1
|
Owens SM, Sifford JM, Li G, Murdock SJ, Salinas E, Oldenburg D, Ghosh D, Stumhofer JS, Nookaew I, Manzano M, Forrest JC. Intrinsic p53 activation restricts gammaherpesvirus driven germinal center B cell expansion during latency establishment. Nat Commun 2025; 16:951. [PMID: 39843898 PMCID: PMC11754798 DOI: 10.1038/s41467-025-56247-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Accepted: 01/13/2025] [Indexed: 01/30/2025] Open
Abstract
Gammaherpesviruses are DNA tumor viruses that establish lifelong latent infections in lymphocytes. For viruses such as Epstein-Barr virus and murine gammaherpesvirus 68, this is accomplished through a viral gene-expression program that promotes cellular proliferation and differentiation, especially of germinal center B cells. Intrinsic host mechanisms that control virus-driven cellular expansion are incompletely defined. Using a small-animal model of gammaherpesvirus pathogenesis, we demonstrate in vivo that the tumor suppressor p53 is activated specifically in B cells latently infected by murine gammaherpesvirus 68. In the absence of p53, the early expansion of murine gammaherpesvirus 68 latency greatly increases, especially in germinal center B cells, a cell type whose proliferation is conversely restricted by p53. We identify the B cell-specific latency gene M2, a viral promoter of germinal center B cell differentiation, as a viral protein sufficient to elicit a p53-dependent anti-proliferative response caused by Src-family kinase activation. We further demonstrate that Epstein-Barr virus-encoded latent membrane protein 1 similarly triggers a p53 response in primary B cells. Our data highlight a model in which gammaherpesvirus latency gene-expression programs that promote B cell proliferation and differentiation to facilitate viral colonization of the host trigger aberrant cellular proliferation that is controlled by p53.
Collapse
Affiliation(s)
- Shana M Owens
- Dept. of Microbiology and Immunology and Center for Microbial Pathogenesis and Host Inflammatory Responses, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Jeffrey M Sifford
- Dept. of Microbiology and Immunology and Center for Microbial Pathogenesis and Host Inflammatory Responses, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Gang Li
- Dept. of Microbiology and Immunology and Center for Microbial Pathogenesis and Host Inflammatory Responses, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Steven J Murdock
- Dept. of Microbiology and Immunology and Center for Microbial Pathogenesis and Host Inflammatory Responses, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Eduardo Salinas
- Dept. of Microbiology and Immunology and Center for Microbial Pathogenesis and Host Inflammatory Responses, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | | | - Debopam Ghosh
- Dept. of Microbiology and Immunology and Center for Microbial Pathogenesis and Host Inflammatory Responses, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Jason S Stumhofer
- Dept. of Microbiology and Immunology and Center for Microbial Pathogenesis and Host Inflammatory Responses, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Intawat Nookaew
- Dept. of Biomedical Informatics, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Mark Manzano
- Dept. of Microbiology and Immunology, Center for Microbial Pathogenesis and Host Inflammatory Responses, and Winthrop P. Rockefeller Cancer Institute, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - J Craig Forrest
- Dept. of Microbiology and Immunology, Center for Microbial Pathogenesis and Host Inflammatory Responses, and Winthrop P. Rockefeller Cancer Institute, University of Arkansas for Medical Sciences, Little Rock, AR, USA.
| |
Collapse
|
2
|
Johansen ER, Schmalzriedt DL, Avila D, Sylvester PA, Rahlf CR, Bobek JM, Sahoo D, Dittel BN, Tarakanova VL. Combination of proviral and antiviral roles of B cell-intrinsic STAT1 expression defines parameters of chronic gammaherpesvirus infection. mBio 2024; 15:e0159824. [PMID: 39440973 PMCID: PMC11559066 DOI: 10.1128/mbio.01598-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Accepted: 09/26/2024] [Indexed: 10/25/2024] Open
Abstract
Gammaherpesviruses are species-specific, ubiquitous pathogens that establish lifelong infection in their hosts and are associated with cancers, including B cell lymphomas. Type I and II interferons (IFNs) are critical for the control of acute and chronic gammaherpesvirus infection. However, the cell type-specific role of IFN signaling during natural infection is poorly defined and is masked by the altered viral pathogenesis observed in hosts with global IFN deficiencies. STAT1 is a constitutively expressed transcription factor that is critical for the effector function of type I and II IFNs. In this study, we defined the impact of B cell-specific STAT1 expression on gammaherpesvirus infection using murine gammaherpesvirus 68 (MHV68). While the acute stage of MHV68 infection was not affected, we found opposite, anatomic site-dependent effects of B cell-intrinsic STAT1 expression during chronic infection. Consistent with the antiviral role of STAT1, B cell-specific STAT1 expression attenuated the latent viral reservoir in peritoneal B cells of chronically infected mice. In contrast, STAT1 expression in splenic B cells supported the establishment of the latent MHV68 reservoir in germinal center B cells, revealing an unexpected proviral role of B cell-intrinsic STAT1 expression during chronic gammaherpesvirus infection. These STAT1-dependent MHV68 chronic infection phenotypes were fully recapitulated in the peritoneal cavity but not the spleen of mice with B cell-specific deficiency of type I IFN receptor. In summary, our study uncovers the intriguing combination of proviral and antiviral roles of B cell-intrinsic STAT1 expression during chronic gammaherpesvirus infection.IMPORTANCEInterferons (IFNs) execute broadly antiviral roles during acute and chronic viral infections. The constitutively expressed transcription factor STAT1 is a critical downstream effector of IFN signaling. Our studies demonstrate that B cell-intrinsic STAT1 expression has opposing and anatomic site-dependent roles during chronic gammaherpesvirus infection. Specifically, B cell-intrinsic STAT1 expression restricted gammaherpesvirus latent reservoir in the peritoneal cavity, consistent with the classical antiviral role of STAT1. In contrast, decreased STAT1 expression in splenic B cells led to the attenuated establishment of gammaherpesvirus latency and decreased latent infection of germinal center B cells, highlighting a novel proviral role of B cell-intrinsic STAT1 expression during chronic infection with a B cell-tropic gammaherpesvirus. Interestingly, B cell-specific type I IFN receptor deficiency primarily recapitulated the antiviral role of B cell-intrinsic STAT1 expression, suggesting the compensatory function of B cell-intrinsic type II IFN signaling or an IFN-independent proviral role of B cell-intrinsic STAT1 expression during chronic gammaherpesvirus infection.
Collapse
Affiliation(s)
- Erika R. Johansen
- Department of Microbiology and Immunology, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - Damon L. Schmalzriedt
- Department of Microbiology and Immunology, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - Danilela Avila
- Department of Microbiology and Immunology, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - Paul A. Sylvester
- Department of Microbiology and Immunology, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - Cade R. Rahlf
- Department of Microbiology and Immunology, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - Jordan M. Bobek
- Department of Biochemistry, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - Daisy Sahoo
- Department of Medicine, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
- Cardiovascular Center, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
- Cancer Center, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | | | - Vera L. Tarakanova
- Department of Microbiology and Immunology, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
- Cancer Center, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| |
Collapse
|
3
|
Owens SM, Sifford JM, Li G, Murdock SJ, Salinas E, Manzano M, Ghosh D, Stumhofer JS, Forrest JC. Intrinsic p53 Activation Restricts Gammaherpesvirus-Driven Germinal Center B Cell Expansion during Latency Establishment. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.10.31.563188. [PMID: 37961505 PMCID: PMC10634957 DOI: 10.1101/2023.10.31.563188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
Abstract
Gammaherpesviruses (GHV) are DNA tumor viruses that establish lifelong latent infections in lymphocytes. For viruses such as Epstein-Barr virus (EBV) and murine gammaherpesvirus 68 (MHV68), this is accomplished through a viral gene-expression program that promotes cellular proliferation and differentiation, especially of germinal center (GC) B cells. Intrinsic host mechanisms that control virus-driven cellular expansion are incompletely defined. Using a small-animal model of GHV pathogenesis, we demonstrate in vivo that tumor suppressor p53 is activated specifically in B cells that are latently infected by MHV68. In the absence of p53, the early expansion of MHV68 latency was greatly increased, especially in GC B cells, a cell-type whose proliferation was conversely restricted by p53. We identify the B cell-specific latency gene M2, a viral promoter of GC B cell differentiation, as a viral protein sufficient to elicit a p53-dependent anti-proliferative response caused by Src-family kinase activation. We further demonstrate that EBV-encoded latent membrane protein 1 (LMP1) similarly triggers a p53 response in primary B cells. Our data highlight a model in which GHV latency gene-expression programs that promote B cell proliferation and differentiation to facilitate viral colonization of the host trigger aberrant cellular proliferation that is controlled by p53. IMPORTANCE Gammaherpesviruses cause lifelong infections of their hosts, commonly referred to as latency, that can lead to cancer. Latency establishment benefits from the functions of viral proteins that augment and amplify B cell activation, proliferation, and differentiation signals. In uninfected cells, off-schedule cellular differentiation would typically trigger anti-proliferative responses by effector proteins known as tumor suppressors. However, tumor suppressor responses to gammaherpesvirus manipulation of cellular processes remain understudied, especially those that occur during latency establishment in a living organism. Here we identify p53, a tumor suppressor commonly mutated in cancer, as a host factor that limits virus-driven B cell proliferation and differentiation, and thus, viral colonization of a host. We demonstrate that p53 activation occurs in response to viral latency proteins that induce B cell activation. This work informs a gap in our understanding of intrinsic cellular defense mechanisms that restrict lifelong GHV infection.
Collapse
|
4
|
Tao L, Dryden P, Lowe A, Wang G, Achuthkumar A, Chang T, Reese TA. WY14643 Increases Herpesvirus Replication and Inhibits IFNβ Production Independently of PPARα Expression. Microbiol Spectr 2023; 11:e0233722. [PMID: 36715509 PMCID: PMC10100363 DOI: 10.1128/spectrum.02337-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Accepted: 01/06/2023] [Indexed: 01/31/2023] Open
Abstract
Peroxisome proliferator activated receptor (PPAR) agonists are commonly used to treat metabolic disorders in humans because they regulate fatty acid oxidation and cholesterol metabolism. In addition to their roles in controlling metabolism, PPAR agonists also regulate inflammation and are immunosuppressive in models of autoimmunity. We aimed to test whether activation of PPARα with clinically relevant ligands could impact gammaherpesvirus infection using murine gammaherpesvirus-68 (MHV68, MuHV-4). We found that PPAR agonists WY14643 and fenofibrate increased herpesvirus replication in vitro. In vivo, WY14643 increased viral replication and caused lethality in mice. Unexpectedly, these effects proved independent of PPARα. We found that WY14643 suppressed production of type I interferon after MHV68 infection in vitro and in vivo. Taken together, our data indicate that caution should be employed when using PPARα agonists in immuno-metabolic studies, as they can have off-target effects on viral replication through the inhibition of type I interferon production. IMPORTANCE PPAR agonists are used clinically to treat both metabolic and inflammatory disorders. Because viruses are known to rewire host metabolism to their own benefit, the intersection of immunity, metabolism, and virology is an important research area. Our article is an important contribution to this field for two reasons. First, it shows a role for PPARα agonists in altering virus replication. Second, it shows that PPARα agonists can affect virus replication in a manner independent of their predicted target. This knowledge is valuable for anyone seeking to use PPARα agonists as a research tool.
Collapse
Affiliation(s)
- Lili Tao
- Department of Immunology, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Phillip Dryden
- Department of Immunology, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Alexandria Lowe
- Department of Immunology, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Guoxun Wang
- Department of Immunology, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Amritha Achuthkumar
- Department of Immunology, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Tyron Chang
- Department of Immunology, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Tiffany A. Reese
- Department of Immunology, University of Texas Southwestern Medical Center, Dallas, Texas, USA
- Department of Microbiology, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| |
Collapse
|
5
|
Type I Interferon Signaling Controls Gammaherpesvirus Latency In Vivo. Pathogens 2022; 11:pathogens11121554. [PMID: 36558888 PMCID: PMC9787724 DOI: 10.3390/pathogens11121554] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 12/09/2022] [Accepted: 12/11/2022] [Indexed: 12/23/2022] Open
Abstract
Gammaherpesviruses, such as Epstein-Barr virus and Kaposi's sarcoma-associated herpesvirus, are important human pathogens involved in lymphoproliferative disorders and tumorigenesis. Herpesvirus infections are characterized by a biphasic cycle comprised of an acute phase with lytic replication and a latent state. Murine gammaherpesvirus 68 (MHV-68) is a well-established model for the study of lytic and latent life cycles in the mouse. We investigated the interplay between the type I interferon (IFN)-mediated innate immune response and MHV-68 latency using sensitive bioluminescent reporter mice. Adoptive transfer of latently infected splenocytes into type I IFN receptor-deficient mice led to a loss of latency control. This was revealed by robust viral propagation and dissemination of MHV-68, which coincided with type I IFN reporter induction. Despite MHV-68 latency control by IFN, the continuous low-level cell-to-cell transmission of MHV-68 was detected in the presence of IFN signaling, indicating that IFN cannot fully prevent viral dissemination during latency. Moreover, impaired type I IFN signaling in latently infected splenocytes increased the risk of virus reactivation, demonstrating that IFN directly controls MHV-68 latency in infected cells. Overall, our data show that locally constrained type I IFN responses control the cellular reservoir of latency, as well as the distribution of latent infection to potential new target cells.
Collapse
|
6
|
Sylvester PA, Jondle CN, Schmalzriedt DL, Dittel BN, Tarakanova VL. T Cell-Specific STAT1 Expression Promotes Lytic Replication and Supports the Establishment of Gammaherpesvirus Latent Reservoir in Splenic B Cells. mBio 2022; 13:e0210722. [PMID: 35968944 PMCID: PMC9430880 DOI: 10.1128/mbio.02107-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Accepted: 07/22/2022] [Indexed: 11/30/2022] Open
Abstract
Gammaherpesviruses establish lifelong infections in most vertebrate species, including humans and rodents, and are associated with cancers, including B cell lymphomas. While type I and II interferon (IFN) systems of the host are critical for the control of acute and chronic gammaherpesvirus infection, the cell type-specific role(s) of IFN signaling during infection is poorly understood and is often masked by the profoundly altered viral pathogenesis in the hosts with global IFN deficiencies. STAT1 is a critical effector of all classical IFN responses along with its involvement in other cytokine signaling pathways. In this study, we defined the effect of T cell-specific STAT1 deficiency on the viral and host parameters of infection with murine gammaherpesvirus 68 (MHV68). MHV68 is a natural rodent pathogen that, similar to human gammaherpesviruses, manipulates and usurps B cell differentiation to establish a lifelong latent reservoir in B cells. Specifically, germinal center B cells host the majority of latent MHV68 reservoir in the lymphoid organs, particularly at the peak of viral latency. Unexpectedly, T cell-specific STAT1 expression, while limiting the overall expansion of the germinal center B cell population during chronic infection, rendered these B cells more effective at hosting the latent virus reservoir. Further, T cell-specific STAT1 expression in a wild type host limited circulating levels of IFNγ, with corresponding increases in lytic MHV68 replication and viral reactivation. Thus, our study unveils an unexpected proviral role of T cell-specific STAT1 expression during gammaherpesvirus infection of a natural intact host. IMPORTANCE Interferons (IFNs) represent a major antiviral host network vital to the control of multiple infections, including acute and chronic gammaherpesvirus infections. Ubiquitously expressed STAT1 plays a critical effector role in all classical IFN responses. This study utilized a mouse model of T cell-specific STAT1 deficiency to define cell type-intrinsic role of STAT1 during natural gammaherpesvirus infection. Unexpectedly, T cell-specific loss of STAT1 led to better control of acute and persistent gammaherpesvirus replication and decreased establishment of latent viral reservoir in B cells, revealing a surprisingly diverse proviral role of T cell-intrinsic STAT1.
Collapse
Affiliation(s)
- P. A. Sylvester
- Department of Microbiology and Immunology, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - C. N. Jondle
- Department of Microbiology and Immunology, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - D. L. Schmalzriedt
- Department of Microbiology and Immunology, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - B. N. Dittel
- Department of Microbiology and Immunology, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
- Versiti Blood Research Institute, Milwaukee, Wisconsin, USA
| | - V. L. Tarakanova
- Department of Microbiology and Immunology, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
- Cancer Center, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| |
Collapse
|
7
|
Lange PT, White MC, Damania B. Activation and Evasion of Innate Immunity by Gammaherpesviruses. J Mol Biol 2022; 434:167214. [PMID: 34437888 PMCID: PMC8863980 DOI: 10.1016/j.jmb.2021.167214] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Revised: 08/11/2021] [Accepted: 08/13/2021] [Indexed: 12/20/2022]
Abstract
Gammaherpesviruses are ubiquitous pathogens that establish lifelong infections in the vast majority of adults worldwide. Importantly, these viruses are associated with numerous malignancies and are responsible for significant human cancer burden. These virus-associated cancers are due, in part, to the ability of gammaherpesviruses to successfully evade the innate immune response throughout the course of infection. In this review, we will summarize the current understanding of how gammaherpesviruses are detected by innate immune sensors, how these viruses evade recognition by host cells, and how this knowledge can inform novel therapeutic approaches for these viruses and their associated diseases.
Collapse
Affiliation(s)
- Philip T Lange
- Lineberger Comprehensive Cancer Center, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA; Department of Microbiology and Immunology, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA. https://twitter.com/langept
| | - Maria C White
- Lineberger Comprehensive Cancer Center, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA; Department of Microbiology and Immunology, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA. https://twitter.com/maria_c_white
| | - Blossom Damania
- Lineberger Comprehensive Cancer Center, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA; Department of Microbiology and Immunology, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
| |
Collapse
|
8
|
Ren K, Zhu Y, Sun H, Li S, Duan X, Li S, Li Y, Li B, Chen L. IRF2 inhibits ZIKV replication by promoting FAM111A expression to enhance the host restriction effect of RFC3. Virol J 2021; 18:256. [PMID: 34930359 PMCID: PMC8691090 DOI: 10.1186/s12985-021-01724-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Accepted: 12/08/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Although interferon regulatory factor 2 (IRF2) was reported to stimulate virus replication by suppressing the type I interferon signaling pathway, because cell cycle arrest was found to promote viral replication, IRF2-regulated replication fork factor (FAM111A and RFC3) might be able to affect ZIKV replication. In this study, we aimed to investigate the function of IRF2, FAM111A and RFC3 to ZIKV replication and underlying mechanism. METHODS siIRF2, siFAM111A, siRFC3 and pIRF2 in ZIKV-infected A549, 2FTGH and U5A cells were used to explore the mechanism of IRF2 to inhibit ZIKV replication. In addition, their expression was analyzed by RT-qPCR and western blots, respectively. RESULTS In this study, we found IRF2 expression was increased in ZIKV-infected A549 cells and IRF2 inhibited ZIKV replication independent of type I IFN signaling pathway. IRF2 could activate FAM111A expression and then enhanced the host restriction effect of RFC3 to inhibit replication of ZIKV. CONCLUSIONS We speculated the type I interferon signaling pathway might not play a leading role in regulating ZIKV replication in IRF2-silenced cells. We found IRF2 was able to upregulate FAM111A expression and thus enhance the host restriction effect of RFC3 on ZIKV.
Collapse
Affiliation(s)
- Kai Ren
- Institute of Blood Transfusion, Chinese Academy of Medical Sciences and Peking Union Medical College, 26 Huacai Road, Chengdu, 610051, China.,The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, China
| | - Ya Zhu
- Institute of Blood Transfusion, Chinese Academy of Medical Sciences and Peking Union Medical College, 26 Huacai Road, Chengdu, 610051, China
| | - Honggang Sun
- Institute of Blood Transfusion, Chinese Academy of Medical Sciences and Peking Union Medical College, 26 Huacai Road, Chengdu, 610051, China
| | - Shilin Li
- Institute of Blood Transfusion, Chinese Academy of Medical Sciences and Peking Union Medical College, 26 Huacai Road, Chengdu, 610051, China
| | - Xiaoqiong Duan
- Institute of Blood Transfusion, Chinese Academy of Medical Sciences and Peking Union Medical College, 26 Huacai Road, Chengdu, 610051, China
| | - Shuang Li
- Shanghai University of Medicine and Health Sciences, Shanghai, China
| | - Yujia Li
- Institute of Blood Transfusion, Chinese Academy of Medical Sciences and Peking Union Medical College, 26 Huacai Road, Chengdu, 610051, China.
| | - Bin Li
- The Joint Laboratory on Transfusion-Transmitted Diseases (TTDs) Between Institute of Blood Transfusion, Chinese Academy of Medical Sciences and Nanning Blood Center, Naning Blood Center, Nanning, China.
| | - Limin Chen
- Institute of Blood Transfusion, Chinese Academy of Medical Sciences and Peking Union Medical College, 26 Huacai Road, Chengdu, 610051, China. .,The Joint Laboratory on Transfusion-Transmitted Diseases (TTDs) Between Institute of Blood Transfusion, Chinese Academy of Medical Sciences and Nanning Blood Center, Naning Blood Center, Nanning, China. .,Toronto General Research Institute, University of Toronto, Toronto, Canada.
| |
Collapse
|
9
|
Conserved Gammaherpesvirus Protein Kinase Counters the Antiviral Effects of Myeloid Cell-Specific STAT1 Expression To Promote the Establishment of Splenic B Cell Latency. J Virol 2021; 95:e0085921. [PMID: 34132573 DOI: 10.1128/jvi.00859-21] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Gammaherpesviruses establish lifelong infections and are associated with B cell lymphomas. Murine gammaherpesvirus 68 (MHV68) infects epithelial and myeloid cells during acute infection, with subsequent passage of the virus to B cells, where physiological B cell differentiation is usurped to ensure the establishment of a chronic latent reservoir. Interferons (IFNs) represent a major antiviral defense system that engages the transcriptional factor STAT1 to attenuate diverse acute and chronic viral infections, including those of gammaherpesviruses. Correspondingly, global deficiency of type I or type II IFN signaling profoundly increases the pathogenesis of acute and chronic gammaherpesvirus infection, compromises host survival, and impedes mechanistic understanding of cell type-specific role of IFN signaling. Here, we demonstrate that myeloid-specific STAT1 expression attenuates acute and persistent MHV68 replication in the lungs and suppresses viral reactivation from peritoneal cells, without any effect on the establishment of viral latent reservoir in splenic B cells. All gammaherpesviruses encode a conserved protein kinase that antagonizes type I IFN signaling in vitro. Here, we show that myeloid-specific STAT1 deficiency rescues the attenuated splenic latent reservoir of the kinase-null MHV68 mutant. However, despite having gained access to splenic B cells, the protein kinase-null MHV68 mutant fails to drive B cell differentiation. Thus, while myeloid-intrinsic STAT1 expression must be counteracted by the gammaherpesvirus protein kinase to facilitate viral passage to splenic B cells, expression of the viral protein kinase continues to be required to promote optimal B cell differentiation and viral reactivation, highlighting the multifunctional nature of this conserved viral protein during chronic infection. IMPORTANCE IFN signaling is a major antiviral system of the host that suppresses replication of diverse viruses, including acute and chronic gammaherpesvirus infection. STAT1 is a critical member and the primary antiviral effector of IFN signaling pathways. Given the significantly compromised antiviral status of global type I or type II IFN deficiency, unabated gammaherpesvirus replication and pathogenesis hinders understanding of cell type-specific antiviral effects. In this study, a mouse model of myeloid-specific STAT1 deficiency unveiled site-specific antiviral effects of STAT1 in the lungs and peritoneal cavity, but not the spleen, of chronically infected hosts. Interestingly, expression of a conserved gammaherpesvirus protein kinase was required to counteract the antiviral effects of myeloid-specific STAT1 expression to facilitate latent infection of splenic B cells, revealing a cell type-specific virus-host antagonism during the establishment of chronic gammaherpesvirus infection.
Collapse
|
10
|
T cell-intrinsic Interferon Regulatory Factor-1 expression suppresses differentiation of CD4 + T cell populations that support chronic gammaherpesvirus infection. J Virol 2021; 95:e0072621. [PMID: 34346769 DOI: 10.1128/jvi.00726-21] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Gammaherpesviruses are ubiquitous pathogens that establish life-long infection and are associated with B cell lymphomas. To establish chronic infection, these viruses usurp B cell differentiation and drive a robust germinal center response to expand the latent viral reservoir and gain access to memory B cells. Germinal center B cells, while important for the establishment of latent infection, are also thought to be the target of viral transformation. The host and viral factors that impact the gammaherpesvirus-driven germinal center response are not clearly defined. We showed that global expression of the antiviral and tumor-suppressor interferon regulatory factor 1 (IRF-1) selectively attenuates the murine gammaherpesvirus 68 (MHV68)-driven germinal center response and restricts expansion of the latent viral reservoir. In this study we found that T cell intrinsic IRF-1 expression recapitulates some aspects of antiviral state imposed by IRF-1 during chronic MHV68 infection, including attenuation of the germinal center response and viral latency in the spleen. We also discovered that global and T cell-intrinsic IRF-1 deficiency leads to unhindered rise of IL-17A-expressing and follicular helper T cell populations, two CD4+ T cell subsets that support chronic MHV68 infection. Thus, this study unveils a novel aspect of antiviral activity of IRF-1 by demonstrating IRF-1-mediated suppression of specific CD4+ T cell subsets that support chronic gammaherpesvirus infection. Importance Gammaherpesviruses infect over 95% of the adult population, last the lifetime of the host, and are associated with multiple cancers. These viruses usurp the germinal center response to establish lifelong infection in memory B cells. This manipulation of B cell differentiation by the virus is thought to contribute to lymphomagenesis, though exactly how the virus precipitates malignant transformation in vivo is unclear. IRF-1, a host transcription factor and a known tumor suppressor, restricts the MHV68-driven germinal center response in a B cell-extrinsic manner. We found that T cell intrinsic IRF-1 expression attenuates the MHV68-driven germinal center response by restricting the CD4+ T follicular helper population. Further, our study identified IRF-1 as a novel negative regulator of IL-17-driven immune responses, highlighting the multifaceted role of IRF-1 in gammaherpesvirus infection.
Collapse
|
11
|
Mandal P, Lyons JD, Burd EM, Koval M, Mocarski ES, Coopersmith CM. Integrated evaluation of lung disease in single animals. PLoS One 2021; 16:e0246270. [PMID: 34237078 PMCID: PMC8266100 DOI: 10.1371/journal.pone.0246270] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Accepted: 01/15/2021] [Indexed: 11/18/2022] Open
Abstract
During infectious disease, pathogen load drives inflammation and immune response that together contribute to tissue injury often resulting in organ dysfunction. Pulmonary failure in SARS-CoV2-infected hospitalized COVID-19 patients is one such prominent example. Intervention strategies require characterization of the host-pathogen interaction by accurately assessing all of the above-mentioned disease parameters. To study infection in intact mammals, mice are often used as essential genetic models. Due to humane concerns, there is a constant unmet demand to develop studies that reduce the number of mice utilized while generating objective data. Here, we describe an integrated method of evaluating lung inflammation in mice infected with Pseudomonas aeruginosa or murine gammaherpesvirus (MHV)-68. This method conserves animal resources while permitting evaluation of disease mechanisms in both infection settings. Lungs from a single euthanized mouse were used for two purposes-biological assays to determine inflammation and infection load, as well as histology to evaluate tissue architecture. For this concurrent assessment of multiple parameters from a single euthanized mouse, we limit in-situ formalin fixation to the right lung of the cadaver. The unfixed left lung is collected immediately and divided into several segments for biological assays including determination of pathogen titer, assessment of infection-driven cytokine levels and appearance of cell death markers. In situ fixed right lung was then processed for histological determination of tissue injury and confirmation of infection-driven cell death patterns. This method reduces overall animal use and minimizes inter-animal variability that results from sacrificing different animals for different types of assays. The technique can be applied to any lung disease study in mice or other mammals.
Collapse
Affiliation(s)
- Pratyusha Mandal
- Department of Microbiology and Immunology, Emory Vaccine Center, Emory University School of Medicine, Atlanta, GA, United States of America
| | - John D. Lyons
- Department of Surgery, Emory Critical Care Center, Emory University School of Medicine, Atlanta, GA, United States of America
| | - Eileen M. Burd
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, GA, United States of America
| | - Michael Koval
- Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, Department of Medicine and Department of Cell Biology, Emory University School of Medicine, Atlanta, GA, United States of America
| | - Edward S. Mocarski
- Department of Microbiology and Immunology, Emory Vaccine Center, Emory University School of Medicine, Atlanta, GA, United States of America
| | - Craig M. Coopersmith
- Department of Surgery, Emory Critical Care Center, Emory University School of Medicine, Atlanta, GA, United States of America
| |
Collapse
|
12
|
Interferon Regulatory Factor 3 Supports the Establishment of Chronic Gammaherpesvirus Infection in a Route- and Dose-Dependent Manner. J Virol 2021; 95:JVI.02208-20. [PMID: 33597211 DOI: 10.1128/jvi.02208-20] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Accepted: 02/10/2021] [Indexed: 12/15/2022] Open
Abstract
Gammaherpesviruses are ubiquitous pathogens that establish lifelong infections and are associated with several malignancies, including B cell lymphomas. Uniquely, these viruses manipulate B cell differentiation to establish long-term latency in memory B cells. This study focuses on the interaction between gammaherpesviruses and interferon regulatory factor 3 (IRF-3), a ubiquitously expressed transcription factor with multiple direct target genes, including beta interferon (IFN-β), a type I IFN. IRF-3 attenuates acute replication of a plethora of viruses, including gammaherpesvirus. Furthermore, IRF-3-driven IFN-β expression is antagonized by the conserved gammaherpesvirus protein kinase during lytic virus replication in vitro In this study, we have uncovered an unexpected proviral role of IRF-3 during chronic gammaherpesvirus infection. In contrast to the antiviral activity of IRF-3 during acute infection, IRF-3 facilitated establishment of latent gammaherpesvirus infection in B cells, particularly, germinal center and activated B cells, the cell types critical for both natural infection and viral lymphomagenesis. This proviral role of IRF-3 was further modified by the route of infection and viral dose. Furthermore, using a combination of viral and host genetics, we show that IRF-3 deficiency does not rescue attenuated chronic infection of a protein kinase null gammaherpesvirus mutant, highlighting the multifunctional nature of the conserved gammaherpesvirus protein kinases in vivo In summary, this study unveils an unexpected proviral nature of the classical innate immune factor, IRF-3, during chronic virus infection.IMPORTANCE Interferon regulatory factor 3 (IRF-3) is a critical component of the innate immune response, in part due to its transactivation of beta interferon (IFN-β) expression. Similar to that observed in all acute virus infections examined to date, IRF-3 suppresses lytic viral replication during acute gammaherpesvirus infection. Because gammaherpesviruses establish lifelong infection, this study aimed to define the antiviral activity of IRF-3 during chronic infection. Surprisingly, we found that, in contrast to acute infection, IRF-3 supported the establishment of gammaherpesvirus latency in splenic B cells, revealing an unexpected proviral nature of this classical innate immune host factor.
Collapse
|
13
|
Deletion of Murine Gammaherpesvirus Gene M2 in Activation-Induced Cytidine Deaminase-Expressing B Cells Impairs Host Colonization and Viral Reactivation. J Virol 2020; 95:JVI.01933-20. [PMID: 33028711 DOI: 10.1128/jvi.01933-20] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Accepted: 09/30/2020] [Indexed: 12/27/2022] Open
Abstract
Gammaherpesviruses (GHVs) are DNA tumor viruses that establish lifelong, chronic infections in lymphocytes of humans and other mammals. GHV infections are associated with numerous cancers, especially in immunocompromised hosts. While it is known that GHVs utilize host germinal center (GC) B cell responses during latency establishment, an understanding of how viral gene products function in specific B cell subsets to regulate this process is incomplete. Using murine gammaherpesvirus 68 (MHV68) as a small-animal model to define mechanisms of GHV pathogenesis in vivo, we generated a virus in which the M2 gene was flanked by loxP sites (M2.loxP), enabling the use of Cre-lox technology to define M2 function in specific cell types in infection and disease. The M2 gene encodes a protein that is highly expressed in GC B cells that promotes plasma cell differentiation and viral reactivation. M2 was efficiently deleted in Cre-expressing cells, and the presence of loxP sites flanking M2 did not alter viral replication or latency in mice that do not express Cre. In contrast, M2.loxP MHV68 exhibited a deficit in latency establishment and reactivation that resembled M2-null virus, following intranasal (IN) infection of mice that express Cre in all B cells (CD19-Cre). Nearly identical phenotypes were observed for M2.loxP MHV68 in mice that express Cre in germinal center (GC) B cells (AID-Cre). However, colonization of neither draining lymph nodes after IN infection nor the spleen after intraperitoneal (IP) infection required M2, although the reactivation defect was retained. Together, these data confirm that M2 function is B cell-specific and demonstrate that M2 primarily functions in AID-expressing cells to facilitate MHV68 dissemination to distal latency reservoirs within the host and reactivation from latency. Our study reveals that a viral latency gene functions within a distinct subset of cells to facilitate host colonization.IMPORTANCE Gammaherpesviruses establish lifelong chronic infections in cells of the immune system that can lead to lymphomas and other diseases. To facilitate colonization of a host, gammaherpesviruses encode gene products that manipulate processes involved in cellular proliferation and differentiation. Whether and how these viral gene products function in specific cells of the immune system is poorly defined. We report here the use of a viral genetic system that allows for deletion of specific viral genes in discrete populations of cells. We employ this system in an in vivo model to demonstrate cell-type-specific requirements for a particular viral gene. Our findings reveal that a viral gene product can function in distinct cellular subsets to direct gammaherpesvirus pathogenesis.
Collapse
|
14
|
Interferon Regulatory Factor 7 Attenuates Chronic Gammaherpesvirus Infection. J Virol 2020; 94:JVI.01554-20. [PMID: 32967960 DOI: 10.1128/jvi.01554-20] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Accepted: 09/15/2020] [Indexed: 01/02/2023] Open
Abstract
Gammaherpesviruses are ubiquitous pathogens that establish lifelong infections and are associated with a variety of malignancies, including lymphomas. Interferon regulatory factor 7 (IRF-7) is an innate immune transcription factor that restricts acute replication of diverse viruses, including murine gammaherpesvirus 68 (MHV68). Importantly, very little is known about the role of IRF-7 during chronic virus infections. In this study, we demonstrate that IRF-7 attenuates chronic infection by restricting establishment of gammaherpesvirus latency in the peritoneal cavity and, to a lesser extent, viral reactivation in the spleen. Despite the classical role of IRF-7 as a stimulator of type I interferon (IFN) transcription, there were no global effects on the expression of IFN-induced genes (ISGs) in the absence of IRF-7, with only a few ISGs showing attenuated expression in IRF-7-deficient peritoneal cells. Further, IRF-7 expression was dispensable for the induction of a virus-specific CD8 T cell response. In contrast, IRF-7 expression restricted latent gammaherpesvirus infection in the peritoneal cavity under conditions where the viral latent reservoir is predominantly hosted by peritoneal B cells. This report is the first demonstration of the antiviral role of IRF-7 during the chronic stage of gammaherpesvirus infection.IMPORTANCE The innate immune system of the host is critical for the restriction of acute viral infections. In contrast, the role of the innate immune network during chronic herpesvirus infection remains poorly defined. Interferon regulatory factor 7 (IRF-7) is a transcription factor with many target genes, including type I interferons (IFNs). In this study, we show that the antiviral role of IRF-7 continues into the chronic phase of gammaherpesvirus infection, wherein IRF-7 restricts the establishment of viral latency and viral reactivation. This study is, to our knowledge, the first to define the role of IRF-7 in chronic virus infection.
Collapse
|
15
|
Jondle CN, Tarakanova VL. Innate immunity and alpha/gammaherpesviruses: first impressions last a lifetime. Curr Opin Virol 2020; 44:81-89. [PMID: 32777757 DOI: 10.1016/j.coviro.2020.07.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Revised: 06/25/2020] [Accepted: 07/04/2020] [Indexed: 12/26/2022]
Abstract
Innate immune system is considered the first line of defense during viral invasion, with the wealth of the literature demonstrating innate immune control of diverse viruses during acute infection. What is far less clear is the role of innate immune system during chronic virus infections. This short review focuses on alphaherpesviruses and gammaherpesviruses, two highly prevalent herpesvirus subfamilies that, following a brief, once in a lifetime period of acute lytic infection, establish life-long latent infection that is characterized by sporadic reactivation in an immunocompetent host. In spite of many similarities, these two viral families are characterized by distinct cellular tropism and pathogenesis. Here we focus on the published in vivo studies to review known interactions of these two viral subfamilies with the innate immunity of the intact host, both during acute and, particularly, chronic virus infection.
Collapse
Affiliation(s)
- Christopher N Jondle
- Department of Microbiology and Immunology, Medical College of Wisconsin, 8701 W Watertown Plank Road, Milwaukee, WI, 53226, United States
| | - Vera L Tarakanova
- Department of Microbiology and Immunology, Medical College of Wisconsin, 8701 W Watertown Plank Road, Milwaukee, WI, 53226, United States; Cancer Center, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI, 53226, United States.
| |
Collapse
|
16
|
Miller HE, Johnson KE, Tarakanova VL, Robinson RT. γ-herpesvirus latency attenuates Mycobacterium tuberculosis infection in mice. Tuberculosis (Edinb) 2019; 116:56-60. [PMID: 31153519 DOI: 10.1016/j.tube.2019.04.022] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2019] [Revised: 04/24/2019] [Accepted: 04/29/2019] [Indexed: 12/13/2022]
Abstract
Tuberculosis is caused by Mycobacterium tuberculosis (Mtb), a bacterial pathogen which is transmitted via aerosol and establishes a chronic lung infection. In naïve hosts, Mtb grows for several weeks without being restricted by IFNγ-producing T cells, which eventually accumulate and limit Mtb dissemination. In this study, we used a mouse model of Mtb/γ-herpesvirus (γHV) coinfection to test the hypothesis that latent γHV infection alters host resistance to Mtb. γHVs are DNA viruses which elicit a polyclonal T cell response and attenuate some acute bacterial pathogens in mice; whether γHVs modulate infection with Mtb is unknown. Here, mice harboring latent mouse gammaherpesvirus 68 (MHV68)-a γHV genetically and biologically related to human Epstein Barr virus (EBV)-were infected via aerosol with a low dose of virulent Mtb. Mtb burdens and IFNγ+ T cell frequencies in mice with latent MHV68 (MHV68POS mice) were subsequently measured and compared to control mice that did not harbor latent MHV68 (MHV68NEG mice). Relative to MHV68NEG controls, MHV68POS mice more effectively limited Mtb growth and dissemination, and had higher frequencies of CD4+IFNγ+ cells in lung-draining lymph nodes. Collectively, our results support a model wherein latent γHV confers moderate protection against subsequent Mtb infection.
Collapse
Affiliation(s)
| | | | - Vera L Tarakanova
- Department of Microbiology and Immunology, USA; Cancer Center, The Medical College of Wisconsin, Milwaukee, WI, USA
| | - Richard T Robinson
- Department of Microbial Infection & Immunity, The Ohio State University, Columbus, OH, USA.
| |
Collapse
|
17
|
Host Tumor Suppressor p18 INK4c Functions as a Potent Cell-Intrinsic Inhibitor of Murine Gammaherpesvirus 68 Reactivation and Pathogenesis. J Virol 2018; 92:JVI.01604-17. [PMID: 29298882 DOI: 10.1128/jvi.01604-17] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2017] [Accepted: 12/09/2017] [Indexed: 12/13/2022] Open
Abstract
Gammaherpesviruses are common viruses associated with lifelong infection and increased disease risk. Reactivation from latency aids the virus in maintaining infection throughout the life of the host and is responsible for a wide array of disease outcomes. Previously, we demonstrated that the virus-encoded cyclin (v-cyclin) of murine gammaherpesvirus 68 (γHV68) is essential for optimal reactivation from latency in normal mice but not in mice lacking the host tumor suppressor p18INK4c (p18). Whether p18 plays a cell-intrinsic or -extrinsic role in constraining reactivation remains unclear. Here, we generated recombinant viruses in which we replaced the viral cyclin with the cellular p18INK4c gene (p18KI) for targeted expression of p18, specifically within infected cells. We find that the p18KI virus is similar to the cyclin-deficient virus (cycKO) in lytic infection, establishment of latency, and infected cell reservoirs. While the cycKO virus is capable of reactivation in p18-deficient mice, expression of p18 from the p18KI virus results in a profound reactivation defect. These data demonstrate that p18 limits reactivation within latently infected cells, functioning in a cell-intrinsic manner. Further, the p18KI virus showed greater attenuation of virus-induced lethal pneumonia than the cycKO virus, indicating that p18 could further restrict γHV68 pathogenesis even in p18-sufficient mice. These studies demonstrate that host p18 imposes the requirement for the viral cyclin to reactivate from latency by functioning in latently infected cells and that p18 expression is associated with decreased disease, thereby identifying p18 as a compelling host target to limit chronic gammaherpesvirus pathogenesis.IMPORTANCE Gammaherpesviruses are ubiquitous viruses associated with multiple malignancies. The propensity to cycle between latency and reactivation results in an infection that is never cleared and often difficult to treat. Understanding the balance between latency and reactivation is integral to treating gammaherpesvirus infection and associated disease outcomes. This work characterizes the role of a novel inhibitor of reactivation, host p18INK4c, thereby bringing more clarity to a complex process with significant outcomes for infected individuals.
Collapse
|
18
|
Lv DW, Zhang K, Li R. Interferon regulatory factor 8 regulates caspase-1 expression to facilitate Epstein-Barr virus reactivation in response to B cell receptor stimulation and chemical induction. PLoS Pathog 2018; 14:e1006868. [PMID: 29357389 PMCID: PMC5794192 DOI: 10.1371/journal.ppat.1006868] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2017] [Revised: 02/01/2018] [Accepted: 01/09/2018] [Indexed: 12/30/2022] Open
Abstract
Interferon regulatory factor 8 (IRF8), also known as interferon consensus sequence-binding protein (ICSBP), is a transcription factor of the IRF family. IRF8 plays a key role in normal B cell differentiation, a cellular process that is intrinsically associated with Epstein-Barr virus (EBV) reactivation. However, whether IRF8 regulates EBV lytic replication remains unknown. In this study, we utilized a CRISPR/Cas9 genomic editing approach to deplete IRF8 and found that IRF8 depletion dramatically inhibits the reactivation of EBV upon lytic induction. We demonstrated that IRF8 depletion suppresses the expression of a group of genes involved in apoptosis and thus inhibits apoptosis induction upon lytic induction by B cell receptor (BCR) stimulation or chemical induction. The protein levels of caspase-1, caspase-3 and caspase-8 all dramatically decreased in IRF8-depleted cells, which led to reduced caspase activation and the stabilization of KAP1, PAX5 and DNMT3A upon BCR stimulation. Interestingly, caspase inhibition blocked the degradation of KAP1, PAX5 and DNMT3A, suppressed EBV lytic gene expression and viral DNA replication upon lytic induction, suggesting that the reduced caspase expression in IRF8-depleted cells contributes to the suppression of EBV lytic replication. We further demonstrated that IRF8 directly regulates CASP1 (caspase-1) gene expression through targeting its gene promoter and knockdown of caspase-1 abrogates EBV reactivation upon lytic induction, partially through the stabilization of KAP1. Together our study suggested that, by modulating the activation of caspases and the subsequent cleavage of KAP1 upon lytic induction, IRF8 plays a critical role in EBV lytic reactivation. Infection with Epstein-Barr virus (EBV) is closely associated with human cancers of both B cell and epithelial cell origin. The EBV life cycle is tightly regulated by both viral and cellular factors. Here, we demonstrate that interferon regulatory factor 8 (IRF8) is required for EBV lytic replication. Mechanistically, IRF8 directly regulates caspase-1 expression and hence caspase activation upon B cell receptor (BCR) stimulation and chemical induction, which leads to the cleavage and de-stabilization of several host factors suppressing lytic replication, including KAP1. Caspase-1 depletion blocks EBV reactivation while KAP1 depletion facilitates reactivation in caspase-1 depleted cells. These results together establish a IRF8/caspase-1/KAP1 axis important for EBV reactivation.
Collapse
Affiliation(s)
- Dong-Wen Lv
- Department of Oral and Craniofacial Molecular Biology and Philips Institute for Oral Health Research, School of Dentistry, Virginia Commonwealth University, Richmond, Virginia, United States of America
| | - Kun Zhang
- Department of Oral and Craniofacial Molecular Biology and Philips Institute for Oral Health Research, School of Dentistry, Virginia Commonwealth University, Richmond, Virginia, United States of America
| | - Renfeng Li
- Department of Oral and Craniofacial Molecular Biology and Philips Institute for Oral Health Research, School of Dentistry, Virginia Commonwealth University, Richmond, Virginia, United States of America
- Department of Microbiology and Immunology, School of Medicine, Virginia Commonwealth University, Richmond, Virginia, United States of America
- Massey Cancer Center, Virginia Commonwealth University, Richmond, Virginia, United States of America
- * E-mail:
| |
Collapse
|
19
|
Type I Interferon Signaling to Dendritic Cells Limits Murid Herpesvirus 4 Spread from the Olfactory Epithelium. J Virol 2017; 91:JVI.00951-17. [PMID: 28904198 DOI: 10.1128/jvi.00951-17] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2017] [Accepted: 09/08/2017] [Indexed: 12/23/2022] Open
Abstract
Murid herpesvirus 4 (MuHV-4) is a B cell-tropic gammaherpesvirus that can be studied in vivo Despite viral evasion, type I interferons (IFN-I) limit its spread. After MuHV-4 inoculation into footpads, IFN-I protect lymph node subcapsular sinus macrophages (SSM) against productive infection; after peritoneal inoculation, they protect splenic marginal zone macrophages, and they limit MuHV-4 replication in the lungs. While invasive infections can be used to test specific aspects of host colonization, it is also important to understand natural infection. MuHV-4 taken up spontaneously by alert mice enters them via olfactory neurons. We determined how IFN-I act in this context. Blocking IFN-I signaling did not increase neuronal infection but allowed the virus to spread to the adjacent respiratory epithelium. In lymph nodes, a complete IFN-I signaling block increased MuHV-4 lytic infection in SSM and increased the number of dendritic cells (DC) expressing viral green fluorescent protein (GFP) independently of lytic infection. A CD11c+ cell-directed signaling block increased infection of DC only. However, this was sufficient to increase downstream infection, consistent with DC providing the main viral route to B cells. The capacity of IFN-I to limit DC infection indicated that viral IFN-I evasion was only partly effective. Therefore, DC are a possible target for IFN-I-based interventions to reduce host colonization.IMPORTANCE Human gammaherpesviruses infect B cells and cause B cell cancers. Interventions to block virus binding to B cells have not stopped their infection. Therefore, we must identify other control points that are relevant to natural infection. Human infections are difficult to analyze. However, gammaherpesviruses colonize all mammals. A related gammaherpesvirus of mice reaches B cells not directly but via infected dendritic cells. We show that type I interferons, an important general antiviral defense, limit gammaherpesvirus B cell infection by acting on dendritic cells. Therefore, dendritic cell infection is a potential point of interferon-based therapeutic intervention.
Collapse
|
20
|
Liu M, Barton ES, Jennings RN, Oldenburg DG, Whirry JM, White DW, Grayson JM. Unsupervised learning techniques reveal heterogeneity in memory CD8 + T cell differentiation following acute, chronic and latent viral infections. Virology 2017; 509:266-279. [PMID: 28689040 DOI: 10.1016/j.virol.2017.06.018] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2017] [Revised: 06/14/2017] [Accepted: 06/15/2017] [Indexed: 01/09/2023]
Abstract
CD8+ T lymphocytes are critical for the control of gammaherpesvirus latency. To determine how memory CD8+ T cells generated during latency differ from those primed during acute or chronic viral infection, we adoptively transferred naive P14 CD8+ T cells into uninfected recipients, and examined surface proteins, cytokines and transcription factors following infection with the Armstrong (acute) or Clone 13 (chronic) strains of lymphocytic choriomeningitis virus (LCMV), or murine gammaherpesvirus 68 (MHV68) expressing the LCMV epitope DbGP33-41. By performing k-means clustering and generating self organizing maps (SOM), we observed increased short-lived effector-like, CD27lo CD62Llo and Bcl-6lo CD8+ T cells following latent infection. In addition, we found that memory CD8+ T cells from latent primed mice underwent less expansion following adoptive transfer and antigen rechallenge. Data from cluster models were combined and visualized by principal component analysis (PCA) demonstrating memory CD8+ T cells from latent infection occupy an intermediate differentiation space.
Collapse
Affiliation(s)
- Mingyong Liu
- Department of Microbiology and Immunology, Wake Forest University School of Medicine, Winston-Salem, NC 27157, USA
| | - Erik S Barton
- Department of Microbiology and Immunology, Wake Forest University School of Medicine, Winston-Salem, NC 27157, USA
| | - Ryan N Jennings
- Department of Veterinary Biosciences, The Ohio State University College of Veterinary Medicine, Columbus, OH 43210, USA
| | | | | | | | - Jason M Grayson
- Department of Microbiology and Immunology, Wake Forest University School of Medicine, Winston-Salem, NC 27157, USA.
| |
Collapse
|
21
|
Law PJ, Berndt SI, Speedy HE, Camp NJ, Sava GP, Skibola CF, Holroyd A, Joseph V, Sunter NJ, Nieters A, Bea S, Monnereau A, Martin-Garcia D, Goldin LR, Clot G, Teras LR, Quintela I, Birmann BM, Jayne S, Cozen W, Majid A, Smedby KE, Lan Q, Dearden C, Brooks-Wilson AR, Hall AG, Purdue MP, Mainou-Fowler T, Vajdic CM, Jackson GH, Cocco P, Marr H, Zhang Y, Zheng T, Giles GG, Lawrence C, Call TG, Liebow M, Melbye M, Glimelius B, Mansouri L, Glenn M, Curtin K, Diver WR, Link BK, Conde L, Bracci PM, Holly EA, Jackson RD, Tinker LF, Benavente Y, Boffetta P, Brennan P, Maynadie M, McKay J, Albanes D, Weinstein S, Wang Z, Caporaso NE, Morton LM, Severson RK, Riboli E, Vineis P, Vermeulen RCH, Southey MC, Milne RL, Clavel J, Topka S, Spinelli JJ, Kraft P, Ennas MG, Summerfield G, Ferri GM, Harris RJ, Miligi L, Pettitt AR, North KE, Allsup DJ, Fraumeni JF, Bailey JR, Offit K, Pratt G, Hjalgrim H, Pepper C, Chanock SJ, Fegan C, Rosenquist R, de Sanjose S, Carracedo A, Dyer MJS, Catovsky D, Campo E, Cerhan JR, Allan JM, Rothman N, Houlston R, Slager S. Genome-wide association analysis implicates dysregulation of immunity genes in chronic lymphocytic leukaemia. Nat Commun 2017; 8:14175. [PMID: 28165464 PMCID: PMC5303820 DOI: 10.1038/ncomms14175] [Citation(s) in RCA: 68] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2016] [Accepted: 12/06/2016] [Indexed: 02/07/2023] Open
Abstract
Several chronic lymphocytic leukaemia (CLL) susceptibility loci have been reported; however, much of the heritable risk remains unidentified. Here we perform a meta-analysis of six genome-wide association studies, imputed using a merged reference panel of 1,000 Genomes and UK10K data, totalling 6,200 cases and 17,598 controls after replication. We identify nine risk loci at 1p36.11 (rs34676223, P=5.04 × 10-13), 1q42.13 (rs41271473, P=1.06 × 10-10), 4q24 (rs71597109, P=1.37 × 10-10), 4q35.1 (rs57214277, P=3.69 × 10-8), 6p21.31 (rs3800461, P=1.97 × 10-8), 11q23.2 (rs61904987, P=2.64 × 10-11), 18q21.1 (rs1036935, P=3.27 × 10-8), 19p13.3 (rs7254272, P=4.67 × 10-8) and 22q13.33 (rs140522, P=2.70 × 10-9). These new and established risk loci map to areas of active chromatin and show an over-representation of transcription factor binding for the key determinants of B-cell development and immune response.
Collapse
Affiliation(s)
- Philip J. Law
- Division of Genetics and Epidemiology, The Institute of Cancer Research, London SW7 3RP, UK
| | - Sonja I. Berndt
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, Maryland 20892, USA
| | - Helen E. Speedy
- Division of Genetics and Epidemiology, The Institute of Cancer Research, London SW7 3RP, UK
| | - Nicola J. Camp
- Department of Internal Medicine, Huntsman Cancer Institute, University of Utah School of Medicine, Salt Lake City, Utah 84112, USA
| | - Georgina P. Sava
- Division of Genetics and Epidemiology, The Institute of Cancer Research, London SW7 3RP, UK
| | - Christine F. Skibola
- Department of Epidemiology, School of Public Health and Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, Alabama 35233, USA
| | - Amy Holroyd
- Division of Genetics and Epidemiology, The Institute of Cancer Research, London SW7 3RP, UK
| | - Vijai Joseph
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York 10065, USA
| | - Nicola J. Sunter
- Northern Institute for Cancer Research, Newcastle University, Newcastle upon Tyne NE2 4HH, UK
| | - Alexandra Nieters
- Center for Chronic Immunodeficiency, University Medical Center Freiburg, Freiburg, Baden-Württemberg 79108, Germany
| | - Silvia Bea
- Institut d'Investigacions Biomèdiques August Pi iSunyer (IDIBAPS), Hospital Clínic, Barcelona 08036, Spain
| | - Alain Monnereau
- Registre des hémopathies malignes de la Gironde, Institut Bergonié, Inserm U1219 EPICENE, 33076 Bordeaux, France
- Epidemiology of Childhood and Adolescent Cancers Group, Inserm, Center of Research in Epidemiology and Statistics Sorbonne Paris Cité, Paris, F-94807, France
- Université Paris Descartes, Paris 75270, France
| | - David Martin-Garcia
- Institut d'Investigacions Biomèdiques August Pi iSunyer (IDIBAPS), Hospital Clínic, Barcelona 08036, Spain
| | - Lynn R. Goldin
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, Maryland 20892, USA
| | - Guillem Clot
- Institut d'Investigacions Biomèdiques August Pi iSunyer (IDIBAPS), Hospital Clínic, Barcelona 08036, Spain
| | - Lauren R. Teras
- Epidemiology Research Program, American Cancer Society, Atlanta, Georgia 30303, USA
| | - Inés Quintela
- Grupo de Medicina Xenomica, Universidade de Santiago de Compostela, Centro Nacional de Genotipado (CeGen-PRB2-ISCIII), CIBERER, 15782 Santiago de Compostela, Spain
| | - Brenda M. Birmann
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts 02115, USA
| | - Sandrine Jayne
- Ernest and Helen Scott Haematological Research Institute, University of Leicester, Leicester LE2 7LX, UK
| | - Wendy Cozen
- Department of Preventive Medicine, USC Keck School of Medicine, University of Southern California, Los Angeles, California 90033, USA
- Norris Comprehensive Cancer Center, USC Keck School of Medicine, University of Southern California, Los Angeles, California 90033, USA
| | - Aneela Majid
- Ernest and Helen Scott Haematological Research Institute, University of Leicester, Leicester LE2 7LX, UK
| | - Karin E. Smedby
- Unit of Clinical Epidemiology, Department of Medicine Solna, Karolinska Institutet, Hematology Center, Karolinsak University Hospital, Stockholm 17176, Sweden
| | - Qing Lan
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, Maryland 20892, USA
| | - Claire Dearden
- The Royal Marsden NHS Foundation Trust, London SM2 5PT, UK
| | - Angela R. Brooks-Wilson
- Genome Sciences Centre, BC Cancer Agency, Vancouver, British Columbia, Canada V5Z1L3
- Department of Biomedical Physiology and Kinesiology, Simon Fraser University, Burnaby, British Columbia V5A1S6, Canada
| | - Andrew G. Hall
- Northern Institute for Cancer Research, Newcastle University, Newcastle upon Tyne NE2 4HH, UK
| | - Mark P. Purdue
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, Maryland 20892, USA
| | - Tryfonia Mainou-Fowler
- Haematological Sciences, Medical School, Newcastle University, Newcastle-upon-Tyne NE2 4HH, UK
| | - Claire M. Vajdic
- Centre for Big Data Research in Health, University of New South Wales, Sydney, New South Wales 2052, Australia
| | - Graham H. Jackson
- Department of Haematology, Royal Victoria Infirmary, Newcastle upon Tyne NE1 4LP, UK
| | - Pierluigi Cocco
- Department of Public Health, Clinical and Molecular Medicine, University of Cagliari, Monserrato, Cagliari 09042, Italy
| | - Helen Marr
- Northern Institute for Cancer Research, Newcastle University, Newcastle upon Tyne NE2 4HH, UK
| | - Yawei Zhang
- Department of Environmental Health Sciences, Yale School of Public Health, New Haven, Connecticut 06520, USA
| | - Tongzhang Zheng
- Department of Environmental Health Sciences, Yale School of Public Health, New Haven, Connecticut 06520, USA
| | - Graham G. Giles
- Cancer Epidemiology Centre, Cancer Council Victoria, Melbourne, Victoria 3004, Australia
- Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, University of Melbourne, Melbourne, Victoria 3010, Australia
| | | | - Timothy G. Call
- Division of Hematology, Mayo Clinic, Rochester, Minnesota 55905, USA
| | - Mark Liebow
- Department of Medicine, Mayo Clinic, Rochester, Minnesota 55905, USA
| | - Mads Melbye
- Department of Epidemiology Research, Division of Health Surveillance and Research, Statens Serum Institut, 2300 Copenhagen, Denmark
- Department of Medicine, Stanford University School of Medicine, Stanford, California 94305, USA
| | - Bengt Glimelius
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Uppsala University, 75105 Uppsala, Sweden
| | - Larry Mansouri
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Uppsala University, 75105 Uppsala, Sweden
| | - Martha Glenn
- Department of Internal Medicine, Huntsman Cancer Institute, University of Utah School of Medicine, Salt Lake City, Utah 84112, USA
| | - Karen Curtin
- Department of Internal Medicine, Huntsman Cancer Institute, University of Utah School of Medicine, Salt Lake City, Utah 84112, USA
| | - W Ryan Diver
- Epidemiology Research Program, American Cancer Society, Atlanta, Georgia 30303, USA
| | - Brian K. Link
- Department of Internal Medicine, Carver College of Medicine, The University of Iowa, Iowa City, Iowa 52242, USA
| | - Lucia Conde
- Department of Epidemiology, School of Public Health and Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, Alabama 35233, USA
| | - Paige M. Bracci
- Department of Epidemiology and Biostatistics, University of California San Francisco, San Francisco, California 94118, USA
| | - Elizabeth A. Holly
- Department of Epidemiology and Biostatistics, University of California San Francisco, San Francisco, California 94118, USA
| | - Rebecca D. Jackson
- Division of Endocrinology, Diabetes and Metabolism, Ohio State University, Columbus, Ohio 43210, USA
| | - Lesley F. Tinker
- Division of Public Health Sciences, Fred Hutchinson Cancer Research Center, Seattle, Washington 98117, USA
| | - Yolanda Benavente
- Cancer Epidemiology Research Programme, Catalan Institute of Oncology-IDIBELL, L'Hospitalet de Llobregat, Barcelona 08908, Spain
- CIBER de Epidemiología y Salud Pública (CIBERESP), Barcelona 08036, Spain
| | - Paolo Boffetta
- The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, New York 10029, USA
| | - Paul Brennan
- International Agency for Research on Cancer, Lyon 69372, France
| | - Marc Maynadie
- Registre des Hémopathies Malignes de Côte d'Or, University of Burgundy and Dijon University Hospital, Dijon 21070, France
| | - James McKay
- International Agency for Research on Cancer, Lyon 69372, France
| | - Demetrius Albanes
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, Maryland 20892, USA
| | - Stephanie Weinstein
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, Maryland 20892, USA
| | - Zhaoming Wang
- Department of Computational Biology, St Jude Children's Research Hospital, Memphis, Tennessee 38105, USA
| | - Neil E. Caporaso
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, Maryland 20892, USA
| | - Lindsay M. Morton
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, Maryland 20892, USA
| | - Richard K. Severson
- Department of Family Medicine and Public Health Sciences, Wayne State University, Detroit, Michigan 48201, USA
| | - Elio Riboli
- School of Public Health, Imperial College London, London W2 1PG, UK
| | - Paolo Vineis
- MRC-PHE Centre for Environment and Health, School of Public Health, Imperial College London, London W2 1PG, UK
- Human Genetics Foundation, 10126 Turin, Italy
| | - Roel C. H. Vermeulen
- Institute for Risk Assessment Sciences, Utrecht University, Utrecht 3508 TD, The Netherlands
- Julius Center for Health Sciences and Primary Care, University Medical Center Utrecht, Utrecht 3584 CX, The Netherlands
| | - Melissa C. Southey
- Genetic Epidemiology Laboratory, Department of Pathology, University of Melbourne, Melbourne, Victoria 3010, Australia
| | - Roger L. Milne
- Cancer Epidemiology Centre, Cancer Council Victoria, Melbourne, Victoria 3004, Australia
- Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, University of Melbourne, Melbourne, Victoria 3010, Australia
| | - Jacqueline Clavel
- Epidemiology of Childhood and Adolescent Cancers Group, Inserm, Center of Research in Epidemiology and Statistics Sorbonne Paris Cité (CRESS), Paris F-94807, France
- Université Paris Descartes, 75270 Paris, France
| | - Sabine Topka
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York 10065, USA
| | - John J. Spinelli
- Cancer Control Research, BC Cancer Agency, Vancouver, British Columbia, Canada V5Z1L3
- School of Population and Public Health, University of British Columbia, Vancouver, British Columbia, Canada V6T1Z3
| | - Peter Kraft
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, Massachusetts 02115, USA
- Department of Biostatistics, Harvard T. H. Chan School of Public Health, Boston, Massachusetts 02115, USA
| | - Maria Grazia Ennas
- Department of Biomedical Science, University of Cagliari, Monserrato, Cagliari 09042, Italy
| | | | - Giovanni M. Ferri
- Interdisciplinary Department of Medicine, University of Bari, Bari 70124, Italy
| | - Robert J. Harris
- Department of Molecular and Clinical Cancer Medicine, University of Liverpool, Liverpool L69 3BX, UK
| | - Lucia Miligi
- Environmental and Occupational Epidemiology Unit, Cancer Prevention and Research Institute (ISPO), Florence 50139, Italy
| | - Andrew R. Pettitt
- Department of Molecular and Clinical Cancer Medicine, University of Liverpool, Liverpool L69 3BX, UK
| | - Kari E. North
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA
- Carolina Center for Genome Sciences, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA
| | - David J. Allsup
- Queens Centre for Haematology and Oncology, Castle Hill Hospital, Hull and East Yorkshire NHS Trust, Cottingham HU16 5JQ, UK
| | - Joseph F. Fraumeni
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, Maryland 20892, USA
| | - James R. Bailey
- Queens Centre for Haematology and Oncology, Castle Hill Hospital, Hull and East Yorkshire NHS Trust, Cottingham HU16 5JQ, UK
| | - Kenneth Offit
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York 10065, USA
| | - Guy Pratt
- Department of Haematology, Birmingham Heartlands Hospital, Birmingham B9 5SS, UK
| | - Henrik Hjalgrim
- Department of Epidemiology Research, Division of Health Surveillance and Research, Statens Serum Institut, 2300 Copenhagen, Denmark
| | - Chris Pepper
- Division of Cancer and Genetics, School of Medicine, Cardiff University, Cardiff CF14 4XN, UK
| | - Stephen J. Chanock
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, Maryland 20892, USA
| | - Chris Fegan
- Cardiff and Vale National Health Service Trust, Heath Park, Cardiff CF14 4XW, UK
| | - Richard Rosenquist
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Uppsala University, 75105 Uppsala, Sweden
| | - Silvia de Sanjose
- The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, New York 10029, USA
- International Agency for Research on Cancer, Lyon 69372, France
| | - Angel Carracedo
- Grupo de Medicina Xenomica, Universidade de Santiago de Compostela, Centro Nacional de Genotipado (CeGen-PRB2-ISCIII), CIBERER, 15782 Santiago de Compostela, Spain
- Center of Excellence in Genomic Medicine Research, King Abdulaziz University, Jeddah 21589, KSA
| | - Martin J. S. Dyer
- Ernest and Helen Scott Haematological Research Institute, University of Leicester, Leicester LE2 7LX, UK
| | - Daniel Catovsky
- Division of Molecular Pathology, The Institute of Cancer Research, London SW7 3RP, UK
| | - Elias Campo
- Institut d'Investigacions Biomèdiques August Pi iSunyer (IDIBAPS), Hospital Clínic, Barcelona 08036, Spain
- Unitat de Hematología, Hospital Clínic, IDIBAPS, Universitat de Barcelona, Barcelona 08036, Spain
| | - James R. Cerhan
- Department of Health Sciences Research, Mayo Clinic, Rochester, Minnesota 55905, USA
| | - James M. Allan
- Northern Institute for Cancer Research, Newcastle University, Newcastle upon Tyne NE2 4HH, UK
| | - Nathanial Rothman
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, Maryland 20892, USA
| | - Richard Houlston
- Division of Genetics and Epidemiology, The Institute of Cancer Research, London SW7 3RP, UK
| | - Susan Slager
- Department of Health Sciences Research, Mayo Clinic, Rochester, Minnesota 55905, USA
| |
Collapse
|
22
|
Tao L, Reese TA. Making Mouse Models That Reflect Human Immune Responses. Trends Immunol 2017; 38:181-193. [PMID: 28161189 DOI: 10.1016/j.it.2016.12.007] [Citation(s) in RCA: 138] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2016] [Revised: 12/19/2016] [Accepted: 12/30/2016] [Indexed: 02/08/2023]
Abstract
Humans are infected with a variety of acute and chronic pathogens over the course of their lives, and pathogen-driven selection has shaped the immune system of humans. The same is likely true for mice. However, laboratory mice we use for most biomedical studies are bred in ultra-hygienic environments, and are kept free of specific pathogens. We review recent studies that indicate that pathogen infections are important for the basal level of activation and the function of the immune system. Consideration of these environmental exposures of both humans and mice can potentially improve mouse models of human disease.
Collapse
Affiliation(s)
- Lili Tao
- Department of Immunology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Tiffany A Reese
- Department of Immunology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; Department of Microbiology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA.
| |
Collapse
|
23
|
Interferon Regulatory Factor 1 and Type I Interferon Cooperate To Control Acute Gammaherpesvirus Infection. J Virol 2016; 91:JVI.01444-16. [PMID: 27795415 DOI: 10.1128/jvi.01444-16] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2016] [Accepted: 10/18/2016] [Indexed: 12/20/2022] Open
Abstract
Gammaherpesviruses are ubiquitous pathogens that establish lifelong infection in >95% of adults worldwide and are associated with a variety of malignancies. Coevolution of gammaherpesviruses with their hosts has resulted in an intricate relationship between the virus and the host immune system, and perturbation of the virus-host balance results in pathology. Interferon regulatory factor 1 (IRF-1) is a tumor suppressor that is also involved in the regulation of innate and adaptive immune responses. Here, we show that type I interferon (IFN) and IRF-1 cooperate to control acute gammaherpesvirus infection. Specifically, we demonstrate that a combination of IRF-1 and type I IFN signaling ensures host survival during acute gammaherpesvirus infection and supports IFN gamma-mediated suppression of viral replication. Thus, our studies reveal an intriguing cross talk between IRF-1 and type I and II IFNs in the induction of the antiviral state during acute gammaherpesvirus infection. IMPORTANCE Gammaherpesviruses establish chronic infection in a majority of adults, and this long-term infection is associated with virus-driven development of a range of malignancies. In contrast, a brief period of active gammaherpesvirus replication during acute infection of a naive host is subclinical in most individuals. Here, we discovered that a combination of type I interferon (IFN) signaling and interferon regulatory factor 1 (IRF-1) expression is required to ensure survival of a gammaherpesvirus-infected host past the first 8 days of infection. Specifically, both type I IFN receptor and IRF-1 expression potentiated antiviral effects of type II IFN to restrict gammaherpesvirus replication in vivo, in the lungs, and in vitro, in primary macrophage cultures.
Collapse
|
24
|
Type I Interferons and NK Cells Restrict Gammaherpesvirus Lymph Node Infection. J Virol 2016; 90:9046-57. [PMID: 27466430 DOI: 10.1128/jvi.01108-16] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2016] [Accepted: 07/22/2016] [Indexed: 12/11/2022] Open
Abstract
UNLABELLED Gammaherpesviruses establish persistent, systemic infections and cause cancers. Murid herpesvirus 4 (MuHV-4) provides a unique window into the early events of host colonization. It spreads via lymph nodes. While dendritic cells (DC) pass MuHV-4 to lymph node B cells, subcapsular sinus macrophages (SSM), which capture virions from the afferent lymph, restrict its spread. Understanding how this restriction works offers potential clues to a more comprehensive defense. Type I interferon (IFN-I) blocked SSM lytic infection and reduced lytic cycle-independent viral reporter gene expression. Plasmacytoid DC were not required, but neither were SSM the only source of IFN-I, as IFN-I blockade increased infection in both intact and SSM-depleted mice. NK cells restricted lytic SSM infection independently of IFN-I, and SSM-derived virions spread to the spleen only when both IFN-I responses and NK cells were lacking. Thus, multiple innate defenses allowed SSM to adsorb virions from the afferent lymph with relative impunity. Enhancing IFN-I and NK cell recruitment could potentially also restrict DC infection and thus improve infection control. IMPORTANCE Human gammaherpesviruses cause cancers by infecting B cells. However, vaccines designed to block virus binding to B cells have not stopped infection. Using a related gammaherpesvirus of mice, we have shown that B cells are infected not via cell-free virus but via infected myeloid cells. This suggests a different strategy to stop B cell infection: stop virus production by myeloid cells. Not all myeloid infection is productive. We show that subcapsular sinus macrophages, which do not pass infection to B cells, restrict gammaherpesvirus production by recruiting type I interferons and natural killer cells. Therefore, a vaccine that speeds the recruitment of these defenses might stop B cell infection.
Collapse
|
25
|
Tan CSE, Lawler C, May JS, Belz GT, Stevenson PG. Type I Interferons Direct Gammaherpesvirus Host Colonization. PLoS Pathog 2016; 12:e1005654. [PMID: 27223694 PMCID: PMC4880296 DOI: 10.1371/journal.ppat.1005654] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2016] [Accepted: 05/02/2016] [Indexed: 12/24/2022] Open
Abstract
Gamma-herpesviruses colonise lymphocytes. Murid Herpesvirus-4 (MuHV-4) infects B cells via epithelial to myeloid to lymphoid transfer. This indirect route entails exposure to host defences, and type I interferons (IFN-I) limit infection while viral evasion promotes it. To understand how IFN-I and its evasion both control infection outcomes, we used Mx1-cre mice to tag floxed viral genomes in IFN-I responding cells. Epithelial-derived MuHV-4 showed low IFN-I exposure, and neither disrupting viral evasion nor blocking IFN-I signalling markedly affected acute viral replication in the lungs. Maximising IFN-I induction with poly(I:C) increased virus tagging in lung macrophages, but the tagged virus spread poorly. Lymphoid-derived MuHV-4 showed contrastingly high IFN-I exposure. This occurred mainly in B cells. IFN-I induction increased tagging without reducing viral loads; disrupting viral evasion caused marked attenuation; and blocking IFN-I signalling opened up new lytic spread between macrophages. Thus, the impact of IFN-I on viral replication was strongly cell type-dependent: epithelial infection induced little response; IFN-I largely suppressed macrophage infection; and viral evasion allowed passage through B cells despite IFN-I responses. As a result, IFN-I and its evasion promoted a switch in infection from acutely lytic in myeloid cells to chronically latent in B cells. Murine cytomegalovirus also showed a capacity to pass through IFN-I-responding cells, arguing that this is a core feature of herpesvirus host colonization.
Collapse
Affiliation(s)
- Cindy S. E. Tan
- School of Chemistry and Molecular Biosciences, University of Queensland and Royal Children’s Hospital, Brisbane, Australia
| | - Clara Lawler
- School of Chemistry and Molecular Biosciences, University of Queensland and Royal Children’s Hospital, Brisbane, Australia
| | - Janet S. May
- Division of Virology, Department of Pathology, University of Cambridge, Cambridge, United Kingdom
| | - Gabrielle T. Belz
- Molecular Immunology, Walter and Eliza Hall Institute, Parkville, Melbourne, Australia
| | - Philip G. Stevenson
- School of Chemistry and Molecular Biosciences, University of Queensland and Royal Children’s Hospital, Brisbane, Australia
- * E-mail:
| |
Collapse
|
26
|
Christensen MH, Paludan SR. Viral evasion of DNA-stimulated innate immune responses. Cell Mol Immunol 2016; 14:4-13. [PMID: 26972769 PMCID: PMC5214947 DOI: 10.1038/cmi.2016.06] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2015] [Revised: 01/18/2016] [Accepted: 01/18/2016] [Indexed: 12/14/2022] Open
Abstract
Cellular sensing of virus-derived nucleic acids is essential for early defenses against virus infections. In recent years, the discovery of DNA sensing proteins, including cyclic GMP-AMP synthase (cGAS) and gamma-interferon-inducible protein (IFI16), has led to understanding of how cells evoke strong innate immune responses against incoming pathogens carrying DNA genomes. The signaling stimulated by DNA sensors depends on the adaptor protein STING (stimulator of interferon genes), to enable expression of antiviral proteins, including type I interferon. To facilitate efficient infections, viruses have evolved a wide range of evasion strategies, targeting host DNA sensors, adaptor proteins and transcription factors. In this review, the current literature on virus-induced activation of the STING pathway is presented and we discuss recently identified viral evasion mechanisms targeting different steps in this antiviral pathway.
Collapse
Affiliation(s)
- Maria H Christensen
- Department of Biomedicine, Aarhus University, Aarhus DK-8000, Denmark.,Aarhus Research Center for Innate Immunology, Aarhus University, Aarhus DK-8000, Denmark
| | - Søren R Paludan
- Department of Biomedicine, Aarhus University, Aarhus DK-8000, Denmark.,Aarhus Research Center for Innate Immunology, Aarhus University, Aarhus DK-8000, Denmark
| |
Collapse
|
27
|
Type I Interferon Counteracts Antiviral Effects of Statins in the Context of Gammaherpesvirus Infection. J Virol 2016; 90:3342-54. [PMID: 26739055 DOI: 10.1128/jvi.02277-15] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2015] [Accepted: 12/30/2015] [Indexed: 12/14/2022] Open
Abstract
UNLABELLED The cholesterol synthesis pathway is a ubiquitous cellular biosynthetic pathway that is attenuated therapeutically by statins. Importantly, type I interferon (IFN), a major antiviral mediator, also depresses the cholesterol synthesis pathway. Here we demonstrate that attenuation of cholesterol synthesis decreases gammaherpesvirus replication in primary macrophages in vitro and reactivation from peritoneal exudate cells in vivo. Specifically, the reduced availability of the intermediates required for protein prenylation was responsible for decreased gammaherpesvirus replication in statin-treated primary macrophages. We also demonstrate that statin treatment of a chronically infected host attenuates gammaherpesvirus latency in a route-of-infection-specific manner. Unexpectedly, we found that the antiviral effects of statins are counteracted by type I IFN. Our studies suggest that type I IFN signaling counteracts the antiviral nature of the subdued cholesterol synthesis pathway and offer a novel insight into the utility of statins as antiviral agents. IMPORTANCE Statins are cholesterol synthesis inhibitors that are therapeutically administered to 12.5% of the U.S. POPULATION Statins attenuate the replication of diverse viruses in culture; however, this attenuation is not always obvious in an intact animal model. Further, it is not clear whether statins alter parameters of highly prevalent chronic herpesvirus infections. We show that statin treatment attenuated gammaherpesvirus replication in primary immune cells and during chronic infection of an intact host. Further, we demonstrate that type I interferon signaling counteracts the antiviral effects of statins. Considering the fact that type I interferon decreases the activity of the cholesterol synthesis pathway, it is intriguing to speculate that gammaherpesviruses have evolved to usurp the type I interferon pathway to compensate for the decreased cholesterol synthesis activity.
Collapse
|
28
|
Matar CG, Jacobs NT, Speck SH, Lamb TJ, Moormann AM. Does EBV alter the pathogenesis of malaria? Parasite Immunol 2015; 37:433-45. [DOI: 10.1111/pim.12212] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2014] [Accepted: 05/20/2015] [Indexed: 02/06/2023]
Affiliation(s)
- C. G. Matar
- Department of Microbiology and Immunology; Emory University School of Medicine; Atlanta GA USA
| | - N. T. Jacobs
- Department of Pediatrics; Emory University School of Medicine; Atlanta GA USA
| | - S. H. Speck
- Department of Microbiology and Immunology; Emory University School of Medicine; Atlanta GA USA
- Emory Vaccine Center; Emory University; Atlanta GA USA
| | - T. J. Lamb
- Department of Pediatrics; Emory University School of Medicine; Atlanta GA USA
| | - A. M. Moormann
- Program in Molecular Medicine; University of Massachusetts Medical School; Worcester MA USA
| |
Collapse
|
29
|
Type I interferon signaling enhances CD8+ T cell effector function and differentiation during murine gammaherpesvirus 68 infection. J Virol 2014; 88:14040-9. [PMID: 25253356 DOI: 10.1128/jvi.02360-14] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
UNLABELLED CD8(+) T cell responses are critical to the control of replication and reactivation associated with gammaherpesvirus infection. Type I interferons (IFNs) have been shown to have direct and indirect roles in supporting CD8(+) T cell development and function during viral infection; however, the role of type I interferons during latent viral infection has not been examined. Mice deficient in type I IFN signaling (IFNAR1(-/-) mice) have high levels of reactivation during infection with murine gammaherpesvirus 68 (MHV68), a murine gammaherpesvirus model for Epstein-Barr virus. We hypothesized that type I IFNs function to enhance the anti-gammaherpesvirus CD8(+) T cell response. To test this, IFNAR1(-/-) mice were infected with MHV68 and the CD8(+) T cell response was analyzed. In the absence of type I IFN signaling, there was a marked increase in short-lived effector CD8(+) T cells, and MHV68-specific CD8(+) T cells had upregulated expression of PD-1 and reduced tumor necrosis factor alpha (TNF-α), gamma IFN (IFN-γ), and interleukin-2 (IL-2) production. Suppressing MHV68 replication early in infection using the antiviral cidofovir rescued CD8(+) T cell cytokine production and reduced PD-1 expression. However, suppressing high levels of reactivation in IFNAR1(-/-) mice failed to improve CD8(+) T cell cytokine production during latency. T cell-specific abrogation of type I IFN signaling showed that the effects of type I IFNs on the CD8(+) T cell response during MHV68 infection are independent of direct type I IFN signaling on T cells. Our findings support a model in which type I IFNs likely suppress MHV68 replication, thus limiting viral antigen and facilitating an effective gammaherpesvirus-directed CD8(+) T cell response. IMPORTANCE The murine gammaherpesvirus MHV68 has both genetic and biologic homology to the human gammaherpesvirus Epstein-Barr virus (EBV), which infects over 90% of humans. Latent EBV infection and reactivation are associated with various life-threatening diseases and malignancies. Host suppression of gammaherpesvirus latency and reactivation requires both CD8(+) T cells as well as type I interferon signaling. Type I IFNs have been shown to critically support the antiviral CD8(+) T cell response in other virus models. Here, we identify an indirect role for type I IFN signaling in enhancing gammaherpesvirus-specific CD8(+) T cell cytokine production. Further, this function of type I IFN signaling can be partially rescued by suppressing viral replication during early MHV68 infection. Our data suggest that type I IFN signaling on non-T cells can enhance CD8(+) T cell function during gammaherpesvirus infection, potentially through suppression of MHV68 replication.
Collapse
|
30
|
Gammaherpesvirus latency differentially impacts the generation of primary versus secondary memory CD8+ T cells during subsequent infection. J Virol 2014; 88:12740-51. [PMID: 25142586 DOI: 10.1128/jvi.02106-14] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
UNLABELLED Unlike laboratory animals, humans are infected with multiple pathogens, including the highly prevalent herpesviruses. The purpose of these studies was to determine the effect of gammaherpesvirus latency on T cell number and differentiation during subsequent heterologous viral infections. Mice were first infected with murine gammaherpesvirus 68 (MHV68), a model of Epstein-Barr virus (EBV) infection, and then after latency was established, they were challenged with the Armstrong strain of lymphocytic choriomeningitis virus (LCMV). The initial replication of LCMV was lower in latently infected mice, and the maturation of dendritic cells was abated. Although the number of LCMV-specific effector CD8(+) T cells was not altered, they were skewed to a memory phenotype. In contrast, LCMV-specific effector CD4(+) T cells were increased in latently infected mice compared to those in mice infected solely with LCMV. When the memory phase was reached, latently infected mice had an LCMV-specific memory T cell pool that was increased relative to that found in singly infected mice. Importantly, LCMV-specific memory CD8(+) T cells had decreased CD27 and increased killer cell lectin-like receptor G1 (KLRG1) expression. Upon secondary challenge, LCMV-specific secondary effector CD8(+) T cells expanded and cleared the infection. However, the LCMV-specific secondary memory CD8(+) T cell pool was decreased in latently infected animals, abrogating the boosting effect normally observed following rechallenge. Taken together, these results demonstrate that ongoing gammaherpesvirus latency affects the number and phenotype of primary versus secondary memory CD8(+) T cells during acute infection. IMPORTANCE CD8(+) T cells are critical for the clearance of intracellular pathogens, including viruses, certain bacteria, and tumors. However, current models for memory CD8(+) T cell differentiation are derived from pathogen-free laboratory mice challenged with a single pathogen or vaccine vector. Unlike laboratory animals, all humans are infected with multiple acute and chronic pathogens, including the highly prevalent herpesviruses Epstein-Barr virus (EBV), cytomegalovirus (CMV), herpes simplex viruses (HSV), and varicella-zoster virus (VZV). The purpose of these studies was to determine the effect of gammaherpesvirus latency on T cell number and differentiation during subsequent heterologous viral infections. We observed that ongoing gammaherpesvirus latency affects the number and phenotype of primary versus secondary memory CD8(+) T cells during acute infection. These results suggest that unlike pathogen-free laboratory mice, infection or immunization of latently infected humans may result in the generation of T cells with limited potential for long-term protection.
Collapse
|
31
|
Interplay between Kaposi's sarcoma-associated herpesvirus and the innate immune system. Cytokine Growth Factor Rev 2014; 25:597-609. [PMID: 25037686 DOI: 10.1016/j.cytogfr.2014.06.001] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2014] [Accepted: 06/16/2014] [Indexed: 02/04/2023]
Abstract
Understanding of the innate immune response to viral infections is rapidly progressing, especially with regards to the detection of DNA viruses. Kaposi's sarcoma-associated herpesvirus (KSHV) is a large dsDNA virus that is responsible for three human diseases: Kaposi's sarcoma, primary effusion lymphoma and multicentric Castleman's disease. The major target cells of KSHV (B cells and endothelial cells) express a wide range of pattern recognition receptors (PRRs) and play a central role in mobilizing inflammatory responses. On the other hand, KSHV encodes an array of immune evasion genes, including several pirated host genes, which interfere with multiple aspects of the immune response. This review summarizes current understanding of innate immune recognition of KSHV and the role of immune evasion genes that shape the antiviral and inflammatory responses.
Collapse
|
32
|
Downregulation of IRF4 induces lytic reactivation of KSHV in primary effusion lymphoma cells. Virology 2014; 458-459:4-10. [PMID: 24928034 DOI: 10.1016/j.virol.2014.04.020] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2013] [Revised: 01/07/2014] [Accepted: 04/13/2014] [Indexed: 01/24/2023]
Abstract
Primary effusion lymphoma (PEL), associated with the latent infection by KSHV, constitutively expresses interferon-regulatory factor 4 (IRF4). We recently showed that IRF4 differentially regulates expression of cellular interferon-stimulated genes (ISGs) and viral genes (Forero et al., 2013). Here, using inducible IRF4 knockdown, we demonstrate that IRF4 silencing results in enhanced transcription of KSHV replication transactivator RTA. As a result viral transcription is increased leading to virus reactivation. Taken together, our results show that IRF4 helps maintain the balance between latency and KSHV reactivation in PEL cells.
Collapse
|
33
|
Interferon regulatory factor 1 restricts gammaherpesvirus replication in primary immune cells. J Virol 2014; 88:6993-7004. [PMID: 24719409 DOI: 10.1128/jvi.00638-14] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
UNLABELLED Gammaherpesviruses are ubiquitous pathogens that establish a lifelong infection and are associated with cancer. In spite of the high seroprevalence of infection, the risk factors that predispose the host toward gammaherpesvirus-induced malignancies are still poorly understood. Interferon (IFN) regulatory factor 1 (IRF-1) is a tumor suppressor that is also involved in the regulation of innate and adaptive immune responses. On the basis of its biology, IRF-1 represents a plausible host factor to attenuate gammaherpesvirus infection and tumorigenesis. In this study, we show that IRF-1 restricts gammaherpesvirus replication in primary macrophages, a physiologically relevant immune cell type. In spite of the known role of IRF-1 in stimulating type I IFN expression, induction of a global type I IFN response was similar in IRF-1-deficient and -proficient macrophages during gammaherpesvirus infection. However, IRF-1 was required for optimal expression of cholesterol-25-hydroxylase, a host enzyme that restricted gammaherpesvirus replication in primary macrophages and contributed to the antiviral effects of IRF-1. In summary, the current study provides an insight into the mechanism by which IRF-1 attenuates gammaherpesvirus replication in primary immune cells, a mechanism that is likely to contribute to the antiviral effects of IRF-1 in other virus systems. IMPORTANCE Interferon regulatory factor 1 (IRF-1) is a transcription factor that regulates innate and adaptive immune responses and functions as a tumor suppressor. IRF-1 restricts the replication of diverse viruses; however, the mechanisms responsible for the antiviral effects of IRF-1 are still poorly understood. Gammaherpesviruses are ubiquitous pathogens that are associated with the induction of several malignancies. Here we show that IRF-1 expression attenuates gammaherpesvirus replication in primary macrophages, in part by increasing expression of cholesterol-25-hydroxylase (CH25H). CH25H and its product, 25-hydroxycholesterol, restrict replication of diverse virus families. Thus, our findings offer an insight into the mechanism by which IRF-1 attenuates the replication of gammaherpesviruses, a mechanism that is likely to be applicable to other virus systems.
Collapse
|
34
|
Identification of alternative transcripts encoding the essential murine gammaherpesvirus lytic transactivator RTA. J Virol 2014; 88:5474-90. [PMID: 24574412 DOI: 10.1128/jvi.03110-13] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
UNLABELLED The essential immediate early transcriptional activator RTA, encoded by gene 50, is conserved among all characterized gammaherpesviruses. Analyses of a recombinant murine gammaherpesvirus 68 (MHV68) lacking both of the known gene 50 promoters (G50DblKo) revealed that this mutant retained the ability to replicate in the simian kidney epithelial cell line Vero but not in permissive murine fibroblasts following low-multiplicity infection. However, G50DblKo replication in permissive fibroblasts was partially rescued by high-multiplicity infection. In addition, replication of the G50DblKo virus was rescued by growth on mouse embryonic fibroblasts (MEFs) isolated from IFN-α/βR-/- mice, while growth on Vero cells was suppressed by the addition of alpha interferon (IFN-α). 5' rapid amplification of cDNA ends (RACE) analyses of RNAs prepared from G50DblKo and wild-type MHV68-infected murine macrophages identified three novel gene 50 transcripts initiating from 2 transcription initiation sites located upstream of the currently defined proximal and distal gene 50 promoters. In transient promoter assays, neither of the newly identified gene 50 promoters exhibited sensitivity to IFN-α treatment. Furthermore, in a single-step growth analysis RTA levels were higher at early times postinfection with the G50DblKo mutant than with wild-type virus but ultimately fell below the levels of RTA expressed by wild-type virus at later times in infection. Infection of mice with the MHV68 G50DblKo virus demonstrated that this mutant virus was able to establish latency in the spleen and peritoneal exudate cells (PECs) of C57BL/6 mice with about 1/10 the efficiency of wild-type virus or marker rescue virus. However, despite the ability to establish latency, the G50DblKo virus mutant was severely impaired in its ability to reactivate from either latently infected splenocytes or PECs. Consistent with the ability to rescue replication of the G50DblKo mutant by growth on type I interferon receptor null MEFs, infection of IFN-α/βR-/- mice with the G50DblKo mutant virus demonstrated partial rescue of (i) acute virus replication in the lungs, (ii) establishment of latency, and (iii) reactivation from latency. The identification of additional gene 50/RTA transcripts highlights the complex mechanisms involved in controlling expression of RTA, likely reflecting time-dependent and/or cell-specific roles of different gene 50 promoters in controlling virus replication. Furthermore, the newly identified gene 50 transcripts may also act as negative regulators that modulate RTA expression. IMPORTANCE The viral transcription factor RTA, encoded by open reading frame 50 (Orf50), is well conserved among all known gammaherpesviruses and is essential for both virus replication and reactivation from latently infected cells. Previous studies have shown that regulation of gene 50 transcription is complex. The studies reported here describe the presence of additional alternatively initiated, spliced transcripts that encode RTA. Understanding how expression of this essential viral gene product is regulated may identify new strategies for interfering with infection in the setting of gammaherpesvirus-induced diseases.
Collapse
|
35
|
Feng P, Moses A, Früh K. Evasion of adaptive and innate immune response mechanisms by γ-herpesviruses. Curr Opin Virol 2013; 3:285-95. [PMID: 23735334 DOI: 10.1016/j.coviro.2013.05.011] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2013] [Revised: 05/01/2013] [Accepted: 05/14/2013] [Indexed: 01/05/2023]
Abstract
γ-Herpesviral immune evasion mechanisms are optimized to support the acute, lytic and the longterm, latent phase of infection. During acute infection, specific immune modulatory proteins limit, but also exploit, the antiviral activities of cell intrinsic innate immune responses as well as those of innate and adaptive immune cells. During latent infection, a restricted gene expression program limits immune targeting and cis-acting mechanisms to reduce the antigen presentation as well as antigenicity of latency-associated proteins. Here, we will review recent progress in our understanding of γ-herpesviral immune evasion strategies.
Collapse
Affiliation(s)
- Pinghui Feng
- Department of Molecular Microbiology and Immunology, Keck School of Medicine, University of Southern California, Los Angeles, CA 90089, USA
| | | | | |
Collapse
|
36
|
Wood BM, Mboko WP, Mounce BC, Tarakanova VL. Mouse gammaherpesvirus-68 infection acts as a rheostat to set the level of type I interferon signaling in primary macrophages. Virology 2013; 443:123-33. [PMID: 23706314 DOI: 10.1016/j.virol.2013.04.036] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2013] [Revised: 03/12/2013] [Accepted: 04/30/2013] [Indexed: 11/30/2022]
Abstract
Type I interferon (IFN) is a critical antiviral response of the host. We found that Interferon Regulatory Factor 3 (IRF-3) was responsible for induction of type I IFN following mouse gammaherpesvirus-68 (MHV68) infection of primary macrophages. Intriguingly, type I IFN signaling was maintained throughout the entire MHV68 replication cycle, in spite of several known viral IFN antagonists. However, MHV68-infected primary macrophages displayed attenuated responses to exogenous type I IFN, suggesting that MHV68 controls the level of type I IFN signaling that is allowed to occur during replication. Type I IFN receptor and IRF-3 were necessary to attenuate transcription of MHV68 RTA, an immediate early gene critical for replication. Furthermore, higher constitutive activity of RTA promoters was observed in the absence of type I IFN signaling. Our study suggests that MHV68 has preserved the ability to sense type I IFN status of the host in order to limit lytic replication.
Collapse
Affiliation(s)
- Brittani M Wood
- Department of Microbiology and Molecular Genetics, Cancer Center, Medical College of Wisconsin, USA
| | | | | | | |
Collapse
|
37
|
Zinc finger antiviral protein inhibits murine gammaherpesvirus 68 M2 expression and regulates viral latency in cultured cells. J Virol 2012; 86:12431-4. [PMID: 22951821 DOI: 10.1128/jvi.01514-12] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Zinc finger antiviral protein (ZAP) is a host factor that specifically inhibits the replication of certain viruses by binding to specific viral mRNAs and repressing mRNA expression. Here we report that ZAP inhibits expression of murine gammaherpesvirus 68 (MHV-68) M2, which plays important roles in establishment and maintenance of viral latency. Downregulation of endogenous ZAP in cells harboring latent MHV-68 promoted lytic replication of the virus. These results suggest that ZAP inhibits M2 expression and regulates the maintenance of MHV-68 latency.
Collapse
|