1
|
Zhang X, Lim K, Qiu Y, Hazawa M, Wong RW. Strategies for the Viral Exploitation of Nuclear Pore Transport Pathways. Viruses 2025; 17:151. [PMID: 40006906 PMCID: PMC11860923 DOI: 10.3390/v17020151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2024] [Revised: 01/20/2025] [Accepted: 01/21/2025] [Indexed: 02/27/2025] Open
Abstract
Viruses frequently exploit the host's nucleocytoplasmic trafficking machinery to facilitate their replication and evade immune defenses. By encoding specialized proteins and other components, they strategically target host nuclear transport receptors (NTRs) and nucleoporins within the spiderweb-like inner channel of the nuclear pore complex (NPC), enabling efficient access to the host nucleus. This review explores the intricate mechanisms governing the nuclear import and export of viral components, with a focus on the interplay between viral factors and host determinants that are essential for these processes. Given the pivotal role of nucleocytoplasmic shuttling in the viral life cycle, we also examine therapeutic strategies aimed at disrupting the host's nuclear transport pathways. This includes evaluating the efficacy of pharmacological inhibitors in impairing viral replication and assessing their potential as antiviral treatments. Furthermore, we emphasize the need for continued research to develop targeted therapies that leverage vulnerabilities in nucleocytoplasmic trafficking. Emerging high-resolution techniques, such as advanced imaging and computational modeling, are transforming our understanding of the dynamic interactions between viruses and the NPC. These cutting-edge tools are driving progress in identifying novel therapeutic opportunities and uncovering deeper insights into viral pathogenesis. This review highlights the importance of these advancements in paving the way for innovative antiviral strategies.
Collapse
Affiliation(s)
- Xin Zhang
- Division of Nano Life Science, Graduate School of Frontier Science Initiative, Kanazawa University, Kanazawa 920-1192, Japan; (X.Z.); (Y.Q.)
| | - Keesiang Lim
- WPI-Nano Life Science Institute, Kanazawa University, Kanazawa 920-1192, Japan;
| | - Yujia Qiu
- Division of Nano Life Science, Graduate School of Frontier Science Initiative, Kanazawa University, Kanazawa 920-1192, Japan; (X.Z.); (Y.Q.)
| | - Masaharu Hazawa
- WPI-Nano Life Science Institute, Kanazawa University, Kanazawa 920-1192, Japan;
- Cell-Bionomics Research Unit, Institute for Frontier Science Initiative, Kanazawa University, Kanazawa 920-1192, Japan
| | - Richard W. Wong
- Division of Nano Life Science, Graduate School of Frontier Science Initiative, Kanazawa University, Kanazawa 920-1192, Japan; (X.Z.); (Y.Q.)
- WPI-Nano Life Science Institute, Kanazawa University, Kanazawa 920-1192, Japan;
- Cell-Bionomics Research Unit, Institute for Frontier Science Initiative, Kanazawa University, Kanazawa 920-1192, Japan
| |
Collapse
|
2
|
Watanabe R, Zyla D, Parekh D, Hong C, Jones Y, Schendel SL, Wan W, Castillon G, Saphire EO. Intracellular Ebola virus nucleocapsid assembly revealed by in situ cryo-electron tomography. Cell 2024; 187:5587-5603.e19. [PMID: 39293445 PMCID: PMC11455616 DOI: 10.1016/j.cell.2024.08.044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 06/04/2024] [Accepted: 08/21/2024] [Indexed: 09/20/2024]
Abstract
Filoviruses, including the Ebola and Marburg viruses, cause hemorrhagic fevers with up to 90% lethality. The viral nucleocapsid is assembled by polymerization of the nucleoprotein (NP) along the viral genome, together with the viral proteins VP24 and VP35. We employed cryo-electron tomography of cells transfected with viral proteins and infected with model Ebola virus to illuminate assembly intermediates, as well as a 9 Å map of the complete intracellular assembly. This structure reveals a previously unresolved third and outer layer of NP complexed with VP35. The intrinsically disordered region, together with the C-terminal domain of this outer layer of NP, provides the constant width between intracellular nucleocapsid bundles and likely functions as a flexible tether to the viral matrix protein in the virion. A comparison of intracellular nucleocapsids with prior in-virion nucleocapsid structures reveals that the nucleocapsid further condenses vertically in the virion. The interfaces responsible for nucleocapsid assembly are highly conserved and offer targets for broadly effective antivirals.
Collapse
Affiliation(s)
- Reika Watanabe
- Center for Vaccine Innovation, La Jolla Institute for Immunology, La Jolla, CA 92037, USA
| | - Dawid Zyla
- Center for Vaccine Innovation, La Jolla Institute for Immunology, La Jolla, CA 92037, USA
| | - Diptiben Parekh
- Center for Vaccine Innovation, La Jolla Institute for Immunology, La Jolla, CA 92037, USA
| | - Connor Hong
- Center for Vaccine Innovation, La Jolla Institute for Immunology, La Jolla, CA 92037, USA
| | - Ying Jones
- Electron Microscopy Core, University of California, San Diego, La Jolla, CA 92037, USA
| | - Sharon L Schendel
- Center for Vaccine Innovation, La Jolla Institute for Immunology, La Jolla, CA 92037, USA
| | - William Wan
- Vanderbilt University Center for Structural Biology, Nashville, TN 37235, USA
| | - Guillaume Castillon
- Electron Microscopy Core, University of California, San Diego, La Jolla, CA 92037, USA
| | - Erica Ollmann Saphire
- Center for Vaccine Innovation, La Jolla Institute for Immunology, La Jolla, CA 92037, USA; Department of Medicine, University of California, San Diego, La Jolla, CA 92037, USA.
| |
Collapse
|
3
|
Wickenhagen A, van Tol S, Munster V. Molecular determinants of cross-species transmission in emerging viral infections. Microbiol Mol Biol Rev 2024; 88:e0000123. [PMID: 38912755 PMCID: PMC11426021 DOI: 10.1128/mmbr.00001-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/25/2024] Open
Abstract
SUMMARYSeveral examples of high-impact cross-species transmission of newly emerging or re-emerging bat-borne viruses, such as Sudan virus, Nipah virus, and severe acute respiratory syndrome coronavirus 2, have occurred in the past decades. Recent advancements in next-generation sequencing have strengthened ongoing efforts to catalog the global virome, in particular from the multitude of different bat species. However, functional characterization of these novel viruses and virus sequences is typically limited with regard to assessment of their cross-species potential. Our understanding of the intricate interplay between virus and host underlying successful cross-species transmission has focused on the basic mechanisms of entry and replication, as well as the importance of host innate immune responses. In this review, we discuss the various roles of the respective molecular mechanisms underlying cross-species transmission using different recent bat-borne viruses as examples. To delineate the crucial cellular and molecular steps underlying cross-species transmission, we propose a framework of overall characterization to improve our capacity to characterize viruses as benign, of interest, or of concern.
Collapse
Affiliation(s)
- Arthur Wickenhagen
- Laboratory of Virology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, Montana, USA
| | - Sarah van Tol
- Laboratory of Virology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, Montana, USA
| | - Vincent Munster
- Laboratory of Virology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, Montana, USA
| |
Collapse
|
4
|
Hassan HA, Abdelwahab SF, Al-Khdhairawi A, Al Zrkani MK, Rehman HM, Abdel-Rahman IM, El-Sheikh AAK, Abdelhamid MM. Exploring the therapeutic potential of galidesivir analogs against Zaire ebolavirus protein 24 (V24): database screening, molecular docking, drug-relevant property evaluation and molecular dynamics simulations. J Biomol Struct Dyn 2024; 42:6761-6771. [PMID: 37477257 DOI: 10.1080/07391102.2023.2236720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Accepted: 07/08/2023] [Indexed: 07/22/2023]
Abstract
The recent outbreak of the Ebola virus (EBOV) has marked it as one of the most severe health threats globally. Among various anti-EBOV inhibitors studied, galidesivir (BCX4430) has shown remarkable efficacy. This study aims to identify novel potential anti-EBOV drugs among galidesivir analogs, focusing on the Zaire ebolavirus (Z-EBOV), which exhibits a mortality rate of 90%. We subjected 200 candidate compounds to molecular docking calculations, followed by an evaluation of the bioactivity of the top 25 compounds using the OSIRIS Property Explorer. Initial 50 ns molecular dynamics (MD) simulations were then performed. According to our findings, only six compounds exhibited positive drug scores. We further performed molecular mechanics Poisson-Boltzmann surface area (MM/PBSA) calculations of binding energy over 50 ns, selecting the two top-performing compounds for extended 150 ns MD simulations. CID 117698807 and CID 117712809 showed higher binding stability compared to galidesivir, with ΔGbinding values of -36.7 and -53.4 kcal/mol, respectively. Both compounds demonstrated high stability within the Z-EBOV-V24 active site over the 150 ns MD simulations. Hence, our study proposes CID 117698807 and CID 117712809 as potential anti-Z-EBOV-V24 drug candidates, warranting further investigation.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Heba Ali Hassan
- Department of Pharmacognosy, Faculty of Pharmacy, Sohag University, Sohag, Egypt
| | - Sayed F Abdelwahab
- Department of Pharmaceutics and Industrial Pharmacy, College of Pharmacy, Taif University, Taif, Saudi Arabia
| | - Ahmad Al-Khdhairawi
- Department of Biological Science and Biotechnology, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, Bangi, Selangor, Malaysia
| | - Mrtatha K Al Zrkani
- Institute of Genetic Engineering & Biotechnology Research, Baghdad University, Iraq
| | - Hafiz Muzzammel Rehman
- School of Biochemistry and Biotechnology, University of the Punjab, Lahore, Punjab, Pakistan
- Department of Human Genetics and Molecular Biology, University of Health Sciences, Lahore, Pakistan
| | - Islam M Abdel-Rahman
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Deraya University, New-Minia, Egypt
| | - Azza A K El-Sheikh
- Basic Health Sciences Department, College of Medicine, Princess Nourah bint Abdulrahman University, Riyadh, Saudi Arabia
| | - Mahmoud M Abdelhamid
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Al-Azhar University, Assiut, Egypt
| |
Collapse
|
5
|
Vogel OA, Nafziger E, Sharma A, Pasolli HA, Davey RA, Basler CF. The Role of Ebola Virus VP24 Nuclear Trafficking Signals in Infectious Particle Production. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.13.584761. [PMID: 38559040 PMCID: PMC10980025 DOI: 10.1101/2024.03.13.584761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
Ebola virus (EBOV) protein VP24 carries out at least two critical functions. It promotes condensation of viral nucleocapsids, which is crucial for infectious virus production, and it suppresses interferon (IFN) signaling, which requires interaction with the NPI-1 subfamily of importin-α (IMPA) nuclear transport proteins. Interestingly, over-expressed IMPA leads to VP24 nuclear accumulation and a carboxy-terminus nuclear export signal (NES) has been reported, suggesting that VP24 may undergo nuclear trafficking. For the first time, we demonstrate that NPI-1 IMPA overexpression leads to the nuclear accumulation of VP24 during EBOV infection. To assess the functional impact of nuclear trafficking, we generated tetracistronic minigenomes encoding VP24 nuclear import and/or export signal mutants. The minigenomes, which also encode Renilla luciferase and viral proteins VP40 and GP, were used to generate transcription and replication competent virus-like particles (trVLPs) that can be used to assess EBOV RNA synthesis, gene expression, entry and viral particle production. With this system, we confirmed that NES or IMPA binding site mutations altered VP24 nuclear localization, demonstrating functional trafficking signals. While these mutations minimally affected transcription and replication, the trVLPs exhibited impaired infectivity and formation of shortened nucleocapsids for the IMPA binding mutant. For the NES mutants, infectivity was reduced approximately 1000-fold. The NES mutant could still suppress IFN signaling but failed to promote nucleocapsid formation. To determine whether VP24 nuclear export is required for infectivity, the residues surrounding the wildtype NES were mutated to alanine or the VP24 NES was replaced with the Protein Kinase A Inhibitor NES. While nuclear export remained intact for these mutants, infectivity was severely impaired. These data demonstrate that VP24 undergoes nuclear trafficking and illuminates a separate and critical role for the NES and surrounding sequences in infectivity and nucleocapsid assembly.
Collapse
Affiliation(s)
- Olivia A. Vogel
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029
| | - Elias Nafziger
- National Emerging Infectious Diseases Laboratories and Department of Virology, Immunology, and Microbiology, Boston University, Boston, MA 02118
| | - Anurag Sharma
- Electron Microscopy Resource Center, The Rockefeller University, New York ,NY 10065, USA
| | - H. Amalia Pasolli
- Electron Microscopy Resource Center, The Rockefeller University, New York ,NY 10065, USA
| | - Robert A. Davey
- National Emerging Infectious Diseases Laboratories and Department of Virology, Immunology, and Microbiology, Boston University, Boston, MA 02118
| | - Christopher F. Basler
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029
| |
Collapse
|
6
|
Vogel OA, Forwood JK, Leung DW, Amarasinghe GK, Basler CF. Viral Targeting of Importin Alpha-Mediated Nuclear Import to Block Innate Immunity. Cells 2023; 13:71. [PMID: 38201275 PMCID: PMC10778312 DOI: 10.3390/cells13010071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2023] [Revised: 12/22/2023] [Accepted: 12/27/2023] [Indexed: 01/12/2024] Open
Abstract
Cellular nucleocytoplasmic trafficking is mediated by the importin family of nuclear transport proteins. The well-characterized importin alpha (IMPA) and importin beta (IMPB) nuclear import pathway plays a crucial role in the innate immune response to viral infection by mediating the nuclear import of transcription factors such as IRF3, NFκB, and STAT1. The nuclear transport of these transcription factors ultimately leads to the upregulation of a wide range of antiviral genes, including IFN and IFN-stimulated genes (ISGs). To replicate efficiently in cells, viruses have developed mechanisms to block these signaling pathways. One strategy to evade host innate immune responses involves blocking the nuclear import of host antiviral transcription factors. By binding IMPA proteins, these viral proteins prevent the nuclear transport of key transcription factors and suppress the induction of antiviral gene expression. In this review, we describe examples of proteins encoded by viruses from several different families that utilize such a competitive inhibition strategy to suppress the induction of antiviral gene expression.
Collapse
Affiliation(s)
- Olivia A. Vogel
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA;
| | - Jade K. Forwood
- School of Dentistry and Medical Sciences, Charles Sturt University, Wagga Wagga, NSW 2678, Australia;
| | - Daisy W. Leung
- Department of Internal Medicine, Washington University School of Medicine in St. Louis, St. Louis, MO 63110, USA;
| | - Gaya K. Amarasinghe
- Department of Pathology and Immunology, Washington University School of Medicine in St. Louis, St. Louis, MO 63110, USA;
| | - Christopher F. Basler
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA;
| |
Collapse
|
7
|
Zhang J, Liu S, Chen M, Chu H, Wang M, Wang Z, Yu J, Ni N, Yu F, Chen D, Yang YI, Xue B, Yang L, Liu Y, Gao YQ. Unsupervisedly Prompting AlphaFold2 for Accurate Few-Shot Protein Structure Prediction. J Chem Theory Comput 2023; 19:8460-8471. [PMID: 37947474 DOI: 10.1021/acs.jctc.3c00528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2023]
Abstract
Data-driven predictive methods that can efficiently and accurately transform protein sequences into biologically active structures are highly valuable for scientific research and medical development. Determining an accurate folding landscape using coevolutionary information is fundamental to the success of modern protein structure prediction methods. As the state of the art, AlphaFold2 has dramatically raised the accuracy without performing explicit coevolutionary analysis. Nevertheless, its performance still shows strong dependence on available sequence homologues. Based on the interrogation on the cause of such dependence, we presented EvoGen, a meta generative model, to remedy the underperformance of AlphaFold2 for poor MSA targets. By prompting the model with calibrated or virtually generated homologue sequences, EvoGen helps AlphaFold2 fold accurately in the low-data regime and even achieve encouraging performance with single-sequence predictions. Being able to make accurate predictions with few-shot MSA not only generalizes AlphaFold2 better for orphan sequences but also democratizes its use for high-throughput applications. Besides, EvoGen combined with AlphaFold2 yields a probabilistic structure generation method that could explore alternative conformations of protein sequences, and the task-aware differentiable algorithm for sequence generation will benefit other related tasks including protein design.
Collapse
Affiliation(s)
- Jun Zhang
- Changping Laboratory, Beijing 102200, China
| | - Sirui Liu
- Changping Laboratory, Beijing 102200, China
| | - Mengyun Chen
- Huawei Hangzhou Research Institute, Huawei Technologies Co. Ltd., Hangzhou 310051, China
| | - Haotian Chu
- Huawei Hangzhou Research Institute, Huawei Technologies Co. Ltd., Hangzhou 310051, China
| | - Min Wang
- Huawei Hangzhou Research Institute, Huawei Technologies Co. Ltd., Hangzhou 310051, China
| | - Zidong Wang
- Huawei Hangzhou Research Institute, Huawei Technologies Co. Ltd., Hangzhou 310051, China
| | - Jialiang Yu
- Huawei Hangzhou Research Institute, Huawei Technologies Co. Ltd., Hangzhou 310051, China
| | - Ningxi Ni
- Huawei Hangzhou Research Institute, Huawei Technologies Co. Ltd., Hangzhou 310051, China
| | - Fan Yu
- Huawei Hangzhou Research Institute, Huawei Technologies Co. Ltd., Hangzhou 310051, China
| | - Dechin Chen
- Institute of Systems and Physical Biology, Shenzhen Bay Laboratory, Shenzhen 518055, China
| | - Yi Isaac Yang
- Institute of Systems and Physical Biology, Shenzhen Bay Laboratory, Shenzhen 518055, China
| | - Boxin Xue
- Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Lijiang Yang
- Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Yuan Liu
- Department of Chemical Biology, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Yi Qin Gao
- Changping Laboratory, Beijing 102200, China
- Institute of Systems and Physical Biology, Shenzhen Bay Laboratory, Shenzhen 518055, China
- Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
- Biomedical Pioneering Innovation Center, Peking University, Beijing 100871, China
| |
Collapse
|
8
|
Razizadeh MH, Zafarani A, Taghavi-Farahabadi M, Khorramdelazad H, Minaeian S, Mahmoudi M. Natural killer cells and their exosomes in viral infections and related therapeutic approaches: where are we? Cell Commun Signal 2023; 21:261. [PMID: 37749597 PMCID: PMC10519079 DOI: 10.1186/s12964-023-01266-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Accepted: 08/11/2023] [Indexed: 09/27/2023] Open
Abstract
Innate immunity is the first line of the host immune system to fight against infections. Natural killer cells are the innate immunity lymphocytes responsible for fighting against virus-infected and cancerous cells. They have various mechanisms to suppress viral infections. On the other hand, viruses have evolved to utilize different ways to evade NK cell-mediated responses. Viruses can balance the response by regulating the cytokine release pattern and changing the proportion of activating and inhibitory receptors on the surface of NK cells. Exosomes are a subtype of extracellular vesicles that are involved in intercellular communication. Most cell populations can release these nano-sized vesicles, and it was shown that these vesicles produce identical outcomes to the originating cell from which they are released. In recent years, the role of NK cell-derived exosomes in various diseases including viral infections has been highlighted, drawing attention to utilizing the therapeutic potential of these nanoparticles. In this article, the role of NK cells in various viral infections and the mechanisms used by viruses to evade these important immune system cells are initially examined. Subsequently, the role of NK cell exosomes in controlling various viral infections is discussed. Finally, the current position of these cells in the treatment of viral infections and the therapeutic potential of their exosomes are reviewed. Video Abstract.
Collapse
Affiliation(s)
- Mohammad Hossein Razizadeh
- Department of Virology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
- Antimicrobial Resistance Research Center, Institute of Immunology and Infectious Diseases, Iran University of Medical Sciences, Tehran, Iran
| | - Alireza Zafarani
- Department of Hematology and Blood Banking, Faculty of Allied Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Mahsa Taghavi-Farahabadi
- Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Hossein Khorramdelazad
- Department of Immunology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
- Department of Immunology, School of Medicine, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
| | - Sara Minaeian
- Antimicrobial Resistance Research Center, Institute of Immunology and Infectious Diseases, Iran University of Medical Sciences, Tehran, Iran.
| | - Mohammad Mahmoudi
- Department of Immunology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran.
- Immunology Research Center, Institute of Immunology and Infectious Diseases, Iran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
9
|
Yang S, Shen W, Hu J, Cai S, Zhang C, Jin S, Guan X, Wu J, Wu Y, Cui J. Molecular mechanisms and cellular functions of liquid-liquid phase separation during antiviral immune responses. Front Immunol 2023; 14:1162211. [PMID: 37251408 PMCID: PMC10210139 DOI: 10.3389/fimmu.2023.1162211] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Accepted: 04/25/2023] [Indexed: 05/31/2023] Open
Abstract
Spatiotemporal separation of cellular components is vital to ensure biochemical processes. Membrane-bound organelles such as mitochondria and nuclei play a major role in isolating intracellular components, while membraneless organelles (MLOs) are accumulatively uncovered via liquid-liquid phase separation (LLPS) to mediate cellular spatiotemporal organization. MLOs orchestrate various key cellular processes, including protein localization, supramolecular assembly, gene expression, and signal transduction. During viral infection, LLPS not only participates in viral replication but also contributes to host antiviral immune responses. Therefore, a more comprehensive understanding of the roles of LLPS in virus infection may open up new avenues for treating viral infectious diseases. In this review, we focus on the antiviral defense mechanisms of LLPS in innate immunity and discuss the involvement of LLPS during viral replication and immune evasion escape, as well as the strategy of targeting LLPS to treat viral infectious diseases.
Collapse
Affiliation(s)
- Shuai Yang
- The First Affiliated Hospital of Sun Yat-sen University, Ministry of Education MOE Key Laboratory of Gene Function and Regulation, School of Life Sciences, Sun Yat-sen University, Guangzhou, Guangdong, China
- Ministry of Education Key Laboratory of Gene Function and Regulation, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Weishan Shen
- Department of Critical Care Medicine, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Jiajia Hu
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Sihui Cai
- Ministry of Education Key Laboratory of Gene Function and Regulation, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Chenqiu Zhang
- Ministry of Education Key Laboratory of Gene Function and Regulation, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Shouheng Jin
- Ministry of Education Key Laboratory of Gene Function and Regulation, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Xiangdong Guan
- Department of Critical Care Medicine, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Jianfeng Wu
- Department of Critical Care Medicine, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Yaoxing Wu
- The First Affiliated Hospital of Sun Yat-sen University, Ministry of Education MOE Key Laboratory of Gene Function and Regulation, School of Life Sciences, Sun Yat-sen University, Guangzhou, Guangdong, China
- Department of Critical Care Medicine, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Jun Cui
- The First Affiliated Hospital of Sun Yat-sen University, Ministry of Education MOE Key Laboratory of Gene Function and Regulation, School of Life Sciences, Sun Yat-sen University, Guangzhou, Guangdong, China
- Ministry of Education Key Laboratory of Gene Function and Regulation, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
10
|
Ramanathan P, Tigabu B, Santos RI, Ilinykh PA, Kuzmina N, Vogel OA, Thakur N, Ahmed H, Wu C, Amarasinghe GK, Basler CF, Bukreyev A. Ebolavirus Species-Specific Interferon Antagonism Mediated by VP24. Viruses 2023; 15:1075. [PMID: 37243162 PMCID: PMC10222226 DOI: 10.3390/v15051075] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Accepted: 04/24/2023] [Indexed: 05/28/2023] Open
Abstract
Members of the Ebolavirus genus demonstrate a marked differences in pathogenicity in humans with Ebola (EBOV) being the most pathogenic, Bundibugyo (BDBV) less pathogenic, and Reston (RESTV) is not known to cause a disease in humans. The VP24 protein encoded by members of the Ebolavirus genus blocks type I interferon (IFN-I) signaling through interaction with host karyopherin alpha nuclear transporters, potentially contributing to virulence. Previously, we demonstrated that BDBV VP24 (bVP24) binds with lower affinities to karyopherin alpha proteins relative to EBOV VP24 (eVP24), and this correlated with a reduced inhibition in IFN-I signaling. We hypothesized that modification of eVP24-karyopherin alpha interface to make it similar to bVP24 would attenuate the ability to antagonize IFN-I response. We generated a panel of recombinant EBOVs containing single or combinations of point mutations in the eVP24-karyopherin alpha interface. Most of the viruses appeared to be attenuated in both IFN-I-competent 769-P and IFN-I-deficient Vero-E6 cells in the presence of IFNs. However, the R140A mutant grew at reduced levels even in the absence of IFNs in both cell lines, as well as in U3A STAT1 knockout cells. Both the R140A mutation and its combination with the N135A mutation greatly reduced the amounts of viral genomic RNA and mRNA suggesting that these mutations attenuate the virus in an IFN-I-independent attenuation. Additionally, we found that unlike eVP24, bVP24 does not inhibit interferon lambda 1 (IFN-λ1), interferon beta (IFN-β), and ISG15, which potentially explains the lower pathogenicity of BDBV relative to EBOV. Thus, the VP24 residues binding karyopherin alpha attenuates the virus by IFN-I-dependent and independent mechanisms.
Collapse
Affiliation(s)
- Palaniappan Ramanathan
- Department of Pathology, The University of Texas Medical Branch at Galveston, Galveston, TX 77555, USA
- Galveston National Laboratory, The University of Texas Medical Branch at Galveston, Galveston, TX 77555, USA
| | - Bersabeh Tigabu
- Department of Pathology, The University of Texas Medical Branch at Galveston, Galveston, TX 77555, USA
- Galveston National Laboratory, The University of Texas Medical Branch at Galveston, Galveston, TX 77555, USA
| | - Rodrigo I. Santos
- Department of Pathology, The University of Texas Medical Branch at Galveston, Galveston, TX 77555, USA
- Galveston National Laboratory, The University of Texas Medical Branch at Galveston, Galveston, TX 77555, USA
| | - Philipp A. Ilinykh
- Department of Pathology, The University of Texas Medical Branch at Galveston, Galveston, TX 77555, USA
- Galveston National Laboratory, The University of Texas Medical Branch at Galveston, Galveston, TX 77555, USA
| | - Natalia Kuzmina
- Department of Pathology, The University of Texas Medical Branch at Galveston, Galveston, TX 77555, USA
- Galveston National Laboratory, The University of Texas Medical Branch at Galveston, Galveston, TX 77555, USA
| | - Olivia A. Vogel
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Naveen Thakur
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Hamza Ahmed
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Chao Wu
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Gaya K. Amarasinghe
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Christopher F. Basler
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Alexander Bukreyev
- Department of Pathology, The University of Texas Medical Branch at Galveston, Galveston, TX 77555, USA
- Galveston National Laboratory, The University of Texas Medical Branch at Galveston, Galveston, TX 77555, USA
- Department of Microbiology & Immunology, The University of Texas Medical Branch at Galveston, Galveston, TX 77555, USA
| |
Collapse
|
11
|
Tong XK, Li H, Yang L, Xie SZ, Xie S, Gong Y, Peng C, Gao XX, Shi ZL, Yang XL, Zuo JP. Multiplication of defective Ebola virus in a complementary permissive cell line. Antiviral Res 2023; 209:105491. [PMID: 36526073 DOI: 10.1016/j.antiviral.2022.105491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 12/05/2022] [Accepted: 12/11/2022] [Indexed: 12/15/2022]
Abstract
In an effort to develop safe and innovative in vitro models for Ebola virus (EBOV) research, we generated a recombinant Ebola virus where the glycoprotein (GP) gene was substituted with the Cre recombinase (Cre) gene by reverse genetics. This defective virus could multiply itself in a complementary permissive cell line, which could express GP and reporter protein upon exogenous Cre existence. The main features of this novel model for Ebola virus are intact viral life cycle, robust virus multiplication and normal virions morphology. The design of this model ensures its safety, excellent stability and maneuverability as a tool for virology research as well as for antiviral agent screening and drug discovery, and such a design could be further adapted to other viruses.
Collapse
Affiliation(s)
- Xian-Kun Tong
- State Key Laboratory of Drug Research, Immunological Disease Research Center, BSL-3 Laboratory, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China.
| | - Heng Li
- State Key Laboratory of Drug Research, Immunological Disease Research Center, BSL-3 Laboratory, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Li Yang
- State Key Laboratory of Drug Research, Immunological Disease Research Center, BSL-3 Laboratory, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Shi-Zhe Xie
- CAS Key Laboratory of Special Pathogens, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, 430071, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Sha Xie
- State Key Laboratory of Drug Research, Immunological Disease Research Center, BSL-3 Laboratory, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Ying Gong
- State Key Laboratory of Drug Research, Immunological Disease Research Center, BSL-3 Laboratory, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Cheng Peng
- Center for Biosafety Mega-Science, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, 430071, China
| | - Xiao-Xiao Gao
- Center for Biosafety Mega-Science, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, 430071, China
| | - Zheng-Li Shi
- CAS Key Laboratory of Special Pathogens, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, 430071, China
| | - Xing-Lou Yang
- CAS Key Laboratory of Special Pathogens, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, 430071, China; Hubei Jiangxia Lab, Wuhan, 430071, China.
| | - Jian-Ping Zuo
- State Key Laboratory of Drug Research, Immunological Disease Research Center, BSL-3 Laboratory, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China.
| |
Collapse
|
12
|
Escudero-Pérez B, Lawrence P, Castillo-Olivares J. Immune correlates of protection for SARS-CoV-2, Ebola and Nipah virus infection. Front Immunol 2023; 14:1156758. [PMID: 37153606 PMCID: PMC10158532 DOI: 10.3389/fimmu.2023.1156758] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Accepted: 03/20/2023] [Indexed: 05/09/2023] Open
Abstract
Correlates of protection (CoP) are biological parameters that predict a certain level of protection against an infectious disease. Well-established correlates of protection facilitate the development and licensing of vaccines by assessing protective efficacy without the need to expose clinical trial participants to the infectious agent against which the vaccine aims to protect. Despite the fact that viruses have many features in common, correlates of protection can vary considerably amongst the same virus family and even amongst a same virus depending on the infection phase that is under consideration. Moreover, the complex interplay between the various immune cell populations that interact during infection and the high degree of genetic variation of certain pathogens, renders the identification of immune correlates of protection difficult. Some emerging and re-emerging viruses of high consequence for public health such as SARS-CoV-2, Nipah virus (NiV) and Ebola virus (EBOV) are especially challenging with regards to the identification of CoP since these pathogens have been shown to dysregulate the immune response during infection. Whereas, virus neutralising antibodies and polyfunctional T-cell responses have been shown to correlate with certain levels of protection against SARS-CoV-2, EBOV and NiV, other effector mechanisms of immunity play important roles in shaping the immune response against these pathogens, which in turn might serve as alternative correlates of protection. This review describes the different components of the adaptive and innate immune system that are activated during SARS-CoV-2, EBOV and NiV infections and that may contribute to protection and virus clearance. Overall, we highlight the immune signatures that are associated with protection against these pathogens in humans and could be used as CoP.
Collapse
Affiliation(s)
- Beatriz Escudero-Pérez
- WHO Collaborating Centre for Arbovirus and Haemorrhagic Fever Reference and Research, Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
- German Center for Infection Research (DZIF), Partner Site Hamburg-Luebeck-Borstel-Reims, Braunschweig, Germany
- *Correspondence: Beatriz Escudero-Pérez, ; Javier Castillo-Olivares,
| | - Philip Lawrence
- CONFLUENCE: Sciences et Humanités (EA 1598), Université Catholique de Lyon (UCLy), Lyon, France
| | - Javier Castillo-Olivares
- Laboratory of Viral Zoonotics, University of Cambridge, Cambridge, United Kingdom
- *Correspondence: Beatriz Escudero-Pérez, ; Javier Castillo-Olivares,
| |
Collapse
|
13
|
Chen Q, Li L, Guo S, Liu Z, Liu L, Tan C, Chen H, Wang X. African swine fever virus pA104R protein acts as a suppressor of type I interferon signaling. Front Microbiol 2023; 14:1169699. [PMID: 37089552 PMCID: PMC10119599 DOI: 10.3389/fmicb.2023.1169699] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Accepted: 03/20/2023] [Indexed: 04/25/2023] Open
Abstract
This study evaluates the role of the late viral protein, pA104R, in African swine fever virus immunosuppression. ASFV-encoded pA104R is a putative histone-like protein that is highly conserved throughout different virulent and non-virulent isolates. Previous studies have demonstrated that pA104R plays a vital role in the ASFV replication cycle and is a potential target for antiviral therapy. Here, we demonstrated that pA104R is a potent antagonist of type I interferon signaling. IFN-stimulated response element activity and subsequent transcription of co-transfected and endogenous interferon-stimulated genes were attenuated by pA104R treatment in HEK-293 T cells. Immunoprecipitation assay and reciprocal pull-down showed that pA104R does not interact directly with STAT1, STAT2, or IRF9. However, pA104R could inhibit IFN signaling by attenuating STAT1 phosphorylation, and we identified the critical amino acid residues (R/H69,72 and K/R92,94,97) involved through the targeted mutation functional assays. Although pA104R is a histone-like protein localized to the nucleus, it did not inhibit IFN signaling through its DNA-binding capacity. In addition, activation of the ISRE promoter by IRF9-Stat2(TA), a STAT1-independent pathway, was inhibited by pA104R. Further results revealed that both the transcriptional activation and recruitment of transcriptional stimulators by interferon-stimulated gene factor 3 were not impaired. Although we failed to determine a mechanism for pA104R-mediated IFN signaling inhibition other than attenuating the phosphorylation of STAT1, these results might imply a possible involvement of epigenetic modification by ASFV pA104R. Taken together, these findings support that pA104R is an antagonist of type I interferon signaling, which may interfere with multiple signaling pathways.
Collapse
Affiliation(s)
- Qichao Chen
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China
| | - Liang Li
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China
| | - Shibang Guo
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China
| | - Zhankui Liu
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China
| | - Lixinjie Liu
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China
| | - Chen Tan
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China
- Key Laboratory of Prevention & Control for African Swine Fever and Other Major Pig Diseases, Ministry of Agriculture and Rural Affairs, Wuhan, China
- International Research Center for Animal Disease, Ministry of Science and Technology of the People’s Republic of China, Wuhan, China
| | - Huanchun Chen
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China
- Key Laboratory of Prevention & Control for African Swine Fever and Other Major Pig Diseases, Ministry of Agriculture and Rural Affairs, Wuhan, China
- International Research Center for Animal Disease, Ministry of Science and Technology of the People’s Republic of China, Wuhan, China
| | - Xiangru Wang
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China
- Key Laboratory of Prevention & Control for African Swine Fever and Other Major Pig Diseases, Ministry of Agriculture and Rural Affairs, Wuhan, China
- International Research Center for Animal Disease, Ministry of Science and Technology of the People’s Republic of China, Wuhan, China
- *Correspondence: Xiangru Wang,
| |
Collapse
|
14
|
Mohamed EAR, Abdelwahab SF, Alqaisi AM, Nasr AMS, Hassan HA. Identification of promising anti-EBOV inhibitors: de novo drug design, molecular docking and molecular dynamics studies. ROYAL SOCIETY OPEN SCIENCE 2022; 9:220369. [PMID: 36177201 PMCID: PMC9515638 DOI: 10.1098/rsos.220369] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Accepted: 08/22/2022] [Indexed: 06/16/2023]
Abstract
The Ebola virus (EBOV) outbreak was recorded as the largest in history and caused many fatalities. As seen in previous studies, drug repurposing and database filtration were the two major pathways to searching for potent compounds against EBOV. In this study, a deep learning (DL) approach via the LigDream tool was employed to obtain novel and effective anti-EBOV inhibitors. Based on the galidesivir (BCX4430) chemical structure, 100 compounds were collected and inspected using various in silico approaches. Results from the molecular docking study indicated that mol1_069 and mol1_092 were the best two potent compounds with a docking score of -7.1 kcal mol-1 and -7.0 kcal mol-1, respectively. Molecular dynamics simulations, in addition to binding energy calculations, were conducted over 100 ns. Both compounds exhibited lower binding energies than BCX4430. Furthermore, compared with BCX4430 (%Absorption = 60.6%), mol1_069 and mol1_092 scored higher values of % Absorption equal to 68.1% and 63.7%, respectively. The current data point to the importance of using DL in the drug design process instead of conventional methods such as drug repurposing or database filtration. In conclusion, mol1_069 and mol1_092 are promising anti-EBOV drug candidates that require further in vitro and in vivo investigations.
Collapse
Affiliation(s)
- Eslam A. R. Mohamed
- Department of Chemistry, Faculty of Science, Minia University, Minia 61511, Egypt
| | - Sayed F. Abdelwahab
- Department of Pharmaceutics and Industrial Pharmacy, College of Pharmacy, Taif University, PO Box 11099, Taif 21944, Saudi Arabia
| | | | | | - Heba Ali Hassan
- Department of Pharmacognosy, Faculty of Pharmacy, Sohag University, Sohag 82524, Egypt
| |
Collapse
|
15
|
African Swine Fever Virus pI215L Inhibits Type I Interferon Signaling by Targeting Interferon Regulatory Factor 9 for Autophagic Degradation. J Virol 2022; 96:e0094422. [PMID: 35972295 PMCID: PMC9472647 DOI: 10.1128/jvi.00944-22] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
African swine fever virus (ASFV) is the etiological agent of a highly lethal hemorrhagic disease in domestic pigs and wild boars that has significant economic consequences for the pig industry. The type I interferon (IFN) signaling pathway is a pivotal component of the innate antiviral response, and ASFV has evolved multiple mechanisms to antagonize this pathway and facilitate infection. Here, we reported a novel function of ASFV pI215L in inhibiting type I IFN signaling. Our results showed that ASFV pI215L inhibited IFN-stimulated response element (ISRE) promoter activity and subsequent transcription of IFN-stimulated genes (ISGs) by triggering interferon regulatory factor 9 (IRF9) degradation. Additionally, we found that catalytically inactive pI215L mutations retained the ability to block type I IFN signaling, indicating that this only known viral E2 ubiquitin-conjugating enzyme mediates IFR9 degradation in a ubiquitin-conjugating activity-independent manner. By coimmunoprecipitation, confocal immunofluorescence, and subcellular fractionation approaches, we demonstrated that pI215L interacted with IRF9 and impaired the formation and nuclear translocation of IFN-stimulated gene factor 3 (ISGF3). Moreover, further mechanism studies supported that pI215L induced IRF9 degradation through the autophagy-lysosome pathway in both pI215L-overexpressed and ASFV-infected cells. These findings reveal a new immune evasion strategy evolved by ASFV in which pI215L acts to degrade host IRF9 via the autophagic pathway, thus inhibiting the type I IFN signaling and counteracting the host innate immune response. IMPORTANCE African swine fever virus (ASFV) causes a highly contagious and lethal disease in pigs and wild boars that is currently present in many countries, severely affecting the global pig industry. Despite extensive research, effective vaccines and antiviral strategies are still lacking, and many fundamental questions regarding the molecular mechanisms underlying host innate immunity escape remain unclear. In this study, we identified ASFV pI215L, the only known viral E2 ubiquitin-conjugating enzyme, which is involved in antagonizing the type I interferon signaling. Mechanistically, pI215L interacted with interferon regulatory factor 9 for autophagic degradation, and this degradation was independent of its ubiquitin-conjugating activity. These results increase the current knowledge regarding ASFV evasion of innate immunity, which may instruct future research on antiviral strategies and dissection of ASFV pathogenesis.
Collapse
|
16
|
Galão RP, Wilson H, Schierhorn KL, Debeljak F, Bodmer BS, Goldhill D, Hoenen T, Wilson SJ, Swanson CM, Neil SJD. TRIM25 and ZAP target the Ebola virus ribonucleoprotein complex to mediate interferon-induced restriction. PLoS Pathog 2022; 18:e1010530. [PMID: 35533151 PMCID: PMC9119685 DOI: 10.1371/journal.ppat.1010530] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 05/19/2022] [Accepted: 04/18/2022] [Indexed: 12/14/2022] Open
Abstract
Ebola virus (EBOV) causes highly pathogenic disease in primates. Through screening a library of human interferon-stimulated genes (ISGs), we identified TRIM25 as a potent inhibitor of EBOV transcription-and-replication-competent virus-like particle (trVLP) propagation. TRIM25 overexpression inhibited the accumulation of viral genomic and messenger RNAs independently of the RNA sensor RIG-I or secondary proinflammatory gene expression. Deletion of TRIM25 strongly attenuated the sensitivity of trVLPs to inhibition by type-I interferon. The antiviral activity of TRIM25 required ZAP and the effect of type-I interferon was modulated by the CpG dinucleotide content of the viral genome. We find that TRIM25 interacts with the EBOV vRNP, resulting in its autoubiquitination and ubiquitination of the viral nucleoprotein (NP). TRIM25 is recruited to incoming vRNPs shortly after cell entry and leads to dissociation of NP from the vRNA. We propose that TRIM25 targets the EBOV vRNP, exposing CpG-rich viral RNA species to restriction by ZAP.
Collapse
Affiliation(s)
- Rui Pedro Galão
- Department of Infectious Diseases, School of Immunology and Microbial Sciences, King’s College London, United Kingdom
| | - Harry Wilson
- Department of Infectious Diseases, School of Immunology and Microbial Sciences, King’s College London, United Kingdom
| | - Kristina L. Schierhorn
- Department of Infectious Diseases, School of Immunology and Microbial Sciences, King’s College London, United Kingdom
| | - Franka Debeljak
- Department of Infectious Diseases, School of Immunology and Microbial Sciences, King’s College London, United Kingdom
| | - Bianca S. Bodmer
- Institute for Molecular Virology and Cell Biology, Friedrich-Loeffler-Institut, Greifswald, Germany
| | - Daniel Goldhill
- Section of Virology, Department of Medicine, Imperial College London, London, United Kingdom
| | - Thomas Hoenen
- Institute for Molecular Virology and Cell Biology, Friedrich-Loeffler-Institut, Greifswald, Germany
| | - Sam J. Wilson
- MRC Centre for Virus Research, University of Glasgow, United Kingdom
| | - Chad M. Swanson
- Department of Infectious Diseases, School of Immunology and Microbial Sciences, King’s College London, United Kingdom
| | - Stuart J. D. Neil
- Department of Infectious Diseases, School of Immunology and Microbial Sciences, King’s College London, United Kingdom
| |
Collapse
|
17
|
Miorin L, Mire CE, Ranjbar S, Hume AJ, Huang J, Crossland NA, White KM, Laporte M, Kehrer T, Haridas V, Moreno E, Nambu A, Jangra S, Cupic A, Dejosez M, Abo KA, Tseng AE, Werder RB, Rathnasinghe R, Mutetwa T, Ramos I, de Aja JS, de Alba Rivas CG, Schotsaert M, Corley RB, Falvo JV, Fernandez-Sesma A, Kim C, Rossignol JF, Wilson AA, Zwaka T, Kotton DN, Mühlberger E, García-Sastre A, Goldfeld AE. The oral drug nitazoxanide restricts SARS-CoV-2 infection and attenuates disease pathogenesis in Syrian hamsters. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2022:2022.02.08.479634. [PMID: 35169796 PMCID: PMC8845418 DOI: 10.1101/2022.02.08.479634] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
A well-tolerated and cost-effective oral drug that blocks SARS-CoV-2 growth and dissemination would be a major advance in the global effort to reduce COVID-19 morbidity and mortality. Here, we show that the oral FDA-approved drug nitazoxanide (NTZ) significantly inhibits SARS-CoV-2 viral replication and infection in different primate and human cell models including stem cell-derived human alveolar epithelial type 2 cells. Furthermore, NTZ synergizes with remdesivir, and it broadly inhibits growth of SARS-CoV-2 variants B.1.351 (beta), P.1 (gamma), and B.1617.2 (delta) and viral syncytia formation driven by their spike proteins. Strikingly, oral NTZ treatment of Syrian hamsters significantly inhibits SARS-CoV-2-driven weight loss, inflammation, and viral dissemination and syncytia formation in the lungs. These studies show that NTZ is a novel host-directed therapeutic that broadly inhibits SARS-CoV-2 dissemination and pathogenesis in human and hamster physiological models, which supports further testing and optimization of NTZ-based therapy for SARS-CoV-2 infection alone and in combination with antiviral drugs.
Collapse
|
18
|
Yamaoka S, Ebihara H. Pathogenicity and Virulence of Ebolaviruses with Species- and Variant-specificity. Virulence 2021; 12:885-901. [PMID: 33734027 PMCID: PMC7993122 DOI: 10.1080/21505594.2021.1898169] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Revised: 02/10/2021] [Accepted: 02/19/2021] [Indexed: 01/05/2023] Open
Abstract
Ebola virus (EBOV), belonging to the species Zaire ebolavirus in the genus Ebolavirus, causes a severe febrile illness in humans with case fatality rates (CFRs) up to 90%. While there have been six virus species classified, which each have a single type virus in the genus Ebolavirus, CFRs of ebolavirus infections vary among viruses belonging to each distinct species. In this review, we aim to define the ebolavirus species-specific virulence on the basis of currently available laboratory and experimental findings. In addition, this review will also cover the variant-specific virulence of EBOV by referring to the unique biological and pathogenic characteristics of EBOV variant Makona, a new EBOV variant isolated from the 2013-2016 EBOV disease outbreak in West Africa. A better definition of species-specific and variant-specific virulence of ebolaviruses will facilitate our comprehensive knowledge on genus Ebolavirus biology, leading to the development of therapeutics against well-focused pathogenic mechanisms of each Ebola disease.
Collapse
Affiliation(s)
- Satoko Yamaoka
- Department of Molecular Medicine, Mayo Clinic, Rochester, USA
| | - Hideki Ebihara
- Department of Molecular Medicine, Mayo Clinic, Rochester, USA
| |
Collapse
|
19
|
Bhattacharyya S. Mechanisms of Immune Evasion by Ebola Virus. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1313:15-22. [PMID: 34661889 DOI: 10.1007/978-3-030-67452-6_2] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/16/2023]
Abstract
The 2013-2016 Ebola virus epidemic in West Africa, which also spread to the USA, UK and Europe, was the largest reported outbreak till date (World Health Organization. 2016. https://apps.who.int/iris/bitstream/handle/10665/208883/ebolasitrep_10Jun2016_eng.pdf;jsessionid=8B7D74BC9D82D2BE1B110BAFFAD3A6E6?sequence=1 ). The recent Ebola outbreak in the Democratic Republic of the Congo has raised immense global concern on this severe and often fatal infection. Although sporadic, the severity and lethality of Ebola virus disease outbreaks has led to extensive research worldwide on this virus. Vaccine (World Health Organization. 2016. https://www.who.int/en/news-room/detail/23-12-2016-final-trial-results-confirm-ebola-vaccine-provides-high-protection-against-disease ; Henao-Restrepo et al. Lancet 389:505-518, 2017) and drug (Hayden. Nature, 557, 475-476, 2018; Dyall et al. J Infect Dis 218(suppl_5), S672-S678, 2018) development efforts against Ebola virus are research hotspots, and a few approved therapeutics are currently available (Centers for Disease Control and Prevention. 2021. https://www.cdc.gov/vhf/ebola/clinicians/vaccine/index.html; Centers for Disease Control and Prevention. 2021. https://www.cdc.gov/vhf/ebola/treatment/index.html). Ebola virus has evolved several mechanisms of host immune evasion, which facilitate its replication and pathogenesis. This chapter describes the Ebola virus morphology, genome, entry, replication, pathogenesis and viral proteins involved in host immune evasion. Further understanding of the underlying molecular mechanisms of immune evasion may facilitate development of additional novel and sustainable strategies against this deadly virus.
Collapse
Affiliation(s)
- Suchita Bhattacharyya
- Department of Clinical Infection, Microbiology and Immunology, Institute of Infection and Global Health, University of Liverpool, Liverpool, UK.
| |
Collapse
|
20
|
Structural and Functional Aspects of Ebola Virus Proteins. Pathogens 2021; 10:pathogens10101330. [PMID: 34684279 PMCID: PMC8538763 DOI: 10.3390/pathogens10101330] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2021] [Revised: 10/11/2021] [Accepted: 10/14/2021] [Indexed: 01/14/2023] Open
Abstract
Ebola virus (EBOV), member of genus Ebolavirus, family Filoviridae, have a non-segmented, single-stranded RNA that contains seven genes: (a) nucleoprotein (NP), (b) viral protein 35 (VP35), (c) VP40, (d) glycoprotein (GP), (e) VP30, (f) VP24, and (g) RNA polymerase (L). All genes encode for one protein each except GP, producing three pre-proteins due to the transcriptional editing. These pre-proteins are translated into four products, namely: (a) soluble secreted glycoprotein (sGP), (b) Δ-peptide, (c) full-length transmembrane spike glycoprotein (GP), and (d) soluble small secreted glycoprotein (ssGP). Further, shed GP is released from infected cells due to cleavage of GP by tumor necrosis factor α-converting enzyme (TACE). This review presents a detailed discussion on various functional aspects of all EBOV proteins and their residues. An introduction to ebolaviruses and their life cycle is also provided for clarity of the available analysis. We believe that this review will help understand the roles played by different EBOV proteins in the pathogenesis of the disease. It will help in targeting significant protein residues for therapeutic and multi-protein/peptide vaccine development.
Collapse
|
21
|
Harrison AR, David CT, Rawlinson SM, Moseley GW. The Ebola Virus Interferon Antagonist VP24 Undergoes Active Nucleocytoplasmic Trafficking. Viruses 2021; 13:v13081650. [PMID: 34452514 PMCID: PMC8402725 DOI: 10.3390/v13081650] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 08/13/2021] [Accepted: 08/17/2021] [Indexed: 12/25/2022] Open
Abstract
Viral interferon (IFN) antagonist proteins mediate evasion of IFN-mediated innate immunity and are often multifunctional, with distinct roles in viral replication. The Ebola virus IFN antagonist VP24 mediates nucleocapsid assembly, and inhibits IFN-activated signaling by preventing nuclear import of STAT1 via competitive binding to nuclear import receptors (karyopherins). Proteins of many viruses, including viruses with cytoplasmic replication cycles, interact with nuclear trafficking machinery to undergo nucleocytoplasmic transport, with key roles in pathogenesis; however, despite established karyopherin interaction, potential nuclear trafficking of VP24 has not been investigated. We find that inhibition of nuclear export pathways or overexpression of VP24-binding karyopherin results in nuclear localization of VP24. Molecular mapping indicates that cytoplasmic localization of VP24 depends on a CRM1-dependent nuclear export sequence at the VP24 C-terminus. Nuclear export is not required for STAT1 antagonism, consistent with competitive karyopherin binding being the principal antagonistic mechanism, while export mediates return of nuclear VP24 to the cytoplasm where replication/nucleocapsid assembly occurs.
Collapse
|
22
|
Expression of the Ebola Virus VP24 Protein Compromises the Integrity of the Nuclear Envelope and Induces a Laminopathy-Like Cellular Phenotype. mBio 2021; 12:e0097221. [PMID: 34225493 PMCID: PMC8406168 DOI: 10.1128/mbio.00972-21] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Ebola virus (EBOV) VP24 protein is a nucleocapsid-associated protein that inhibits interferon (IFN) gene expression and counteracts the IFN-mediated antiviral response, preventing nuclear import of signal transducer and activator of transcription 1 (STAT1). Proteomic studies to identify additional EBOV VP24 partners have pointed to the nuclear membrane component emerin as a potential element of the VP24 cellular interactome. Here, we have further studied this interaction and its impact on cell biology. We demonstrate that VP24 interacts with emerin but also with other components of the inner nuclear membrane, such as lamin A/C and lamin B. We also show that VP24 diminishes the interaction between emerin and lamin A/C and compromises the integrity of the nuclear membrane. This disruption is associated with nuclear morphological abnormalities, activation of a DNA damage response, the phosphorylation of extracellular signal-regulated kinase (ERK), and the induction of interferon-stimulated gene 15 (ISG15). Interestingly, expression of VP24 also promoted the cytoplasmic translocation and downmodulation of barrier-to-autointegration factor (BAF), a common interactor of lamin A/C and emerin, leading to repression of the BAF-regulated CSF1 gene. Importantly, we found that EBOV infection results in the activation of pathways associated with nuclear envelope damage, consistent with our observations in cells expressing VP24. In summary, here we demonstrate that VP24 acts at the nuclear membrane, causing morphological and functional changes in cells that recapitulate several of the hallmarks of laminopathy diseases.
Collapse
|
23
|
Harrison AR, Todd S, Dearnley M, David CT, Green D, Rawlinson SM, Au GG, Marsh GA, Moseley GW. Antagonism of STAT3 signalling by Ebola virus. PLoS Pathog 2021; 17:e1009636. [PMID: 34166464 PMCID: PMC8224886 DOI: 10.1371/journal.ppat.1009636] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Accepted: 05/12/2021] [Indexed: 12/25/2022] Open
Abstract
Many viruses target signal transducers and activators of transcription (STAT) 1 and 2 to antagonise antiviral interferon signalling, but targeting of signalling by other STATs/cytokines, including STAT3/interleukin 6 that regulate processes important to Ebola virus (EBOV) haemorrhagic fever, is poorly defined. We report that EBOV potently inhibits STAT3 responses to interleukin-6 family cytokines, and that this is mediated by the interferon-antagonist VP24. Mechanistic analysis indicates that VP24 effects a unique strategy combining distinct karyopherin-dependent and karyopherin-independent mechanisms to antagonise STAT3-STAT1 heterodimers and STAT3 homodimers, respectively. This appears to reflect distinct mechanisms of nuclear trafficking of the STAT3 complexes, revealed for the first time by our analysis of VP24 function. These findings are consistent with major roles for global inhibition of STAT3 signalling in EBOV infection, and provide new insights into the molecular mechanisms of STAT3 nuclear trafficking, significant to pathogen-host interactions, cell physiology and pathologies such as cancer. Ebola virus (EBOV) continues to pose a significant risk to human health globally, causing ongoing disease outbreaks with case-fatality rates between 40 and 65%. Suppression of immune responses is a critical component of EBOV haemorrhagic fever, but understanding of EBOV impact on signalling by cytokines other than interferon is limited. We find that infectious EBOV inhibits interleukin-6 cytokine signalling via antagonism of STAT3. The antagonistic strategy uniquely combines two distinct mechanisms, which appear to reflect differing nuclear trafficking mechanisms of critical STAT3 complexes. This provides fundamental insights into the mechanisms of pathogenesis of a lethal virus, and biology of STAT3, a critical player in immunity, development, growth and cancer.
Collapse
Affiliation(s)
- Angela R. Harrison
- Department of Microbiology, Monash Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia
| | - Shawn Todd
- Australian Centre for Disease Preparedness, CSIRO, Geelong, Victoria, Australia
| | - Megan Dearnley
- Australian Centre for Disease Preparedness, CSIRO, Geelong, Victoria, Australia
| | - Cassandra T. David
- Department of Microbiology, Monash Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia
| | - Diane Green
- Australian Centre for Disease Preparedness, CSIRO, Geelong, Victoria, Australia
| | - Stephen M. Rawlinson
- Department of Microbiology, Monash Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia
| | - Gough G. Au
- Australian Centre for Disease Preparedness, CSIRO, Geelong, Victoria, Australia
| | - Glenn A. Marsh
- Australian Centre for Disease Preparedness, CSIRO, Geelong, Victoria, Australia
| | - Gregory W. Moseley
- Department of Microbiology, Monash Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia
- * E-mail:
| |
Collapse
|
24
|
Dolnik O, Gerresheim GK, Biedenkopf N. New Perspectives on the Biogenesis of Viral Inclusion Bodies in Negative-Sense RNA Virus Infections. Cells 2021; 10:cells10061460. [PMID: 34200781 PMCID: PMC8230417 DOI: 10.3390/cells10061460] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Revised: 06/06/2021] [Accepted: 06/08/2021] [Indexed: 12/13/2022] Open
Abstract
Infections by negative strand RNA viruses (NSVs) induce the formation of viral inclusion bodies (IBs) in the host cell that segregate viral as well as cellular proteins to enable efficient viral replication. The induction of those membrane-less viral compartments leads inevitably to structural remodeling of the cellular architecture. Recent studies suggested that viral IBs have properties of biomolecular condensates (or liquid organelles), as have previously been shown for other membrane-less cellular compartments like stress granules or P-bodies. Biomolecular condensates are highly dynamic structures formed by liquid-liquid phase separation (LLPS). Key drivers for LLPS in cells are multivalent protein:protein and protein:RNA interactions leading to specialized areas in the cell that recruit molecules with similar properties, while other non-similar molecules are excluded. These typical features of cellular biomolecular condensates are also a common characteristic in the biogenesis of viral inclusion bodies. Viral IBs are predominantly induced by the expression of the viral nucleoprotein (N, NP) and phosphoprotein (P); both are characterized by a special protein architecture containing multiple disordered regions and RNA-binding domains that contribute to different protein functions. P keeps N soluble after expression to allow a concerted binding of N to the viral RNA. This results in the encapsidation of the viral genome by N, while P acts additionally as a cofactor for the viral polymerase, enabling viral transcription and replication. Here, we will review the formation and function of those viral inclusion bodies upon infection with NSVs with respect to their nature as biomolecular condensates.
Collapse
|
25
|
Sajidah ES, Lim K, Wong RW. How SARS-CoV-2 and Other Viruses Build an Invasion Route to Hijack the Host Nucleocytoplasmic Trafficking System. Cells 2021; 10:1424. [PMID: 34200500 PMCID: PMC8230057 DOI: 10.3390/cells10061424] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2021] [Revised: 05/31/2021] [Accepted: 06/03/2021] [Indexed: 12/14/2022] Open
Abstract
The host nucleocytoplasmic trafficking system is often hijacked by viruses to accomplish their replication and to suppress the host immune response. Viruses encode many factors that interact with the host nuclear transport receptors (NTRs) and the nucleoporins of the nuclear pore complex (NPC) to access the host nucleus. In this review, we discuss the viral factors and the host factors involved in the nuclear import and export of viral components. As nucleocytoplasmic shuttling is vital for the replication of many viruses, we also review several drugs that target the host nuclear transport machinery and discuss their feasibility for use in antiviral treatment.
Collapse
Affiliation(s)
- Elma Sakinatus Sajidah
- Division of Nano Life Science in the Graduate School of Frontier Science Initiative, Kanazawa University, Kanazawa 920-1192, Japan;
| | - Keesiang Lim
- WPI-Nano Life Science Institute, Kanazawa University, Kanazawa 920-1192, Japan
| | - Richard W. Wong
- Division of Nano Life Science in the Graduate School of Frontier Science Initiative, Kanazawa University, Kanazawa 920-1192, Japan;
- WPI-Nano Life Science Institute, Kanazawa University, Kanazawa 920-1192, Japan
- Cell-Bionomics Research Unit, Institute for Frontier Science Initiative, Kanazawa University, Kanazawa 920-1192, Japan
| |
Collapse
|
26
|
Ebolabase: Zaire ebolavirus-human protein interaction database for drug-repurposing. Int J Biol Macromol 2021; 182:1384-1391. [PMID: 34015403 DOI: 10.1016/j.ijbiomac.2021.04.184] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 04/25/2021] [Accepted: 04/29/2021] [Indexed: 11/22/2022]
Abstract
Ebola Virus (EBOV) is one of the deadliest pathogenic virus which causes hemorrhagic fever. Though many Ebola-human interaction studies and databases are already reported, the unavailability of an adequate model and lack of publically accessible resources requires a comprehensive study to curate the Ebola-Human-Drug interactions. In total, 270 human proteins interacted with EBOV are collected from published experimental evidence. Then the protein-protein interaction networks are generated as EBOV-human and EBOV-Human-Drugs interaction. These results can help the researcher to find the effective repurposed drug for EBOV treatment. Further, the illustration of gene enrichment and pathway analysis would provide knowledge and insight of EBOV-human interaction describes the importance of the study. Investigating the networks may help to identify a suitable human-based drug target for ebola research community. The inclusion of an emerging concept, a human-based drug targeted therapy plays a very significant role in drug repurposing which reduces the time and effort is the highlight of the current research. An integrated database namely, Ebolabase has been developed and linked with other repositories such as Epitopes, Structures, Literature, Genomics and Proteomics. All generated networks are made to be viewed in a customized manner and the required data can be downloaded freely. The Ebolabase is available at http://ebola.bicpu.edu.in.
Collapse
|
27
|
Mara K, Dai M, Brice AM, Alexander MR, Tribolet L, Layton DS, Bean AGD. Investigating the Interaction between Negative Strand RNA Viruses and Their Hosts for Enhanced Vaccine Development and Production. Vaccines (Basel) 2021; 9:vaccines9010059. [PMID: 33477334 PMCID: PMC7830660 DOI: 10.3390/vaccines9010059] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2020] [Accepted: 01/13/2021] [Indexed: 11/30/2022] Open
Abstract
The current pandemic has highlighted the ever-increasing risk of human to human spread of zoonotic pathogens. A number of medically-relevant zoonotic pathogens are negative-strand RNA viruses (NSVs). NSVs are derived from different virus families. Examples like Ebola are known for causing severe symptoms and high mortality rates. Some, like influenza, are known for their ease of person-to-person transmission and lack of pre-existing immunity, enabling rapid spread across many countries around the globe. Containment of outbreaks of NSVs can be difficult owing to their unpredictability and the absence of effective control measures, such as vaccines and antiviral therapeutics. In addition, there remains a lack of essential knowledge of the host–pathogen response that are induced by NSVs, particularly of the immune responses that provide protection. Vaccines are the most effective method for preventing infectious diseases. In fact, in the event of a pandemic, appropriate vaccine design and speed of vaccine supply is the most critical factor in protecting the population, as vaccination is the only sustainable defense. Vaccines need to be safe, efficient, and cost-effective, which is influenced by our understanding of the host–pathogen interface. Additionally, some of the major challenges of vaccines are the establishment of a long-lasting immunity offering cross protection to emerging strains. Although many NSVs are controlled through immunisations, for some, vaccine design has failed or efficacy has proven unreliable. The key behind designing a successful vaccine is understanding the host–pathogen interaction and the host immune response towards NSVs. In this paper, we review the recent research in vaccine design against NSVs and explore the immune responses induced by these viruses. The generation of a robust and integrated approach to development capability and vaccine manufacture can collaboratively support the management of outbreaking NSV disease health risks.
Collapse
|
28
|
Hossain MA, Larrous F, Rawlinson SM, Zhan J, Sethi A, Ibrahim Y, Aloi M, Lieu KG, Mok YF, Griffin MDW, Ito N, Ose T, Bourhy H, Moseley GW, Gooley PR. Structural Elucidation of Viral Antagonism of Innate Immunity at the STAT1 Interface. Cell Rep 2020; 29:1934-1945.e8. [PMID: 31722208 DOI: 10.1016/j.celrep.2019.10.020] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Revised: 07/16/2019] [Accepted: 10/03/2019] [Indexed: 12/24/2022] Open
Abstract
To evade immunity, many viruses express interferon antagonists that target STAT transcription factors as a major component of pathogenesis. Because of a lack of direct structural data, these interfaces are poorly understood. We report the structural analysis of full-length STAT1 binding to an interferon antagonist of a human pathogenic virus. The interface revealed by transferred cross-saturation NMR is complex, involving multiple regions in both the viral and cellular proteins. Molecular mapping analysis, combined with biophysical characterization and in vitro/in vivo functional assays, indicates that the interface is significant in disease caused by a pathogenic field-strain lyssavirus, with critical roles for contacts between the STAT1 coiled-coil/DNA-binding domains and specific regions within the viral protein. These data elucidate the potentially complex nature of IFN antagonist/STAT interactions, and the spatial relationship of protein interfaces that mediate immune evasion and replication, providing insight into how viruses can regulate these essential functions via single multifunctional proteins.
Collapse
Affiliation(s)
- Md Alamgir Hossain
- Department of Biochemistry and Molecular Biology, University of Melbourne, Parkville, VIC 3010, Australia
| | - Florence Larrous
- Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Parkville, VIC 3010, Australia; Unité Lyssavirus, Epidémiologie et Neuropathologie - CNR de la RAGE, Institut Pasteur, 25 rue du Dr. Roux, 75724 Paris Cedex 15, France
| | - Stephen M Rawlinson
- Department of Microbiology, Biomedicine Discovery Institute, Monash University, Clayton Campus, VIC 3800, Australia
| | - Jingyu Zhan
- Department of Biochemistry and Molecular Biology, University of Melbourne, Parkville, VIC 3010, Australia
| | - Ashish Sethi
- Department of Biochemistry and Molecular Biology, University of Melbourne, Parkville, VIC 3010, Australia
| | - Youssef Ibrahim
- Department of Biochemistry and Molecular Biology, University of Melbourne, Parkville, VIC 3010, Australia
| | - Maria Aloi
- Department of Microbiology, Biomedicine Discovery Institute, Monash University, Clayton Campus, VIC 3800, Australia
| | - Kim G Lieu
- Department of Microbiology, Biomedicine Discovery Institute, Monash University, Clayton Campus, VIC 3800, Australia
| | - Yee-Foong Mok
- Department of Biochemistry and Molecular Biology, University of Melbourne, Parkville, VIC 3010, Australia
| | - Michael D W Griffin
- Department of Biochemistry and Molecular Biology, University of Melbourne, Parkville, VIC 3010, Australia
| | - Naoto Ito
- Laboratory of Zoonotic Diseases, Joint Department of Veterinary Medicine, Faculty of Applied Biological Sciences, Gifu University, 1-1 Yanagido, Gifu 501-1193, Japan
| | - Toyoyuki Ose
- Faculty of Advanced Life Science, Hokkaido University, 060-0810 Sapporo, Japan
| | - Hervé Bourhy
- Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Parkville, VIC 3010, Australia; Unité Lyssavirus, Epidémiologie et Neuropathologie - CNR de la RAGE, Institut Pasteur, 25 rue du Dr. Roux, 75724 Paris Cedex 15, France
| | - Gregory W Moseley
- Department of Biochemistry and Molecular Biology, University of Melbourne, Parkville, VIC 3010, Australia; Department of Microbiology, Biomedicine Discovery Institute, Monash University, Clayton Campus, VIC 3800, Australia.
| | - Paul R Gooley
- Department of Biochemistry and Molecular Biology, University of Melbourne, Parkville, VIC 3010, Australia.
| |
Collapse
|
29
|
Nag A, Chowdhury RR. Piperine, an alkaloid of black pepper seeds can effectively inhibit the antiviral enzymes of Dengue and Ebola viruses, an in silico molecular docking study. Virusdisease 2020; 31:308-315. [PMID: 32904842 PMCID: PMC7458978 DOI: 10.1007/s13337-020-00619-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2020] [Accepted: 07/25/2020] [Indexed: 12/12/2022] Open
Abstract
Ebola and Dengue are the critical diseases caused by RNA viruses, especially in the tropical parts of the globe, including Asia and Africa, and no prominent therapeutic options are available so far. Here, an effort was made to evaluate the efficacy of black pepper (Piper nigrum L.) alkaloid Piperine as a potential drug through computational docking simulation. Eight structurally essential proteins of Dengue and Ebola virus were selected as in silico docking targets for Piperine. Absorption, Distribution, Metabolism, and Excretion profile showed that Piperine was safe and possessed significant drug-like properties. Molecular dynamic simulation and binding free energy calculation showed that Piperine could inhibit Methyltransferase (PDB id 1L9K) of Dengue and VP35 Interferon Inhibitory Domain (PDB id 3FKE) of Ebola virus in comparison with the commercial antiviral Ribavirin. Furthermore, statistical analysis based on multivariate and clustering approaches revealed that Piperine had more affinity towards viral proteins than that of Ribavirin.
Collapse
Affiliation(s)
- Anish Nag
- Department of Life Sciences, CHRIST (Deemed to be University), Bangalore, India
| | | |
Collapse
|
30
|
The Minor Matrix Protein VP24 from Ebola Virus Lacks Direct Lipid-Binding Properties. Viruses 2020; 12:v12080869. [PMID: 32784484 PMCID: PMC7472063 DOI: 10.3390/v12080869] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Revised: 08/02/2020] [Accepted: 08/05/2020] [Indexed: 11/17/2022] Open
Abstract
Viral protein 24 (VP24) from Ebola virus (EBOV) was first recognized as a minor matrix protein that associates with cellular membranes. However, more recent studies shed light on its roles in inhibiting viral genome transcription and replication, facilitating nucleocapsid assembly and transport, and interfering with immune responses in host cells through downregulation of interferon (IFN)-activated genes. Thus, whether VP24 is a peripheral protein with lipid-binding ability for matrix layer recruitment has not been explored. Here, we examined the lipid-binding ability of VP24 with a number of lipid-binding assays. The results indicated that VP24 lacked the ability to associate with lipids tested regardless of VP24 posttranslational modifications. We further demonstrate that the presence of the EBOV major matrix protein VP40 did not promote VP24 membrane association in vitro or in cells. Further, no protein–protein interactions between VP24 and VP40 were detected by co-immunoprecipitation. Confocal imaging and cellular membrane fractionation analyses in human cells suggested VP24 did not specifically localize at the plasma membrane inner leaflet. Overall, we provide evidence that EBOV VP24 is not a lipid-binding protein and its presence in the viral matrix layer is likely not dependent on direct lipid interactions.
Collapse
|
31
|
Zhang M, Fu M, Li M, Hu H, Gong S, Hu Q. Herpes Simplex Virus Type 2 Inhibits Type I IFN Signaling Mediated by the Novel E3 Ubiquitin Protein Ligase Activity of Viral Protein ICP22. THE JOURNAL OF IMMUNOLOGY 2020; 205:1281-1292. [PMID: 32699158 DOI: 10.4049/jimmunol.2000418] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Accepted: 06/25/2020] [Indexed: 01/06/2023]
Abstract
Type I IFNs play an important role in innate immunity against viral infections by inducing the expression of IFN-stimulated genes (ISGs), which encode effectors with various antiviral functions. We and others previously reported that HSV type 2 (HSV-2) inhibits the synthesis of type I IFNs, but how HSV-2 suppresses IFN-mediated signaling is less understood. In the current study, after the demonstration of HSV-2 replication resistance to IFN-β treatment in human epithelial cells, we reveal that HSV-2 and the viral protein ICP22 significantly decrease the expression of ISG54 at both mRNA and protein levels. Likewise, us1 del HSV-2 (ICP22-deficient HSV-2) replication is more sensitive to IFN-β treatment, indicating that ICP22 is a vital viral protein responsible for the inhibition of type I IFN-mediated signaling. In addition, overexpression of HSV-2 ICP22 inhibits the expression of STAT1, STAT2, and IFN regulatory factor 9 (IRF9), resulting in the blockade of ISG factor 3 (ISGF3) nuclear translocation, and mechanistically, this is due to ICP22-induced ubiquitination of STAT1, STAT2, and IRF9. HSV-2 ICP22 appears to interact with STAT1, STAT2, IRF9, and several other ubiquitinated proteins. Following further biochemical study, we show that HSV-2 ICP22 functions as an E3 ubiquitin protein ligase to induce the formation of polyubiquitin chains. Taken together, we demonstrate that HSV-2 interferes with type I IFN-mediated signaling by degrading the proteins of ISGF3, and we identify HSV-2 ICP22 as a novel E3 ubiquitin protein ligase to induce the degradation of ISGF3. Findings in this study highlight a new mechanism by which HSV-2 circumvents the host antiviral responses through a viral E3 ubiquitin protein ligase.
Collapse
Affiliation(s)
- Mudan Zhang
- The Joint Laboratory of Translational Precision Medicine, Guangzhou Women and Children's Medical Center, Guangzhou 510623, China.,The Joint Laboratory of Translational Precision Medicine, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071, China
| | - Ming Fu
- State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan 430071, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Miaomiao Li
- State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan 430071, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Huimin Hu
- State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan 430071, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Sitang Gong
- Department of Gastroenterology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou 440106, China; and
| | - Qinxue Hu
- State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan 430071, China; .,Institute for Infection and Immunity, St George's University of London, London SW17 0RE, United Kingdom
| |
Collapse
|
32
|
Ivanov A, Ramanathan P, Parry C, Ilinykh PA, Lin X, Petukhov M, Obukhov Y, Ammosova T, Amarasinghe GK, Bukreyev A, Nekhai S. Global phosphoproteomic analysis of Ebola virions reveals a novel role for VP35 phosphorylation-dependent regulation of genome transcription. Cell Mol Life Sci 2020; 77:2579-2603. [PMID: 31562565 PMCID: PMC7101265 DOI: 10.1007/s00018-019-03303-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Revised: 08/26/2019] [Accepted: 09/16/2019] [Indexed: 12/27/2022]
Abstract
Ebola virus (EBOV) causes severe human disease with a high case fatality rate. The balance of evidence implies that the virus circulates in bats. The molecular basis for host-viral interactions, including the role for phosphorylation during infections, is largely undescribed. To address this, and to better understand the biology of EBOV, the phosphorylation of EBOV proteins was analyzed in virions purified from infected monkey Vero-E6 cells and bat EpoNi/22.1 cells using high-resolution mass spectrometry. All EBOV structural proteins were detected with high coverage, along with phosphopeptides. Phosphorylation sites were identified in all viral structural proteins. Comparison of EBOV protein phosphorylation in monkey and bat cells showed only partial overlap of phosphorylation sites, with shared sites found in NP, VP35, and VP24 proteins, and no common sites in the other proteins. Three-dimensional structural models were built for NP, VP35, VP40, GP, VP30 and VP24 proteins using available crystal structures or by de novo structure prediction to elucidate the potential role of the phosphorylation sites. Phosphorylation of one of the identified sites in VP35, Thr-210, was demonstrated to govern the transcriptional activity of the EBOV polymerase complex. Thr-210 phosphorylation was also shown to be important for VP35 interaction with NP. This is the first study to compare phosphorylation of all EBOV virion proteins produced in primate versus bat cells, and to demonstrate the role of VP35 phosphorylation in the viral life cycle. The results uncover a novel mechanism of EBOV transcription and identify novel targets for antiviral drug development.
Collapse
Affiliation(s)
- Andrey Ivanov
- Center for Sickle Cell Disease, Howard University, 2201 Georgia Ave., N.W., Suite 321D, Washington, D.C., 20059, USA
| | - Palaniappan Ramanathan
- Department of Pathology, University of Texas, Medical Branch at Galveston, 301 University Boulevard, Galveston, TX, 77574-0609, USA
| | - Christian Parry
- Center for Sickle Cell Disease, Howard University, 2201 Georgia Ave., N.W., Suite 321D, Washington, D.C., 20059, USA
- Department of Microbiology, Howard University, Washington, D.C., 20059, USA
| | - Philipp A Ilinykh
- Department of Pathology, University of Texas, Medical Branch at Galveston, 301 University Boulevard, Galveston, TX, 77574-0609, USA
| | - Xionghao Lin
- Center for Sickle Cell Disease, Howard University, 2201 Georgia Ave., N.W., Suite 321D, Washington, D.C., 20059, USA
- College of Dentistry, Howard University, Washington, D.C., 20059, USA
| | - Michael Petukhov
- Division of Molecular and Radiation Biophysics, Russian Nuclear Physics Institute Named After B. P. Konstantinov, National Research Center "Kurchatov Institute", Gatchina, 188300, Russia
- Russian Scientific Center of Radiology and Surgical Technologies Named After A. M. Granov, St. Petersburg, 197758, Russia
| | - Yuri Obukhov
- Center for Sickle Cell Disease, Howard University, 2201 Georgia Ave., N.W., Suite 321D, Washington, D.C., 20059, USA
| | - Tatiana Ammosova
- Center for Sickle Cell Disease, Howard University, 2201 Georgia Ave., N.W., Suite 321D, Washington, D.C., 20059, USA
- Department of Medicine, Howard University, Washington, D.C., 20059, USA
| | - Gaya K Amarasinghe
- Department of Pathology and Immunology, Washington University School of Medicine, St Louis, MO, 63110, USA
| | - Alexander Bukreyev
- Department of Pathology, University of Texas, Medical Branch at Galveston, 301 University Boulevard, Galveston, TX, 77574-0609, USA.
- Department of Microbiology and Immunology, University of Texas, Medical Branch at Galveston, 301 University Boulevard, Galveston, TX, 77574-0609, USA.
- Galveston National Laboratory, University of Texas, Medical Branch at Galveston, 301 University Boulevard, Galveston, TX, 77574-0609, USA.
| | - Sergei Nekhai
- Center for Sickle Cell Disease, Howard University, 2201 Georgia Ave., N.W., Suite 321D, Washington, D.C., 20059, USA.
- Department of Microbiology, Howard University, Washington, D.C., 20059, USA.
- Department of Medicine, Howard University, Washington, D.C., 20059, USA.
| |
Collapse
|
33
|
Martin MF, Nisole S. West Nile Virus Restriction in Mosquito and Human Cells: A Virus under Confinement. Vaccines (Basel) 2020; 8:E256. [PMID: 32485916 PMCID: PMC7350012 DOI: 10.3390/vaccines8020256] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Revised: 05/25/2020] [Accepted: 05/27/2020] [Indexed: 02/08/2023] Open
Abstract
West Nile virus (WNV) is an emerging neurotropic flavivirus that naturally circulates between mosquitoes and birds. However, WNV has a broad host range and can be transmitted from mosquitoes to several mammalian species, including humans, through infected saliva during a blood meal. Although WNV infections are mostly asymptomatic, 20% to 30% of cases are symptomatic and can occasionally lead to severe symptoms, including fatal meningitis or encephalitis. Over the past decades, WNV-carrying mosquitoes have become increasingly widespread across new regions, including North America and Europe, which constitutes a public health concern. Nevertheless, mosquito and human innate immune defenses can detect WNV infection and induce the expression of antiviral effectors, so-called viral restriction factors, to control viral propagation. Conversely, WNV has developed countermeasures to escape these host defenses, thus establishing a constant arms race between the virus and its hosts. Our review intends to cover most of the current knowledge on viral restriction factors as well as WNV evasion strategies in mosquito and human cells in order to bring an updated overview on WNV-host interactions.
Collapse
Affiliation(s)
| | - Sébastien Nisole
- Viral Trafficking, Restriction and Innate Signaling Team, Institut de Recherche en Infectiologie de Montpellier (IRIM), CNRS, 34090 Montpellier, France;
| |
Collapse
|
34
|
Fanunza E, Frau A, Corona A, Tramontano E. Insights into Ebola Virus VP35 and VP24 Interferon Inhibitory Functions and their Initial Exploitation as Drug Targets. Infect Disord Drug Targets 2020; 19:362-374. [PMID: 30468131 DOI: 10.2174/1871526519666181123145540] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2018] [Revised: 11/14/2018] [Accepted: 11/16/2018] [Indexed: 12/15/2022]
Abstract
Upon viral infection, the interferon (IFN) system triggers potent antiviral mechanisms limiting viral growth and spread. Hence, to sustain their infection, viruses evolved efficient counteracting strategies to evade IFN control. Ebola virus (EBOV), member of the family Filoviridae, is one of the most virulent and deadly pathogen ever faced by humans. The etiological agent of the Ebola Virus Disease (EVD), EBOV can be undoubtedly considered the perfect example of a powerful inhibitor of the host organism immune response activation. Particularly, the efficacious suppression of the IFN cascade contributes to disease progression and severity. Among the EBOVencoded proteins, the Viral Proteins 35 (VP35) and 24 (VP24) are responsible for the EBOV extreme virulence, representing the core of such inhibitory function through which EBOV determines its very effective shield to the cellular immune defenses. VP35 inhibits the activation of the cascade leading to IFN production, while VP24 inhibits the activation of the IFN-stimulated genes. A number of studies demonstrated that both VP35 and VP24 is validated target for drug development. Insights into the structural characteristics of VP35 and VP24 domains revealed crucial pockets exploitable for drug development. Considered the lack of therapy for EVD, restoring the immune activation is a promising approach for drug development. In the present review, we summarize the importance of VP35 and VP24 proteins in counteracting the host IFN cellular response and discuss their potential as druggable viral targets as a promising approach toward attenuation of EBOV virulence.
Collapse
Affiliation(s)
- Elisa Fanunza
- Department of Life and Environmental Sciences, University of Cagliari, Sardinia, Italy
| | - Aldo Frau
- Department of Life and Environmental Sciences, University of Cagliari, Sardinia, Italy
| | - Angela Corona
- Department of Life and Environmental Sciences, University of Cagliari, Sardinia, Italy
| | - Enzo Tramontano
- Department of Life and Environmental Sciences, University of Cagliari, Sardinia, Italy.,Genetics and Biomedical Research Institute, National Research Council, Monserrato, Italy
| |
Collapse
|
35
|
The Integrity of the YxxL Motif of Ebola Virus VP24 Is Important for the Transport of Nucleocapsid-Like Structures and for the Regulation of Viral RNA Synthesis. J Virol 2020; 94:JVI.02170-19. [PMID: 32102881 DOI: 10.1128/jvi.02170-19] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2020] [Accepted: 02/15/2020] [Indexed: 12/15/2022] Open
Abstract
While it is well appreciated that late domains in the viral matrix proteins are crucial to mediate efficient virus budding, little is known about roles of late domains in the viral nucleocapsid proteins. Here, we characterized the functional relevance of a YxxL motif with potential late-domain function in the Ebola virus nucleocapsid protein VP24. Mutations in the YxxL motif had two opposing effects on the functions of VP24. On the one hand, the mutation affected the regulatory function of VP24 in viral RNA transcription and replication, which correlated with an increased incorporation of minigenomes into released transcription- and replication-competent virus-like particles (trVLPs). Consequently, cells infected with those trVLPs showed higher levels of viral transcription. On the other hand, mutations of the YxxL motif greatly impaired the intracellular transport of nucleocapsid-like structures (NCLSs) composed of the viral proteins NP, VP35, and VP24 and the length of released trVLPs. Attempts to rescue recombinant Ebola virus expressing YxxL-deficient VP24 failed, underlining the importance of this motif for the viral life cycle.IMPORTANCE Ebola virus (EBOV) causes a severe fever with high case fatality rates and, so far, no available specific therapy. Understanding the interplay between viral and host proteins is important to identify new therapeutic approaches. VP24 is one of the essential nucleocapsid components and is necessary to regulate viral RNA synthesis and condense viral nucleocapsids before their transport to the plasma membrane. Our functional analyses of the YxxL motif in VP24 suggested that it serves as an interface between nucleocapsid-like structures (NCLSs) and cellular proteins, promoting intracellular transport of NCLSs in an Alix-independent manner. Moreover, the YxxL motif is necessary for the inhibitory function of VP24 in viral RNA synthesis. A failure to rescue EBOV encoding VP24 with a mutated YxxL motif indicated that the integrity of the YxxL motif is essential for EBOV growth. Thus, this motif might represent a potential target for antiviral interference.
Collapse
|
36
|
Hu M, Bogoyevitch MA, Jans DA. Impact of Respiratory Syncytial Virus Infection on Host Functions: Implications for Antiviral Strategies. Physiol Rev 2020; 100:1527-1594. [PMID: 32216549 DOI: 10.1152/physrev.00030.2019] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Respiratory syncytial virus (RSV) is one of the leading causes of viral respiratory tract infection in infants, the elderly, and the immunocompromised worldwide, causing more deaths each year than influenza. Years of research into RSV since its discovery over 60 yr ago have elucidated detailed mechanisms of the host-pathogen interface. RSV infection elicits widespread transcriptomic and proteomic changes, which both mediate the host innate and adaptive immune responses to infection, and reflect RSV's ability to circumvent the host stress responses, including stress granule formation, endoplasmic reticulum stress, oxidative stress, and programmed cell death. The combination of these events can severely impact on human lungs, resulting in airway remodeling and pathophysiology. The RSV membrane envelope glycoproteins (fusion F and attachment G), matrix (M) and nonstructural (NS) 1 and 2 proteins play key roles in modulating host cell functions to promote the infectious cycle. This review presents a comprehensive overview of how RSV impacts the host response to infection and how detailed knowledge of the mechanisms thereof can inform the development of new approaches to develop RSV vaccines and therapeutics.
Collapse
Affiliation(s)
- MengJie Hu
- Department of Biochemistry and Molecular Biology, University of Melbourne, Melbourne, Victoria, Australia; and Department of Biochemistry and Molecular Biology, Monash University, Melbourne, Victoria, Australia
| | - Marie A Bogoyevitch
- Department of Biochemistry and Molecular Biology, University of Melbourne, Melbourne, Victoria, Australia; and Department of Biochemistry and Molecular Biology, Monash University, Melbourne, Victoria, Australia
| | - David A Jans
- Department of Biochemistry and Molecular Biology, University of Melbourne, Melbourne, Victoria, Australia; and Department of Biochemistry and Molecular Biology, Monash University, Melbourne, Victoria, Australia
| |
Collapse
|
37
|
[Molecular mechanisms of highly pathogenic viruses' replication and their applications for a novel drug discovery]. Uirusu 2020; 70:69-82. [PMID: 33967116 DOI: 10.2222/jsv.70.69] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Productive (lytic) replication of DNA viruses elicits host cell DNA damage responses, which cause both beneficial and detrimental effects on viral replication. Viruses utilize them and selectively cancel the 'noisy' downstream signaling pathways, leading to maintain high S-phase CDK activities required for viral replication. To achieve this fine tuning of cellular environment, herpesviruses encode many (>70) genes in their genome, which are expressed in a strictly regulated temporal cascade (immediate-early, early, and late). Here, I introduce and discuss how Epstein-Barr virus, an oncogenic herpesvirus, hijacks the cellular environment and adapt it for the progeny production.
Collapse
|
38
|
Regulation of the Ebola Virus VP24 Protein by SUMO. J Virol 2019; 94:JVI.01687-19. [PMID: 31597768 DOI: 10.1128/jvi.01687-19] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Accepted: 10/02/2019] [Indexed: 12/15/2022] Open
Abstract
Some viruses take advantage of conjugation of ubiquitin or ubiquitin-like proteins to enhance their own replication. One example is Ebola virus, which has evolved strategies to utilize these modification pathways to regulate the viral proteins VP40 and VP35 and to counteract the host defenses. Here, we show a novel mechanism by which Ebola virus exploits the ubiquitin and SUMO pathways. Our data reveal that minor matrix protein VP24 of Ebola virus is a bona fide SUMO target. Analysis of a SUMOylation-defective VP24 mutant revealed a reduced ability to block the type I interferon (IFN) pathway and to inhibit IFN-mediated STAT1 nuclear translocation, exhibiting a weaker interaction with karyopherin 5 and significantly diminished stability. Using glutathione S-transferase (GST) pulldown assay, we found that VP24 also interacts with SUMO in a noncovalent manner through a SIM domain. Mutation of the SIM domain in VP24 resulted in a complete inability of the protein to downmodulate the IFN pathway and in the monoubiquitination of the protein. We identified SUMO deubiquitinating enzyme ubiquitin-specific-processing protease 7 (USP7) as an interactor and a negative modulator of VP24 ubiquitination. Finally, we show that mutation of one ubiquitination site in VP24 potentiates the IFN modulatory activity of the viral protein and its ability to block IFN-mediated STAT1 nuclear translocation, pointing to the ubiquitination of VP24 as a negative modulator of the VP24 activity. Altogether, these results indicate that SUMO interacts with VP24 and promotes its USP7-mediated deubiquitination, playing a key role in the interference with the innate immune response mediated by the viral protein.IMPORTANCE The Ebola virus VP24 protein plays a critical role in escape of the virus from the host innate immune response. Therefore, deciphering the molecular mechanisms modulating VP24 activity may be useful to identify potential targets amenable to therapeutics. Here, we identify the cellular proteins USP7, SUMO, and ubiquitin as novel interactors and regulators of VP24. These interactions may represent novel potential targets to design new antivirals with the ability to modulate Ebola virus replication.
Collapse
|
39
|
Ebola virus disease: An emerging and re-emerging viral threat. J Autoimmun 2019; 106:102375. [PMID: 31806422 DOI: 10.1016/j.jaut.2019.102375] [Citation(s) in RCA: 67] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Revised: 11/19/2019] [Accepted: 11/21/2019] [Indexed: 12/21/2022]
Abstract
The genus Ebolavirus from the family Filoviridae is composed of five species including Sudan ebolavirus, Reston ebolavirus, Bundibugyo ebolavirus, Taï Forest ebolavirus, and Ebola virus (previously known as Zaire ebolavirus). These viruses have a large non-segmented, negative-strand RNA of approximately 19 kb that encodes for glycoproteins (i.e., GP, sGP, ssGP), nucleoproteins, virion proteins (i.e., VP 24, 30,40) and an RNA dependent RNA polymerase. These viruses have become a global health concern because of mortality, their rapid dissemination, new outbreaks in West-Africa, and the emergence of a new condition known as "Post-Ebola virus disease syndrome" that resembles inflammatory and autoimmune conditions such as rheumatoid arthritis, systemic lupus erythematosus and spondyloarthritis with uveitis. However, there are many gaps in the understanding of the mechanisms that may induce the development of such autoimmune-like syndromes. Some of these mechanisms may include a high formation of neutrophil extracellular traps, an uncontrolled "cytokine storm", and the possible formation of auto-antibodies. The likely appearance of autoimmune phenomena in Ebola survivors suppose a new challenge in the management and control of this disease and opens a new field of research in a special subgroup of patients. Herein, the molecular biology, pathogenesis, clinical manifestations, and treatment of Ebola virus disease are reviewed and some strategies for control of disease are discussed.
Collapse
|
40
|
Kwofie SK, Broni E, Teye J, Quansah E, Issah I, Wilson MD, Miller WA, Tiburu EK, Bonney JHK. Pharmacoinformatics-based identification of potential bioactive compounds against Ebola virus protein VP24. Comput Biol Med 2019; 113:103414. [PMID: 31536833 DOI: 10.1016/j.compbiomed.2019.103414] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Revised: 08/23/2019] [Accepted: 08/24/2019] [Indexed: 02/06/2023]
Abstract
BACKGROUND The impact of Ebola virus disease (EVD) is devastating with concomitant high fatalities. Currently, various drugs and vaccines are at different stages of development, corroborating the need to identify new therapeutic molecules. The VP24 protein of the Ebola virus (EBOV) plays a key role in the pathology and replication of the EVD. The VP24 protein interferes with the host immune response to viral infections and promotes nucleocapsid formation, thus making it a viable drug target. This study sought to identify putative lead compounds from the African flora with potential to inhibit the activity of the EBOV VP24 protein using pharmacoinformatics and molecular docking. METHODS An integrated library of 7675 natural products originating from Africa obtained from the AfroDB and NANPDB databases, as well as known inhibitors were screened against VP24 (PDB ID: 4M0Q) utilising AutoDock Vina after energy minimization using GROMACS. The top 19 compounds were physicochemically and pharmacologically profiled using ADMET Predictor™, SwissADME and DataWarrior. The mechanisms of binding between the molecules and EBOV VP24 were characterised using LigPlot+. The performance of the molecular docking was evaluated by generating a receiver operating characteristic (ROC) by screening known inhibitors and decoys against EBOV VP24. The prediction of activity spectra for substances (PASS) and machine learning-based Open Bayesian models were used to predict the anti-viral and anti-Ebola activity of the molecules, respectively. RESULTS Four natural products, namely, ZINC000095486070, ZINC000003594643, ZINC000095486008 and sarcophine were found to be potential EBOV VP24-inhibitiory molecules. The molecular docking results showed that ZINC000095486070 had high binding affinity of -9.7 kcal/mol with EBOV VP24, which was greater than those of the known VP24-inhibitors used as standards in the study including Ouabain, Nilotinib, Clomiphene, Torimefene, Miglustat and BCX4430. The area under the curve of the generated ROC for evaluating the performance of the molecular docking was 0.77, which was considered acceptable. The predicted promising molecules were also validated using induced-fit docking with the receptor using Schrödinger and molecular mechanics Poisson-Boltzmann surface area (MM-PBSA) calculations. The molecules had better binding mechanisms and were pharmacologically profiled to have plausible efficacies, negligible toxicity as well as suitable for designing anti-Ebola scaffolds. ZINC000095486008 and sarcophine (NANPDB135) were predicted to possess anti-viral activity, while ZINC000095486070 and ZINC000003594643 to be anti-Ebola compounds. CONCLUSION The identified compounds are potential inhibitors worthy of further development as EBOV biotherapeutic agents. The scaffolds of the compounds could also serve as building blocks for designing novel Ebola inhibitors.
Collapse
Affiliation(s)
- Samuel K Kwofie
- Department of Biomedical Engineering, School of Engineering Sciences, College of Basic & Applied Sciences, University of Ghana, PMB LG 77, Legon, Accra, Ghana; West African Center for Cell Biology of Infectious Pathogens, Department of Biochemistry, Cell and Molecular Biology, College of Basic and Applied Sciences, University of Ghana, Accra, Ghana; Department of Medicine, Loyola University Medical Center, Maywood, IL, 60153, USA.
| | - Emmanuel Broni
- Department of Biomedical Engineering, School of Engineering Sciences, College of Basic & Applied Sciences, University of Ghana, PMB LG 77, Legon, Accra, Ghana
| | - Joshua Teye
- Department of Biomedical Engineering, School of Engineering Sciences, College of Basic & Applied Sciences, University of Ghana, PMB LG 77, Legon, Accra, Ghana
| | - Erasmus Quansah
- Department of Parasitology, Noguchi Memorial Institute for Medical Research (NMIMR), College of Health Sciences (CHS), University of Ghana, P.O. Box LG 581, Legon, Accra, Ghana
| | - Ibrahim Issah
- Department of Biomedical Engineering, School of Engineering Sciences, College of Basic & Applied Sciences, University of Ghana, PMB LG 77, Legon, Accra, Ghana
| | - Michael D Wilson
- Department of Medicine, Loyola University Medical Center, Maywood, IL, 60153, USA; Department of Parasitology, Noguchi Memorial Institute for Medical Research (NMIMR), College of Health Sciences (CHS), University of Ghana, P.O. Box LG 581, Legon, Accra, Ghana
| | - Whelton A Miller
- Department of Medicine, Loyola University Medical Center, Maywood, IL, 60153, USA; Department of Chemical and Biomolecular Engineering, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, PA, USA
| | - Elvis K Tiburu
- Department of Biomedical Engineering, School of Engineering Sciences, College of Basic & Applied Sciences, University of Ghana, PMB LG 77, Legon, Accra, Ghana; West African Center for Cell Biology of Infectious Pathogens, Department of Biochemistry, Cell and Molecular Biology, College of Basic and Applied Sciences, University of Ghana, Accra, Ghana
| | - Joseph H K Bonney
- Department of Virology, Noguchi Memorial Institute for Medical Research (NMIMR), College of Health Sciences (CHS), University of Ghana, P.O. Box LG 581, Legon, Accra, Ghana
| |
Collapse
|
41
|
Porcine Reproductive and Respiratory Syndrome Virus nsp11 Antagonizes Type I Interferon Signaling by Targeting IRF9. J Virol 2019; 93:JVI.00623-19. [PMID: 31092569 PMCID: PMC6639278 DOI: 10.1128/jvi.00623-19] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2019] [Accepted: 05/06/2019] [Indexed: 12/24/2022] Open
Abstract
The nidovirus-specific endoribonuclease (NendoU) encoded by PRRSV nonstructural protein 11 (nsp11) is a unique NendoU of nidoviruses that infect vertebrates; thus, it is an attractive target for the development of antinidovirus drugs. Previous studies have revealed that the NendoU of nidoviruses, including porcine reproductive and respiratory syndrome virus (PRRSV) and human coronavirus 229E (HCoV-229E), acts as a type I interferon (IFN) antagonist. Here, for the first time, we demonstrated that overexpression of PRRSV nsp11 also inhibits IFN signaling by targeting the C-terminal interferon regulatory factor (IRF) association domain of IRF9. This interaction impaired the ability of IRF9 to form the transcription factor complex IFN-stimulated gene factor 3 (ISGF3) and to act as a signaling protein of IFN signaling. Collectively, our data identify IRF9 as a natural target of PRRSV NendoU and reveal a novel mechanism evolved by an arterivirus to counteract innate immune signaling. Porcine reproductive and respiratory syndrome virus (PRRSV) is an arterivirus from the Nidovirales order that causes reproductive failure and respiratory disease in pigs and poses a constant threat to the global pig industry. The PRRSV-encoded nonstructural protein 11 (nsp11) is a nidovirus-specific endoribonuclease (NendoU) that is conserved throughout the Arteriviridae and Coronaviridae families. Previously, our research and that of others demonstrated that PRRSV nsp11 inhibits type I interferon (IFN) production through NendoU activity-dependent mechanisms. Here, we found that PRRSV nsp11 also inhibited IFN-stimulated response element (ISRE) promoter activity and subsequent transcription of IFN-stimulated genes (ISGs). Detailed analysis showed that nsp11 targeted interferon regulatory factor 9 (IRF9), but not transducer and activator of transcription 1 (STAT1) or STAT2, key molecules in the type I IFN signaling pathway. Furthermore, the nsp11-IRF9 interaction impaired the formation and nuclear translocation of the transcription factor complex IFN-stimulated gene factor 3 (ISGF3) in both nsp11-overexpressed and PRRSV-infected cells. Importantly, nsp11 mutations (H129A, H144A, and K173A) that ablate NendoU activity or its cell cytotoxicity also interacted with IRF9 and retained the ability to block IFN signaling, indicating that the nsp11-IRF9 interaction is independent of NendoU activity or cell cytotoxicity of nsp11. Taking the results together, our study demonstrated that PRRSV nsp11 antagonizes type I IFN signaling by targeting IRF9 via a NendoU activity-independent mechanism, and this report describes a novel strategy evolved by PRRSV to counteract host innate antiviral responses, revealing a potential new function for PRRSV nsp11 in type I IFN signaling. IMPORTANCE The nidovirus-specific endoribonuclease (NendoU) encoded by PRRSV nonstructural protein 11 (nsp11) is a unique NendoU of nidoviruses that infect vertebrates; thus, it is an attractive target for the development of antinidovirus drugs. Previous studies have revealed that the NendoU of nidoviruses, including porcine reproductive and respiratory syndrome virus (PRRSV) and human coronavirus 229E (HCoV-229E), acts as a type I interferon (IFN) antagonist. Here, for the first time, we demonstrated that overexpression of PRRSV nsp11 also inhibits IFN signaling by targeting the C-terminal interferon regulatory factor (IRF) association domain of IRF9. This interaction impaired the ability of IRF9 to form the transcription factor complex IFN-stimulated gene factor 3 (ISGF3) and to act as a signaling protein of IFN signaling. Collectively, our data identify IRF9 as a natural target of PRRSV NendoU and reveal a novel mechanism evolved by an arterivirus to counteract innate immune signaling.
Collapse
|
42
|
Abstract
Outbreaks of severe virus infections with the potential to cause global pandemics are increasing. In many instances these outbreaks have been newly emerging (SARS coronavirus), re-emerging (Ebola virus, Zika virus) or zoonotic (avian influenza H5N1) virus infections. In the absence of a targeted vaccine or a pathogen-specific antiviral, broad-spectrum antivirals would function to limit virus spread. Given the direct antiviral effects of type I interferons (IFNs) in inhibiting the replication of both DNA and RNA viruses at different stages of their replicative cycles, and the effects of type I IFNs on activating immune cell populations to clear virus infections, IFNs-α/β present as ideal candidate broad-spectrum antivirals.
Collapse
Affiliation(s)
- Ben X Wang
- Princess Margaret Cancer Center, Tumor Immunotherapy Program, University Health Network, Toronto, ON M5G 2M9, Canada
| | - Eleanor N Fish
- Toronto General Hospital Research Institute, University Health Network, 67 College Street, Toronto, ON M5G 2M1, Canada; Department of Immunology, University of Toronto, 1 King's College Circle, Toronto, ON M5S 1A8, Canada.
| |
Collapse
|
43
|
GNS HS, GR S, Murahari M, Krishnamurthy M. An update on Drug Repurposing: Re-written saga of the drug’s fate. Biomed Pharmacother 2019; 110:700-716. [DOI: 10.1016/j.biopha.2018.11.127] [Citation(s) in RCA: 64] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2018] [Revised: 11/16/2018] [Accepted: 11/27/2018] [Indexed: 12/20/2022] Open
|
44
|
Fanunza E, Frau A, Corona A, Tramontano E. Antiviral Agents Against Ebola Virus Infection: Repositioning Old Drugs and Finding Novel Small Molecules. ANNUAL REPORTS IN MEDICINAL CHEMISTRY 2018; 51:135-173. [PMID: 32287476 PMCID: PMC7112331 DOI: 10.1016/bs.armc.2018.08.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Ebola virus (EBOV) causes a deadly hemorrhagic syndrome in humans with mortality rate up to 90%. First reported in Zaire in 1976, EBOV outbreaks showed a fluctuating trend during time and fora long period it was considered a tragic disease confined to the isolated regions of the African continent where the EBOV fear was perpetuated among the poor communities. The extreme severity of the recent 2014-16 EBOV outbreak in terms of fatality rate and rapid spread out of Africa led to the understanding that EBOV is a global health risk and highlights the necessity to find countermeasures against it. In the recent years, several small molecules have been shown to display in vitro and in vivo efficacy against EBOV and some of them have advanced into clinical trials. In addition, also existing drugs have been tested for their anti-EBOV activity and were shown to be promising candidates. However, despite the constant effort addressed to identify anti-EBOV therapeutics, no approved drugs are available against EBOV yet. In this chapter, we describe the main EBOV life cycle steps, providing a detailed picture of the druggable viral and host targets that have been explored so far by different technologies. We then summarize the small molecules, nucleic acid oligomers, and antibody-based therapies reported to have an effect either in in silico, or in biochemical and cell-based assays or in animal models and clinical trials, listing them according to their demonstrated or putative mechanism of action.
Collapse
Affiliation(s)
- Elisa Fanunza
- Department of Life and Environmental Sciences, University of Cagliari, Cagliari, Italy
| | - Aldo Frau
- Department of Life and Environmental Sciences, University of Cagliari, Cagliari, Italy
| | - Angela Corona
- Department of Life and Environmental Sciences, University of Cagliari, Cagliari, Italy
| | - Enzo Tramontano
- Department of Life and Environmental Sciences, University of Cagliari, Cagliari, Italy
- Genetics and Biomedical Research Institute, National Research Council, Monserrato, Italy
| |
Collapse
|
45
|
Kumar D, Gauthami S, Uma M, Nagalekshmi K, Rao PP, Basu A, Ella KM, Hegde NR. Immunogenicity of a Candidate Ebola Hemorrhagic Fever Vaccine in Mice Based on Controlled In Vitro Expression of Ebolavirus Glycoprotein. Viral Immunol 2018; 31:500-512. [PMID: 30095362 DOI: 10.1089/vim.2017.0122] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Ebolavirus (EBOV) is the etiology of Ebola hemorrhagic fever (EHF). A major EHF outbreak in 2014-2015 in West Africa claimed >11,000 lives. A licensed vaccine is not available for EHF, although several vaccines have undergone clinical trials. We developed a human adenovirus (Ad) serotype 5-based candidate EHF vaccine based on controlled expression of the EBOV (Makona strain) glycoprotein (GP) as the immunogen. Two clones, AdGP72 and AdGP75, and a control Ad515 vector, were generated and tested for protein expression in vitro and immunogenicity in mice. Eight groups of mice were immunized with three doses of buffer, Ad515, AdGP72, and AdGP75, by two different dose regimens. Three different antigens (AdGP75-infected Vero E6 cell extract and two baculovirus expressed EBOV GP antigens, namely, GP alone or GP with EBOV VP40) were used to evaluate the immune response. Expression studies indicated that full-length GP was cleaved into its component subunits when expressed in mammalian cells through the Ad vectors. Moreover, in coimmunoprecipitation studies, EBOV GP was found to be associated with VP40 when expressed in baculoviruses. The candidate vaccines were immunogenic in mice, as evaluated by enzyme-linked immunosorbent assay using mammalian- or baculovirus-derived antigens. Further characterization and development of the candidate vaccines are warranted.
Collapse
Affiliation(s)
| | | | | | | | | | - Atanu Basu
- 2 National Institute of Virology , Pune, India
| | | | | |
Collapse
|
46
|
Abstract
In 2014, the world witnessed the largest Ebolavirus outbreak in recorded history. The subsequent humanitarian effort spurred extensive research, significantly enhancing our understanding of ebolavirus replication and pathogenicity. The main functions of each ebolavirus protein have been studied extensively since the discovery of the virus in 1976; however, the recent expansion of ebolavirus research has led to the discovery of new protein functions. These newly discovered roles are revealing new mechanisms of virus replication and pathogenicity, whilst enhancing our understanding of the broad functions of each ebolavirus viral protein (VP). Many of these new functions appear to be unrelated to the protein's primary function during virus replication. Such new functions range from bystander T-lymphocyte death caused by VP40-secreted exosomes to new roles for VP24 in viral particle formation. This review highlights the newly discovered roles of ebolavirus proteins in order to provide a more encompassing view of ebolavirus replication and pathogenicity.
Collapse
Affiliation(s)
- Diego Cantoni
- School of Biosciences, University of Kent, Canterbury, United Kingdom
| | - Jeremy S. Rossman
- School of Biosciences, University of Kent, Canterbury, United Kingdom
| |
Collapse
|
47
|
Perry DL, Huzella LM, Bernbaum JG, Holbrook MR, Jahrling PB, Hagen KR, Schnell MJ, Johnson RF. Ebola Virus Localization in the Macaque Reproductive Tract during Acute Ebola Virus Disease. THE AMERICAN JOURNAL OF PATHOLOGY 2018; 188:550-558. [PMID: 29429544 PMCID: PMC5840485 DOI: 10.1016/j.ajpath.2017.11.004] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/29/2017] [Revised: 11/08/2017] [Accepted: 11/16/2017] [Indexed: 12/05/2022]
Abstract
Sexual transmission of Ebola virus (EBOV) has been demonstrated more than a year after recovery from the acute phase of Ebola virus disease (EVD). The mechanisms underlying EBOV persistence and sexual transmission are not currently understood. Using the acute macaque model of EVD, we hypothesized EBOV would infect the reproductive tissues and sought to localize the infection in these tissues using immunohistochemistry and transmission electron microscopy. In four female and eight male macaques that succumbed to EVD between 6 and 9 days after EBOV challenge, we demonstrate widespread EBOV infection of the interstitial tissues and endothelium in the ovary, uterus, testis, seminal vesicle, epididymis, and prostate gland, with minimal associated tissue immune response or organ pathology. Given the widespread involvement of EBOV in the reproductive tracts of both male and female macaques, it is reasonable to surmise that our understanding of the mechanisms underlying sexual transmission of EVD and persistence of EBOV in immune-privileged sites would be facilitated by the development of a nonhuman primate model in which the macaques survived past the acute stage into convalescence.
Collapse
Affiliation(s)
- Donna L Perry
- Integrated Research Facility, Division of Clinical Research, National Institute for Allergy and Infectious Diseases, NIH, Frederick Maryland.
| | - Louis M Huzella
- Integrated Research Facility, Division of Clinical Research, National Institute for Allergy and Infectious Diseases, NIH, Frederick Maryland
| | - John G Bernbaum
- Integrated Research Facility, Division of Clinical Research, National Institute for Allergy and Infectious Diseases, NIH, Frederick Maryland
| | - Michael R Holbrook
- Integrated Research Facility, Division of Clinical Research, National Institute for Allergy and Infectious Diseases, NIH, Frederick Maryland
| | - Peter B Jahrling
- Integrated Research Facility, Division of Clinical Research, National Institute for Allergy and Infectious Diseases, NIH, Frederick Maryland; Emerging Viral Pathogens Section, Division of Intramural Research, National Institute for Allergy and Infectious Diseases, NIH, Frederick Maryland
| | - Katie R Hagen
- Integrated Research Facility, Division of Clinical Research, National Institute for Allergy and Infectious Diseases, NIH, Frederick Maryland
| | - Matthias J Schnell
- Department of Microbiology, Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Reed F Johnson
- Emerging Viral Pathogens Section, Division of Intramural Research, National Institute for Allergy and Infectious Diseases, NIH, Frederick Maryland
| |
Collapse
|
48
|
Fanunza E, Frau A, Sgarbanti M, Orsatti R, Corona A, Tramontano E. Development and Validation of a Novel Dual Luciferase Reporter Gene Assay to Quantify Ebola Virus VP24 Inhibition of IFN Signaling. Viruses 2018; 10:v10020098. [PMID: 29495311 PMCID: PMC5850405 DOI: 10.3390/v10020098] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2018] [Revised: 02/16/2018] [Accepted: 02/22/2018] [Indexed: 12/28/2022] Open
Abstract
The interferon (IFN) system is the first line of defense against viral infections. Evasion of IFN signaling by Ebola viral protein 24 (VP24) is a critical event in the pathogenesis of the infection and, hence, VP24 is a potential target for drug development. Since no drugs target VP24, the identification of molecules able to inhibit VP24, restoring and possibly enhancing the IFN response, is a goal of concern. Accordingly, we developed a dual signal firefly and Renilla luciferase cell-based drug screening assay able to quantify IFN-mediated induction of Interferon Stimulated Genes (ISGs) and its inhibition by VP24. Human Embryonic Kidney 293T (HEK293T) cells were transiently transfected with a luciferase reporter gene construct driven by the promoter of ISGs, Interferon-Stimulated Response Element (ISRE). Stimulation of cells with IFN-α activated the IFN cascade leading to the expression of ISRE. Cotransfection of cells with a plasmid expressing VP24 cloned from a virus isolated during the last 2014 outbreak led to the inhibition of ISRE transcription, quantified by a luminescent signal. To adapt this system to test a large number of compounds, we performed it in 96-well plates; optimized the assay analyzing different parameters; and validated the system by calculating the Z'- and Z-factor, which showed values of 0.62 and 0.53 for IFN-α stimulation assay and VP24 inhibition assay, respectively, indicative of robust assay performance.
Collapse
Affiliation(s)
- Elisa Fanunza
- Department of Life and Environmental Sciences, University of Cagliari, 09124 Cagliari, Italy.
| | - Aldo Frau
- Department of Life and Environmental Sciences, University of Cagliari, 09124 Cagliari, Italy.
| | - Marco Sgarbanti
- Department of Infectious Diseases, Istituto Superiore di Sanità, 00161 Rome, Italy.
| | - Roberto Orsatti
- Department of Infectious Diseases, Istituto Superiore di Sanità, 00161 Rome, Italy.
| | - Angela Corona
- Department of Life and Environmental Sciences, University of Cagliari, 09124 Cagliari, Italy.
| | - Enzo Tramontano
- Department of Life and Environmental Sciences, University of Cagliari, 09124 Cagliari, Italy.
- Genetics and Biomedical Research Institute, National Research Council, 09042 Monserrato, Italy.
| |
Collapse
|
49
|
Filovirus proteins for antiviral drug discovery: Structure/function of proteins involved in assembly and budding. Antiviral Res 2018; 150:183-192. [DOI: 10.1016/j.antiviral.2017.12.022] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2017] [Revised: 12/20/2017] [Accepted: 12/28/2017] [Indexed: 01/30/2023]
|
50
|
Takamatsu Y, Kolesnikova L, Becker S. Ebola virus proteins NP, VP35, and VP24 are essential and sufficient to mediate nucleocapsid transport. Proc Natl Acad Sci U S A 2018; 115:1075-1080. [PMID: 29339477 PMCID: PMC5798334 DOI: 10.1073/pnas.1712263115] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
The intracytoplasmic movement of nucleocapsids is a crucial step in the life cycle of enveloped viruses. Determination of the viral components necessary for viral nucleocapsid transport competency is complicated by the dynamic and complex nature of nucleocapsid assembly and the lack of appropriate model systems. Here, we established a live-cell imaging system based on the ectopic expression of fluorescent Ebola virus (EBOV) fusion proteins, allowing the visualization and analysis of the movement of EBOV nucleocapsid-like structures with different protein compositions. Only three of the five EBOV nucleocapsid proteins-nucleoprotein, VP35, and VP24-were necessary and sufficient to form transport-competent nucleocapsid-like structures. The transport of these structures was found to be dependent on actin polymerization and to have dynamics that were undistinguishable from those of nucleocapsids in EBOV-infected cells. The intracytoplasmic movement of nucleocapsid-like structures was completely independent of the viral matrix protein VP40 and the viral surface glycoprotein GP. However, VP40 greatly enhanced the efficiency of nucleocapsid recruitment into filopodia, the sites of EBOV budding.
Collapse
Affiliation(s)
- Yuki Takamatsu
- Institute of Virology, Faculty of Medicine, Philipps University Marburg, 35037 Marburg, Germany
| | - Larissa Kolesnikova
- Institute of Virology, Faculty of Medicine, Philipps University Marburg, 35037 Marburg, Germany
| | - Stephan Becker
- Institute of Virology, Faculty of Medicine, Philipps University Marburg, 35037 Marburg, Germany;
- Thematic Translational Unit Emerging Infections, German Center of Infection Research (DZIF), 35037 Marburg, Germany
| |
Collapse
|