes are accompanied by the alteration of the spleen neutrophil compartment. Indeed, mature neutrophils are rapidly recruited to the spleen, and cell numbers remain elevated during the entire infection. Following the second peak of parasitemia, the neutrophil cell influx coincides with the rapid reduction of splenic marginal zone (MZ)B and follicular (Fo)B cells, as well as CD8+ T and NK1.1+ cells, the latter encompassing both natural killer (NK) and natural killer T (NKT) cells. This report is the first to show a comprehensive overview of all alterations in spleen cell populations, measured with short intervals throughout the entire course of an experimental T b brucei infection. These data provide new insights into the dynamic interlinked changes in spleen cell numbers associated with trypanosomosis‐associated immunopathology.
Collapse
Affiliation(s)
- Violette Deleeuw
- Laboratory for Biomedical Research, Ghent University Global Campus, Incheon, South Korea.,Laboratory for Cellular and Molecular Immunology, Vrije Universiteit Brussel, Brussels, Belgium.,Department of Biochemistry and Microbiology, Ghent University, Ghent, Belgium
| | - Hien Thi Thu Phạm
- Laboratory for Biomedical Research, Ghent University Global Campus, Incheon, South Korea.,Department of Biochemistry and Microbiology, Ghent University, Ghent, Belgium
| | - Isabel De Poorter
- Laboratory for Biomedical Research, Ghent University Global Campus, Incheon, South Korea.,Laboratory for Cellular and Molecular Immunology, Vrije Universiteit Brussel, Brussels, Belgium.,Department of Hematology, Erasmus MC, Rotterdam, The Netherlands
| | - Ibo Janssens
- Laboratory for Biomedical Research, Ghent University Global Campus, Incheon, South Korea.,Laboratory for Cellular and Molecular Immunology, Vrije Universiteit Brussel, Brussels, Belgium.,Laboratory for Experimental Hematology, University of Antwerp, Edegem, Belgium
| | - Carl De Trez
- Laboratory for Cellular and Molecular Immunology, Vrije Universiteit Brussel, Brussels, Belgium
| | - Magdalena Radwanska
- Laboratory for Biomedical Research, Ghent University Global Campus, Incheon, South Korea.,Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - Stefan Magez
- Laboratory for Biomedical Research, Ghent University Global Campus, Incheon, South Korea.,Laboratory for Cellular and Molecular Immunology, Vrije Universiteit Brussel, Brussels, Belgium.,Department of Biochemistry and Microbiology, Ghent University, Ghent, Belgium
| |
Collapse
|
28
|
Bonnet J, Garcia C, Leger T, Couquet MP, Vignoles P, Vatunga G, Ndung'u J, Boudot C, Bisser S, Courtioux B. Proteome characterization in various biological fluids of Trypanosoma brucei gambiense-infected subjects. J Proteomics 2018; 196:150-161. [PMID: 30414516 DOI: 10.1016/j.jprot.2018.11.005] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2018] [Revised: 10/02/2018] [Accepted: 11/05/2018] [Indexed: 02/04/2023]
Abstract
Human African trypanosomiasis (HAT) is a neglected tropical disease that is endemic in sub-Saharan Africa. Control of the disease has been recently improved by better screening and treatment strategies, and the disease is on the WHO list of possible elimination. However, some physiopathological aspects of the disease transmission and progression remain unclear. We propose a new proteomic approach to identify new targets and thus possible new biomarkers of the disease. We also focused our attention on fluids classically associated with HAT (serum and cerebrospinal fluid (CSF)) and on the more easily accessible biological fluids urine and saliva. Liquid chromatography-tandem mass spectrometry (LC-MS/MS) established the proteomic profile of patients with early and late stage disease. The serum, CSF, urine and saliva of 3 uninfected controls, 3 early stage patients and 4 late stage patients were analyzed. Among proteins identified, in CSF, urine and saliva, respectively, 37, 8 and 24 proteins were differentially expressed and showed particular interest with regards to their function. The most promising proteins (Neogenin, Neuroserpin, secretogranin 2 in CSF; moesin in urine and intelectin 2 in saliva) were quantified by enzyme-linked immunosorbent assay in a confirmatory cohort of 14 uninfected controls, 23 patients with early stage disease and 43 patients with late stage disease. The potential of two proteins, neuroserpin and moesin, with the latter present in urine, were further characterized. Our results showed the potential of proteomic analysis to discover new biomarkers and provide the basis of the establishment of a new proteomic catalogue applied to HAT-infected subjects and controls. SIGNIFICANCE: Sleeping sickness, also called Human African Trypanosomiasis (HAT), is a parasitic infection caused by a parasitic protozoan, Trypanosoma brucei gambiense or T. b. rhodesiense which are transmitted via an infected tsetse fly: Glossina. For both, the haemolymphatic stage (or first stage) signs and symptoms are intermittent fever, lymphadenopathy, hepatosplenomegaly, headaches, pruritus, and for T. b. rhodesiense infection a chancre is often formed at the bite site. Meningoencephalitic stage (or second stage) occurs when parasites invade the CNS, it is characterised by neurological signs and symptoms such as altered gait, tremors, neuropathy, somnolence which can lead to coma and death if untreated. first stage of the disease is characterizing by fevers, headaches, itchiness, and joint pains and progressive lethargy corresponding to the second stage with confusion, poor coordination, numbness and trouble sleeping. Actually, diagnosing HAT requires specialized expertise and significant resources such as well-equipped health centers and qualified staff. Such resources are lacking in many endemic areas that are often in rural locales, so many individuals with HAT die before the diagnosis is established. In this study, we analysed by mass spectrometry the entire proteome of serum, CSF, urine and saliva samples from infected and non-infected Angolan individuals to define new biomarkers of the disease. This work of proteomics analysis is a preliminary stage to the characterization of the whole proteome, of these 4 biological fluids, of HAT patients. We have identified 69 new biomarkers. Five of them have been thoroughly investigated by ELISA quantification. Neuroserpine and Moesin are respectively promising new biomarkers in CSF and urine's patient for a better diagnosis.
Collapse
Affiliation(s)
- Julien Bonnet
- Institute of Neuroepidemiology and Tropical Neurology, School of Medicine, CNRS FR 3503 GEIST, University of Limoges, INSERM UMR 1094 Tropical Neuroepidemiology, Limoges, France.
| | - Camille Garcia
- Jacques Monod Institute, Proteomics Facility, University Paris Diderot Sorbonne Paris Cité, Paris, France..
| | - Thibaut Leger
- Jacques Monod Institute, Proteomics Facility, University Paris Diderot Sorbonne Paris Cité, Paris, France..
| | - Marie-Pauline Couquet
- Institute of Neuroepidemiology and Tropical Neurology, School of Medicine, CNRS FR 3503 GEIST, University of Limoges, INSERM UMR 1094 Tropical Neuroepidemiology, Limoges, France.
| | - Philippe Vignoles
- Institute of Neuroepidemiology and Tropical Neurology, School of Medicine, CNRS FR 3503 GEIST, University of Limoges, INSERM UMR 1094 Tropical Neuroepidemiology, Limoges, France.
| | - Gedeao Vatunga
- Instituto de Combate e controlo das Tripanossomiases (ICCT), Luanda, Angola.
| | - Joseph Ndung'u
- Foundation for Innovative New Diagnostics (FIND), Geneva, Switzerland.
| | - Clotilde Boudot
- Institute of Neuroepidemiology and Tropical Neurology, School of Medicine, CNRS FR 3503 GEIST, University of Limoges, INSERM UMR 1094 Tropical Neuroepidemiology, Limoges, France.
| | - Sylvie Bisser
- Institute of Neuroepidemiology and Tropical Neurology, School of Medicine, CNRS FR 3503 GEIST, University of Limoges, INSERM UMR 1094 Tropical Neuroepidemiology, Limoges, France; Pasteur Institute in French Guiana, 23 Boulevard Pasteur, 973006, Cayenne Cedex, French Guiana.
| | - Bertrand Courtioux
- Institute of Neuroepidemiology and Tropical Neurology, School of Medicine, CNRS FR 3503 GEIST, University of Limoges, INSERM UMR 1094 Tropical Neuroepidemiology, Limoges, France.
| |
Collapse
|
29
|
Investigating disease severity in an animal model of concurrent babesiosis and Lyme disease. Int J Parasitol 2018; 49:145-151. [PMID: 30367867 DOI: 10.1016/j.ijpara.2018.06.006] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2018] [Revised: 06/11/2018] [Accepted: 06/19/2018] [Indexed: 02/04/2023]
Abstract
The incidence of babesiosis, Lyme disease and other tick-borne diseases has increased steadily in Europe and North America during the last five decades. Babesia microti is transmitted by species of Ixodes, the same ticks that transmit the Lyme disease-causing spirochete, Borrelia burgdorferi. B. microti can also be transmitted through transfusion of blood products and is the most common transfusion-transmitted infection in the U.S.A. Ixodes ticks are commonly infected with both B. microti and B. burgdorferi, and are competent vectors for transmitting them together into hosts. Few studies have examined the effects of coinfections on humans and they had somewhat contradictory results. One study linked coinfection with B. microti to a greater number of symptoms of overall disease in patients, while another report indicated that B. burgdorferi infection either did not affect babesiosis symptoms or decreased its severity. Mouse models of infection that manifest pathological effects similar to those observed in human babesiosis and Lyme disease offer a unique opportunity to thoroughly investigate the effects of coinfection on the host. Lyme disease has been studied using the susceptible C3H mouse infection model, which can also be used to examine B. microti infection to understand pathological mechanisms of human diseases, both during a single infection and during coinfections. We observed that high B. microti parasitaemia leads to low haemoglobin levels in infected mice, reflecting the anaemia observed in human babesiosis. Similar to humans, B. microti coinfection appears to enhance the severity of Lyme disease-like symptoms in mice. Coinfected mice have lower peak B. microti parasitaemia compared to mice infected with B. microti alone, which may reflect attenuation of babesiosis symptoms reported in some human coinfections. These findings suggest that B. burgdorferi coinfection attenuates parasite growth while B. microti presence exacerbates Lyme disease-like symptoms in mice.
Collapse
|
30
|
Radwanska M, Vereecke N, Deleeuw V, Pinto J, Magez S. Salivarian Trypanosomosis: A Review of Parasites Involved, Their Global Distribution and Their Interaction With the Innate and Adaptive Mammalian Host Immune System. Front Immunol 2018; 9:2253. [PMID: 30333827 PMCID: PMC6175991 DOI: 10.3389/fimmu.2018.02253] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Accepted: 09/11/2018] [Indexed: 01/27/2023] Open
Abstract
Salivarian trypanosomes are single cell extracellular parasites that cause infections in a wide range of hosts. Most pathogenic infections worldwide are caused by one of four major species of trypanosomes including (i) Trypanosoma brucei and the human infective subspecies T. b. gambiense and T. b. rhodesiense, (ii) Trypanosoma evansi and T. equiperdum, (iii) Trypanosoma congolense and (iv) Trypanosoma vivax. Infections with these parasites are marked by excessive immune dysfunction and immunopathology, both related to prolonged inflammatory host immune responses. Here we review the classification and global distribution of these parasites, highlight the adaptation of human infective trypanosomes that allow them to survive innate defense molecules unique to man, gorilla, and baboon serum and refer to the discovery of sexual reproduction of trypanosomes in the tsetse vector. With respect to the immunology of mammalian host-parasite interactions, the review highlights recent findings with respect to the B cell destruction capacity of trypanosomes and the role of T cells in the governance of infection control. Understanding infection-associated dysfunction and regulation of both these immune compartments is crucial to explain the continued failures of anti-trypanosome vaccine developments as well as the lack of any field-applicable vaccine based anti-trypanosomosis intervention strategy. Finally, the link between infection-associated inflammation and trypanosomosis induced anemia is covered in the context of both livestock and human infections.
Collapse
Affiliation(s)
- Magdalena Radwanska
- Laboratory for Biomedical Research, Ghent University Global Campus, Incheon, South Korea
| | - Nick Vereecke
- Laboratory for Biomedical Research, Ghent University Global Campus, Incheon, South Korea.,Laboratory of Cellular and Molecular Immunology, Vrije Universiteit Brussel, Brussels, Belgium
| | - Violette Deleeuw
- Laboratory of Cellular and Molecular Immunology, Vrije Universiteit Brussel, Brussels, Belgium
| | - Joar Pinto
- Laboratory of Cellular and Molecular Immunology, Vrije Universiteit Brussel, Brussels, Belgium
| | - Stefan Magez
- Laboratory for Biomedical Research, Ghent University Global Campus, Incheon, South Korea.,Laboratory of Cellular and Molecular Immunology, Vrije Universiteit Brussel, Brussels, Belgium
| |
Collapse
|
31
|
Abos B, Estensoro I, Perdiguero P, Faber M, Hu Y, Díaz Rosales P, Granja AG, Secombes CJ, Holland JW, Tafalla C. Dysregulation of B Cell Activity During Proliferative Kidney Disease in Rainbow Trout. Front Immunol 2018; 9:1203. [PMID: 29904385 PMCID: PMC5990594 DOI: 10.3389/fimmu.2018.01203] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2018] [Accepted: 05/14/2018] [Indexed: 11/15/2022] Open
Abstract
Proliferative kidney disease (PKD) is a widespread disease caused by the endoparasite Tetracapsuloides bryosalmonae (Myxozoa: Malacosporea). Clinical disease, provoked by the proliferation of extrasporogonic parasite stages, is characterized by a chronic kidney pathology with underlying transcriptional changes indicative of altered B cell responses and dysregulated T-helper cell-like activities. Despite the relevance of PKD to European and North American salmonid aquaculture, no studies, to date, have focused on further characterizing the B cell response during the course of this disease. Thus, in this work, we have studied the behavior of diverse B cell populations in rainbow trout (Oncorhynchus mykiss) naturally infected with T. bryosalmonae at different stages of preclinical and clinical disease. Our results show a clear upregulation of all trout immunoglobulins (Igs) (IgM, IgD, and IgT) demonstrated by immunohistochemistry and Western blot analysis, suggesting the alteration of diverse B cell populations that coexist in the infected kidney. Substantial changes in IgM, IgD, and IgT repertoires were also identified throughout the course of the disease further pointing to the involvement of the three Igs in PKD through what appear to be independently regulated mechanisms. Thus, our results provide strong evidence of the involvement of IgD in the humoral response to a specific pathogen for the first time in teleosts. Nevertheless, it was IgT, a fish-specific Ig isotype thought to be specialized in mucosal immunity, which seemed to play a prevailing role in the kidney response to T. bryosalmonae. We found that IgT was the main Ig coating extrasporogonic parasite stages, IgT+ B cells were the main B cell subset that proliferated in the kidney with increasing kidney pathology, and IgT was the Ig for which more significant changes in repertoire were detected. Hence, although our results demonstrate a profound dysregulation of different B cell subsets during PKD, they point to a major involvement of IgT in the immune response to the parasite. These results provide further insights into the pathology of PKD that may facilitate the future development of control strategies.
Collapse
Affiliation(s)
- Beatriz Abos
- Centro de Investigación en Sanidad Animal (CISA-INIA), Madrid, Spain
| | - Itziar Estensoro
- Centro de Investigación en Sanidad Animal (CISA-INIA), Madrid, Spain.,Fish Pathology Group, Institute of Aquaculture Torre de la Sal (IATS-CSIC) Castellón, Madrid, Spain
| | - Pedro Perdiguero
- Centro de Investigación en Sanidad Animal (CISA-INIA), Madrid, Spain
| | - Marc Faber
- Scottish Fish Immunology Research Centre, Institute of Biological and Environmental Sciences, University of Aberdeen, Aberdeen, United Kingdom
| | - Yehfang Hu
- Scottish Fish Immunology Research Centre, Institute of Biological and Environmental Sciences, University of Aberdeen, Aberdeen, United Kingdom
| | | | - Aitor G Granja
- Centro de Investigación en Sanidad Animal (CISA-INIA), Madrid, Spain
| | - Christopher J Secombes
- Scottish Fish Immunology Research Centre, Institute of Biological and Environmental Sciences, University of Aberdeen, Aberdeen, United Kingdom
| | - Jason W Holland
- Scottish Fish Immunology Research Centre, Institute of Biological and Environmental Sciences, University of Aberdeen, Aberdeen, United Kingdom
| | - Carolina Tafalla
- Centro de Investigación en Sanidad Animal (CISA-INIA), Madrid, Spain
| |
Collapse
|
32
|
The Deadly Dance of B Cells with Trypanosomatids. Trends Parasitol 2017; 34:155-171. [PMID: 29089182 DOI: 10.1016/j.pt.2017.10.001] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2017] [Revised: 09/29/2017] [Accepted: 10/06/2017] [Indexed: 01/18/2023]
Abstract
B cells are notorious actors for the host's protection against several infectious diseases. So much so that early vaccinology seated its principles upon their long-term protective antibody secretion capabilities. Indeed, there are many examples of acute infectious diseases that are combated by functional humoral responses. However, some chronic infectious diseases actively induce immune deregulations that often lead to defective, if not deleterious, humoral immune responses. In this review we summarize how Leishmania and Trypanosoma spp. directly manipulate B cell responses to induce polyclonal B cell activation, hypergammaglobulinemia, low-specificity antibodies, limited B cell survival, and regulatory B cells, contributing therefore to immunopathology and the establishment of persistent infections.
Collapse
|
33
|
Black SJ, Mansfield JM. Prospects for vaccination against pathogenic African trypanosomes. Parasite Immunol 2017; 38:735-743. [PMID: 27636100 DOI: 10.1111/pim.12387] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2016] [Accepted: 09/14/2016] [Indexed: 11/27/2022]
Abstract
African trypanosomes cause human and animal African trypanosomiases, which are chronic, debilitating and often fatal diseases of people and livestock in sub-Saharan Africa. The extracellular protozoan parasites are exemplars of antigenic variation. They direct host-protective B-cell and T-cell immune responses towards hypervariable components of their variable surface glycoprotein coat and evade immune elimination by generating new surface coat antigenic variants at a rate that supersedes immune destruction. This results in recurring waves of parasitemia, tissue invasion and escalating immunopathology in trypanosomiasis-susceptible hosts. Here, we discuss the possibility that host control of African trypanosomes might be improved by immunization with conserved VSG peptides and invariant surface glycoproteins. Infection-induced T-cell recall responses to these typically poorly expressed or nonimmunogenic parasite components induce tissue phagocytes to produce microbicidal materials that kill trypanosomes. Preliminary data that support this immune-enhancing vaccine strategy are discussed, as are host and parasite interactions that might downregulate the protective responses. These include infection-induced immunosuppression and increasing virulence of infecting parasites over time.
Collapse
Affiliation(s)
- S J Black
- Department of Veterinary and Animal Sciences, University of Massachusetts-Amherst, Amherst, MA, USA
| | - J M Mansfield
- Department of Bacteriology, University of Wisconsin-Madison, Madison, WI, USA
| |
Collapse
|
34
|
Experimental African trypanosome infection suppresses the development of multiple myeloma in mice by inducing intrinsic apoptosis of malignant plasma cells. Oncotarget 2017; 8:52016-52025. [PMID: 28881710 PMCID: PMC5581009 DOI: 10.18632/oncotarget.18152] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2017] [Accepted: 05/04/2017] [Indexed: 11/25/2022] Open
Abstract
Multiple myeloma (MM) is characterized by the accumulation of malignant plasma cells in the bone marrow (BM). Recently, several studies have highlighted the role of pathogens in either promoting or dampening malignancies of unrelated origin. Trypanosoma brucei is an extracellular protozoan parasite which causes sleeping sickness. Our group has previously demonstrated that trypanosome infection affects effector plasma B cells. Therefore, we hypothesized that T. brucei infection could have an impact on MM development. Using the immunocompetent 5T33MM model, we demonstrated a significant reduction in BM-plasmacytosis and M-protein levels in mice infected with T. brucei, resulting in an increased survival of these mice. Blocking IFNγ could only partially abrogate these effects, suggesting that other mechanisms are involved in the destruction of malignant plasma cells. We found that T. brucei induces intrinsic apoptosis of 5T33MM cells in vivo, and that this was associated with reduced endogenous unfolded protein response (UPR) activation. Interestingly, pharmacological inhibition of IRE1α and PERK was sufficient to induce apoptosis in these cells. Together, these results demonstrate that trypanosome infections can interfere with MM development by suppressing endogenous UPR activation and promoting intrinsic apoptosis.
Collapse
|
35
|
Stijlemans B, Radwanska M, De Trez C, Magez S. African Trypanosomes Undermine Humoral Responses and Vaccine Development: Link with Inflammatory Responses? Front Immunol 2017; 8:582. [PMID: 28596768 PMCID: PMC5442186 DOI: 10.3389/fimmu.2017.00582] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2017] [Accepted: 05/01/2017] [Indexed: 01/15/2023] Open
Abstract
African trypanosomosis is a debilitating disease of great medical and socioeconomical importance. It is caused by strictly extracellular protozoan parasites capable of infecting all vertebrate classes including human, livestock, and game animals. To survive within their mammalian host, trypanosomes have evolved efficient immune escape mechanisms and manipulate the entire host immune response, including the humoral response. This report provides an overview of how trypanosomes initially trigger and subsequently undermine the development of an effective host antibody response. Indeed, results available to date obtained in both natural and experimental infection models show that trypanosomes impair homeostatic B-cell lymphopoiesis, B-cell maturation and survival and B-cell memory development. Data on B-cell dysfunctioning in correlation with parasite virulence and trypanosome-mediated inflammation will be discussed, as well as the impact of trypanosomosis on heterologous vaccine efficacy and diagnosis. Therefore, new strategies aiming at enhancing vaccination efficacy could benefit from a combination of (i) early parasite diagnosis, (ii) anti-trypanosome (drugs) treatment, and (iii) anti-inflammatory treatment that collectively might allow B-cell recovery and improve vaccination.
Collapse
Affiliation(s)
- Benoit Stijlemans
- Laboratory of Cellular and Molecular Immunology, Vrije Universiteit Brussel (VUB), Brussels, Belgium.,Myeloid Cell Immunology Lab, VIB-UGent Center for Inflammation Research, Ghent, Belgium
| | - Magdalena Radwanska
- Laboratory for Biomedical Research, Ghent University Global Campus, Yeonsu-Gu, Incheon, South Korea
| | - Carl De Trez
- Laboratory of Cellular and Molecular Immunology, Vrije Universiteit Brussel (VUB), Brussels, Belgium.,Structural Biology Research Centre (SBRC), VIB, Brussels, Belgium
| | - Stefan Magez
- Laboratory of Cellular and Molecular Immunology, Vrije Universiteit Brussel (VUB), Brussels, Belgium.,Laboratory for Biomedical Research, Ghent University Global Campus, Yeonsu-Gu, Incheon, South Korea
| |
Collapse
|
36
|
Morrison LJ, Vezza L, Rowan T, Hope JC. Animal African Trypanosomiasis: Time to Increase Focus on Clinically Relevant Parasite and Host Species. Trends Parasitol 2016; 32:599-607. [PMID: 27167665 DOI: 10.1016/j.pt.2016.04.012] [Citation(s) in RCA: 96] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2016] [Revised: 04/19/2016] [Accepted: 04/20/2016] [Indexed: 10/21/2022]
Abstract
Animal African trypanosomiasis (AAT), caused by Trypanosoma congolense and Trypanosoma vivax, remains one of the most important livestock diseases in sub-Saharan Africa, particularly affecting cattle. Despite this, our detailed knowledge largely stems from the human pathogen Trypanosoma brucei and mouse experimental models. In the postgenomic era, the genotypic and phenotypic differences between the AAT-relevant species of parasite or host and their model organism counterparts are increasingly apparent. Here, we outline the timeliness and advantages of increasing the research focus on both the clinically relevant parasite and host species, given that improved tools and resources for both have been developed in recent years. We propose that this shift of emphasis will improve our ability to efficiently develop tools to combat AAT.
Collapse
Affiliation(s)
- Liam J Morrison
- Roslin Institute, Royal (Dick) School of Veterinary Studies, University of Edinburgh, Easter Bush, Midlothian, EH25 9RG, UK.
| | - Laura Vezza
- Roslin Institute, Royal (Dick) School of Veterinary Studies, University of Edinburgh, Easter Bush, Midlothian, EH25 9RG, UK
| | - Tim Rowan
- GALVmed, Doherty Building, Pentlands Science Park, Bush Loan, Edinburgh, EH25 0PZ, UK
| | - Jayne C Hope
- Roslin Institute, Royal (Dick) School of Veterinary Studies, University of Edinburgh, Easter Bush, Midlothian, EH25 9RG, UK
| |
Collapse
|
37
|
Gineau L, Courtin D, Camara M, Ilboudo H, Jamonneau V, Dias FC, Tokplonou L, Milet J, Mendonça PB, Castelli EC, Camara O, Camara M, Favier B, Rouas-Freiss N, Moreau P, Donadi EA, Bucheton B, Sabbagh A, Garcia A. Human Leukocyte Antigen-G: A Promising Prognostic Marker of Disease Progression to Improve the Control of Human African Trypanosomiasis. Clin Infect Dis 2016; 63:1189-1197. [PMID: 27470243 DOI: 10.1093/cid/ciw505] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2016] [Accepted: 07/21/2016] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND Human African trypanosomiasis (HAT) caused by Trypanosoma brucei gambiense can be diagnosed in the early hemolymphatic stage (stage 1 [S1]) or meningoencephalitic stage (stage 2 [S2]). Importantly, individuals harbouring high and specific antibody responses to Tbg antigens but negative parasitology are also diagnosed in the field (seropositive [SERO]). Whereas some develop the disease in the months following their initial diagnosis (SERO/HAT), others remain parasitologically negative for long periods (SERO) and are apparently able to control infection. Human leucocyte antigen (HLA)-G, an immunosuppressive molecule, could play a critical role in this variability of progression between infection and disease. METHODS Soluble HLA-G (sHLA-G) was measured in plasma for patients in the SERO (n = 65), SERO/HAT (n = 14), or HAT (n = 268) group and in cerebrospinal fluid for patients in S1 (n = 55), early S2 (n = 93), or late S2 (n = 110). Associations between these different statuses and the soluble level or genetic polymorphisms of HLA-G were explored. RESULTS Plasma sHLA-G levels were significantly higher in HAT (P = 6 × 10-7) and SERO/HAT (P = .007) than SERO patients. No difference was observed between the SERO/HAT and HAT groups. Within the HAT group, specific haplotypes (HG010102 and HG0103) displayed increased frequencies in S1 (P = .013) and late S2 (P = .036), respectively. CONCLUSIONS These results strongly suggest the involvement of HLA-G in HAT disease progression. Importantly, high plasma sHLA-G levels in SERO patients could be predictive of subsequent disease development and could represent a serological marker to help guide therapeutic decision making. Further studies are necessary to assess the predictive nature of HLA-G and to estimate both sensitivity and specificity.
Collapse
Affiliation(s)
- Laure Gineau
- Institut de Recherche pour le Développement, UMR216 MERIT, Mère et Enfant face aux Infections Tropicales Faculté de Pharmacie, Université Paris Descartes, Sorbonne Paris Cité
| | - David Courtin
- Institut de Recherche pour le Développement, UMR216 MERIT, Mère et Enfant face aux Infections Tropicales Faculté de Pharmacie, Université Paris Descartes, Sorbonne Paris Cité
| | - Mamadou Camara
- Ministère de la Santé et de l'Hygiène Publique, Programme National de Lutte contre la Trypanosomose Humaine Africaine, Conakry, Guinea
| | - Hamidou Ilboudo
- Centre International de Recherche-Développement sur l'Elevage en Zones Subhumides, Unité de Recherches sur les Bases Biologiques de la Lutte Intégrée, Bobo-Dioulasso, Burkina Faso
| | - Vincent Jamonneau
- Centre International de Recherche-Développement sur l'Elevage en Zones Subhumides, Unité de Recherches sur les Bases Biologiques de la Lutte Intégrée, Bobo-Dioulasso, Burkina Faso Institut de Recherche Pour le Développement, Campus International de Baillarguet, Montpellier, France
| | - Fabricio C Dias
- Division of Clinical Immunology, School of Medicine of Ribeirão Preto, University of São Paulo, Ribeirão Preto
| | - Leonidas Tokplonou
- Institut de Recherche Pour le Développement, UMR 216, Centre d'Etude et de Recherche sur le Paludisme Associé à la Grossesse et à l'Enfance, Faculté des Sciences de la Santé, Cotonou, Bénin
| | - Jacqueline Milet
- Institut de Recherche pour le Développement, UMR216 MERIT, Mère et Enfant face aux Infections Tropicales Faculté de Pharmacie, Université Paris Descartes, Sorbonne Paris Cité
| | - Priscila B Mendonça
- Division of Clinical Immunology, School of Medicine of Ribeirão Preto, University of São Paulo, Ribeirão Preto
| | - Erick C Castelli
- Department de Pathology, School of Medicine, UNESP-Universidade Estadual Paulista, Botucatu, São Paulo, Brazil
| | - Oumou Camara
- Ministère de la Santé et de l'Hygiène Publique, Programme National de Lutte contre la Trypanosomose Humaine Africaine, Conakry, Guinea
| | - Mariam Camara
- Ministère de la Santé et de l'Hygiène Publique, Programme National de Lutte contre la Trypanosomose Humaine Africaine, Conakry, Guinea
| | - Benoit Favier
- Commissariat à l'Energie Atomique et aux Energies Alternatives, Institut des Maladies Emergentes et des Thérapies Innovantes, Service de Recherches en Hémato-Immunologie, Hôpital Saint-Louis Université Paris Diderot, Sorbonne Paris Cité, UMRE5, Institut Universitaire d'Hématologie, Hôpital Saint-Louis
| | - Nathalie Rouas-Freiss
- Commissariat à l'Energie Atomique et aux Energies Alternatives, Institut des Maladies Emergentes et des Thérapies Innovantes, Service de Recherches en Hémato-Immunologie, Hôpital Saint-Louis Université Paris Diderot, Sorbonne Paris Cité, UMRE5, Institut Universitaire d'Hématologie, Hôpital Saint-Louis
| | - Philippe Moreau
- Commissariat à l'Energie Atomique et aux Energies Alternatives, Institut des Maladies Emergentes et des Thérapies Innovantes, Service de Recherches en Hémato-Immunologie, Hôpital Saint-Louis Université Paris Diderot, Sorbonne Paris Cité, UMRE5, Institut Universitaire d'Hématologie, Hôpital Saint-Louis
| | - Eduardo A Donadi
- Division of Clinical Immunology, School of Medicine of Ribeirão Preto, University of São Paulo, Ribeirão Preto
| | - Bruno Bucheton
- Ministère de la Santé et de l'Hygiène Publique, Programme National de Lutte contre la Trypanosomose Humaine Africaine, Conakry, Guinea Institut de Recherche Pour le Développement, Campus International de Baillarguet, Montpellier, France
| | - Audrey Sabbagh
- Institut de Recherche pour le Développement, UMR216 MERIT, Mère et Enfant face aux Infections Tropicales Faculté de Pharmacie, Université Paris Descartes, Sorbonne Paris Cité
| | - André Garcia
- Institut de Recherche pour le Développement, UMR216 MERIT, Mère et Enfant face aux Infections Tropicales Faculté de Pharmacie, Université Paris Descartes, Sorbonne Paris Cité Institut de Recherche Pour le Développement, UMR 216, Centre d'Etude et de Recherche sur le Paludisme Associé à la Grossesse et à l'Enfance, Faculté des Sciences de la Santé, Cotonou, Bénin
| |
Collapse
|
38
|
Cnops J, Kauffmann F, De Trez C, Baltz T, Keirsse J, Radwanska M, Muraille E, Magez S. Maintenance of B cells during chronic murine Trypanosoma brucei gambiense infection. Parasite Immunol 2016; 38:642-7. [PMID: 27353256 DOI: 10.1111/pim.12344] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2016] [Accepted: 06/24/2016] [Indexed: 12/01/2022]
Abstract
African trypanosomosis is a debilitating parasitic disease occurring in large parts of sub-Saharan Africa. Trypanosoma brucei gambiense accounts for 98% of the reported HAT infections and causes a chronic, gradually progressing disease. Multiple experimental murine models for trypanosomosis have demonstrated inflammation-dependent apoptosis of splenic follicular B (FoB) cells and the destruction of B-cell memory against previously encountered pathogens. Here, we report that during murine infection with a chronic T. b. gambiense field isolate, FoB cells are retained. This coincided with reduced levels of IFN-γ and TNF-α during the acute phase of the infection. This result suggests that in chronic infections with low virulent parasites, less inflammation is elicited and consequently no FoB cell destruction occurs.
Collapse
Affiliation(s)
- J Cnops
- Laboratory of Cellular and Molecular Immunology, Vrije Universiteit Brussel, Brussels, Belgium.,Structural Biology Research Center, Vlaams Instituut voor Biotechnologie (VIB), Brussels, Belgium
| | - F Kauffmann
- Laboratory of Cellular and Molecular Immunology, Vrije Universiteit Brussel, Brussels, Belgium.,Structural Biology Research Center, Vlaams Instituut voor Biotechnologie (VIB), Brussels, Belgium
| | - C De Trez
- Laboratory of Cellular and Molecular Immunology, Vrije Universiteit Brussel, Brussels, Belgium.,Structural Biology Research Center, Vlaams Instituut voor Biotechnologie (VIB), Brussels, Belgium
| | - T Baltz
- UMR 5234, Centre National de Recherche Scientifique, IFR66, Université Bordeaux 2, Bordeaux, France
| | - J Keirsse
- Laboratory of Cellular and Molecular Immunology, Vrije Universiteit Brussel, Brussels, Belgium.,VIB Laboratory of Myeloid Cell Immunology, Brussels, Belgium
| | - M Radwanska
- Ghent University Global Campus, Incheon, Korea
| | - E Muraille
- Unité de Recherche en Biologie des Microorganismes, Laboratoire d'Immunologie et de Microbiologie, Université de Namur, Namur, Belgium.,Laboratoire de Parasitologie, Université Libre de Bruxelles, Campus Erasme, Brussels, Belgium
| | - S Magez
- Laboratory of Cellular and Molecular Immunology, Vrije Universiteit Brussel, Brussels, Belgium. .,Structural Biology Research Center, Vlaams Instituut voor Biotechnologie (VIB), Brussels, Belgium. .,Ghent University Global Campus, Incheon, Korea.
| |
Collapse
|
39
|
Frenkel D, Zhang F, Guirnalda P, Haynes C, Bockstal V, Radwanska M, Magez S, Black SJ. Trypanosoma brucei Co-opts NK Cells to Kill Splenic B2 B Cells. PLoS Pathog 2016; 12:e1005733. [PMID: 27403737 PMCID: PMC4942092 DOI: 10.1371/journal.ppat.1005733] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2014] [Accepted: 06/08/2016] [Indexed: 11/19/2022] Open
Abstract
After infection with T. brucei AnTat 1.1, C57BL/6 mice lost splenic B2 B cells and lymphoid follicles, developed poor parasite-specific antibody responses, lost weight, became anemic and died with fulminating parasitemia within 35 days. In contrast, infected C57BL/6 mice lacking the cytotoxic granule pore-forming protein perforin (Prf1-/-) retained splenic B2 B cells and lymphoid follicles, developed high-titer antibody responses against many trypanosome polypeptides, rapidly suppressed parasitemia and did not develop anemia or lose weight for at least 60 days. Several lines of evidence show that T. brucei infection-induced splenic B cell depletion results from natural killer (NK) cell-mediated cytotoxicity: i) B2 B cells were depleted from the spleens of infected intact, T cell deficient (TCR-/-) and FcγRIIIa deficient (CD16-/-) C57BL/6 mice excluding a requirement for T cells, NKT cell, or antibody-dependent cell-mediated cytotoxicity; ii) administration of NK1.1 specific IgG2a (mAb PK136) but not irrelevant IgG2a (myeloma M9144) prevented infection-induced B cell depletion consistent with a requirement for NK cells; iii) splenic NK cells but not T cells or NKT cells degranulated in infected C57BL/6 mice co-incident with B cell depletion evidenced by increased surface expression of CD107a; iv) purified NK cells from naïve C57BL/6 mice killed purified splenic B cells from T. brucei infected but not uninfected mice in vitro indicating acquisition of an NK cell activating phenotype by the post-infection B cells; v) adoptively transferred C57BL/6 NK cells prevented infection-induced B cell population growth in infected Prf1-/- mice consistent with in vivo B cell killing; vi) degranulated NK cells in infected mice had altered gene and differentiation antigen expression and lost cytotoxic activity consistent with functional exhaustion, but increased in number as infection progressed indicating continued generation. We conclude that NK cells in T. brucei infected mice kill B cells, suppress humoral immunity and expedite early mortality.
Collapse
Affiliation(s)
- Deborah Frenkel
- Department of Veterinary and Animal Sciences, University of Massachusetts Amherst, Amherst, Massachusetts, United States of America
| | - Fengqiu Zhang
- Department of Veterinary and Animal Sciences, University of Massachusetts Amherst, Amherst, Massachusetts, United States of America
| | - Patrick Guirnalda
- Department of Veterinary and Animal Sciences, University of Massachusetts Amherst, Amherst, Massachusetts, United States of America
| | - Carole Haynes
- Department of Veterinary and Animal Sciences, University of Massachusetts Amherst, Amherst, Massachusetts, United States of America
- Laboratory for Cellular and Molecular Immunology, Vrije Universiteit Brussel, Brussels, Belgium
| | - Viki Bockstal
- Department of Veterinary and Animal Sciences, University of Massachusetts Amherst, Amherst, Massachusetts, United States of America
- Laboratory for Cellular and Molecular Immunology, Vrije Universiteit Brussel, Brussels, Belgium
| | | | - Stefan Magez
- Department of Veterinary and Animal Sciences, University of Massachusetts Amherst, Amherst, Massachusetts, United States of America
- Laboratory for Cellular and Molecular Immunology, Vrije Universiteit Brussel, Brussels, Belgium
- Department of Structural Biology, Vrije Universiteit Brussel, Brussels, Belgium
| | - Samuel J. Black
- Department of Veterinary and Animal Sciences, University of Massachusetts Amherst, Amherst, Massachusetts, United States of America
- * E-mail:
| |
Collapse
|
40
|
Stijlemans B, Caljon G, Van Den Abbeele J, Van Ginderachter JA, Magez S, De Trez C. Immune Evasion Strategies of Trypanosoma brucei within the Mammalian Host: Progression to Pathogenicity. Front Immunol 2016; 7:233. [PMID: 27446070 PMCID: PMC4919330 DOI: 10.3389/fimmu.2016.00233] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2016] [Accepted: 05/30/2016] [Indexed: 12/26/2022] Open
Abstract
The diseases caused by African trypanosomes (AT) are of both medical and veterinary importance and have adversely influenced the economic development of sub-Saharan Africa. Moreover, so far not a single field applicable vaccine exists, and chemotherapy is the only strategy available to treat the disease. These strictly extracellular protozoan parasites are confronted with different arms of the host's immune response (cellular as well as humoral) and via an elaborate and efficient (vector)-parasite-host interplay they have evolved efficient immune escape mechanisms to evade/manipulate the entire host immune response. This is of importance, since these parasites need to survive sufficiently long in their mammalian/vector host in order to complete their life cycle/transmission. Here, we will give an overview of the different mechanisms AT (i.e. T. brucei as a model organism) employ, comprising both tsetse fly saliva and parasite-derived components to modulate host innate immune responses thereby sculpturing an environment that allows survival and development within the mammalian host.
Collapse
Affiliation(s)
- Benoît Stijlemans
- Laboratory of Myeloid Cell Immunology, VIB Inflammation Research Center, Ghent, Belgium; Laboratory of Cellular and Molecular Immunology, Vrije Universiteit Brussel (VUB), Brussels, Belgium
| | - Guy Caljon
- Laboratory for Microbiology, Parasitology and Hygiene (LMPH), University of Antwerp, Wilrijk, Belgium; Unit of Veterinary Protozoology, Department of Biomedical Sciences, Institute of Tropical Medicine Antwerp (ITM), Antwerp, Belgium
| | - Jan Van Den Abbeele
- Unit of Veterinary Protozoology, Department of Biomedical Sciences, Institute of Tropical Medicine Antwerp (ITM) , Antwerp , Belgium
| | - Jo A Van Ginderachter
- Laboratory of Myeloid Cell Immunology, VIB Inflammation Research Center, Ghent, Belgium; Laboratory of Cellular and Molecular Immunology, Vrije Universiteit Brussel (VUB), Brussels, Belgium
| | - Stefan Magez
- Laboratory of Cellular and Molecular Immunology, Vrije Universiteit Brussel (VUB), Brussels, Belgium; Department of Structural Biology, VIB, Brussels, Belgium
| | - Carl De Trez
- Laboratory of Cellular and Molecular Immunology, Vrije Universiteit Brussel (VUB), Brussels, Belgium; Department of Structural Biology, VIB, Brussels, Belgium
| |
Collapse
|
41
|
Geiger A, Bossard G, Sereno D, Pissarra J, Lemesre JL, Vincendeau P, Holzmuller P. Escaping Deleterious Immune Response in Their Hosts: Lessons from Trypanosomatids. Front Immunol 2016; 7:212. [PMID: 27303406 PMCID: PMC4885876 DOI: 10.3389/fimmu.2016.00212] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2016] [Accepted: 05/17/2016] [Indexed: 12/21/2022] Open
Abstract
The Trypanosomatidae family includes the genera Trypanosoma and Leishmania, protozoan parasites displaying complex digenetic life cycles requiring a vertebrate host and an insect vector. Trypanosoma brucei gambiense, Trypanosoma cruzi, and Leishmania spp. are important human pathogens causing human African trypanosomiasis (HAT or sleeping sickness), Chagas' disease, and various clinical forms of Leishmaniasis, respectively. They are transmitted to humans by tsetse flies, triatomine bugs, or sandflies, and affect millions of people worldwide. In humans, extracellular African trypanosomes (T. brucei) evade the hosts' immune defenses, allowing their transmission to the next host, via the tsetse vector. By contrast, T. cruzi and Leishmania sp. have developed a complex intracellular lifestyle, also preventing several mechanisms to circumvent the host's immune response. This review seeks to set out the immune evasion strategies developed by the different trypanosomatids resulting from parasite-host interactions and will focus on: clinical and epidemiological importance of diseases; life cycles: parasites-hosts-vectors; innate immunity: key steps for trypanosomatids in invading hosts; deregulation of antigen-presenting cells; disruption of efficient specific immunity; and the immune responses used for parasite proliferation.
Collapse
Affiliation(s)
- Anne Geiger
- UMR INTERTRYP, IRD-CIRAD, CIRAD TA A-17/G, Montpellier, France
| | | | - Denis Sereno
- UMR INTERTRYP, IRD-CIRAD, CIRAD TA A-17/G, Montpellier, France
| | - Joana Pissarra
- UMR INTERTRYP, IRD-CIRAD, CIRAD TA A-17/G, Montpellier, France
| | | | - Philippe Vincendeau
- UMR 177, IRD-CIRAD Université de Bordeaux Laboratoire de Parasitologie, Bordeaux, France
| | - Philippe Holzmuller
- UMRCMAEE CIRAD-INRA TA-A15/G “Contrôle des maladies animales exotiques et émergentes”, Montpellier, France
| |
Collapse
|
42
|
Cnops J, Bockstal V, De Trez C, Miquel MC, Radwanska M, Magez S. Curative drug treatment of trypanosomosis leads to the restoration of B-cell lymphopoiesis and splenic B-cell compartments. Parasite Immunol 2015; 37:485-91. [PMID: 26072963 DOI: 10.1111/pim.12209] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2015] [Accepted: 05/22/2015] [Indexed: 11/28/2022]
Abstract
African trypanosomosis is a parasitic disease affecting both humans (sleeping sickness) and animals (nagana). In murine trypanosomosis, the B-cell compartment is rapidly destroyed after infection. In addition, B-cell lymphopoiesis in the bone marrow is abrogated, B-cell subsets in the spleen are irreversibly depleted, and B-cell memory is destroyed. Here, we investigated the effect of cure of infection on the B-cell compartment. Suramin and diminazene aceturate were used in this study as these drugs exhibit different modes of uptake and different mechanisms of trypanocidal action. Curative drug treatment of trypanosomosis infection led to the re-initiation of B-cell lymphopoiesis in the bone marrow, and to the repopulation of splenic B-cell subsets, independent of the drug used. Neither of these drugs by itself induced measurable effects on B-cell lymphopoiesis in the bone marrow or B-cell homoeostasis in the spleen in healthy, naïve animals.
Collapse
Affiliation(s)
- J Cnops
- Laboratory for Cellular and Molecular Immunology, Vrije Universiteit Brussel, Brussels, Belgium.,Department of Structural Biology, VIB, Brussels, Belgium
| | - V Bockstal
- Laboratory for Cellular and Molecular Immunology, Vrije Universiteit Brussel, Brussels, Belgium.,Department of Structural Biology, VIB, Brussels, Belgium
| | - C De Trez
- Laboratory for Cellular and Molecular Immunology, Vrije Universiteit Brussel, Brussels, Belgium.,Department of Structural Biology, VIB, Brussels, Belgium
| | - M C Miquel
- University of Barcelona, Barcelona, Spain
| | - M Radwanska
- Songdo Global University Foundation, Incheon, South Korea
| | - S Magez
- Laboratory for Cellular and Molecular Immunology, Vrije Universiteit Brussel, Brussels, Belgium.,Department of Structural Biology, VIB, Brussels, Belgium
| |
Collapse
|
43
|
Inflammation rapidly reorganizes mouse bone marrow B cells and their environment in conjunction with early IgM responses. Blood 2015; 126:1184-92. [DOI: 10.1182/blood-2015-03-635805] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2015] [Accepted: 07/03/2015] [Indexed: 01/09/2023] Open
Abstract
Key Points
Mouse inflammation models cause accumulation of B cells in the bone marrow within 12 hours and prior to peak emergency granulopoiesis. Marrow B cells undergo spatial reorganization and are subjected to an altered cellular and secreted milieu.
Collapse
|
44
|
De Trez C, Katsandegwaza B, Caljon G, Magez S. Experimental African Trypanosome Infection by Needle Passage or Natural Tsetse Fly Challenge Thwarts the Development of Collagen-Induced Arthritis in DBA/1 Prone Mice via an Impairment of Antigen Specific B Cell Autoantibody Titers. PLoS One 2015; 10:e0130431. [PMID: 26110416 PMCID: PMC4482398 DOI: 10.1371/journal.pone.0130431] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2015] [Accepted: 05/20/2015] [Indexed: 01/22/2023] Open
Abstract
Collagen-induced arthritis is a B cell-mediated autoimmune disease. Recently published studies have demonstrated that in some rare cases pathogens can confer protection from autoimmunity. Trypanosoma brucei parasites are tsetse fly transmitted extracellular protozoans causing sleeping sickness disease in humans and Nagana in livestock in sub-Saharan endemic areas. In the past, we demonstrated that trypanosome infections impair B cell homeostasis and abolish vaccine-induced protection against unrelated antigens. Hence, here we hypothesized that trypanosome infection can affect the onset of CIA by specifically dampening specific B-cell responses and type II collagen antibody titers in DBA/1 prone mice. We observed a substantial delay in the onset of collagen-induced arthritis in T. brucei-infected DBA/1 mice that correlates with a drastic decrease of type II collagen titers of the different IgG isotypes in the serum. Treatment of infected mice with Berenil, a trypanocidal drug, restored the development of CIA-associated clinical symptoms. Interestingly, these data were confirmed by the challenge of immunized DBA/1 prone mice with T. brucei-infected tsetse flies. Together, these results demonstrate that T. brucei infection is impairing the maintenance of the antigen specific plasma B cell pool driving the development of CIA in DBA/1 prone mice.
Collapse
Affiliation(s)
- Carl De Trez
- Research Unit of Cellular and Molecular Immunology, Vrije Universiteit Brussel, Brussels, Belgium
- VIB Department of Structural Biology, Brussels, Belgium
- * E-mail:
| | - Brunette Katsandegwaza
- Research Unit of Cellular and Molecular Immunology, Vrije Universiteit Brussel, Brussels, Belgium
- VIB Department of Structural Biology, Brussels, Belgium
| | - Guy Caljon
- Unit of Veterinary Protozoology, Department of Biomedical Sciences, Institute of Tropical Medicine Antwerp (ITM), Antwerp, Belgium
- Unit of Cellular and Molecular Immunology, Vrije Universiteit Brussel (VUB), Brussels, Belgium
- Laboratory of Myeloid Cell Immunology, Vlaams Instituut voor Biotechnologie (VIB), Brussels, Belgium
| | - Stefan Magez
- Research Unit of Cellular and Molecular Immunology, Vrije Universiteit Brussel, Brussels, Belgium
- VIB Department of Structural Biology, Brussels, Belgium
| |
Collapse
|
45
|
Distinct Contributions of CD4+ and CD8+ T Cells to Pathogenesis of Trypanosoma brucei Infection in the Context of Gamma Interferon and Interleukin-10. Infect Immun 2015; 83:2785-95. [PMID: 25916989 DOI: 10.1128/iai.00357-15] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2015] [Accepted: 04/20/2015] [Indexed: 12/21/2022] Open
Abstract
Although gamma interferon (IFN-γ) and interleukin-10 (IL-10) have been shown to be critically involved in the pathogenesis of African trypanosomiasis, the contributions to this disease of CD4(+) and CD8(+) T cells, the major potential producers of the two cytokines, are incompletely understood. Here we show that, in contrast to previous findings, IFN-γ was produced by CD4(+), but not CD8(+), T cells in mice infected with Trypanosoma brucei. Without any impairment in the secretion of IFN-γ, infected CD8(-/-) mice survived significantly longer than infected wild-type mice, suggesting that CD8(+) T cells mediated mortality in an IFN-γ-independent manner. The increased survival of infected CD8(-/-) mice was significantly reduced in the absence of IL-10 signaling. Interestingly, IL-10 was also secreted mainly by CD4(+) T cells. Strikingly, depletion of CD4(+) T cells abrogated the prolonged survival of infected CD8(-/-) mice, demonstrating that CD4(+) T cells mediated protection. Infected wild-type mice and CD8(-/-) mice depleted of CD4(+) T cells had equal survival times, suggesting that the protection mediated by CD4(+) T cells was counteracted by the detrimental effects of CD8(+) T cells in infected wild-type mice. Interestingly, CD4(+) T cells also mediated the mortality of infected mice in the absence of IL-10 signaling, probably via excessive secretion of IFN-γ. Finally, CD4(+), but not CD8(+), T cells were critically involved in the synthesis of IgG antibodies during T. brucei infections. Collectively, these results highlight distinct roles of CD4(+) and CD8(+) T cells in the context of IFN-γ and IL-10 during T. brucei infections.
Collapse
|
46
|
Abstract
B cells have long been regarded as simple antibody production units, but are now becoming known as key players in both adaptive and innate immune responses. However, several bacteria, viruses and parasites have evolved the ability to manipulate B cell functions to modulate immune responses. Pathogens can affect B cells indirectly, by attacking innate immune cells and altering the cytokine environment, and can also target B cells directly, impairing B cell-mediated immune responses. In this Review, we provide a summary of recent advances in elucidating direct B cell-pathogen interactions and highlight how targeting this specific cell population benefits different pathogens.
Collapse
|
47
|
Generation of a nanobody targeting the paraflagellar rod protein of trypanosomes. PLoS One 2014; 9:e115893. [PMID: 25551637 PMCID: PMC4281110 DOI: 10.1371/journal.pone.0115893] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2014] [Accepted: 11/27/2014] [Indexed: 11/23/2022] Open
Abstract
Trypanosomes are protozoan parasites that cause diseases in humans and livestock for which no vaccines are available. Disease eradication requires sensitive diagnostic tools and efficient treatment strategies. Immunodiagnostics based on antigen detection are preferable to antibody detection because the latter cannot differentiate between active infection and cure. Classical monoclonal antibodies are inaccessible to cryptic epitopes (based on their size-150 kDa), costly to produce and require cold chain maintenance, a condition that is difficult to achieve in trypanosomiasis endemic regions, which are mostly rural. Nanobodies are recombinant, heat-stable, small-sized (15 kDa), antigen-specific, single-domain, variable fragments derived from heavy chain-only antibodies in camelids. Because of numerous advantages over classical antibodies, we investigated the use of nanobodies for the targeting of trypanosome-specific antigens and diagnostic potential. An alpaca was immunized using lysates of Trypanosoma evansi. Using phage display and bio-panning techniques, a cross-reactive nanobody (Nb392) targeting all trypanosome species and isolates tested was selected. Imunoblotting, immunofluorescence microscopy, immunoprecipitation and mass spectrometry assays were combined to identify the target recognized. Nb392 targets paraflagellar rod protein (PFR1) of T. evansi, T. brucei, T. congolense and T. vivax. Two different RNAi mutants with defective PFR assembly (PFR2RNAi and KIF9BRNAi) were used to confirm its specificity. In conclusion, using a complex protein mixture for alpaca immunization, we generated a highly specific nanobody (Nb392) that targets a conserved trypanosome protein, i.e., PFR1 in the flagella of trypanosomes. Nb392 is an excellent marker for the PFR and can be useful in the diagnosis of trypanosomiasis. In addition, as demonstrated, Nb392 can be a useful research or PFR protein isolation tool.
Collapse
|
48
|
Abstract
African trypanosomes have been around for more than 100 million years, and have adapted to survival in a very wide host range. While various indigenous African mammalian host species display a tolerant phenotype towards this parasitic infection, and hence serve as perpetual reservoirs, many commercially important livestock species are highly disease susceptible. When considering humans, they too display a highly sensitive disease progression phenotype for infections with Trypanosoma brucei rhodesiense or Trypanosoma brucei gambiense, while being intrinsically resistant to infections with other trypanosome species. As extracellular trypanosomes proliferate and live freely in the bloodstream and lymphatics, they are constantly exposed to the immune system. Due to co-evolution, this environment however no longer poses a hostile threat, but has become the niche environment where trypanosomes thrive and obligatory await transmission through the bites of tsetse flies or other haematophagic vectors, ideally without causing severe side infection-associated pathology to their host. Hence, African trypanosomes have acquired various mechanisms to manipulate and control the host immune response, evading effective elimination. Despite the extensive research into trypanosomosis over the past 40 years, many aspects of the anti-parasite immune response remain to be solved and no vaccine is currently available. Here we review the recent work on the different escape mechanisms employed by African Trypanosomes to ensure infection chronicity and transmission potential.
Collapse
|
49
|
Clastogenic effects of Trypanosoma brucei brucei and Trypanosoma evansi mixed infection in bone marrow of Wistar rats. Res Vet Sci 2014; 97:550-3. [DOI: 10.1016/j.rvsc.2014.09.018] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2014] [Revised: 09/09/2014] [Accepted: 09/25/2014] [Indexed: 01/20/2023]
|
50
|
Beschin A, Van Den Abbeele J, De Baetselier P, Pays E. African trypanosome control in the insect vector and mammalian host. Trends Parasitol 2014; 30:538-47. [DOI: 10.1016/j.pt.2014.08.006] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2014] [Revised: 08/19/2014] [Accepted: 08/21/2014] [Indexed: 12/21/2022]
|