1
|
Woo JKK, Zimnicka AM, Federle MJ, Freitag NE. Novel motif associated with carbon catabolite repression in two major Gram-positive pathogen virulence regulatory proteins. Microbiol Spectr 2024; 12:e0048524. [PMID: 39387597 PMCID: PMC11537053 DOI: 10.1128/spectrum.00485-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Accepted: 09/07/2024] [Indexed: 10/15/2024] Open
Abstract
Carbon catabolite repression (CCR) is a widely conserved regulatory process that ensures enzymes and transporters of less-preferred carbohydrates are transcriptionally repressed in the presence of a preferred carbohydrate. This phenomenon can be regulated via a CcpA-dependent or CcpA-independent mechanism. The CcpA-independent mechanism typically requires a transcriptional regulator harboring a phosphotransferase regulatory domain (PRD) that interacts with phosphotransferase system (PTS) components. PRDs contain a conserved histidine residue that is phosphorylated by the PTS-associated HPr-His15~P protein. PRD-containing regulators often harbor additional domains that resemble PTS-associated EIIB protein domains with a conserved cysteine residue that can be phosphorylated by cognate PTS components. We noted that Mga, the PRD-containing central virulence regulator of Streptococcus pyogenes, has an EIIBGat domain containing a cysteine that, based on the presence of a similar motif in glycerol kinase, could be a target for phosphorylation. Using site-directed mutagenesis, we constructed phospho-ablative and phospho-mimetic substitutions of this cysteine and found that these substitutions modify the CCR of the Rgg2/3 quorum-sensing system. Moreover, we provide genetic evidence that the phospho-donor of this cysteine residue is likely to be ManL, the EIIA/B subunit of the mannose PTS system. Interestingly, a structurally distinct virulence gene regulator, PrfA of Listeria monocytogenes, harbors a similar cysteine-containing motif, and phospho-ablative and phospho-mimetic substitutions of the cysteine-altered CCR of PrfA-dependent virulence gene expression. Collectively, our data suggest that phosphorylation of a cysteine within the shared novel motif in Mga and PrfA may be a heretofore missing link between cellular metabolism and virulence.IMPORTANCEIn this study, we identified a novel cysteine-containing motif within the amino acid sequence of two structurally distinct transcriptional regulators of virulence in two Gram-positive pathogens that appears to link carbon metabolism with virulence gene expression. The results also highlight the potential post-translational modification of cysteine in bacterial species, a rare and understudied modification.
Collapse
Affiliation(s)
- Jerry K. K. Woo
- Department of Biopharmaceutical Sciences, Center for Biomolecular Sciences, College of Pharmacy, University of Illinois at Chicago, Chicago, Illinois, USA
| | - Adriana M. Zimnicka
- Department of Biopharmaceutical Sciences, Center for Biomolecular Sciences, College of Pharmacy, University of Illinois at Chicago, Chicago, Illinois, USA
| | - Michael J. Federle
- Department of Biopharmaceutical Sciences, Center for Biomolecular Sciences, College of Pharmacy, University of Illinois at Chicago, Chicago, Illinois, USA
| | - Nancy E. Freitag
- Department of Biopharmaceutical Sciences, Center for Biomolecular Sciences, College of Pharmacy, University of Illinois at Chicago, Chicago, Illinois, USA
| |
Collapse
|
2
|
Zlitni S, Bowden S, Sberro H, Torres MDT, Vaughan JM, Pinto AFM, Pinto Y, Fernandez D, Röst H, Saghatelian A, de la Fuente-Nunez C, Bhatt AS. Dual quorum-sensing control of purine biosynthesis drives pathogenic fitness of Enterococcus faecalis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.13.607696. [PMID: 39185165 PMCID: PMC11343167 DOI: 10.1101/2024.08.13.607696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 08/27/2024]
Abstract
Enterococcus faecalis is a resident of the human gut, though upon translocation to the blood or body tissues, it can be pathogenic. Here we discover and characterize two peptide-based quorum-sensing systems that transcriptionally modulate de novo purine biosynthesis in E. faecalis. Using a comparative genomic analysis, we find that most enterococcal species do not encode this system; E. moraviensis, E. haemoperoxidus and E. caccae, three species that are closely related to E. faecalis, encode one of the two systems, and only E. faecalis encodes both systems. We show that these systems are important for the intracellular survival of E. faecalis within macrophages and for the fitness of E. faecalis in a murine wound infection model. Taken together, we combine comparative genomics, microbiological, bacterial genetics, transcriptomics, targeted proteomics and animal model experiments to describe a paired quorum sensing mechanism that directly influences central metabolism and impacts the pathogenicity of E. faecalis.
Collapse
Affiliation(s)
- Soumaya Zlitni
- Department of Genetics, Stanford University, Stanford, CA, USA
- Department of Medicine (Hematology, Blood and Marrow Transplantation), Stanford University, Stanford, CA, USA
| | - Sierra Bowden
- Department of Genetics, Stanford University, Stanford, CA, USA
| | - Hila Sberro
- Department of Genetics, Stanford University, Stanford, CA, USA
- Department of Medicine (Hematology, Blood and Marrow Transplantation), Stanford University, Stanford, CA, USA
| | - Marcelo D. T. Torres
- Machine Biology Group, Departments of Psychiatry and Microbiology, Institute for Biomedical Informatics, Institute for Translational Medicine and Therapeutics, Perelman School of Medicine, University of Pennsylvania; Philadelphia, Pennsylvania 19104, USA
- Departments of Bioengineering and Chemical and Biomolecular Engineering, School of Engineering and Applied Science, University of Pennsylvania; Philadelphia, Pennsylvania 19104, USA
- Department of Chemistry, School of Arts and Sciences, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
- Penn Institute for Computational Science, University of Pennsylvania; Philadelphia, Pennsylvania 19104, USA
| | - Joan M Vaughan
- Clayton Foundation Laboratories for Peptide Biology, Salk Institute for Biological Studies, San Diego, CA, USA
| | - Antonio F M Pinto
- Clayton Foundation Laboratories for Peptide Biology, Salk Institute for Biological Studies, San Diego, CA, USA
| | - Yishay Pinto
- Department of Genetics, Stanford University, Stanford, CA, USA
- Department of Medicine (Hematology, Blood and Marrow Transplantation), Stanford University, Stanford, CA, USA
| | - Daniel Fernandez
- Program in Chemistry, Engineering, and Medicine for Human Health (ChEM-H), Stanford University, Stanford, CA 94305, USA
- Sarafan ChEM-H Macromolecular Structure Knowledge Center, Stanford University, Stanford, CA 94305, USA
| | - Hannes Röst
- Department of Molecular Genetics, Donnelly Centre for Cellular and Biomolecular Research, The University of Toronto, Toronto, ON, Canada
| | - Alan Saghatelian
- Clayton Foundation Laboratories for Peptide Biology, Salk Institute for Biological Studies, San Diego, CA, USA
| | - Cesar de la Fuente-Nunez
- Machine Biology Group, Departments of Psychiatry and Microbiology, Institute for Biomedical Informatics, Institute for Translational Medicine and Therapeutics, Perelman School of Medicine, University of Pennsylvania; Philadelphia, Pennsylvania 19104, USA
- Departments of Bioengineering and Chemical and Biomolecular Engineering, School of Engineering and Applied Science, University of Pennsylvania; Philadelphia, Pennsylvania 19104, USA
- Department of Chemistry, School of Arts and Sciences, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
- Penn Institute for Computational Science, University of Pennsylvania; Philadelphia, Pennsylvania 19104, USA
| | - Ami S. Bhatt
- Department of Genetics, Stanford University, Stanford, CA, USA
- Department of Medicine (Hematology, Blood and Marrow Transplantation), Stanford University, Stanford, CA, USA
- Lead contact
| |
Collapse
|
3
|
Choi A, Dong K, Williams E, Pia L, Batagower J, Bending P, Shin I, Peters DI, Kaspar JR. Human saliva modifies growth, biofilm architecture, and competitive behaviors of oral streptococci. mSphere 2024; 9:e0077123. [PMID: 38319113 PMCID: PMC10900908 DOI: 10.1128/msphere.00771-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Accepted: 01/08/2024] [Indexed: 02/07/2024] Open
Abstract
The bacteria within supragingival biofilms participate in complex exchanges with other microbes inhabiting the same niche. One example is the mutans group streptococci (Streptococcus mutans), implicated in the development of tooth decay, and other health-associated commensal streptococci species. Previously, our group transcriptomically characterized intermicrobial interactions between S. mutans and several species of oral bacteria. However, these experiments were carried out in a medium without human saliva. To better mimic their natural environment, we first evaluated how inclusion of saliva affected growth and biofilm formation of eight Streptococcus species individually and found saliva to positively benefit growth rates while negatively influencing biofilm biomass accumulation and altering spatial arrangement. These results carried over during evaluation of 29 saliva-derived isolates of various species. Surprisingly, we also found that addition of saliva increased the competitive behaviors of S. mutans in coculture competitions against commensal streptococci that led to increases in biofilm microcolony volumes. Through transcriptomically characterizing mono- and cocultures of S. mutans and Streptococcus oralis with and without saliva, we determined that each species developed a nutritional niche under mixed-species growth, with S. mutans upregulating carbohydrate uptake and utilization pathways while S. oralis upregulated genome features related to peptide uptake and glycan foraging. S. mutans also upregulated genes involved in oxidative stress tolerance, particularly manganese uptake, which we could artificially manipulate by supplementing in manganese leading to an advantage over its opponent. Our report highlights observable changes in microbial behaviors through leveraging environmental- and host-supplied resources over their competitors. IMPORTANCE Dental caries (tooth decay) is the most prevalent disease for both children and adults nationwide. Caries are initiated from demineralization of the enamel due to organic acid production through the metabolic activity of oral bacteria growing in biofilm communities attached to the tooth's surface. Mutans group streptococci are closely associated with caries development and initiation of the cariogenic cycle, which decreases the amount of acid-sensitive, health-associated commensal bacteria while selecting for aciduric and acidogenic species that then further drives the disease process. Defining the exchanges that occur between mutans group streptococci and oral commensals in a condition that closely mimics their natural environment is of critical need toward identifying factors that can influence odontopathogen establishment, persistence, and outgrowth. The goal of our research is to develop strategies, potentially through manipulation of microbial interactions characterized here, that prevent the emergence of mutans group streptococci while keeping the protective flora intact.
Collapse
Affiliation(s)
- Allen Choi
- Division of Biosciences, The Ohio State University College of Dentistry, Columbus, Ohio, USA
| | - Kevin Dong
- Division of Biosciences, The Ohio State University College of Dentistry, Columbus, Ohio, USA
| | - Emily Williams
- Division of Biosciences, The Ohio State University College of Dentistry, Columbus, Ohio, USA
| | - Lindsey Pia
- Division of Biosciences, The Ohio State University College of Dentistry, Columbus, Ohio, USA
| | - Jordan Batagower
- Division of Biosciences, The Ohio State University College of Dentistry, Columbus, Ohio, USA
| | - Paige Bending
- Division of Biosciences, The Ohio State University College of Dentistry, Columbus, Ohio, USA
| | - Iris Shin
- Division of Biosciences, The Ohio State University College of Dentistry, Columbus, Ohio, USA
| | - Daniel I. Peters
- Division of Biosciences, The Ohio State University College of Dentistry, Columbus, Ohio, USA
| | - Justin R. Kaspar
- Division of Biosciences, The Ohio State University College of Dentistry, Columbus, Ohio, USA
| |
Collapse
|
4
|
St. Pierre J, Roberts J, Alam MA, Shields RC. Construction of an arrayed CRISPRi library as a resource for essential gene function studies in Streptococcus mutans. Microbiol Spectr 2024; 12:e0314923. [PMID: 38054713 PMCID: PMC10783072 DOI: 10.1128/spectrum.03149-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Accepted: 11/08/2023] [Indexed: 12/07/2023] Open
Abstract
IMPORTANCE The construction of arrayed mutant libraries has advanced the field of bacterial genetics by allowing researchers to more efficiently study the exact function and importance of encoded genes. In this study, we constructed an arrayed clustered regularly interspaced short palindromic repeats interference (CRISPRi) library, known as S treptococcus mutans arrayed CRISPRi (SNAP), as a resource to study >250 essential and growth-supporting genes in Streptococcus mutans. SNAP will be made available to the research community, and we anticipate that its distribution will lead to high-quality, high-throughput, and reproducible studies of essential genes.
Collapse
Affiliation(s)
- Jackson St. Pierre
- Department of Biological Sciences, Arkansas State University, Jonesboro, Arkansas, USA
- New York Institute of Technology College of Osteopathic Medicine, Jonesboro, Arkansas, USA
| | - Justin Roberts
- Department of Chemistry & Physics, Arkansas State University, Jonesboro, Arkansas, USA
- University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA
| | - Mohammad A. Alam
- Department of Chemistry & Physics, Arkansas State University, Jonesboro, Arkansas, USA
| | - Robert C. Shields
- Department of Biological Sciences, Arkansas State University, Jonesboro, Arkansas, USA
| |
Collapse
|
5
|
Wahlenmayer ER, Hammers DE. Streptococcal peptides and their roles in host-microbe interactions. Front Cell Infect Microbiol 2023; 13:1282622. [PMID: 37915845 PMCID: PMC10617681 DOI: 10.3389/fcimb.2023.1282622] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Accepted: 10/02/2023] [Indexed: 11/03/2023] Open
Abstract
The genus Streptococcus encompasses many bacterial species that are associated with hosts, ranging from asymptomatic colonizers and commensals to pathogens with a significant global health burden. Streptococci produce numerous factors that enable them to occupy their host-associated niches, many of which alter their host environment to the benefit of the bacteria. The ability to manipulate host immune systems to either evade detection and clearance or induce a hyperinflammatory state influences whether bacteria are able to survive and persist in a given environment, while also influencing the propensity of the bacteria to cause disease. Several bacterial factors that contribute to this inter-species interaction have been identified. Recently, small peptides have become increasingly appreciated as factors that contribute to Streptococcal relationships with their hosts. Peptides are utilized by streptococci to modulate their host environment in several ways, including by directly interacting with host factors to disrupt immune system function and signaling to other bacteria to control the expression of genes that contribute to immune modulation. In this review, we discuss the many contributions of Streptococcal peptides in terms of their ability to contribute to pathogenesis and disruption of host immunity. This discussion will highlight the importance of continuing to elucidate the functions of these Streptococcal peptides and pursuing the identification of new peptides that contribute to modulation of host environments. Developing a greater understanding of how bacteria interact with their hosts has the potential to enable the development of techniques to inhibit these peptides as therapeutic approaches against Streptococcal infections.
Collapse
Affiliation(s)
| | - Daniel E. Hammers
- Biology Department, Houghton University, Houghton, NY, United States
| |
Collapse
|
6
|
Choi A, Dong K, Williams E, Pia L, Batagower J, Bending P, Shin I, Peters DI, Kaspar JR. Human Saliva Modifies Growth, Biofilm Architecture and Competitive Behaviors of Oral Streptococci. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.08.21.554151. [PMID: 37662325 PMCID: PMC10473590 DOI: 10.1101/2023.08.21.554151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/05/2023]
Abstract
The bacteria within supragingival biofilms participate in complex exchanges with other microbes inhabiting the same niche. One example are the mutans group streptococci (Streptococcus mutans), implicated in the development of tooth decay, and other health-associated commensal streptococci species. Previously, our group transcriptomically characterized intermicrobial interactions between S. mutans and several species of oral bacteria. However, these experiments were carried out in a medium that was absent of human saliva. To better mimic their natural environment, we first evaluated how inclusion of saliva affected growth and biofilm formation of eight streptococci species individually, and found saliva to positively benefit growth rates while negatively influencing biomass accumulation and altering spatial arrangement. These results carried over during evaluation of 29 saliva-derived isolates of various species. Surprisingly, we also found that addition of saliva increased the competitive behaviors of S. mutans in coculture competitions against commensal streptococci that led to increases in biofilm microcolony volumes. Through transcriptomically characterizing mono- and cocultures of S. mutans and Streptococcus oralis with and without saliva, we determined that each species developed a nutritional niche under mixed-species growth, with S. mutans upregulating carbohydrate uptake and utilization pathways while S. oralis upregulated genome features related to peptide uptake and glycan foraging. S. mutans also upregulated genes involved in oxidative stress tolerance, particularly manganese uptake, which we could artificially manipulate by supplementing in manganese to give it an advantage over its opponent. Our report highlights observable changes in microbial behaviors via leveraging environmental- and host-supplied resources over their competitors.
Collapse
Affiliation(s)
- Allen Choi
- Division of Biosciences, The Ohio State University College of Dentistry, Columbus, Ohio
| | - Kevin Dong
- Division of Biosciences, The Ohio State University College of Dentistry, Columbus, Ohio
| | - Emily Williams
- Division of Biosciences, The Ohio State University College of Dentistry, Columbus, Ohio
| | - Lindsey Pia
- Division of Biosciences, The Ohio State University College of Dentistry, Columbus, Ohio
| | - Jordan Batagower
- Division of Biosciences, The Ohio State University College of Dentistry, Columbus, Ohio
| | - Paige Bending
- Division of Biosciences, The Ohio State University College of Dentistry, Columbus, Ohio
| | - Iris Shin
- Division of Biosciences, The Ohio State University College of Dentistry, Columbus, Ohio
| | - Daniel I Peters
- Division of Biosciences, The Ohio State University College of Dentistry, Columbus, Ohio
| | - Justin R Kaspar
- Division of Biosciences, The Ohio State University College of Dentistry, Columbus, Ohio
| |
Collapse
|
7
|
Nepomuceno VM, Tylor KM, Carlson S, Federle MJ, Murphy BT, Perez Morales T. A Streptomyces tendae Specialized Metabolite Inhibits Quorum Sensing in Group A Streptococcus. Microbiol Spectr 2023; 11:e0527922. [PMID: 37284782 PMCID: PMC10434017 DOI: 10.1128/spectrum.05279-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Accepted: 05/19/2023] [Indexed: 06/08/2023] Open
Abstract
Quorum sensing (QS) is a means of bacterial communication accomplished by microbe-produced signals and sensory systems. QS systems regulate important population-wide behaviors in bacteria, including secondary metabolite production, swarming motility, and bioluminescence. The human pathogen Streptococcus pyogenes (group A Streptococcus [GAS]) utilizes Rgg-SHP QS systems to regulate biofilm formation, protease production, and activation of cryptic competence pathways. Given their reliance on small-molecule signals, QS systems are attractive targets for small-molecule modulators that would then affect gene expression. In this study, a high-throughput luciferase assay was employed to screen an Actinobacteria-derived secondary metabolite (SM) fraction library to identify small molecule inhibitors of Rgg regulation. A metabolite produced by Streptomyces tendae D051 was found to be a general inhibitor of GAS Rgg-mediated QS. Herein, we describe the biological activity of this metabolite as a QS inhibitor. IMPORTANCE Streptococcus pyogenes, a human pathogen known for causing infections such as pharyngitis and necrotizing fasciitis, uses quorum sensing (QS) to regulate social responses in its environment. Previous studies have focused on disrupting QS as a means to control specific bacterial signaling outcomes. In this work, we identified and described the activity of a naturally derived S. pyogenes QS inhibitor. This study demonstrates that the inhibitor affects three separate but similar QS signaling pathways.
Collapse
Affiliation(s)
- Vanessa M. Nepomuceno
- Department of Pharmaceutical Sciences, University of Illinois at Chicago, Chicago, Illinois, USA
| | - Kaitlyn M. Tylor
- Department of Microbiology and Immunology, University of Illinois at Chicago, Chicago, Illinois, USA
| | - Skylar Carlson
- Department of Chemistry, University of the Pacific, Stockton, California, USA
| | - Michael J. Federle
- Department of Pharmaceutical Sciences, University of Illinois at Chicago, Chicago, Illinois, USA
| | - Brian T. Murphy
- Department of Pharmaceutical Sciences, University of Illinois at Chicago, Chicago, Illinois, USA
| | - Tiara Perez Morales
- Biological Sciences Department, Benedictine University, Lisle, Illinois, USA
| |
Collapse
|
8
|
Hu D, Laczkovich I, Federle MJ, Morrison DA. Identification and Characterization of Negative Regulators of Rgg1518 Quorum Sensing in Streptococcus pneumoniae. J Bacteriol 2023; 205:e0008723. [PMID: 37341600 PMCID: PMC10367586 DOI: 10.1128/jb.00087-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Accepted: 06/02/2023] [Indexed: 06/22/2023] Open
Abstract
Streptococcus pneumoniae is an agent of otitis media, septicemia, and meningitis and remains the leading cause of community-acquired pneumonia regardless of vaccine use. Of the various strategies that S. pneumoniae takes to enhance its potential to colonize the human host, quorum sensing (QS) is an intercellular communication process that provides coordination of gene expression at a community level. Numerous putative QS systems are identifiable in the S. pneumoniae genome, but their gene-regulatory activities and contributions to fitness have yet to be fully evaluated. To contribute to assessing regulatory activities of rgg paralogs present in the D39 genome, we conducted transcriptomic analysis of mutants of six QS regulators. Our results find evidence that at least four QS regulators impact the expression of a polycistronic operon (encompassing genes spd_1517 to spd_1513) that is directly controlled by the Rgg/SHP1518 QS system. As an approach to unravel the convergent regulation placed on the spd_1513-1517 operon, we deployed transposon mutagenesis screening in search of upstream regulators of the Rgg/SHP1518 QS system. The screen identified two types of insertion mutants that result in increased activity of Rgg1518-dependent transcription, one type being where the transposon inserted into pepO, an annotated endopeptidase, and the other type being insertions in spxB, a pyruvate oxidase. We demonstrate that pneumococcal PepO degrades SHP1518 to prevent activation of Rgg/SHP1518 QS. Moreover, the glutamic acid residue in the conserved "HExxH" domain is indispensable for the catalytic function of PepO. Finally, we confirmed the metalloendopeptidase property of PepO, which requires zinc ions, but not other ions, to facilitate peptidyl hydrolysis. IMPORTANCE Streptococcus pneumoniae uses quorum sensing to communicate and regulate virulence. In our study, we focused on one Rgg quorum sensing system (Rgg/SHP1518) and found that multiple other Rgg regulators also control it. We further identified two enzymes that inhibit Rgg/SHP1518 signaling and revealed and validated one enzyme's mechanisms for breaking down quorum sensing signaling molecules. Our findings shed light on the complex regulatory network of quorum sensing in Streptococcus pneumoniae.
Collapse
Affiliation(s)
- Duoyi Hu
- Department of Biological Sciences, University of Illinois at Chicago, Chicago, Illinois, USA
| | - Irina Laczkovich
- Department of Microbiology and Immunology, University of Illinois at Chicago, Chicago, Illinois, USA
| | - Michael J. Federle
- Department of Pharmaceutical Sciences, University of Illinois at Chicago, Chicago, Illinois, USA
- Center for Biomolecular Science, University of Illinois at Chicago, Chicago, Illinois, USA
| | - Donald A. Morrison
- Department of Biological Sciences, University of Illinois at Chicago, Chicago, Illinois, USA
| |
Collapse
|
9
|
Rued BE, Federle MJ. The ComRS-SigX Pathway Regulates Natural Transformation in Streptococcus ferus. J Bacteriol 2023; 205:e0008923. [PMID: 37195233 PMCID: PMC10294618 DOI: 10.1128/jb.00089-23] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Accepted: 04/27/2023] [Indexed: 05/18/2023] Open
Abstract
The ability to take up and incorporate foreign DNA via natural transformation is a well-known characteristic of some species of Streptococcus, and is a mechanism that rapidly allows for the acquisition of antibacterial resistance. Here, we describe that the understudied species Streptococcus ferus is also capable of natural transformation and uses a system analogous to that identified in Streptococcus mutans. S. mutans natural transformation is under the control of the alternative sigma factor sigX (also known as comX), whose expression is induced by two types of peptide signals: CSP (competence stimulating peptide, encoded by comC) and XIP (sigX-inducing peptide, encoded by comS). These systems induce competence via either the two-component signal-transduction system ComDE or the RRNPP transcriptional regulator ComR, respectively. Protein and nucleotide homology searches identified putative orthologs of comRS and sigX in S. ferus, but not homologs of S. mutans blpRH (also known as comDE). We demonstrate that natural transformation in S. ferus is induced by a small, double-tryptophan containing sigX-inducing peptide (XIP), akin to that of S. mutans, and requires the presence of the comR and sigX orthologs for efficient transformation. Additionally, we find that natural transformation is induced in S. ferus by both the native XIP and the XIP variant of S. mutans, implying that cross talk between the two species is possible. This process has been harnessed to construct gene deletions in S. ferus and provides a method to genetically manipulate this understudied species. IMPORTANCE Natural transformation is the process by which bacteria take up DNA and allows for acquisition of new genetic traits, including those involved in antibiotic resistance. This study demonstrates that the understudied species Streptococcus ferus is capable of natural transformation using a peptide-pheromone system like that previously identified in Streptococcus mutans and provides a framework for future studies concerning this organism.
Collapse
Affiliation(s)
- Britta E. Rued
- Department of Pharmaceutical Sciences, University of Illinois at Chicago, Chicago, Illinois, USA
| | - Michael J. Federle
- Department of Pharmaceutical Sciences, University of Illinois at Chicago, Chicago, Illinois, USA
| |
Collapse
|
10
|
Kristensen SS, Diep DB, Kjos M, Mathiesen G. The role of site-2-proteases in bacteria: a review on physiology, virulence, and therapeutic potential. MICROLIFE 2023; 4:uqad025. [PMID: 37223736 PMCID: PMC10202637 DOI: 10.1093/femsml/uqad025] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 04/21/2023] [Accepted: 05/02/2023] [Indexed: 05/25/2023]
Abstract
Site-2-proteases are a class of intramembrane proteases involved in regulated intramembrane proteolysis. Regulated intramembrane proteolysis is a highly conserved signaling mechanism that commonly involves sequential digestion of an anti-sigma factor by a site-1- and site-2-protease in response to external stimuli, resulting in an adaptive transcriptional response. Variation of this signaling cascade continues to emerge as the role of site-2-proteases in bacteria continues to be explored. Site-2-proteases are highly conserved among bacteria and play a key role in multiple processes, including iron uptake, stress response, and pheromone production. Additionally, an increasing number of site-2-proteases have been found to play a pivotal role in the virulence properties of multiple human pathogens, such as alginate production in Pseudomonas aeruginosa, toxin production in Vibrio cholerae, resistance to lysozyme in enterococci and antimicrobials in several Bacillus spp, and cell-envelope lipid composition in Mycobacterium tuberculosis. The prominent role of site-2-proteases in bacterial pathogenicity highlights the potential of site-2-proteases as novel targets for therapeutic intervention. In this review, we summarize the role of site-2-proteases in bacterial physiology and virulence, as well as evaluate the therapeutic potential of site-2-proteases.
Collapse
Affiliation(s)
- Sofie S Kristensen
- Faculty of Chemistry, Biotechnology, and Food Science, Norwegian University of Life Sciences (NMBU), 1433 Ås, Norway
| | | | - Morten Kjos
- Corresponding author. NMBU, P.O. Box 5003, 1433 Ås, Norway. E-mail:
| | | |
Collapse
|
11
|
Andresen S, de Mojana di Cologna N, Archer-Hartmann S, Rogers AM, Samaddar S, Ganguly T, Black IM, Glushka J, Ng KKS, Azadi P, Lemos JA, Abranches J, Szymanski CM. Involvement of the Streptococcus mutans PgfE and GalE 4-epimerases in protein glycosylation, carbon metabolism, and cell division. Glycobiology 2023; 33:245-259. [PMID: 36637425 PMCID: PMC10114643 DOI: 10.1093/glycob/cwad004] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 01/02/2023] [Accepted: 01/03/2023] [Indexed: 01/14/2023] Open
Abstract
Streptococcus mutans is a key pathogen associated with dental caries and is often implicated in infective endocarditis. This organism forms robust biofilms on tooth surfaces and can use collagen-binding proteins (CBPs) to efficiently colonize collagenous substrates, including dentin and heart valves. One of the best characterized CBPs of S. mutans is Cnm, which contributes to adhesion and invasion of oral epithelial and heart endothelial cells. These virulence properties were subsequently linked to post-translational modification (PTM) of the Cnm threonine-rich repeat region by the Pgf glycosylation machinery, which consists of 4 enzymes: PgfS, PgfM1, PgfE, and PgfM2. Inactivation of the S. mutans pgf genes leads to decreased collagen binding, reduced invasion of human coronary artery endothelial cells, and attenuated virulence in the Galleria mellonella invertebrate model. The present study aimed to better understand Cnm glycosylation and characterize the predicted 4-epimerase, PgfE. Using a truncated Cnm variant containing only 2 threonine-rich repeats, mass spectrometric analysis revealed extensive glycosylation with HexNAc2. Compositional analysis, complemented with lectin blotting, identified the HexNAc2 moieties as GlcNAc and GalNAc. Comparison of PgfE with the other S. mutans 4-epimerase GalE through structural modeling, nuclear magnetic resonance, and capillary electrophoresis demonstrated that GalE is a UDP-Glc-4-epimerase, while PgfE is a GlcNAc-4-epimerase. While PgfE exclusively participates in protein O-glycosylation, we found that GalE affects galactose metabolism and cell division. This study further emphasizes the importance of O-linked protein glycosylation and carbohydrate metabolism in S. mutans and identifies the PTM modifications of the key CBP, Cnm.
Collapse
Affiliation(s)
- Silke Andresen
- Complex Carbohydrate Research Center, University of Georgia, Athens, GA 30602, USA
- Department of Microbiology and Complex Carbohydrate Research Center, University of Georgia, Athens, GA 30602, USA
| | | | | | - Ashley M Rogers
- Complex Carbohydrate Research Center, University of Georgia, Athens, GA 30602, USA
- Department of Microbiology and Complex Carbohydrate Research Center, University of Georgia, Athens, GA 30602, USA
| | - Sandip Samaddar
- Department of Oral Biology, College of Dentistry, University of Florida, Gainesville, FL 32603, USA
| | - Tridib Ganguly
- Department of Oral Biology, College of Dentistry, University of Florida, Gainesville, FL 32603, USA
| | - Ian M Black
- Complex Carbohydrate Research Center, University of Georgia, Athens, GA 30602, USA
| | - John Glushka
- Complex Carbohydrate Research Center, University of Georgia, Athens, GA 30602, USA
| | - Kenneth K S Ng
- Department of Chemistry and Biochemistry, University of Windsor, Windsor, ON N9B 3P4, Canada
| | - Parastoo Azadi
- Complex Carbohydrate Research Center, University of Georgia, Athens, GA 30602, USA
| | - José A Lemos
- Department of Oral Biology, College of Dentistry, University of Florida, Gainesville, FL 32603, USA
| | - Jacqueline Abranches
- Department of Oral Biology, College of Dentistry, University of Florida, Gainesville, FL 32603, USA
| | - Christine M Szymanski
- Complex Carbohydrate Research Center, University of Georgia, Athens, GA 30602, USA
- Department of Microbiology and Complex Carbohydrate Research Center, University of Georgia, Athens, GA 30602, USA
| |
Collapse
|
12
|
Rued BE, Federle MJ. The ComRS-SigX pathway regulates natural transformation in Streptococcus ferus. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.06.531454. [PMID: 36945404 PMCID: PMC10028898 DOI: 10.1101/2023.03.06.531454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/09/2023]
Abstract
The ability to take up and incorporate foreign DNA via natural transformation is a well-known characteristic of some species of Streptococcus, and is a mechanism that rapidly allows for the acquisition of antibacterial resistance. Here, we describe that the understudied species Streptococcus ferus is also capable of natural transformation and uses a system analogous to that identified in Streptococcus mutans . S. mutans natural transformation is under the control of the alternative sigma factor sigX (also known as comX ), whose expression is induced by two types of peptide signals: CSP ( c ompetence s timulating p eptide, encoded by comC ) and XIP ( sig X -inducing p eptide, encoded by comS ). These systems induce competence via either the two-component signal-transduction system ComDE or the RRNPP transcriptional regulator ComR, respectively. Protein and nucleotide homology searches identified putative orthologs of comRS and sigX in S. ferus , but not homologs of S. mutans blpRH (also known as comDE ). We demonstrate that natural transformation in S. ferus is induced by a small, double-tryptophan containing competence-inducing peptide (XIP), akin to that of S. mutans , and requires the presence of the comR and sigX orthologs for efficient transformation. Additionally, we find that natural transformation is induced in S. ferus by both the native XIP and the XIP variant of S. mutans , implying that crosstalk between the two species is possible. This process has been harnessed to construct gene deletions in S. ferus and provides a method to genetically manipulate this understudied species. IMPORTANCE Natural transformation is the process by which bacteria take up DNA and allows for acquisition of new genetic traits, including those involved in antibiotic resistance. This study demonstrates that the understudied species Streptococcus ferus is capable of natural transformation using a peptide-pheromone system like that previously identified in Streptococcus mutans and provides a framework for future studies concerning this organism.
Collapse
|
13
|
Milly TA, Tal-Gan Y. Targeting Peptide-Based Quorum Sensing Systems for the Treatment of Gram-Positive Bacterial Infections. Pept Sci (Hoboken) 2023; 115:e24298. [PMID: 37397504 PMCID: PMC10312355 DOI: 10.1002/pep2.24298] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Accepted: 10/27/2022] [Indexed: 08/27/2023]
Abstract
Bacteria utilize a cell density-dependent communication system called quorum sensing (QS) to coordinate group behaviors. In Gram-positive bacteria, QS involves the production of and response to auto-inducing peptide (AIP) signaling molecules to modulate group phenotypes, including pathogenicity. As such, this bacterial communication system has been identified as a potential therapeutic target against bacterial infections. More specifically, developing synthetic modulators derived from the native peptide signal paves a new way to selectively block the pathogenic behaviors associated with this signaling system. Moreover, rational design and development of potent synthetic peptide modulators allows in depth understanding of the molecular mechanisms that drive QS circuits in diverse bacterial species. Overall, studies aimed at understanding the role of QS in microbial social behavior could result in the accumulation of significant knowledge of microbial interactions, and consequently lead to the development of alternative therapeutic agents to treat bacterial infectivity. In this review, we discuss recent advances in the development of peptide-based modulators to target QS systems in Gram-positive pathogens, with a focus on evaluating the therapeutic potential associated with these bacterial signaling pathways.
Collapse
Affiliation(s)
- Tahmina A. Milly
- Department of Chemistry, University of Nevada, Reno, 1664 North Virginia Street, Reno, Nevada, 89557, United States
| | - Yftah Tal-Gan
- Department of Chemistry, University of Nevada, Reno, 1664 North Virginia Street, Reno, Nevada, 89557, United States
| |
Collapse
|
14
|
Markerless Genome Editing in Competent Streptococci. Methods Mol Biol 2023; 2588:201-216. [PMID: 36418690 DOI: 10.1007/978-1-0716-2780-8_13] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Selective markers employed in classical mutagenesis methods using natural genetic transformation can affect gene expression, risk phenotypic effects, and accumulate as unwanted genes during successive mutagenesis cycles. In this chapter, we present a protocol for markerless genome editing in Streptococcus mutans and Streptococcus pneumoniae achieved with an efficient method for natural transformation. High yields of transformants are obtained by combining the unimodal state of competence developed after treatment of S. mutans with sigX-inducing peptide pheromone (XIP) in a chemically defined medium (CDM) or of S. pneumoniae with the competence-stimulating peptide (CSP) together with use of a donor amplicon carrying extensive flanking homology. This combination ensures efficient and precise integration of a new allele by the recombination machinery present in competent cells.
Collapse
|
15
|
Structural and Genomic Evolution of RRNPPA Systems and Their Pheromone Signaling. mBio 2022; 13:e0251422. [PMID: 36259720 PMCID: PMC9765709 DOI: 10.1128/mbio.02514-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/27/2023] Open
Abstract
In Firmicutes, important processes such as competence development, sporulation, virulence, and biofilm formation are regulated by cytoplasmic quorum sensing (QS) receptors of the RRNPPA family using peptide-based communication. Although these systems regulate important processes in a variety of bacteria, their origin and diversification are poorly understood. Here, we integrate structural, genomic, and phylogenetic evidence to shed light on RRNPPA protein origin and diversification. The family is constituted by seven different subfamilies with different domain architectures and functions. Among these, three were found in Lactobacillales (Rgg, ComR, and PrgX) and four in Bacillales (AimR, NprR, PlcR, and Rap). The patterns of presence and the phylogeny of these proteins show that subfamilies diversified a long time ago, resulting in key structural and functional differences. The concordance between the distribution of subfamilies and the bacterial phylogeny was somewhat unexpected, since many of the subfamilies are very abundant in mobile genetic elements, such as phages, plasmids, and phage-plasmids. The existence of diverse propeptide architectures raises intriguing questions about their export and maturation. It also suggests the existence of diverse roles for the RRNPPA systems. Some systems encode multiple pheromones on the same propeptide or multiple similar propeptides, suggesting that they act as "chatterers." Many others lack pheromone genes and may be "eavesdroppers." Interestingly, AimR systems without associated propeptide genes were particularly abundant in chromosomal regions not classed as prophages, suggesting that either the bacterium or other mobile elements are eavesdropping on phage activity. IMPORTANCE Quorum sensing (QS) is a mechanism of bacterial communication, coordinating important decisions depending on bacterial population. QS regulates important processes not only in bacterial behavior but also in genetic mobile elements and host-guest interactions. In Firmicutes, the most important family of QS receptors is the RRNPPA family. Despite the importance of such systems in microbiology, we know little about RRNPPA origin and diversification. In this work, the combination of sequence analysis and structural biology allowed us to identify a very large number of novel systems but also to class of them in functional families and thereby study of their origin and functional diversification. Moreover, peptide pheromone analysis revealed new and intriguing mechanisms of communication, such as "eavesdropper" systems which only listen for the pheromone and "chatterers" that take control of the communication in their microenvironment.
Collapse
|
16
|
Clark KA, Covington BC, Seyedsayamdost MR. Biosynthesis-guided discovery reveals enteropeptins as alternative sactipeptides containing N-methylornithine. Nat Chem 2022; 14:1390-1398. [PMID: 36316408 DOI: 10.1038/s41557-022-01063-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Accepted: 09/14/2022] [Indexed: 11/07/2022]
Abstract
The combination of next-generation DNA sequencing technologies and bioinformatics has revitalized natural product discovery. Using a bioinformatic search strategy, we recently identified ∼600 gene clusters in otherwise overlooked streptococci that code for ribosomal peptide natural products synthesized by radical S-adenosylmethionine enzymes. These grouped into 16 subfamilies and pointed to an unexplored microbiome biosynthetic landscape. Here we report the structure, biosynthesis and function of one of these natural product groups, which we term enteropeptins, from the gut microbe Enterococcus cecorum. We show three reactions in the biosynthesis of enteropeptins that are each catalysed by a different family of metalloenzymes. Among these, we characterize the founding member of a widespread superfamily of Fe-S-containing methyltransferases, which, together with an Mn2+-dependent arginase, installs N-methylornithine in the peptide sequence. Biological assays with the mature product revealed bacteriostatic activity only against the producing strain, extending an emerging theme of fratricidal or self-inhibitory metabolites in microbiome firmicutes.
Collapse
Affiliation(s)
- Kenzie A Clark
- Department of Chemistry, Princeton University, Princeton, NJ, USA
| | | | - Mohammad R Seyedsayamdost
- Department of Chemistry, Princeton University, Princeton, NJ, USA.
- Department of Molecular Biology, Princeton University, Princeton, NJ, USA.
| |
Collapse
|
17
|
Rued BE, Anderson CM, Federle MJ. The Proteomic and Transcriptomic Landscapes Altered by Rgg2/3 Activity in Streptococcus pyogenes. J Bacteriol 2022; 204:e0017522. [PMID: 36314832 PMCID: PMC9664957 DOI: 10.1128/jb.00175-22] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Accepted: 10/01/2022] [Indexed: 11/16/2022] Open
Abstract
Streptococcus pyogenes, otherwise known as Group A Streptococcus (GAS), is an important and highly adaptable human pathogen with the ability to cause both superficial and severe diseases. Understanding how S. pyogenes senses and responds to its environment will likely aid in determining how it causes a breadth of diseases. One regulatory network involved in GAS's ability to sense and respond to the changing environment is the Rgg2/3 quorum sensing (QS) system, which responds to metal and carbohydrate availability and regulates changes to the bacterial surface. To better understand the impact of Rgg2/3 QS on S. pyogenes physiology, we performed RNA-seq and tandem mass tag (TMT)-LC-MS/MS analysis on cells in which this system was induced with short hydrophobic peptide (SHP) pheromone or disrupted. Primary findings confirmed that pheromone stimulation in wild-type cultures is limited to the induction of operons whose promoters contain previously determined Rgg2/3 binding sequences. However, a deletion mutant of rgg3, a strain that endogenously produces elevated amounts of pheromone, led to extended alterations of the transcriptome and proteome, ostensibly by stress-induced pathways. Under such exaggerated pheromone conditions, a connection was identified between Rgg2/3 and the stringent response. Mutation of relA, the bifunctional guanosine tetra- and penta-phosphate nucleoside synthetase/hydrolase, and alarmone synthase genes sasA and sasB, impacted culture doubling times and disabled induction of Rgg2/3 in response to mannose, while manipulation of Rgg2/3 signaling modestly altered nucleotide levels. Our findings indicate that excessive pheromone production or exposure places stress on GAS resulting in an indirect altered proteome and transcriptome beyond primary pheromone signaling. IMPORTANCE Streptococcus pyogenes causes several important human diseases. This study evaluates how the induction or disruption of a cell-cell communication system alters S. pyogenes's gene expression and, in extreme conditions, its physiology. Using transcriptomic and proteomic approaches, the results define the pheromone-dependent regulon of the Rgg2/3 quorum sensing system. In addition, we find that excessive pheromone stimulation, generated by genetic disruption of the Rgg2/3 system, leads to stress responses that are associated with the stringent response. Disruption of stringent response affects the ability of the cell-cell communication system to respond under normally inducing conditions. These findings assist in the determination of how S. pyogenes is impacted by and responds to nontraditional sources of stress.
Collapse
Affiliation(s)
- Britta E. Rued
- Department of Pharmaceutical Sciences, University of Illinois at Chicago, Chicago, Illinois, USA
| | - Caleb M. Anderson
- Department of Pharmaceutical Sciences, University of Illinois at Chicago, Chicago, Illinois, USA
| | - Michael J. Federle
- Department of Pharmaceutical Sciences, University of Illinois at Chicago, Chicago, Illinois, USA
| |
Collapse
|
18
|
Chang JC, Wilkening RV, Rahbari KM, Federle MJ. Quorum Sensing Regulation of a Major Facilitator Superfamily Transporter Affects Multiple Streptococcal Virulence Factors. J Bacteriol 2022; 204:e0017622. [PMID: 35938850 PMCID: PMC9487453 DOI: 10.1128/jb.00176-22] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Accepted: 07/19/2022] [Indexed: 01/04/2023] Open
Abstract
Cell-cell signaling mediated by Rgg-family transcription factors and their cognate pheromones is conserved in Firmicutes, including all streptococci. In Streptococcus pyogenes, or group A strep (GAS), one of these systems, the Rgg2/3 quorum sensing (QS) system, has been shown to regulate phenotypes, including cellular aggregation and biofilm formation, lysozyme resistance, and macrophage immunosuppression. Here, we show the abundance of several secreted virulence factors (streptolysin O, SpyCEP, and M protein) decreases upon induction of QS. The main mechanism underlying the changes in protein levels appears to be transcriptional, occurs downstream of the QS circuit, and is dysregulated by the deletion of an Rgg2/3 QS-regulated major facilitator superfamily (MFS) transporter. Additionally, we identify this MFS transporter as the factor responsible for a previously observed increase in aminoglycoside sensitivity in QS-induced cells. IMPORTANCE The production of virulence factors is a tightly regulated process in bacterial pathogens. Efforts to elucidate the mechanisms by which genes are regulated may advance the understanding of factors influencing pathogen behavior or cellular physiology. This work finds expression of a major facilitator superfamily (MFS) transporter, which is governed by a quorum sensing (QS) system, impacts the expression of multiple virulence factors and accounts for QS-dependent antibiotic susceptibility. Although the mechanism underlying this effect is not clear, MFS orthologs with high sequence similarity from S. pneumoniae and S. porcinus were unable to substitute indicating substrate specificity of the GAS MFS gene. These findings demonstrate novel associations between expression of a transmembrane transporter and virulence factor expression and aminoglycoside transport.
Collapse
Affiliation(s)
- Jennifer C. Chang
- Department of Pharmaceutical Sciences, University of Illinois Chicago, Chicago, Illinois, USA
| | - Reid V. Wilkening
- Department of Microbiology and Immunology, University of Illinois Chicago, Chicago, Illinois, USA
| | - Kate M. Rahbari
- Department of Microbiology and Immunology, University of Illinois Chicago, Chicago, Illinois, USA
| | - Michael J. Federle
- Department of Pharmaceutical Sciences, University of Illinois Chicago, Chicago, Illinois, USA
- Department of Microbiology and Immunology, University of Illinois Chicago, Chicago, Illinois, USA
| |
Collapse
|
19
|
Discovery of Unannotated Small Open Reading Frames in Streptococcus pneumoniae D39 Involved in Quorum Sensing and Virulence Using Ribosome Profiling. mBio 2022; 13:e0124722. [PMID: 35852327 PMCID: PMC9426450 DOI: 10.1128/mbio.01247-22] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Streptococcus pneumoniae, an opportunistic human pathogen, is the leading cause of community-acquired pneumonia and an agent of otitis media, septicemia, and meningitis. Although genomic and transcriptomic studies of S. pneumoniae have provided detailed perspectives on gene content and expression programs, they have lacked information pertaining to the translational landscape, particularly at a resolution that identifies commonly overlooked small open reading frames (sORFs), whose importance is increasingly realized in metabolism, regulation, and virulence. To identify protein-coding sORFs in S. pneumoniae, antibiotic-enhanced ribosome profiling was conducted. Using translation inhibitors, 114 novel sORFs were detected, and the expression of a subset of them was experimentally validated. Two loci associated with virulence and quorum sensing were examined in deeper detail. One such sORF, rio3, overlaps with the noncoding RNA srf-02 that was previously implicated in pathogenesis. Targeted mutagenesis parsing rio3 from srf-02 revealed that rio3 is responsible for the fitness defect seen in a murine nasopharyngeal colonization model. Additionally, two novel sORFs located adjacent to the quorum sensing receptor rgg1518 were found to impact regulatory activity. Our findings emphasize the importance of sORFs present in the genomes of pathogenic bacteria and underscore the utility of ribosome profiling for identifying the bacterial translatome.
Collapse
|
20
|
Joyce LR, Manzer HS, da C. Mendonça J, Villarreal R, Nagao PE, Doran KS, Palmer KL, Guan Z. Identification of a novel cationic glycolipid in Streptococcus agalactiae that contributes to brain entry and meningitis. PLoS Biol 2022; 20:e3001555. [PMID: 35180210 PMCID: PMC8893666 DOI: 10.1371/journal.pbio.3001555] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Revised: 03/03/2022] [Accepted: 01/26/2022] [Indexed: 12/17/2022] Open
Abstract
Bacterial membrane lipids are critical for membrane bilayer formation, cell division, protein localization, stress responses, and pathogenesis. Despite their critical roles, membrane lipids have not been fully elucidated for many pathogens. Here, we report the discovery of a novel cationic glycolipid, lysyl-glucosyl-diacylglycerol (Lys-Glc-DAG), which is synthesized in high abundance by the bacterium Streptococcus agalactiae (Group B Streptococcus, GBS). To our knowledge, Lys-Glc-DAG is more positively charged than any other known lipids. Lys-Glc-DAG carries 2 positive net charges per molecule, distinct from the widely described lysylated phospholipid lysyl-phosphatidylglycerol (Lys-PG) that carries one positive net charge due to the presence of a negatively charged phosphate moiety. We use normal phase liquid chromatography (NPLC) coupled with electrospray ionization (ESI) high-resolution tandem mass spectrometry (HRMS/MS) and genetic approaches to determine that Lys-Glc-DAG is synthesized by the enzyme MprF in GBS, which covalently modifies the neutral glycolipid Glc-DAG with the cationic amino acid lysine. GBS is a leading cause of neonatal meningitis, which requires traversal of the endothelial blood–brain barrier (BBB). We demonstrate that GBS strains lacking mprF exhibit a significant decrease in the ability to invade BBB endothelial cells. Further, mice challenged with a GBSΔmprF mutant developed bacteremia comparably to wild-type (WT) infected mice yet had less recovered bacteria from brain tissue and a lower incidence of meningitis. Thus, our data suggest that Lys-Glc-DAG may contribute to bacterial uptake into host cells and disease progression. Importantly, our discovery provides a platform for further study of cationic lipids at the host–pathogen interface. Bacterial membrane lipids are critical for membrane bilayer formation, cell division, protein localization, stress responses, and pathogenesis. This study shows that the enzyme MprF in Streptococcus agalactiae synthesizes a novel cationic lipid, Lysyl-Glucosyl-Diacylglycerol, which aids meningitis progression in vivo.
Collapse
Affiliation(s)
- Luke R. Joyce
- Department of Biological Sciences, The University of Texas at Dallas, Richardson, Texas, United States of America
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, Colorado, United States of America
| | - Haider S. Manzer
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, Colorado, United States of America
| | - Jéssica da C. Mendonça
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, Colorado, United States of America
- Rio de Janeiro State University, Roberto Alcântara Gomes Biology Institute, Rio de Janeiro, Rio de Janeiro, Brazil
| | - Ricardo Villarreal
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, Colorado, United States of America
| | - Prescilla E. Nagao
- Rio de Janeiro State University, Roberto Alcântara Gomes Biology Institute, Rio de Janeiro, Rio de Janeiro, Brazil
| | - Kelly S. Doran
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, Colorado, United States of America
- * E-mail: (KSD); (KLP); (ZG)
| | - Kelli L. Palmer
- Department of Biological Sciences, The University of Texas at Dallas, Richardson, Texas, United States of America
- * E-mail: (KSD); (KLP); (ZG)
| | - Ziqiang Guan
- Department of Biochemistry, Duke University Medical Center, Durham, North Carolina, United States of America
- * E-mail: (KSD); (KLP); (ZG)
| |
Collapse
|
21
|
Woo JKK, McIver KS, Federle MJ. Carbon catabolite repression on the Rgg2/3 quorum sensing system in Streptococcus pyogenes is mediated by PTS Man and Mga. Mol Microbiol 2022; 117:525-538. [PMID: 34923680 PMCID: PMC8844239 DOI: 10.1111/mmi.14866] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Revised: 12/14/2021] [Accepted: 12/15/2021] [Indexed: 02/03/2023]
Abstract
Streptococcus pyogenes, also known as group A Streptococcus or GAS, is a human-restricted pathogen causing a diverse array of infections. The ability to adapt to different niches requires GAS to adjust gene expression in response to environmental cues. We previously identified the abundance of biometals and carbohydrates led to natural induction of the Rgg2/3 cell-cell communication system (quorum sensing, QS). Here we determined the mechanism by which the Rgg2/3 QS system is stimulated exclusively by mannose and repressed by glucose, a phenomenon known as carbon catabolite repression (CCR). Instead of carbon catabolite protein A, the primary mediator of CCR in Gram-positive bacteria; CCR of Rgg2/3 requires the PTS regulatory domain (PRD)-containing transcriptional regulator Mga. Deletion of Mga led to carbohydrate-independent activation of Rgg2/3 by down-regulating rgg3, the QS repressor. Through phosphoablative and phosphomimetic substitutions within Mga PRDs, we demonstrated that selective phosphorylation of PRD1 conferred repression of the Rgg2/3 system. Moreover, given the carbohydrate specificity mediating Mga-dependent governance over Rgg2/3, we tested mannose-specific PTS components and found the EIIA/B subunit ManL was required for Mga-dependent repression. These findings provide newfound connections between PTSMan , Mga, and QS, and further demonstrate that Mga is a central regulatory nexus for integrating nutritional status and virulence.
Collapse
Affiliation(s)
- Jerry K. K. Woo
- Department of Biopharmaceutical Sciences, Center for Biomolecular Sciences, College of Pharmacy, University of Illinois at Chicago, Chicago, IL, 60607, USA
| | - Kevin S. McIver
- Department of Cell Biology and Molecular Genetics, Maryland Pathogen Research Institute, University of Maryland, College Park, MD 20742, USA
| | - Michael J. Federle
- Department of Biopharmaceutical Sciences, Center for Biomolecular Sciences, College of Pharmacy, University of Illinois at Chicago, Chicago, IL, 60607, USA,For correspondence. ; Tel. 312-413-0213; Fax. 312-413-9303
| |
Collapse
|
22
|
Herrera AL, Chaussee MS. Signaling Peptide SpoV Is Essential for Streptococcus pyogenes Virulence, and Prophylaxis with Anti-SpoV Decreases Disease Severity. Microorganisms 2021; 9:microorganisms9112321. [PMID: 34835447 PMCID: PMC8619256 DOI: 10.3390/microorganisms9112321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 11/03/2021] [Accepted: 11/06/2021] [Indexed: 11/25/2022] Open
Abstract
Streptococcal peptide of virulence (SpoV) is a Streptococcus pyogenes (group A streptococcus (GAS))-specific peptide that is important for GAS survival in murine blood, and the expression of the virulence factors streptolysin O (slo) and streptolysin S (sagA). We used a spoV mutant in isolate MGAS315 to assess the contribution of the SpoV peptide to virulence by using a murine model of invasive disease and an ex vivo human model (Lancefield assay). We then used antibodies to SpoV in both models to evaluate their ability to decrease morbidity and mortality. Results showed that SpoV is essential for GAS virulence, and targeting the peptide has therapeutic potential.
Collapse
|
23
|
Kundra S, Lam LN, Kajfasz JK, Casella LG, Andersen MJ, Abranches J, Flores-Mireles AL, Lemos JA. c-di-AMP Is Essential for the Virulence of Enterococcus faecalis. Infect Immun 2021; 89:e0036521. [PMID: 34424750 PMCID: PMC8519298 DOI: 10.1128/iai.00365-21] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Accepted: 08/11/2021] [Indexed: 12/12/2022] Open
Abstract
Second messenger nucleotides are produced by bacteria in response to environmental stimuli and play a major role in the regulation of processes associated with bacterial fitness, including but not limited to osmoregulation, envelope homeostasis, central metabolism, and biofilm formation. In this study, we uncovered the biological significance of c-di-AMP in the opportunistic pathogen Enterococcus faecalis by isolating and characterizing strains lacking genes responsible for c-di-AMP synthesis (cdaA) and degradation (dhhP and gdpP). Using complementary approaches, we demonstrated that either complete loss of c-di-AMP (ΔcdaA strain) or c-di-AMP accumulation (ΔdhhP, ΔgdpP, and ΔdhhP ΔgdpP strains) drastically impaired general cell fitness and virulence of E. faecalis. In particular, the ΔcdaA strain was highly sensitive to envelope-targeting antibiotics, was unable to multiply and quickly lost viability in human serum or urine ex vivo, and was virtually avirulent in an invertebrate (Galleria mellonella) and in two catheter-associated mouse infection models that recapitulate key aspects of enterococcal infections in humans. In addition to evidence linking these phenotypes to altered activity of metabolite and peptide transporters and inability to maintain osmobalance, we found that the attenuated virulence of the ΔcdaA strain also could be attributed to a defect in Ebp pilus production and activity that severely impaired biofilm formation under both in vitro and in vivo conditions. Collectively, these results demonstrate that c-di-AMP signaling is essential for E. faecalis pathogenesis and a desirable target for drug development.
Collapse
Affiliation(s)
- Shivani Kundra
- Department of Oral Biology, University of Florida College of Dentistry, Gainesville, Florida, USA
| | - Ling Ning Lam
- Department of Oral Biology, University of Florida College of Dentistry, Gainesville, Florida, USA
| | - Jessica K. Kajfasz
- Department of Oral Biology, University of Florida College of Dentistry, Gainesville, Florida, USA
| | - Leila G. Casella
- Department of Oral Biology, University of Florida College of Dentistry, Gainesville, Florida, USA
| | - Marissa J. Andersen
- Department of Biological Sciences, University of Norte Dame, Notre Dame, Indiana, USA
| | - Jacqueline Abranches
- Department of Oral Biology, University of Florida College of Dentistry, Gainesville, Florida, USA
| | - Ana L. Flores-Mireles
- Department of Biological Sciences, University of Norte Dame, Notre Dame, Indiana, USA
| | - José A. Lemos
- Department of Oral Biology, University of Florida College of Dentistry, Gainesville, Florida, USA
| |
Collapse
|
24
|
Shlla B, Gazioglu O, Shafeeq S, Manzoor I, Kuipers OP, Ulijasz A, Hiller NL, Andrew PW, Yesilkaya H. The Rgg1518 transcriptional regulator is a necessary facet of sugar metabolism and virulence in Streptococcus pneumoniae. Mol Microbiol 2021; 116:996-1008. [PMID: 34328238 PMCID: PMC8460608 DOI: 10.1111/mmi.14788] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2021] [Revised: 07/22/2021] [Accepted: 07/26/2021] [Indexed: 10/20/2022]
Abstract
Rggs are a group of transcriptional regulators with diverse roles in metabolism and virulence. Here, we present work on the Rgg1518/SHP1518 quorum sensing system of Streptococcus pneumoniae. The activity of Rgg1518 is induced by its cognate peptide, SHP1518. In vitro analysis showed that the Rgg1518 system is active in conditions rich in galactose and mannose, key nutrients during nasopharyngeal colonization. Rgg1518 expression is highly induced in the presence of these sugars and its isogenic mutant is attenuated in growth on galactose and mannose. When compared with other Rgg systems, Rgg1518 has the largest regulon on galactose. On galactose it controls up- or downregulation of a functionally diverse set of genes involved in galactose metabolism, capsule biosynthesis, iron metabolism, protein translation, as well as other metabolic functions, acting mainly as a repressor of gene expression. Rgg1518 is a repressor of capsule biosynthesis, and binds directly to the capsule regulatory region. Comparison with other Rggs revealed inter-regulatory interactions among Rggs. Finally, the rgg1518 mutant is attenuated in colonization and virulence in a mouse model of colonization and pneumonia. We conclude that Rgg1518 is a virulence determinant that contributes to a regulatory network composed of multiple Rgg systems.
Collapse
Affiliation(s)
- Bushra Shlla
- Department of Respiratory Sciences, University of Leicester, Leicester, UK
- Department of Biology, College of Science, University of Mosul, Mosul, Iraq
| | - Ozcan Gazioglu
- Department of Respiratory Sciences, University of Leicester, Leicester, UK
| | - Sulman Shafeeq
- Molecular Genetics, University of Groningen, Groningen, The Netherlands
| | - Irfan Manzoor
- Molecular Genetics, University of Groningen, Groningen, The Netherlands
| | - Oscar P Kuipers
- Molecular Genetics, University of Groningen, Groningen, The Netherlands
| | - Andrew Ulijasz
- Department of Microbiology and Immunology, Loyola University Chicago, Maywood, Illinois, USA
| | - N Luisa Hiller
- Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, Pennsylvania, USA
| | - Peter W Andrew
- Department of Respiratory Sciences, University of Leicester, Leicester, UK
| | - Hasan Yesilkaya
- Department of Respiratory Sciences, University of Leicester, Leicester, UK
| |
Collapse
|
25
|
Banerji R, Saroj SD. Interspecies signaling affects virulence related morphological characteristics of Streptococcus pyogenes M3. FEMS Microbiol Lett 2021; 368:6307514. [PMID: 34156082 DOI: 10.1093/femsle/fnab079] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Accepted: 06/18/2021] [Indexed: 01/03/2023] Open
Abstract
Streptococcus pyogenes is a Gram-positive human-specific pathogen that asymptomatically colonizes the human respiratory tract. The factors affecting the colonization to the host is not clearly understood. Adherence of the pathogen to host epithelial cell is the initial step for a successful colonization process. In the host, bacteria live in a polymicrobial community; thus, the signaling mediated between the bacteria plays a significant role in the colonization of the pathogen to the host. Thus, the effect of acyl-homoserine lactone, secreted by Gram-negative bacteria on the adhesion properties of S. pyogenes M3 strain was examined. N-(3-Oxododecanoyl)-L-homoserine lactone (Oxo-C12) increased the cell size as well as hydrophobicity of S. pyogenes. qPCR data revealed that the expression of sagA and hasA was negatively affected by Oxo-C12. Moreover, Oxo-C12 leads to changes in the morphological characteristic of S. pyogenes, further promoting adherence to host epithelia and biofilm formation on abiotic surface. The study demonstrates the role of Oxo-C12 as a factor that can promote virulence in S. pyogenes M3.
Collapse
Affiliation(s)
- Rajashri Banerji
- Symbiosis School of Biological Sciences, Symbiosis International (Deemed University), Symbiosis Knowledge Village, Lavale, Pune 412115, Maharashtra, India
| | - Sunil D Saroj
- Symbiosis School of Biological Sciences, Symbiosis International (Deemed University), Symbiosis Knowledge Village, Lavale, Pune 412115, Maharashtra, India
| |
Collapse
|
26
|
Joyce LR, Guan Z, Palmer KL. Streptococcus pneumoniae, S. pyogenes and S. agalactiae membrane phospholipid remodelling in response to human serum. MICROBIOLOGY-SGM 2021; 167. [PMID: 33983874 PMCID: PMC8290102 DOI: 10.1099/mic.0.001048] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Streptococcus pneumoniae, S. pyogenes (Group A Streptococcus; GAS) and S. agalactiae (Group B Streptococcus; GBS) are major aetiological agents of diseases in humans. The cellular membrane, a crucial site in host–pathogen interactions, is poorly characterized in streptococci. Moreover, little is known about whether or how environmental conditions influence their lipid compositions. Using normal phase liquid chromatography coupled with electrospray ionization MS, we characterized the phospholipids and glycolipids of S. pneumoniae, GAS and GBS in routine undefined laboratory medium, streptococcal defined medium and, in order to mimic the host environment, defined medium supplemented with human serum. In human serum-supplemented medium, all three streptococcal species synthesize phosphatidylcholine (PC), a zwitterionic phospholipid commonly found in eukaryotes but relatively rare in bacteria. We previously reported that S. pneumoniae utilizes the glycerophosphocholine (GPC) biosynthetic pathway to synthesize PC. Through substrate tracing experiments, we confirm that GAS and GBS scavenge lysoPC, a major metabolite in human serum, thereby using an abbreviated GPC pathway for PC biosynthesis. Furthermore, we found that plasmanyl-PC is uniquely present in the GBS membrane during growth with human serum, suggesting GBS possesses unusual membrane biochemical or biophysical properties. In summary, we report cellular lipid remodelling by the major pathogenic streptococci in response to metabolites present in human serum.
Collapse
Affiliation(s)
- Luke R Joyce
- Department of Biological Sciences, The University of Texas at Dallas, Richardson, TX, USA
| | - Ziqiang Guan
- Department of Biochemistry, Duke University Medical Center, Durham, NC, USA
| | - Kelli L Palmer
- Department of Biological Sciences, The University of Texas at Dallas, Richardson, TX, USA
| |
Collapse
|
27
|
The Streptococcus pyogenes signaling peptide SpoV regulates streptolysin O and enhances survival in murine blood. J Bacteriol 2021; 203:JB.00586-20. [PMID: 33722844 PMCID: PMC8117530 DOI: 10.1128/jb.00586-20] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Streptococcus pyogenes (Group A Streptococcus, GAS) is a human pathogen that causes a wide range of diseases. For successful colonization within a variety of host niches, GAS must sense and respond to environmental changes. Intercellular communication mediated by peptides is one way GAS coordinates gene expression in response to diverse environmental stressors, which enhances bacterial survival and contributes to virulence. Using peptidomics we identified SpoV (Streptococcal peptide controlling virulence) in culture supernatant fluids. SpoV is a secreted peptide encoded near the gene encoding the extracellular cholesterol-dependent cytolysin streptolysin O (slo) The addition of synthetic SpoV peptide derivatives, but not control peptides, increased slo transcript abundance in an M49 isolate but not in an M3 isolate. Deletion of spoV decreased slo transcript abundance, extracellular SLO protein levels, and SLO-specific hemolytic activity. Complementation of the spoV mutant increased slo transcript abundance. Lastly, a spoV mutant was deficient in the ability to survive in murine blood compared to the parental strain. Moreover, pre-incubation of the spoV mutant with synthetic SpoV peptide derivatives increased GAS survival. Our findings show that slo expression is regulated, in part, by the GAS-specific signaling peptide SpoV.IMPORTANCEGAS secretes signaling peptides that can alter gene expression and impact virulence. We used peptidomics to identify a signaling peptide designated SpoV. Further, we showed that SpoV altered the expression of the cholesterol-dependent cytolysin SLO. Peptide signaling plays an important regulatory role during disease progression among several bacterial pathogens, including GAS. The therapeutic potential of manipulating peptide-controlled regulatory networks is an attractive option for the development of novel therapeutic strategies that disrupt virulence gene expression.
Collapse
|
28
|
Abstract
Some bacterial pathogens utilize cell-cell communication systems, such as quorum sensing (QS), to coordinate genetic programs during host colonization and infection. The human-restricted pathosymbiont Streptococcus pyogenes (group A streptococcus [GAS]) uses the Rgg2/Rgg3 QS system to modify the bacterial surface, enabling biofilm formation and lysozyme resistance. Here, we demonstrate that innate immune cell responses to GAS are substantially altered by the QS status of the bacteria. We found that macrophage activation, stimulated by multiple agonists and assessed by cytokine production and NF-κB activity, was substantially suppressed upon interaction with QS-active GAS but not QS-inactive bacteria. Neither macrophage viability nor bacterial adherence, internalization, or survival were altered by the QS activation status, yet tumor necrosis factor alpha (TNF-α), interleukin 6 (IL-6), and interferon beta (IFN-β) levels and NF-κB reporter activity were drastically lower following infection with QS-active GAS. Suppression required contact between viable bacteria and macrophages. A QS-regulated biosynthetic gene cluster (BGC) in the GAS genome, encoding several putative enzymes, was also required for macrophage modulation. Our findings suggest a model wherein upon contact with macrophages, QS-active GAS produce a BGC-derived factor capable of suppressing inflammatory responses. The suppressive capability of QS-active GAS is abolished after treatment with a specific QS inhibitor. These observations suggest that interfering with the ability of bacteria to collaborate via QS can serve as a strategy to counteract microbial efforts to manipulate host defenses.
Collapse
|
29
|
Li JW, Wyllie RM, Jensen PA. A Novel Competence Pathway in the Oral Pathogen Streptococcus sobrinus. J Dent Res 2021; 100:542-548. [PMID: 33876976 DOI: 10.1177/0022034520979150] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Streptococcus sobrinus is an etiologic cause of dental caries (tooth decay) in humans. Our knowledge of S. sobrinus is scant despite the organism's important role in oral health. It is widely believed that S. sobrinus lacks the natural competence pathways that are used by other streptococci to regulate growth, virulence, and quorum sensing. The lack of natural competence has also prevented genetic manipulation of S. sobrinus, limiting our knowledge of its pathogenicity. We discovered that most strains of S. sobrinus contain a new class of the ComRS competence system. Although S. sobrinus is typically placed among the mutans group streptococci, the S. sobrinus ComRS system is most similar to the competence pathways in the salivarius group. Unlike all other ComRS systems, the S. sobrinus pathway contains 2 copies of the transcriptional regulator ComR and has a peptide pheromone (XIP) that lacks any aromatic amino acids. Synthetic XIP enables transformation of S. sobrinus with plasmid or linear DNA, and we leverage this newfound genetic tractability to confirm that only 1 of the ComR homologs is required for induced competence while the other appears to suppress competence. Exogenous XIP increases the expression of bacteriocin gene clusters and produces an antimicrobial response that inhibits growth of S. mutans. We also identified 2 strains of S. sobrinus that appear to be "cheaters" by either not responding to or not producing XIP. We show how a recombination event in the nonresponsive strain could restore function of the ComRS pathway but delete the gene encoding XIP. Thus, the S. sobrinus ComRS pathway provides new tools for studying this pathogen and offers a lens into the evolution of ecological cheaters.
Collapse
Affiliation(s)
- J W Li
- Department of Bioengineering, University of Illinois at Urbana-Champaign, Urbana, IL, USA.,Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - R M Wyllie
- Department of Bioengineering, University of Illinois at Urbana-Champaign, Urbana, IL, USA.,Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - P A Jensen
- Department of Bioengineering, University of Illinois at Urbana-Champaign, Urbana, IL, USA.,Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL, USA.,Department of Microbiology, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| |
Collapse
|
30
|
Lam T, Ellison CK, Eddington DT, Brun YV, Dalia AB, Morrison DA. Competence pili in Streptococcus pneumoniae are highly dynamic structures that retract to promote DNA uptake. Mol Microbiol 2021; 116:381-396. [PMID: 33754381 DOI: 10.1111/mmi.14718] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 03/11/2021] [Accepted: 03/17/2021] [Indexed: 01/11/2023]
Abstract
The competence pili of transformable Gram-positive species are phylogenetically related to the diverse and widespread class of extracellular filamentous organelles known as type IV pili. In Gram-negative bacteria, type IV pili act through dynamic cycles of extension and retraction to carry out diverse activities including attachment, motility, protein secretion, and DNA uptake. It remains unclear whether competence pili in Gram-positive species exhibit similar dynamic activity, and their mechanism of action for DNA uptake remains unclear. They are hypothesized to either (1) leave transient cavities in the cell wall that facilitate DNA passage, (2) form static adhesins to enrich DNA near the cell surface for subsequent uptake by membrane-embedded transporters, or (3) play an active role in translocating bound DNA via dynamic activity. Here, we use a recently described pilus labeling approach to demonstrate that competence pili in Streptococcus pneumoniae are highly dynamic structures that rapidly extend and retract from the cell surface. By labeling the principal pilus monomer, ComGC, with bulky adducts, we further demonstrate that pilus retraction is essential for natural transformation. Together, our results suggest that Gram-positive competence pili in other species may also be dynamic and retractile structures that play an active role in DNA uptake.
Collapse
Affiliation(s)
- Trinh Lam
- Department of Bioengineering, University of Illinois at Chicago, Chicago, IL, USA
| | - Courtney K Ellison
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ, USA.,Department of Molecular Biology, Princeton University, Princeton, NJ, USA
| | - David T Eddington
- Department of Bioengineering, University of Illinois at Chicago, Chicago, IL, USA
| | - Yves V Brun
- Department of Biology, Indiana University, Bloomington, IN, USA.,Département de microbiologie, infectiologie et immunologie, Université de Montréal, Montréal, QC, Canada
| | - Ankur B Dalia
- Department of Biology, Indiana University, Bloomington, IN, USA
| | - Donald A Morrison
- Department of Biological Sciences, University of Illinois at Chicago, Chicago, IL, USA
| |
Collapse
|
31
|
Quorum Sensing in Streptococcus mutans Regulates Production of Tryglysin, a Novel RaS-RiPP Antimicrobial Compound. mBio 2021; 12:mBio.02688-20. [PMID: 33727351 PMCID: PMC8092268 DOI: 10.1128/mbio.02688-20] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Bacteria interact and compete with a large community of organisms in their natural environment. Streptococcus mutans is one such organism, and it is an important member of the oral microbiota. We found that S. mutans uses a quorum-sensing system to regulate production of a novel posttranslationally modified peptide capable of inhibiting growth of several streptococcal species. The genus Streptococcus encompasses a large bacterial taxon that commonly colonizes mucosal surfaces of vertebrates and is capable of disease etiologies originating from diverse body sites, including the respiratory, digestive, and reproductive tracts. Identifying new modes of treating infections is of increasing importance, as antibiotic resistance has escalated. Streptococcus mutans is an important opportunistic pathogen that is an agent of dental caries and is capable of systemic diseases such as endocarditis. As such, understanding how it regulates virulence and competes in the oral niche is a priority in developing strategies to defend from these pathogens. We determined that S. mutans UA159 possesses a bona fide short hydrophobic peptide (SHP)/Rgg quorum-sensing system that regulates a specialized biosynthetic operon featuring a radical-SAM (S-adenosyl-l-methionine) (RaS) enzyme and produces a ribosomally synthesized and posttranslationally modified peptide (RiPP). The pairing of SHP/Rgg regulatory systems with RaS biosynthetic operons is conserved across streptococci, and a locus similar to that in S. mutans is found in Streptococcus ferus, an oral streptococcus isolated from wild rats. We identified the RaS-RiPP product from this operon and solved its structure using a combination of analytical methods; we term these RiPPs tryglysin A and B for the unusual Trp-Gly-Lys linkage. We report that tryglysins specifically inhibit the growth of other streptococci, but not other Gram-positive bacteria such as Enterococcus faecalis or Lactococcus lactis. We predict that tryglysin is produced by S. mutans in its oral niche, thus inhibiting the growth of competing species, including several medically relevant streptococci.
Collapse
|
32
|
Modulation of quorum sensing-associated virulence in bacteria: carbohydrate as a key factor. Arch Microbiol 2021; 203:1881-1890. [PMID: 33641039 DOI: 10.1007/s00203-021-02235-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Revised: 12/11/2020] [Accepted: 02/11/2021] [Indexed: 01/21/2023]
Abstract
Quorum sensing (QS) is a method of inter-cellular communication that permits bacteria to dispense information about cell density and to synchronize the gene expression accordingly. Gram-positive and Gram-negative bacteria utilize distinct quorum sensing mechanisms for effective pathogenesis. Virulence factor production by pathogenic bacteria is one of the important traits that is under the control of QS. A growing body of evidence has indicated the role of the nutritional environment notably by carbohydrates in dictating the QS-associated virulence gene regulation. The modulation of QS by carbohydrates mitigates the survival and establishment of the pathogen within its host which in turn leads to an increase in morbidity and mortality. This mini-review throws light on the predilection of pathogenic bacteria to rapidly regulate its QS-linked virulence gene expression based on the changing nutrient levels that assist them in prospering within diverse niches.
Collapse
|
33
|
Kaspar JR, Lee K, Richard B, Walker AR, Burne RA. Direct interactions with commensal streptococci modify intercellular communication behaviors of Streptococcus mutans. THE ISME JOURNAL 2021; 15:473-488. [PMID: 32999420 PMCID: PMC8027600 DOI: 10.1038/s41396-020-00789-7] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Revised: 09/10/2020] [Accepted: 09/18/2020] [Indexed: 02/07/2023]
Abstract
The formation of dental caries is a complex process that ultimately leads to damage of the tooth enamel from acids produced by microbes in attached biofilms. The bacterial interactions occurring within these biofilms between cariogenic bacteria, such as the mutans streptococci, and health-associated commensal streptococci, are thought to be critical determinants of health and disease. To better understand these interactions, a Streptococcus mutans reporter strain that actively monitors cell-cell communication via peptide signaling was cocultured with different commensal streptococci. Signaling by S. mutans, normally highly active in monoculture, was completely inhibited by several species of commensals, but only when the bacteria were in direct contact with S. mutans. We identified a novel gene expression pattern that occurred in S. mutans when cultured directly with these commensals. Finally, mutant derivatives of commensals lacking previously shown antagonistic gene products displayed wild-type levels of signal inhibition in cocultures. Collectively, these results reveal a novel pathway(s) in multiple health-associated commensal streptococci that blocks peptide signaling and induces a common contact-dependent pattern of differential gene expression in S. mutans. Understanding the molecular basis for this inhibition will assist in the rational design of new risk assessments, diagnostics, and treatments for the most pervasive oral infectious diseases.
Collapse
Affiliation(s)
- Justin R Kaspar
- Department of Oral Biology, College of Dentistry, University of Florida, Gainesville, FL, USA.
- Division of Biosciences, College of Dentistry, Ohio State University, Columbus, OH, USA.
| | - Kyulim Lee
- Department of Oral Biology, College of Dentistry, University of Florida, Gainesville, FL, USA
| | - Brook Richard
- Department of Oral Biology, College of Dentistry, University of Florida, Gainesville, FL, USA
| | - Alejandro R Walker
- Department of Oral Biology, College of Dentistry, University of Florida, Gainesville, FL, USA
| | - Robert A Burne
- Department of Oral Biology, College of Dentistry, University of Florida, Gainesville, FL, USA
| |
Collapse
|
34
|
Alves-Barroco C, Paquete-Ferreira J, Santos-Silva T, Fernandes AR. Singularities of Pyogenic Streptococcal Biofilms - From Formation to Health Implication. Front Microbiol 2021; 11:584947. [PMID: 33424785 PMCID: PMC7785724 DOI: 10.3389/fmicb.2020.584947] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2020] [Accepted: 11/20/2020] [Indexed: 01/09/2023] Open
Abstract
Biofilms are generally defined as communities of cells involved in a self-produced extracellular matrix adhered to a surface. In biofilms, the bacteria are less sensitive to host defense mechanisms and antimicrobial agents, due to multiple strategies, that involve modulation of gene expression, controlled metabolic rate, intercellular communication, composition, and 3D architecture of the extracellular matrix. These factors play a key role in streptococci pathogenesis, contributing to therapy failure and promoting persistent infections. The species of the pyogenic group together with Streptococcus pneumoniae are the major pathogens belonging the genus Streptococcus, and its biofilm growth has been investigated, but insights in the genetic origin of biofilm formation are limited. This review summarizes pyogenic streptococci biofilms with details on constitution, formation, and virulence factors associated with formation.
Collapse
Affiliation(s)
- Cinthia Alves-Barroco
- UCIBIO, Departamento Ciências da Vida, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, Campus de Caparica, Caparica, Portugal
| | - João Paquete-Ferreira
- UCIBIO, Departamento de Química, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, Campus de Caparica, Caparica, Portugal
| | - Teresa Santos-Silva
- UCIBIO, Departamento de Química, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, Campus de Caparica, Caparica, Portugal
| | - Alexandra R Fernandes
- UCIBIO, Departamento Ciências da Vida, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, Campus de Caparica, Caparica, Portugal
| |
Collapse
|
35
|
Deciphering Streptococcal Biofilms. Microorganisms 2020; 8:microorganisms8111835. [PMID: 33233415 PMCID: PMC7700319 DOI: 10.3390/microorganisms8111835] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Revised: 11/10/2020] [Accepted: 11/17/2020] [Indexed: 12/19/2022] Open
Abstract
Streptococci are a diverse group of bacteria, which are mostly commensals but also cause a considerable proportion of life-threatening infections. They colonize many different host niches such as the oral cavity, the respiratory, gastrointestinal, and urogenital tract. While these host compartments impose different environmental conditions, many streptococci form biofilms on mucosal membranes facilitating their prolonged survival. In response to environmental conditions or stimuli, bacteria experience profound physiologic and metabolic changes during biofilm formation. While investigating bacterial cells under planktonic and biofilm conditions, various genes have been identified that are important for the initial step of biofilm formation. Expression patterns of these genes during the transition from planktonic to biofilm growth suggest a highly regulated and complex process. Biofilms as a bacterial survival strategy allow evasion of host immunity and protection against antibiotic therapy. However, the exact mechanisms by which biofilm-associated bacteria cause disease are poorly understood. Therefore, advanced molecular techniques are employed to identify gene(s) or protein(s) as targets for the development of antibiofilm therapeutic approaches. We review our current understanding of biofilm formation in different streptococci and how biofilm production may alter virulence-associated characteristics of these species. In addition, we have summarized the role of surface proteins especially pili proteins in biofilm formation. This review will provide an overview of strategies which may be exploited for developing novel approaches against biofilm-related streptococcal infections.
Collapse
|
36
|
Abstract
Gram-positive bacteria employ an array of secreted peptides to control population-level behaviors in response to environmental cues. We review mechanistic and functional features of secreted peptides produced by the human pathogen Streptococcus pneumoniae. We discuss sequence features, mechanisms of transport, and receptors for 3 major categories of small peptides: the double-glycine peptides, the Rap, Rgg, NprR, PlcR, and PrgX (RRNPP)-binding peptides, and the lanthionine-containing peptides. We highlight the impact of factors that contribute to carriage and pathogenesis, specifically genetic diversity, microbial competition, biofilm development, and environmental adaptation. A recent expansion in pneumococcal peptide studies reveals a complex network of interacting signaling systems where multiple peptides are integrated into the same signaling pathway, allowing multiple points of entry into the pathway and extending information content in new directions. In addition, since peptides are present in the extracellular milieu, there are opportunities for crosstalk, quorum sensing (QS), as well as intra- and interstrain and species interactions. Knowledge on the manner that population-level behaviors contribute to disease provides an avenue for the design and development of anti-infective strategies.
Collapse
|
37
|
Buckley SJ, Davies MR, McMillan DJ. In silico characterisation of stand-alone response regulators of Streptococcus pyogenes. PLoS One 2020; 15:e0240834. [PMID: 33075055 PMCID: PMC7571705 DOI: 10.1371/journal.pone.0240834] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Accepted: 10/02/2020] [Indexed: 12/20/2022] Open
Abstract
Bacterial “stand-alone” response regulators (RRs) are pivotal to the control of gene transcription in response to changing cytosolic and extracellular microenvironments during infection. The genome of group A Streptococcus (GAS) encodes more than 30 stand-alone RRs that orchestrate the expression of virulence factors involved in infecting multiple tissues, so causing an array of potentially lethal human diseases. Here, we analysed the molecular epidemiology and biological associations in the coding sequences (CDSs) and upstream intergenic regions (IGRs) of 35 stand-alone RRs from a collection of global GAS genomes. Of the 944 genomes analysed, 97% encoded 32 or more of the 35 tested RRs. The length of RR CDSs ranged from 297 to 1587 nucleotides with an average nucleotide diversity (π) of 0.012, while the IGRs ranged from 51 to 666 nucleotides with average π of 0.017. We present new evidence of recombination in multiple RRs including mga, leading to mga-2 switching, emm-switching and emm-like gene chimerization, and the first instance of an isolate that encodes both mga-1 and mga-2. Recombination was also evident in rofA/nra and msmR loci with 15 emm-types represented in multiple FCT (fibronectin-binding, collagen-binding, T-antigen)-types, including novel emm-type/FCT-type pairings. Strong associations were observed between concatenated RR allele types, and emm-type, MLST-type, core genome phylogroup, and country of sampling. No strong associations were observed between individual loci and disease outcome. We propose that 11 RRs may form part of future refinement of GAS typing systems that reflect core genome evolutionary associations. This subgenomic analysis revealed allelic traits that were informative to the biological function, GAS strain definition, and regional outbreak detection.
Collapse
Affiliation(s)
- Sean J. Buckley
- School of Health and Sports Sciences, University of the Sunshine Coast, Sippy Downs, Queensland, Australia
- * E-mail:
| | - Mark R. Davies
- Department of Microbiology and Immunology, University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
| | - David J. McMillan
- School of Health and Sports Sciences, University of the Sunshine Coast, Sippy Downs, Queensland, Australia
| |
Collapse
|
38
|
Bikash CR, Tal-Gan Y. Structure Activity Relationship Study of the XIP Quorum Sensing Pheromone in Streptococcus mutans Reveal Inhibitors of the Competence Regulon. ACS Chem Biol 2020; 15:2833-2841. [PMID: 32946208 DOI: 10.1021/acschembio.0c00650] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The dental cariogenic pathogen Streptococcus mutans coordinates competence for genetic transformation via two peptide pheromones, competence stimulating peptide (CSP) and comX-inducing peptide (XIP). CSP is sensed by the comCDE system and induces competence indirectly, whereas XIP is sensed by the comRS system and induces competence directly. In chemically defined media (CDM), after uptake by oligopeptide permease, XIP interacts with the cytosolic receptor ComR to form the XIP::ComR complex that activates the expression of comX, an alternative sigma factor that initiates the transcription of late-competence genes. In this study, we set out to determine the molecular mechanism of XIP::ComR interaction. To this end, we performed systematic replacement of the amino acid residues in the XIP pheromone and assessed the ability of the mutated analogs to modulate the competence regulon in CDM. We were able to identify structural features that are important to ComR binding and activation. Our structure-activity relationship insights led us to construct multiple XIP-based inhibitors of the comRS pathway. Furthermore, when comCDE and comRS were both stimulated with CSP and XIP, respectively, a lead XIP-based inhibitor was able to maintain the inhibitory activity. Last, phenotypic assays were used to highlight the potential of XIP-based inhibitors to attenuate pathogenicity in S. mutans and to validate the specificity of these compounds to the comRS pathway within the competence regulon. The XIP-based inhibitors developed in this study can be used as lead scaffolds for the design and development of potential therapeutics against S. mutans infections.
Collapse
Affiliation(s)
- Chowdhury Raihan Bikash
- Department of Chemistry, University of Nevada, Reno, 1664 North Virginia Street, Reno, Nevada 89557, United States
| | - Yftah Tal-Gan
- Department of Chemistry, University of Nevada, Reno, 1664 North Virginia Street, Reno, Nevada 89557, United States
| |
Collapse
|
39
|
Zeng L, Burne RA. Subpopulation behaviors in lactose metabolism by Streptococcus mutans. Mol Microbiol 2020; 115:58-69. [PMID: 32881164 DOI: 10.1111/mmi.14596] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Revised: 08/17/2020] [Accepted: 08/24/2020] [Indexed: 01/08/2023]
Abstract
When Streptococcus mutans is transferred from a preferred carbohydrate (glucose or fructose) to lactose, initiation of growth can take several hours, and substantial amounts of glucose are released during growth. Here, S. mutans strains UA159 and GS-5 were examined for stochastic behaviors in transcription of the lac operon. Using a gfp reporter fusion, we demonstrated that induction of the lac operon occurs in only a fraction of the population, with prior exposure to carbohydrate source and strain influencing the magniture of the sub-population response. Lower glucokinase activity in GS-5 was associated with release of substantially more glucose than UA159 and significantly lower lac expression. Mutants unable to use lactose grew on lactose as the sole carbohydrate when strains with an intact lac operon were also present in the cultures, indicative of the potential for population cheating. Utilizing a set of engineered obligate cheating and non-cheating strains, we confirmed that cheating can sustain a heterogeneous population. Futher, obligate cheaters of GS-5 competed well with the non-cheaters and showed a high degree of competitive fitness in a human-derived consortium biofilm model. The results show that bet-hedging behaviors in carbohydrate metabolism may substantially influence the composition and pathogenic potential of oral biofilms.
Collapse
Affiliation(s)
- Lin Zeng
- Department of Oral Biology, University of Florida College of Dentistry, Gainesville, FL, USA
| | - Robert A Burne
- Department of Oral Biology, University of Florida College of Dentistry, Gainesville, FL, USA
| |
Collapse
|
40
|
Zeng L, Burne RA. Molecular mechanisms controlling fructose-specific memory and catabolite repression in lactose metabolism by Streptococcus mutans. Mol Microbiol 2020; 115:70-83. [PMID: 32881130 DOI: 10.1111/mmi.14597] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Revised: 08/17/2020] [Accepted: 08/24/2020] [Indexed: 01/26/2023]
Abstract
Lactose is an abundant dietary carbohydrate metabolized by the dental pathogen Streptococcus mutans. Lactose metabolism presents both classic diauxic behaviors and long-term memory, where the bacteria can pause for >11 h before initiating growth on lactose. Here, we explored mechanisms contributing to unusual aspects of regulation of the lac operon. The fructose-phosphate metabolites, F-1-P and F-6-P, could modulate the DNA-binding activities of the lactose repressor. Recombinant LacR proteins bound upstream of lacA and Gal-6-P induced the formation of different LacR-DNA complexes. Deletion of lacR resulted in strain-specific growth phenotypes on lactose, but also on a number of mono- and di-saccharides that involve the glucose-PTS or glucokinase in their catabolism. The phenotypes were consistent with the novel findings that loss of LacR altered glucose-PTS activity and expression of the gene for glucokinase. CcpA was also shown to affect lactose metabolism in vivo and to bind to the lacA promoter region in vitro. Collectively, our study reveals complex molecular circuits controlling lactose metabolism in S. mutans, where LacR and CcpA integrate cellular and environmental cues to regulate metabolism of a variety of carbohydrates that are critical to persistence and pathogenicity of S. mutans.
Collapse
Affiliation(s)
- Lin Zeng
- Department of Oral Biology, College of Dentistry, University of Florida, Gainesville, FL, USA
| | - Robert A Burne
- Department of Oral Biology, College of Dentistry, University of Florida, Gainesville, FL, USA
| |
Collapse
|
41
|
Lingeswaran A, Metton C, Henry C, Monnet V, Juillard V, Gardan R. Export of Rgg Quorum Sensing Peptides is Mediated by the PptAB ABC Transporter in Streptococcus Thermophilus Strain LMD-9. Genes (Basel) 2020; 11:genes11091096. [PMID: 32961685 PMCID: PMC7564271 DOI: 10.3390/genes11091096] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Revised: 09/10/2020] [Accepted: 09/17/2020] [Indexed: 12/26/2022] Open
Abstract
In streptococci, intracellular quorum sensing pathways are based on quorum-sensing systems that are responsible for peptide secretion, maturation, and reimport. These peptides then interact with Rgg or ComR transcriptional regulators in the Rap, Rgg, NprR, PlcR, and PrgX (RRNPP) family, whose members are found in Gram-positive bacteria. Short hydrophobic peptides (SHP) interact with Rgg whereas ComS peptides interact with ComR regulators. To date, in Streptococcus thermophilus, peptide secretion, maturation, and extracellular fate have received little attention, even though this species has several (at least five) genes encoding Rgg regulators and one encoding a ComR regulator. We studied pheromone export in this species, focusing our attention on PptAB, which is an exporter of signaling peptides previously identified in Enterococcus faecalis, pathogenic streptococci and Staphylococcus aureus. In the S. thermophilus strain LMD-9, we showed that PptAB controlled three regulation systems, two SHP/Rgg systems (SHP/Rgg1358 and SHP/Rgg1299), and the ComS/ComR system, while using transcriptional fusions and that PptAB helped to produce and export at least three different mature SHPs (SHP1358, SHP1299, and SHP279) peptides while using liquid chromatography-tandem mass spectrometry (LC-MS/MS). Using a deep sequencing approach (RNAseq), we showed that the exporter PptAB, the membrane protease Eep, and the oligopeptide importer Ami controlled the transcription of the genes that were located downstream from the five non-truncated rgg genes as well as few distal genes. This led us to propose that the five non-truncated shp/rgg loci were functional. Only three shp genes were expressed in our experimental condition. Thus, this transcriptome analysis also highlighted the complex interconnected network that exists between SHP/Rgg systems, where a few homologous signaling peptides likely interact with different regulators.
Collapse
|
42
|
Colonization of the Murine Oropharynx by Streptococcus pyogenes Is Governed by the Rgg2/3 Quorum Sensing System. Infect Immun 2020; 88:IAI.00464-20. [PMID: 32747598 DOI: 10.1128/iai.00464-20] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Accepted: 07/27/2020] [Indexed: 12/12/2022] Open
Abstract
Streptococcus pyogenes is a human-restricted pathogen most often found in the human nasopharynx. Multiple bacterial factors are known to contribute to persistent colonization of this niche, and many are important in mucosal immunity and vaccine development. In this work, mice were infected intranasally with transcriptional regulator mutants of the Rgg2/3 quorum sensing (QS) system-a peptide-based signaling system conserved in sequenced isolates of S. pyogenes Deletion of the QS system's transcriptional activator (Δrgg2) dramatically diminished the percentage of colonized mice, while deletion of the transcriptional repressor (Δrgg3) increased the percentage of colonized mice compared to that of the wild type (WT). Stimulation of the QS system using synthetic pheromones prior to inoculation did not significantly increase the percentage of animals colonized, indicating that QS-dependent colonization is responsive to the intrinsic conditions within the host upper respiratory tract. Bacterial RNA extracted directly from oropharyngeal swabs and evaluated by quantitative reverse transcription-PCR (qRT-PCR) subsequently confirmed QS upregulation within 1 h of inoculation. In the nasal-associated lymphoid tissue (NALT), a muted inflammatory response to the Δrgg2 bacteria suggests that their rapid elimination failed to elicit the previously characterized response to intranasal inoculation of GAS. This work identifies a new transcriptional regulatory system governing the ability of S. pyogenes to colonize the nasopharynx and provides knowledge that could help lead to decolonization therapeutics.
Collapse
|
43
|
Structure-function studies of Rgg binding to pheromones and target promoters reveal a model of transcription factor interplay. Proc Natl Acad Sci U S A 2020; 117:24494-24502. [PMID: 32907945 DOI: 10.1073/pnas.2008427117] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Regulator gene of glucosyltransferase (Rgg) family proteins, such as Rgg2 and Rgg3, have emerged as primary quorum-sensing regulated transcription factors in Streptococcus species, controlling virulence, antimicrobial resistance, and biofilm formation. Rgg2 and Rgg3 function is regulated by their interaction with oligopeptide quorum-sensing signals called short hydrophobic peptides (SHPs). The molecular basis of Rgg-SHP and Rgg-target DNA promoter specificity was unknown. To close this gap, we determined the cryoelectron microscopy (cryo-EM) structure of Streptococcus thermophilus Rgg3 bound to its quorum-sensing signal, SHP3, and the X-ray crystal structure of Rgg3 alone. Comparison of these structures with that of an Rgg in complex with cyclosporin A (CsA), an inhibitor of SHP-induced Rgg activity, reveals the molecular basis of CsA function. Furthermore, to determine how Rgg proteins recognize DNA promoters, we determined X-ray crystal structures of both Streptococcus dysgalactiae Rgg2 and S. thermophilus Rgg3 in complex with their target DNA promoters. The physiological importance of observed Rgg-DNA interactions was dissected using in vivo genetic experiments and in vitro biochemical assays. Based on these structure-function studies, we present a revised unifying model of Rgg regulatory interplay. In contrast to existing models, where Rgg2 proteins are transcriptional activators and Rgg3 proteins are transcriptional repressors, we propose that both are capable of transcriptional activation. However, when Rgg proteins with different activation requirements compete for the same DNA promoters, those with more stringent activation requirements function as repressors by blocking promoter access of SHP-bound conformationally active Rgg proteins. While a similar gene expression regulatory scenario has not been previously described, in all likelihood it is not unique to streptococci.
Collapse
|
44
|
Bushin LB, Covington BC, Rued BE, Federle MJ, Seyedsayamdost MR. Discovery and Biosynthesis of Streptosactin, a Sactipeptide with an Alternative Topology Encoded by Commensal Bacteria in the Human Microbiome. J Am Chem Soc 2020; 142:16265-16275. [DOI: 10.1021/jacs.0c05546] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Affiliation(s)
- Leah B. Bushin
- Department of Chemistry, Princeton University, Princeton, New Jersey 08544, United States
| | - Brett C. Covington
- Department of Chemistry, Princeton University, Princeton, New Jersey 08544, United States
| | - Britta E. Rued
- Department of Pharmaceutical Sciences, University of Illinois at Chicago, Chicago, Illinois 60607, United States
| | - Michael J. Federle
- Department of Pharmaceutical Sciences, University of Illinois at Chicago, Chicago, Illinois 60607, United States
| | - Mohammad R. Seyedsayamdost
- Department of Chemistry, Princeton University, Princeton, New Jersey 08544, United States
- Department of Molecular Biology, Princeton University, Princeton, New Jersey 08544, United States
| |
Collapse
|
45
|
Involvement of Chromosomally Encoded Homologs of the RRNPP Protein Family in Enterococcus faecalis Biofilm Formation and Urinary Tract Infection Pathogenesis. J Bacteriol 2020; 202:JB.00063-20. [PMID: 32540933 DOI: 10.1128/jb.00063-20] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Accepted: 06/02/2020] [Indexed: 11/20/2022] Open
Abstract
Enterococcus faecalis is an opportunistic pathogen capable of causing infections, including endocarditis and urinary tract infections (UTI). One of the well-characterized quorum-sensing pathways in E. faecalis involves coordination of the conjugal transfer of pheromone-responsive plasmids by PrgX, a member of the RRNPP protein family. Members of this protein family in various Firmicutes have also been shown to contribute to numerous cellular processes, including sporulation, competence, conjugation, nutrient sensing, biofilm formation, and virulence. As PrgX is a plasmid-encoded RRNPP family member, we surveyed the genome of the multidrug-resistant strain V583 for additional RRNPP homologs using computational searches and refined those identified hits for predicted structural similarities to known RRNPP family members. This led us to investigate the contribution of the chromosomally encoded RRNPP homologs to biofilm processes and pathogenesis in a catheter-associated urinary tract infection (CAUTI) model. In this study, we identified five such homologs and report that 3 of the 5 homologs, EF0073, EF1599, and EF1316, affect biofilm formation as well as outcomes in the CAUTI model.IMPORTANCE Enterococcus faecalis causes health care-associated infections and displays resistance to a variety of broad-spectrum antibiotics by acquisition of resistance traits as well as the ability to form biofilms. Even though a growing number of factors related to biofilm formation have been identified, mechanisms that contribute to biofilm formation are still largely unknown. Members of the RRNPP protein family regulate a diverse set of biological reactions in low-G+C Gram-positive bacteria (Firmicutes). Here, we identify three predicted structural homologs of the RRNPP family, EF0073, EF1599, and EF1316, which affect biofilm formation and CAUTI pathogenesis.
Collapse
|
46
|
Vyas HKN, Proctor EJ, McArthur J, Gorman J, Sanderson-Smith M. Current Understanding of Group A Streptococcal Biofilms. Curr Drug Targets 2020; 20:982-993. [PMID: 30947646 PMCID: PMC6700754 DOI: 10.2174/1389450120666190405095712] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2019] [Revised: 04/01/2019] [Accepted: 04/02/2019] [Indexed: 02/01/2023]
Abstract
Background: It has been proposed that GAS may form biofilms. Biofilms are microbial communities that aggregate on a surface, and exist within a self-produced matrix of extracellular polymeric substances. Biofilms offer bacteria an increased survival advantage, in which bacteria persist, and resist host immunity and antimicrobial treatment. The biofilm phenotype has long been recognized as a virulence mechanism for many Gram-positive and Gram-negative bacteria, however very little is known about the role of biofilms in GAS pathogenesis. Objective: This review provides an overview of the current knowledge of biofilms in GAS pathogenesis. This review assesses the evidence of GAS biofilm formation, the role of GAS virulence factors in GAS biofilm formation, modelling GAS biofilms, and discusses the polymicrobial nature of biofilms in the oropharynx in relation to GAS. Conclusion: Further study is needed to improve the current understanding of GAS as both a mono-species biofilm, and as a member of a polymicrobial biofilm. Improved modelling of GAS biofilm formation in settings closely mimicking in vivo conditions will ensure that biofilms generated in the lab closely reflect those occurring during clinical infection.
Collapse
Affiliation(s)
- Heema K N Vyas
- School of Chemistry and Molecular Bioscience, and Illawarra Health and Medical Research Institute, University of Wollongong, Wollongong, Australia
| | - Emma-Jayne Proctor
- School of Chemistry and Molecular Bioscience, and Illawarra Health and Medical Research Institute, University of Wollongong, Wollongong, Australia
| | - Jason McArthur
- School of Chemistry and Molecular Bioscience, and Illawarra Health and Medical Research Institute, University of Wollongong, Wollongong, Australia
| | - Jody Gorman
- School of Chemistry and Molecular Bioscience, and Illawarra Health and Medical Research Institute, University of Wollongong, Wollongong, Australia
| | - Martina Sanderson-Smith
- School of Chemistry and Molecular Bioscience, and Illawarra Health and Medical Research Institute, University of Wollongong, Wollongong, Australia
| |
Collapse
|
47
|
Roles of the Site 2 Protease Eep in Staphylococcus aureus. J Bacteriol 2020; 202:JB.00046-20. [PMID: 32457050 DOI: 10.1128/jb.00046-20] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2020] [Accepted: 05/21/2020] [Indexed: 01/02/2023] Open
Abstract
In Enterococcus faecalis, the site 2 protease Eep generates sex pheromones, including cAM373. Intriguingly, in Staphylococcus aureus, a peptide similar to cAM373, named cAM373_SA, is produced from the camS gene. Here, we report that the staphylococcal Eep homolog is not only responsible for the production of cAM373_SA but also critical for staphylococcal virulence. As with other Eep proteins, the staphylococcal Eep protein has four transmembrane (TM) domains, with the predicted zinc metalloprotease active site (HEXXH) in the first TM domain. eep deletion reduced the cAM373_SA activity in the culture supernatant to the level of the camS deletion mutant. It also markedly decreased the cAM373 peptide peak in a high-performance liquid chromatography (HPLC) analysis. Proteomics analysis showed that Eep affects the production and/or the release of diverse proteins, including the signal peptidase subunit SpsB and the surface proteins SpA, SasG, and FnbA. eep deletion decreased the adherence of S. aureus to host epithelial cells; however, the adherence of the eep mutant was increased by overexpression of the surface proteins SpA, SasG, and FnbA. eep deletion reduced staphylococcal resistance to killing by human neutrophils as well as survival in a murine model of blood infection. The overexpression of the surface protein SpA in the eep mutant increased bacterial survival in the liver. Our study illustrates that in S. aureus, Eep not only generates cAM373_SA but also contributes to the survival of the bacterial pathogen in the host.IMPORTANCE The emergence of multidrug-resistant Staphylococcus aureus makes the treatment of staphylococcal infections much more difficult. S. aureus can acquire a drug resistance gene from other bacteria, such as Enterococcus faecalis Intriguingly, S. aureus produces a sex pheromone for the E. faecalis plasmid pAM373, raising the possibility that S. aureus actively promotes plasmid conjugation from E. faecalis In this study, we found that the staphylococcal Eep protein is responsible for sex pheromone processing and contributes to the survival of the bacteria in the host. These results will enhance future research on the drug resistance acquisition of S. aureus and can lead to the development of novel antivirulence drugs.
Collapse
|
48
|
Piewngam P, Chiou J, Chatterjee P, Otto M. Alternative approaches to treat bacterial infections: targeting quorum-sensing. Expert Rev Anti Infect Ther 2020; 18:499-510. [PMID: 32243194 PMCID: PMC11032741 DOI: 10.1080/14787210.2020.1750951] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Accepted: 03/31/2020] [Indexed: 12/22/2022]
Abstract
Introduction: The emergence of multi- and pan-drug-resistant bacteria represents a global crisis that calls for the development of alternative anti-infective strategies. These comprise anti-virulence approaches, which target pathogenicity without exerting a bacteriostatic or bactericidal effect and are claimed to reduce the development of resistance. Because in many pathogens, quorum-sensing (QS) systems control the expression of virulence factors, interference with QS, or quorum-quenching, is often proposed as a strategy with a broad anti-virulence effect.Areas covered: We discuss the role and regulatory targets of QS control in selected Gram-positive and Gram-negative bacteria, focusing on those with clinical importance and QS control of virulence. We present the components of QS systems that form possible targets for the development of anti-virulence drugs and discuss recent research on quorum-quenching approaches to control bacterial infection.Expert opinion: While there has been extensive research on QS systems and quorum-quenching approaches, there is a paucity of in-vivo research using adequate animal models to substantiate applicability. In-vivo research on QS blockers needs to be intensified and optimized to use clinically relevant setups, in order to underscore that such drugs can be used effectively to overcome problems associated with the treatment of severe infections by antibiotic-resistant pathogens.
Collapse
Affiliation(s)
- Pipat Piewngam
- Pathogen Molecular Genetics Section, Laboratory of Bacteriology, National Institute of Allergy and Infectious Diseases, U.S. National Institutes of Health, 50 South Drive, Bethesda, Maryland 20814, USA
| | - Janice Chiou
- Pathogen Molecular Genetics Section, Laboratory of Bacteriology, National Institute of Allergy and Infectious Diseases, U.S. National Institutes of Health, 50 South Drive, Bethesda, Maryland 20814, USA
| | - Priyanka Chatterjee
- Pathogen Molecular Genetics Section, Laboratory of Bacteriology, National Institute of Allergy and Infectious Diseases, U.S. National Institutes of Health, 50 South Drive, Bethesda, Maryland 20814, USA
| | - Michael Otto
- Pathogen Molecular Genetics Section, Laboratory of Bacteriology, National Institute of Allergy and Infectious Diseases, U.S. National Institutes of Health, 50 South Drive, Bethesda, Maryland 20814, USA
| |
Collapse
|
49
|
Multiple and Overlapping Functions of Quorum Sensing Proteins for Cell Specialization in Bacillus Species. J Bacteriol 2020; 202:JB.00721-19. [PMID: 32071096 DOI: 10.1128/jb.00721-19] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
In bacterial populations, quorum sensing (QS) systems participate in the regulation of specialization processes and regulate collective behaviors that mediate interactions and allow survival of the species. In Gram-positive bacteria, QS systems of the RRNPP family (Rgg, Rap, NprR, PlcR, and PrgX) consist of intracellular receptors and their cognate signaling peptides. Two of these receptors, Rap and NprR, have regained attention in Bacillus subtilis and the Bacillus cereus group. Some Rap proteins, such as RapH and Rap60, are multifunctional and/or redundant in function, linking the specialization processes of sporulation and competence, as well as global expression changes in the transition phase in B. subtilis NprR, an evolutionary intermediate between Rap and RRNPP transcriptional activators, is a bifunctional regulator that modulates sporulation initiation and activates nutrient scavenging genes. In this review, we discuss how these receptors switch between functions and connect distinct signaling pathways. Based on structural evidence, we propose that RapH and Rap60 should be considered moonlighting proteins. Additionally, we analyze an evolutionary and ecological perspective to understand the multifunctionality and functional redundancy of these regulators in both Bacillus spp. and non-Bacillus Firmicutes Understanding the mechanistic, structural, ecological, and evolutionary basis for the multifunctionality and redundancy of these QS systems is a key step for achieving the development of innovative technologies for health and agriculture.
Collapse
|
50
|
Lam T, Maienschein-Cline M, Eddington DT, Morrison DA. Multiplex gene transfer by genetic transformation between isolated S. pneumoniae cells confined in microfluidic droplets. Integr Biol (Camb) 2019; 11:415-424. [PMID: 31990351 PMCID: PMC7011181 DOI: 10.1093/intbio/zyz036] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2019] [Revised: 10/13/2019] [Accepted: 10/24/2019] [Indexed: 02/07/2023]
Abstract
Gene exchange via genetic transformation makes major contributions to antibiotic resistance of the human pathogen, Streptococcus pneumoniae (pneumococcus). The transfers begin when a pneumococcal cell, in a transient specialized physiological state called competence, attacks and lyses another cell, takes up fragments of the liberated DNA, and integrates divergent genes into its genome. Recently, it has been demonstrated that the pneumococcal cells can be enclosed in femtoliter-scale droplets for study of the transformation mechanism, offering the ability to characterize individual cell-cell interactions and overcome the limitations of current methods involving bulk mixed cultures. To determine the relevance and reliability of this new method for study of bacterial genetic transformation, we compared recombination events occurring in 44 recombinants recovered after competence-mediated gene exchange between pairs of cells confined in femtoliter-scale droplets vs. those occurring in exchanges in parallel bulk culture mixtures. The pattern of recombination events in both contexts exhibited the hallmarks of the macro-recombination exchanges previously observed within the more complex natural contexts of biofilms and long-term evolution in the human host.
Collapse
Affiliation(s)
- Trinh Lam
- Department of Bioengineering, University of Illinois at Chicago, Chicago, IL, USA
| | - Mark Maienschein-Cline
- Research Informatics Core, Research Resources Center, University of Illinois at Chicago, Chicago, IL, USA
| | - David T Eddington
- Department of Bioengineering, University of Illinois at Chicago, Chicago, IL, USA
| | - Donald A Morrison
- Department of Biological Sciences, University of Illinois at Chicago, Chicago, IL, USA
| |
Collapse
|