1
|
Zhan Q, He Q, Tiedje KE, Day KP, Pascual M. Hyper-diverse antigenic variation and resilience to transmission-reducing intervention in falciparum malaria. Nat Commun 2024; 15:7343. [PMID: 39187488 PMCID: PMC11347654 DOI: 10.1038/s41467-024-51468-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Accepted: 08/07/2024] [Indexed: 08/28/2024] Open
Abstract
Intervention efforts against falciparum malaria in high-transmission regions remain challenging, with rapid resurgence typically following their relaxation. Such resilience co-occurs with incomplete immunity and a large transmission reservoir from high asymptomatic prevalence. Incomplete immunity relates to the large antigenic variation of the parasite, with the major surface antigen of the blood stage of infection encoded by the multigene and recombinant family known as var. With a stochastic agent-based model, we investigate the existence of a sharp transition in resurgence ability with intervention intensity and identify molecular indicators informative of its proximity. Their application to survey data with deep sampling of var sequences from individual isolates in northern Ghana suggests that the transmission system was brought close to transition by intervention with indoor residual spraying. These results indicate that sustaining and intensifying intervention would have pushed malaria dynamics to a slow-rebound regime with an increased probability of local parasite extinction.
Collapse
Affiliation(s)
- Qi Zhan
- Committee on Genetics, Genomics and Systems Biology, The University of Chicago, Chicago, IL, 60637, USA
| | - Qixin He
- Department of Biological Sciences, Purdue University, West Lafayette, IN, 47907, USA
| | - Kathryn E Tiedje
- Department of Microbiology and Immunology, Bio21 Institute and Peter Doherty Institute, The University of Melbourne, Melbourne, Australia
| | - Karen P Day
- Department of Microbiology and Immunology, Bio21 Institute and Peter Doherty Institute, The University of Melbourne, Melbourne, Australia
| | - Mercedes Pascual
- Department of Biology, New York University, New York, NY, 10003, USA.
- Department of Environmental Studies, New York University, New York, NY, 10003, USA.
- Santa Fe Institute, Santa Fe, NM, 87501, USA.
| |
Collapse
|
2
|
McLean FE, Azasi Y, Sutherland C, Toboh E, Ansong D, Agbenyega T, Awandare G, Rowe JA. Detection of naturally acquired, strain-transcending antibodies against rosetting Plasmodium falciparum strains in humans. Infect Immun 2024; 92:e0001524. [PMID: 38842304 PMCID: PMC11238554 DOI: 10.1128/iai.00015-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Accepted: 04/29/2024] [Indexed: 06/07/2024] Open
Abstract
Strain-transcending antibodies against virulence-associated subsets of P. falciparum-infected erythrocyte surface antigens could protect children from severe malaria. However, the evidence supporting the existence of such antibodies is incomplete and inconsistent. One subset of surface antigens associated with severe malaria, rosette-mediating Plasmodium falciparum Erythrocyte Membrane Protein one (PfEMP1) variants, cause infected erythrocytes to bind to uninfected erythrocytes to form clusters of cells (rosettes) that contribute to microvascular obstruction and pathology. Here, we tested plasma from 80 individuals living in malaria-endemic regions for IgG recognition of the surface of four P. falciparum rosetting strains using flow cytometry. Broadly reactive plasma samples were then used in antibody elution experiments in which intact IgG was eluted from the surface of infected erythrocytes and transferred to heterologous rosetting strains to look for strain-transcending antibodies. We found that seroprevalence (percentage of positive plasma samples) against allopatric rosetting strains was high in adults (63%-93%) but lower in children (13%-48%). Strain-transcending antibodies were present in nine out of eleven eluted antibody experiments, with six of these recognizing multiple heterologous rosetting parasite strains. One eluate had rosette-disrupting activity against heterologous strains, suggesting PfEMP1 as the likely target of the strain-transcending antibodies. Naturally acquired strain-transcending antibodies to rosetting P. falciparum strains in humans have not been directly demonstrated previously. Their existence suggests that such antibodies could play a role in clinical protection and raises the possibility that conserved epitopes recognized by strain-transcending antibodies could be targeted therapeutically by monoclonal antibodies or vaccines.
Collapse
Affiliation(s)
- Florence E. McLean
- Institute of Immunology and Infection Research, School of Biological Sciences, University of Edinburgh, Edinburgh, United Kingdom
| | - Yvonne Azasi
- Institute of Immunology and Infection Research, School of Biological Sciences, University of Edinburgh, Edinburgh, United Kingdom
| | - Cameron Sutherland
- Institute of Immunology and Infection Research, School of Biological Sciences, University of Edinburgh, Edinburgh, United Kingdom
| | | | - Daniel Ansong
- Kwame Nkrumah University of Science and Technology, School of Medical Sciences, Kumasi, Ghana
- Departments of Child Health and Medicine, Komfo Anokye Teaching Hospital, Kumasi, Ghana
- Malaria Research Centre, Agogo, Ghana
| | - Tsiri Agbenyega
- Kwame Nkrumah University of Science and Technology, School of Medical Sciences, Kumasi, Ghana
- Departments of Child Health and Medicine, Komfo Anokye Teaching Hospital, Kumasi, Ghana
- Malaria Research Centre, Agogo, Ghana
| | - Gordon Awandare
- West African Centre for Cell Biology of Infectious Pathogens, University of Ghana, Legon, Ghana
| | - J. Alexandra Rowe
- Institute of Immunology and Infection Research, School of Biological Sciences, University of Edinburgh, Edinburgh, United Kingdom
| |
Collapse
|
3
|
Zhan Q, He Q, Tiedje KE, Day KP, Pascual M. Hyper-diverse antigenic variation and resilience to transmission-reducing intervention in falciparum malaria. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.02.01.24301818. [PMID: 38370729 PMCID: PMC10871444 DOI: 10.1101/2024.02.01.24301818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/20/2024]
Abstract
Intervention against falciparum malaria in high transmission regions remains challenging, with relaxation of control efforts typically followed by rapid resurgence. Resilience to intervention co-occurs with incomplete immunity, whereby children eventually become protected from severe disease but not infection and a large transmission reservoir results from high asymptomatic prevalence across all ages. Incomplete immunity relates to the vast antigenic variation of the parasite, with the major surface antigen of the blood stage of infection encoded by the multigene family known as var. Recent deep sampling of var sequences from individual isolates in northern Ghana showed that parasite population structure exhibited persistent features of high-transmission regions despite the considerable decrease in prevalence during transient intervention with indoor residual spraying (IRS). We ask whether despite such apparent limited impact, the transmission system had been brought close to a transition in both prevalence and resurgence ability. With a stochastic agent-based model, we investigate the existence of such a transition to pre-elimination with intervention intensity, and of molecular indicators informative of its approach. We show that resurgence ability decreases sharply and nonlinearly across a narrow region of intervention intensities in model simulations, and identify informative molecular indicators based on var gene sequences. Their application to the survey data indicates that the transmission system in northern Ghana was brought close to transition by IRS. These results suggest that sustaining and intensifying intervention would have pushed malaria dynamics to a slow-rebound regime with an increased probability of local parasite extinction.
Collapse
Affiliation(s)
- Qi Zhan
- Committee on Genetics, Genomics and Systems Biology, The University of Chicago; Chicago, IL, 60637, USA
| | - Qixin He
- Department of Biological Sciences, Purdue University; West Lafayette, IN, 47907, USA
| | - Kathryn E Tiedje
- Department of Microbiology and Immunology, Bio21 Institute and Peter Doherty Institute, The University of Melbourne; Melbourne, Australia
| | - Karen P Day
- Department of Microbiology and Immunology, Bio21 Institute and Peter Doherty Institute, The University of Melbourne; Melbourne, Australia
| | - Mercedes Pascual
- Department of Biology, New York University; New York, NY, 10012, USA
- Department of Environmental Studies, New York University; New York, NY, 10012, USA
- Santa Fe Institute; Santa Fe, NM, 87501, USA
| |
Collapse
|
4
|
Opi DH, Ndila CM, Uyoga S, Macharia AW, Fennell C, Ochola LB, Nyutu G, Siddondo BR, Ojal J, Shebe M, Awuondo KO, Mturi N, Peshu N, Tsofa B, Band G, Maitland K, Kwiatkowski DP, Rockett KA, Williams TN, Rowe JA. Non-O ABO blood group genotypes differ in their associations with Plasmodium falciparum rosetting and severe malaria. PLoS Genet 2023; 19:e1010910. [PMID: 37708213 PMCID: PMC10522014 DOI: 10.1371/journal.pgen.1010910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 09/26/2023] [Accepted: 08/08/2023] [Indexed: 09/16/2023] Open
Abstract
Blood group O is associated with protection against severe malaria and reduced size and stability of P. falciparum-host red blood cell (RBC) rosettes compared to non-O blood groups. Whether the non-O blood groups encoded by the specific ABO genotypes AO, BO, AA, BB and AB differ in their associations with severe malaria and rosetting is unknown. The A and B antigens are host RBC receptors for rosetting, hence we hypothesized that the higher levels of A and/or B antigen on RBCs from AA, BB and AB genotypes compared to AO/BO genotypes could lead to larger rosettes, increased microvascular obstruction and higher risk of malaria pathology. We used a case-control study of Kenyan children and in vitro adhesion assays to test the hypothesis that "double dose" non-O genotypes (AA, BB, AB) are associated with increased risk of severe malaria and larger rosettes than "single dose" heterozygotes (AO, BO). In the case-control study, compared to OO, the double dose genotypes consistently had higher odds ratios (OR) for severe malaria than single dose genotypes, with AB (OR 1.93) and AO (OR 1.27) showing most marked difference (p = 0.02, Wald test). In vitro experiments with blood group A-preferring P. falciparum parasites showed that significantly larger rosettes were formed with AA and AB host RBCs compared to OO, whereas AO and BO genotypes rosettes were indistinguishable from OO. Overall, the data show that ABO genotype influences P. falciparum rosetting and support the hypothesis that double dose non-O genotypes confer a greater risk of severe malaria than AO/BO heterozygosity.
Collapse
Affiliation(s)
- D. Herbert Opi
- Kenya Medical Research Institute-Wellcome Trust Research Programme, Kilifi, Kenya
- Centre for Immunity, Infection and Evolution, Institute of Immunology and Infection Research, School of Biological Sciences, University of Edinburgh, Edinburgh, United Kingdom
| | - Carolyne M. Ndila
- Kenya Medical Research Institute-Wellcome Trust Research Programme, Kilifi, Kenya
| | - Sophie Uyoga
- Kenya Medical Research Institute-Wellcome Trust Research Programme, Kilifi, Kenya
| | - Alex W. Macharia
- Kenya Medical Research Institute-Wellcome Trust Research Programme, Kilifi, Kenya
| | - Clare Fennell
- Centre for Immunity, Infection and Evolution, Institute of Immunology and Infection Research, School of Biological Sciences, University of Edinburgh, Edinburgh, United Kingdom
| | - Lucy B. Ochola
- Kenya Medical Research Institute-Wellcome Trust Research Programme, Kilifi, Kenya
| | - Gideon Nyutu
- Kenya Medical Research Institute-Wellcome Trust Research Programme, Kilifi, Kenya
| | - Bethseba R. Siddondo
- Kenya Medical Research Institute-Wellcome Trust Research Programme, Kilifi, Kenya
| | - John Ojal
- Kenya Medical Research Institute-Wellcome Trust Research Programme, Kilifi, Kenya
| | - Mohammed Shebe
- Kenya Medical Research Institute-Wellcome Trust Research Programme, Kilifi, Kenya
| | - Kennedy O. Awuondo
- Kenya Medical Research Institute-Wellcome Trust Research Programme, Kilifi, Kenya
| | - Neema Mturi
- Kenya Medical Research Institute-Wellcome Trust Research Programme, Kilifi, Kenya
| | - Norbert Peshu
- Kenya Medical Research Institute-Wellcome Trust Research Programme, Kilifi, Kenya
| | - Benjamin Tsofa
- Kenya Medical Research Institute-Wellcome Trust Research Programme, Kilifi, Kenya
| | - Gavin Band
- Wellcome Centre for Human Genetics, Oxford, United Kingdom
| | - Kathryn Maitland
- Kenya Medical Research Institute-Wellcome Trust Research Programme, Kilifi, Kenya
- Institute for Global Health Innovation, Department of Surgery and Cancer, Imperial College, London, United Kingdom
| | | | | | - Thomas N. Williams
- Kenya Medical Research Institute-Wellcome Trust Research Programme, Kilifi, Kenya
- Institute for Global Health Innovation, Department of Surgery and Cancer, Imperial College, London, United Kingdom
| | - J. Alexandra Rowe
- Centre for Immunity, Infection and Evolution, Institute of Immunology and Infection Research, School of Biological Sciences, University of Edinburgh, Edinburgh, United Kingdom
| |
Collapse
|
5
|
Zelter T, Strahilevitz J, Simantov K, Yajuk O, Adams Y, Ramstedt Jensen A, Dzikowski R, Granot Z. Neutrophils impose strong immune pressure against PfEMP1 variants implicated in cerebral malaria. EMBO Rep 2022; 23:e53641. [PMID: 35417070 PMCID: PMC9171683 DOI: 10.15252/embr.202153641] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Revised: 03/10/2022] [Accepted: 03/16/2022] [Indexed: 12/02/2022] Open
Abstract
Plasmodium falciparum, the deadliest form of human malaria, remains one of the major threats to human health in endemic regions. Its virulence is attributed to its ability to modify infected red blood cells (iRBC) to adhere to endothelial receptors by placing variable antigens known as PfEMP1 on the iRBC surface. PfEMP1 expression determines the cytoadhesive properties of the iRBCs and is implicated in severe malaria. To evade antibody‐mediated responses, the parasite undergoes continuous switches of expression between different PfEMP1 variants. Recently, it became clear that in addition to antibody‐mediated responses, PfEMP1 triggers innate immune responses; however, the role of neutrophils, the most abundant white blood cells in the human circulation, in malaria remains elusive. Here, we show that neutrophils recognize and kill blood‐stage P. falciparum isolates. We identify neutrophil ICAM‐1 and specific PfEMP1 implicated in cerebral malaria as the key molecules involved in this killing. Our data provide mechanistic insight into the interactions between neutrophils and iRBCs and demonstrate the important influence of PfEMP1 on the selective innate response to cerebral malaria.
Collapse
Affiliation(s)
- Tamir Zelter
- Department of Developmental Biology and Cancer Research, Institute for Medical Research Israel Canada, Hebrew University Medical School, Jerusalem, Israel.,Department of Microbiology and Molecular Genetics, Institute for Medical Research Israel-Canada and Kuvin Center for the Study of Infectious and Tropical Diseases, Hebrew University Hadassah Medical School, Jerusalem, Israel
| | - Jacob Strahilevitz
- Department of Clinical Microbiology and Infectious Diseases, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| | - Karina Simantov
- Department of Microbiology and Molecular Genetics, Institute for Medical Research Israel-Canada and Kuvin Center for the Study of Infectious and Tropical Diseases, Hebrew University Hadassah Medical School, Jerusalem, Israel
| | - Olga Yajuk
- Department of Developmental Biology and Cancer Research, Institute for Medical Research Israel Canada, Hebrew University Medical School, Jerusalem, Israel
| | - Yvonne Adams
- Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Anja Ramstedt Jensen
- Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Ron Dzikowski
- Department of Microbiology and Molecular Genetics, Institute for Medical Research Israel-Canada and Kuvin Center for the Study of Infectious and Tropical Diseases, Hebrew University Hadassah Medical School, Jerusalem, Israel
| | - Zvi Granot
- Department of Developmental Biology and Cancer Research, Institute for Medical Research Israel Canada, Hebrew University Medical School, Jerusalem, Israel
| |
Collapse
|
6
|
Quintana MDP, Ch'ng JH. Measuring Rosetting Inhibition in Plasmodium falciparum Parasites Using a Flow Cytometry-Based Assay. Methods Mol Biol 2022; 2470:493-503. [PMID: 35881369 DOI: 10.1007/978-1-0716-2189-9_37] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Rosetting is the ability of Plasmodium falciparum-infected erythrocytes (IEs) to bind to host receptors on the surface of uninfected erythrocytes (uE) leading to the formation of a cluster of cells with a central IE surrounded by uE. It is a hallmark event during the pathogenesis of P. falciparum malaria, the most severe species causing malaria, which affects mostly young children in Africa. There are no current treatments effectively targeting and disrupting parasite rosette formation. Here, we detail a high-throughput, flow cytometry based assay that allows testing and identification of potential rosetting-inhibitory compounds that could be used in combination with anti-plasmodial drugs to reduce malaria morbidity and mortality.
Collapse
Affiliation(s)
- Maria Del Pilar Quintana
- Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, Centre for Medical Parasitology, University of Copenhagen, Copenhagen, Denmark.
| | - Jun-Hong Ch'ng
- Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| |
Collapse
|
7
|
Opi DH, Kurtovic L, Chan JA, Horton JL, Feng G, Beeson JG. Multi-functional antibody profiling for malaria vaccine development and evaluation. Expert Rev Vaccines 2021; 20:1257-1272. [PMID: 34530671 DOI: 10.1080/14760584.2021.1981864] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
INTRODUCTION A vaccine would greatly accelerate current global efforts toward malaria elimination. While a partially efficacious vaccine has been achieved for Plasmodium falciparum, a major bottleneck in developing highly efficacious vaccines is a lack of reliable correlates of protection, and the limited application of assays that quantify functional immune responses to evaluate and down-select vaccine candidates in pre-clinical studies and clinical trials. AREAS COVERED In this review, we describe the important role of antibodies in immunity against malaria and detail the nature and functional activities of antibodies against the malaria-causing parasite. We highlight the growing understanding of antibody effector functions against malaria and in vitro assays to measure these functional antibody responses. We discuss the application of these assays to quantify antibody functions in vaccine development and evaluation. EXPERT OPINION It is becoming increasingly clear that multiple antibody effector functions are involved in immunity to malaria. Therefore, we propose that evaluating vaccine candidates needs to move beyond individual assays or measuring IgG magnitude alone. Instead, vaccine evaluation should incorporate the full breadth of antibody response types and harness a wider range of assays measuring functional antibody responses. We propose a 3-tier approach to implementing assays to inform vaccine evaluation.
Collapse
Affiliation(s)
- D Herbert Opi
- Life Sciences, Burnet Institute, Melbourne, Australia.,Department of Immunology and Pathology, Monash University, Melbourne, Australia.,Department of Medicine, The Doherty Institute, The University of Melbourne, Melbourne, Australia
| | - Liriye Kurtovic
- Life Sciences, Burnet Institute, Melbourne, Australia.,Department of Immunology and Pathology, Monash University, Melbourne, Australia
| | - Jo-Anne Chan
- Life Sciences, Burnet Institute, Melbourne, Australia.,Department of Immunology and Pathology, Monash University, Melbourne, Australia.,Department of Medicine, The Doherty Institute, The University of Melbourne, Melbourne, Australia
| | - Jessica L Horton
- Life Sciences, Burnet Institute, Melbourne, Australia.,Department of Medicine, The Doherty Institute, The University of Melbourne, Melbourne, Australia
| | - Gaoqian Feng
- Life Sciences, Burnet Institute, Melbourne, Australia.,Department of Medicine, The Doherty Institute, The University of Melbourne, Melbourne, Australia
| | - James G Beeson
- Life Sciences, Burnet Institute, Melbourne, Australia.,Department of Immunology and Pathology, Monash University, Melbourne, Australia.,Department of Medicine, The Doherty Institute, The University of Melbourne, Melbourne, Australia.,Department of Microbiology, Monash University, Clayton, Australia
| |
Collapse
|
8
|
Wichers JS, Tonkin-Hill G, Thye T, Krumkamp R, Kreuels B, Strauss J, von Thien H, Scholz JAM, Smedegaard Hansson H, Weisel Jensen R, Turner L, Lorenz FR, Schöllhorn A, Bruchhaus I, Tannich E, Fendel R, Otto TD, Lavstsen T, Gilberger TW, Duffy MF, Bachmann A. Common virulence gene expression in adult first-time infected malaria patients and severe cases. eLife 2021; 10:e69040. [PMID: 33908865 PMCID: PMC8102065 DOI: 10.7554/elife.69040] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Accepted: 04/18/2021] [Indexed: 12/22/2022] Open
Abstract
Sequestration of Plasmodium falciparum(P. falciparum)-infected erythrocytes to host endothelium through the parasite-derived P. falciparum erythrocyte membrane protein 1 (PfEMP1) adhesion proteins is central to the development of malaria pathogenesis. PfEMP1 proteins have diversified and expanded to encompass many sequence variants, conferring each parasite a similar array of human endothelial receptor-binding phenotypes. Here, we analyzed RNA-seq profiles of parasites isolated from 32 P. falciparum-infected adult travellers returning to Germany. Patients were categorized into either malaria naive (n = 15) or pre-exposed (n = 17), and into severe (n = 8) or non-severe (n = 24) cases. For differential expression analysis, PfEMP1-encoding var gene transcripts were de novo assembled from RNA-seq data and, in parallel, var-expressed sequence tags were analyzed and used to predict the encoded domain composition of the transcripts. Both approaches showed in concordance that severe malaria was associated with PfEMP1 containing the endothelial protein C receptor (EPCR)-binding CIDRα1 domain, whereas CD36-binding PfEMP1 was linked to non-severe malaria outcomes. First-time infected adults were more likely to develop severe symptoms and tended to be infected for a longer period. Thus, parasites with more pathogenic PfEMP1 variants are more common in patients with a naive immune status, and/or adverse inflammatory host responses to first infections favor the growth of EPCR-binding parasites.
Collapse
Affiliation(s)
- J Stephan Wichers
- Molecular Biology and Immunology, Bernhard Nocht Institute for Tropical MedicineHamburgGermany
- Centre for Structural Systems BiologyHamburgGermany
- Biology Department, University of HamburgHamburgGermany
| | | | - Thorsten Thye
- Epidemiology and Diagnostics, Bernhard Nocht Institute for Tropical MedicineHamburgGermany
| | - Ralf Krumkamp
- Epidemiology and Diagnostics, Bernhard Nocht Institute for Tropical MedicineHamburgGermany
- German Center for Infection Research (DZIF), Partner Site Hamburg-Lübeck-Borstel-RiemsHamburgGermany
| | - Benno Kreuels
- Department of Tropical Medicine, Bernhard Nocht Institute for Tropical Medicine, GermanyHamburgGermany
- Department of Medicine, College of MedicineBlantyreMalawi
- Department of Medicine, University Medical Center Hamburg-EppendorfHamburgGermany
| | - Jan Strauss
- Molecular Biology and Immunology, Bernhard Nocht Institute for Tropical MedicineHamburgGermany
- Centre for Structural Systems BiologyHamburgGermany
- Biology Department, University of HamburgHamburgGermany
| | - Heidrun von Thien
- Molecular Biology and Immunology, Bernhard Nocht Institute for Tropical MedicineHamburgGermany
- Centre for Structural Systems BiologyHamburgGermany
- Biology Department, University of HamburgHamburgGermany
| | - Judith AM Scholz
- Molecular Biology and Immunology, Bernhard Nocht Institute for Tropical MedicineHamburgGermany
| | | | | | | | | | - Anna Schöllhorn
- Institute of Tropical Medicine, University of TübingenTübingenGermany
| | - Iris Bruchhaus
- Molecular Biology and Immunology, Bernhard Nocht Institute for Tropical MedicineHamburgGermany
- Biology Department, University of HamburgHamburgGermany
| | - Egbert Tannich
- Epidemiology and Diagnostics, Bernhard Nocht Institute for Tropical MedicineHamburgGermany
- German Center for Infection Research (DZIF), Partner Site Hamburg-Lübeck-Borstel-RiemsHamburgGermany
| | - Rolf Fendel
- Institute of Tropical Medicine, University of TübingenTübingenGermany
- German Center for Infection Research (DZIF), Partner Site TübingenTübingenGermany
| | - Thomas D Otto
- Institute of Infection, Immunity and Inflammation, University of GlasgowGlasgowUnited Kingdom
| | | | - Tim W Gilberger
- Molecular Biology and Immunology, Bernhard Nocht Institute for Tropical MedicineHamburgGermany
- Centre for Structural Systems BiologyHamburgGermany
- Biology Department, University of HamburgHamburgGermany
| | - Michael F Duffy
- Department of Microbiology and Immunology, University of MelbourneMelbourneAustralia
| | - Anna Bachmann
- Molecular Biology and Immunology, Bernhard Nocht Institute for Tropical MedicineHamburgGermany
- Centre for Structural Systems BiologyHamburgGermany
- Biology Department, University of HamburgHamburgGermany
- German Center for Infection Research (DZIF), Partner Site Hamburg-Lübeck-Borstel-RiemsHamburgGermany
| |
Collapse
|
9
|
|
10
|
Obeng-Adjei N, Larremore DB, Turner L, Ongoiba A, Li S, Doumbo S, Yazew TB, Kayentao K, Miller LH, Traore B, Pierce SK, Buckee CO, Lavstsen T, Crompton PD, Tran TM. Longitudinal analysis of naturally acquired PfEMP1 CIDR domain variant antibodies identifies associations with malaria protection. JCI Insight 2020; 5:137262. [PMID: 32427581 DOI: 10.1172/jci.insight.137262] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Accepted: 05/06/2020] [Indexed: 01/03/2023] Open
Abstract
BACKGROUNDMalaria pathogenicity is determined, in part, by the adherence of Plasmodium falciparum-infected erythrocytes to the microvasculature mediated via specific interactions between P. falciparum erythrocyte membrane protein (PfEMP1) variant domains and host endothelial receptors. Naturally acquired antibodies against specific PfEMP1 variants can play an important role in clinical protection against malaria.METHODSWe evaluated IgG responses against a repertoire of PfEMP1 CIDR domain variants to determine the rate and order of variant-specific antibody acquisition and their association with protection against febrile malaria in a prospective cohort study conducted in an area of intense, seasonal malaria transmission.RESULTSUsing longitudinal data, we found that IgG antibodies against the pathogenic domain variants CIDRα1.7 and CIDRα1.8 were acquired the earliest. Furthermore, IgG antibodies against CIDRγ3 were associated with reduced prospective risk of febrile malaria and recurrent malaria episodes.CONCLUSIONThis study provides evidence that acquisition of IgG antibodies against PfEMP1 variants is ordered and demonstrates that antibodies against CIDRα1 domains are acquired the earliest in children residing in an area of intense, seasonal malaria transmission. Future studies will need to validate these findings in other transmission settings and determine the functional activity of these naturally acquired CIDR variant-specific antibodies.TRIAL REGISTRATIONClinicalTrials.gov NCT01322581.FUNDINGDivision of Intramural Research, National Institute of Allergy and Infectious Diseases, NIH.
Collapse
Affiliation(s)
- Nyamekye Obeng-Adjei
- Malaria Infection Biology and Immunity Section, Laboratory of Immunogenetics, National Institute of Allergy and Infectious Diseases (NIAID), NIH, Rockville, Maryland, USA.,Innate Immunity Research Unit, GlaxoSmithKline, Collegeville, Pennsylvania, USA
| | - Daniel B Larremore
- Department of Computer Science and.,BioFrontiers Institute, University of Colorado Boulder, Boulder, Colorado, USA
| | - Louise Turner
- Centre for Medical Parasitology, Department of Immunology and Microbiology, University of Copenhagen, Copenhagen, Denmark. Department of Infectious Diseases, Rigshospitalet, Copenhagen, Denmark
| | - Aissata Ongoiba
- Mali International Center of Excellence in Research, University of Sciences, Technique and Technology of Bamako, Bamako, Mali
| | - Shanping Li
- Malaria Infection Biology and Immunity Section, Laboratory of Immunogenetics, National Institute of Allergy and Infectious Diseases (NIAID), NIH, Rockville, Maryland, USA
| | - Safiatou Doumbo
- Mali International Center of Excellence in Research, University of Sciences, Technique and Technology of Bamako, Bamako, Mali
| | | | - Kassoum Kayentao
- Mali International Center of Excellence in Research, University of Sciences, Technique and Technology of Bamako, Bamako, Mali
| | - Louis H Miller
- Laboratory of Malaria and Vector Research, NIAID, NIH, Rockville, Maryland, USA
| | - Boubacar Traore
- Mali International Center of Excellence in Research, University of Sciences, Technique and Technology of Bamako, Bamako, Mali
| | | | - Caroline O Buckee
- Center for Communicable Disease Dynamics, Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, USA
| | - Thomas Lavstsen
- Centre for Medical Parasitology, Department of Immunology and Microbiology, University of Copenhagen, Copenhagen, Denmark. Department of Infectious Diseases, Rigshospitalet, Copenhagen, Denmark
| | - Peter D Crompton
- Malaria Infection Biology and Immunity Section, Laboratory of Immunogenetics, National Institute of Allergy and Infectious Diseases (NIAID), NIH, Rockville, Maryland, USA
| | - Tuan M Tran
- Malaria Infection Biology and Immunity Section, Laboratory of Immunogenetics, National Institute of Allergy and Infectious Diseases (NIAID), NIH, Rockville, Maryland, USA.,Division of Infectious Diseases, Department of Medicine, and.,Ryan White Center for Pediatric Infectious Disease and Global Health, Department of Pediatrics, Indiana University School of Medicine, Indianapolis, Indiana, USA
| |
Collapse
|
11
|
Rambhatla JS, Turner L, Manning L, Laman M, Davis TME, Beeson JG, Mueller I, Warrel J, Theander TG, Lavstsen T, Rogerson SJ. Acquisition of Antibodies Against Endothelial Protein C Receptor-Binding Domains of Plasmodium falciparum Erythrocyte Membrane Protein 1 in Children with Severe Malaria. J Infect Dis 2019; 219:808-818. [PMID: 30365003 DOI: 10.1093/infdis/jiy564] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2018] [Accepted: 09/18/2018] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND Plasmodium falciparum erythrocyte membrane protein 1 (PfEMP1) mediates parasite sequestration in postcapillary venules in P. falciparum malaria. PfEMP1 types can be classified based on their cysteine-rich interdomain region (CIDR) domains. Antibodies to different PfEMP1 types develop gradually after repeated infections as children age, and antibodies to specific CIDR types may confer protection. METHODS Levels of immunoglobulin G to 35 recombinant CIDR domains were measured by means of Luminex assay in acute-stage (baseline) and convalescent-stage plasma samples from Papua New Guinean children with severe or uncomplicated malaria and in healthy age-matched community controls. RESULTS At baseline, antibody levels were similar across the 3 groups. After infection, children with severe malaria had higher antibody levels than those with uncomplicated malaria against the endothelial protein C receptor (EPCR) binding CIDRα1 domains, and this difference was largely confined to older children. Antibodies to EPCR-binding domains increased from presentation to follow-up in severe malaria, but not in uncomplicated malaria. CONCLUSIONS The acquisition of antibodies against EPCR-binding CIDRα1 domains of PfEMP1 after a severe malaria episode suggest that EPCR-binding PfEMP1 may have a role in the pathogenesis of severe malaria in Papua New Guinea.
Collapse
Affiliation(s)
- Janavi S Rambhatla
- Department of Medicine, The Peter Doherty Institute for Infection and Immunity, Parkville
| | - Louise Turner
- Centre for Medical Parasitology, Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen and Department of Infectious Diseases, Copenhagen University Hospital, Denmark
| | - Laurens Manning
- School of Medicine and Pharmacology, University of Western Australia, Harry Perkins Research Institute, Fiona Stanley Hospital, Murdoch
| | - Moses Laman
- Papua New Guinea Institute of Medical Research, Madang
| | - Timothy M E Davis
- School of Medicine and Pharmacology, University of Western Australia, Harry Perkins Research Institute, Fiona Stanley Hospital, Murdoch
| | - James G Beeson
- Macfarlane Burnet Institute for Medical Research and Public Health, Melbourne, Australia
| | - Ivo Mueller
- Department of Medical Biology, University of Melbourne, Parkville.,Walter and Eliza Hall Institute of Medical Research, Parkville.,Parasite and Insect Vectors Department, Institut Pasteur, Paris, France
| | | | - Thor G Theander
- Centre for Medical Parasitology, Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen and Department of Infectious Diseases, Copenhagen University Hospital, Denmark
| | - Thomas Lavstsen
- Centre for Medical Parasitology, Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen and Department of Infectious Diseases, Copenhagen University Hospital, Denmark
| | - Stephen J Rogerson
- Department of Medicine, The Peter Doherty Institute for Infection and Immunity, Parkville
| |
Collapse
|
12
|
Kivisi CA, Muthui M, Hunt M, Fegan G, Otto TD, Githinji G, Warimwe GM, Rance R, Marsh K, Bull PC, Abdi AI. Exploring Plasmodium falciparum Var Gene Expression to Assess Host Selection Pressure on Parasites During Infancy. Front Immunol 2019; 10:2328. [PMID: 31681266 PMCID: PMC6798654 DOI: 10.3389/fimmu.2019.02328] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Accepted: 09/16/2019] [Indexed: 11/13/2022] Open
Abstract
In sub-Saharan Africa, children below 5 years bear the greatest burden of severe malaria because they lack naturally acquired immunity that develops following repeated exposure to infections by Plasmodium falciparum. Antibodies to the surface of P. falciparum infected erythrocytes (IE) play an important role in this immunity. In children under the age of 6 months, relative protection from severe malaria is observed and this is thought to be partly due to trans-placental acquired protective maternal antibodies. However, the protective effect of maternal antibodies has not been fully established, especially the role of antibodies to variant surface antigens (VSA) expressed on IE. Here, we assessed the immune pressure on parasites infecting infants using markers associated with the acquisition of naturally acquired immunity to surface antigens. We hypothesized that, if maternal antibodies to VSA imposed a selection pressure on parasites, then the expression of a relatively conserved subset of var genes called group A var genes in infants should change with waning maternal antibodies. To test this, we compared their expression in parasites from children between 0 and 12 months and above 12 months of age. The transcript quantity and the proportional expression of group A var subgroup, including those containing domain cassette 13, were positively associated with age during the first year of life, which contrasts with above 12 months. This was accompanied by a decline in infected erythrocyte surface antibodies and an increase in parasitemia during this period. The observed increase in group A var gene expression with age in the first year of life, when the maternal antibodies are waning and before acquisition of naturally acquired antibodies with repeated exposure, is consistent with the idea that maternally acquired antibodies impose a selection pressure on parasites that infect infants and may play a role in protecting these infants against severe malaria.
Collapse
Affiliation(s)
- Cheryl A Kivisi
- KEMRI Wellcome Trust Research Programme, Kilifi, Kenya.,Pwani University Biosciences Research Centre, Pwani University, Kilifi, Kenya.,Department of Biological Sciences, Pwani University, Kilifi, Kenya
| | | | - Martin Hunt
- Wellcome Sanger Institute, Cambridge, United Kingdom
| | - Greg Fegan
- KEMRI Wellcome Trust Research Programme, Kilifi, Kenya
| | | | | | - George M Warimwe
- KEMRI Wellcome Trust Research Programme, Kilifi, Kenya.,Centre for Tropical Medicine and Global Health, University of Oxford, Oxford, United Kingdom
| | - Richard Rance
- Pwani University Biosciences Research Centre, Pwani University, Kilifi, Kenya
| | - Kevin Marsh
- KEMRI Wellcome Trust Research Programme, Kilifi, Kenya.,Centre for Tropical Medicine and Global Health, University of Oxford, Oxford, United Kingdom
| | - Peter C Bull
- KEMRI Wellcome Trust Research Programme, Kilifi, Kenya
| | - Abdirahman I Abdi
- KEMRI Wellcome Trust Research Programme, Kilifi, Kenya.,Pwani University Biosciences Research Centre, Pwani University, Kilifi, Kenya
| |
Collapse
|
13
|
Rosetting revisited: a critical look at the evidence for host erythrocyte receptors in Plasmodium falciparum rosetting. Parasitology 2019; 147:1-11. [PMID: 31455446 PMCID: PMC7050047 DOI: 10.1017/s0031182019001288] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Malaria remains a major cause of mortality in African children, with no adjunctive treatments currently available to ameliorate the severe clinical forms of the disease. Rosetting, the adhesion of infected erythrocytes (IEs) to uninfected erythrocytes, is a parasite phenotype strongly associated with severe malaria, and hence is a potential therapeutic target. However, the molecular mechanisms of rosetting are complex and involve multiple distinct receptor–ligand interactions, with some similarities to the diverse pathways involved in P. falciparum erythrocyte invasion. This review summarizes the current understanding of the molecular interactions that lead to rosette formation, with a particular focus on host uninfected erythrocyte receptors including the A and B blood group trisaccharides, complement receptor one, heparan sulphate, glycophorin A and glycophorin C. There is strong evidence supporting blood group A trisaccharides as rosetting receptors, but evidence for other molecules is incomplete and requires further study. It is likely that additional host erythrocyte rosetting receptors remain to be discovered. A rosette-disrupting low anti-coagulant heparin derivative is being investigated as an adjunctive therapy for severe malaria, and further research into the receptor–ligand interactions underlying rosetting may reveal additional therapeutic approaches to reduce the unacceptably high mortality rate of severe malaria.
Collapse
|
14
|
Bachmann A, Bruske E, Krumkamp R, Turner L, Wichers JS, Petter M, Held J, Duffy MF, Sim BKL, Hoffman SL, Kremsner PG, Lell B, Lavstsen T, Frank M, Mordmüller B, Tannich E. Controlled human malaria infection with Plasmodium falciparum demonstrates impact of naturally acquired immunity on virulence gene expression. PLoS Pathog 2019; 15:e1007906. [PMID: 31295334 PMCID: PMC6650087 DOI: 10.1371/journal.ppat.1007906] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Revised: 07/23/2019] [Accepted: 06/10/2019] [Indexed: 12/14/2022] Open
Abstract
The pathogenesis of Plasmodium falciparum malaria is linked to the variant surface antigen PfEMP1, which mediates tethering of infected erythrocytes to the host endothelium and is encoded by approximately 60 var genes per parasite genome. Repeated episodes of malaria infection result in the gradual acquisition of protective antibodies against PfEMP1 variants. The antibody repertoire is believed to provide a selective pressure driving the clonal expansion of parasites expressing unrecognized PfEMP1 variants, however, due to the lack of experimental in vivo models there is only limited experimental evidence in support of this concept. To get insight into the impact of naturally acquired immunity on the expressed var gene repertoire early during infection we performed controlled human malaria infections of 20 adult African volunteers with life-long malaria exposure using aseptic, purified, cryopreserved P. falciparum sporozoites (Sanaria PfSPZ Challenge) and correlated serological data with var gene expression patterns from ex vivo parasites. Among the 10 African volunteers who developed patent infections, individuals with low antibody levels showed a steep rise in parasitemia accompanied by broad activation of multiple, predominantly subtelomeric var genes, similar to what we previously observed in naïve volunteers. In contrast, individuals with intermediate antibody levels developed asymptomatic infections and the ex vivo parasite populations expressed only few var gene variants, indicative of clonal selection. Importantly, in contrast to parasites from naïve volunteers, expression of var genes coding for endothelial protein C receptor (EPCR)-binding PfEMP1 that are associated with severe childhood malaria was rarely detected in semi-immune adult African volunteers. Moreover, we followed var gene expression for up to six parasite replication cycles and demonstrated for the first time in vivo a shift in the dominant var gene variant. In conclusion, our data suggest that P. falciparum activates multiple subtelomeric var genes at the onset of blood stage infection facilitating rapid expansion of parasite clones which express PfEMP1 variants unrecognized by the host's immune system, thus promoting overall parasite survival in the face of host immunity.
Collapse
Affiliation(s)
- Anna Bachmann
- Department of Molecular Parasitology, Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
- German Center for Infection Research (DZIF), partner site Hamburg-Borstel-Lübeck-Riems, Germany
| | - Ellen Bruske
- Institute of Tropical Medicine, University Hospital Tübingen, Tübingen, Germany
| | - Ralf Krumkamp
- German Center for Infection Research (DZIF), partner site Hamburg-Borstel-Lübeck-Riems, Germany
- Infectious Disease Epidemiology, Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
| | - Louise Turner
- Centre for Medical Parasitology, University of Copenhagen, Copenhagen K, Denmark
| | - J. Stephan Wichers
- Department of Molecular Parasitology, Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
| | - Michaela Petter
- Mikrobiologisches Institut–Klinische Mikrobiologie, Immunologie und Hygiene, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg, Erlangen, Germany
- School of BioSciences, Bio21 Institute, University of Melbourne, Parkville, Victoria, Australia
| | - Jana Held
- Institute of Tropical Medicine, University Hospital Tübingen, Tübingen, Germany
| | - Michael F. Duffy
- School of BioSciences, Bio21 Institute, University of Melbourne, Parkville, Victoria, Australia
| | | | | | - Peter G. Kremsner
- Institute of Tropical Medicine, University Hospital Tübingen, Tübingen, Germany
- German Center for Infection Research (DZIF), partner site Tübingen, Germany
| | - Bertrand Lell
- Institute of Tropical Medicine, University Hospital Tübingen, Tübingen, Germany
- Centre de Recherches Médicales de Lambaréné (CERMEL), Lambaréné, Gabon
- German Center for Infection Research (DZIF), African partner institution, CERMEL, Gabon
| | - Thomas Lavstsen
- Centre for Medical Parasitology, University of Copenhagen, Copenhagen K, Denmark
| | - Matthias Frank
- Institute of Tropical Medicine, University Hospital Tübingen, Tübingen, Germany
| | - Benjamin Mordmüller
- Institute of Tropical Medicine, University Hospital Tübingen, Tübingen, Germany
- German Center for Infection Research (DZIF), partner site Tübingen, Germany
| | - Egbert Tannich
- Department of Molecular Parasitology, Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
- German Center for Infection Research (DZIF), partner site Hamburg-Borstel-Lübeck-Riems, Germany
| |
Collapse
|
15
|
Quintana MDP, Ecklu-Mensah G, Tcherniuk SO, Ditlev SB, Oleinikov AV, Hviid L, Lopez-Perez M. Comprehensive analysis of Fc-mediated IgM binding to the Plasmodium falciparum erythrocyte membrane protein 1 family in three parasite clones. Sci Rep 2019; 9:6050. [PMID: 30988351 PMCID: PMC6465264 DOI: 10.1038/s41598-019-42585-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2019] [Accepted: 04/03/2019] [Indexed: 12/14/2022] Open
Abstract
PfEMP1 is a family of adhesive proteins expressed on the surface of Plasmodium falciparum-infected erythrocytes (IEs), where they mediate adhesion of IEs to a range of host receptors. Efficient PfEMP1-dependent IE sequestration often depends on soluble serum proteins, including IgM. Here, we report a comprehensive investigation of which of the about 60 var gene-encoded PfEMP1 variants per parasite genome can bind IgM via the Fc part of the antibody molecule, and which of the constituent domains of those PfEMP1 are involved. We erased the epigenetic memory of var gene expression in three distinct P. falciparum clones, 3D7, HB3, and IT4/FCR3 by promoter titration, and then isolated individual IEs binding IgM from malaria-unexposed individuals by fluorescence-activated single-cell sorting. The var gene transcription profiles of sub-clones measured by real-time qPCR were used to identify potential IgM-binding PfEMP1 variants. Recombinant DBL and CIDR domains corresponding to those variants were tested by ELISA and protein arrays to confirm their IgM-binding capacity. Selected DBL domains were used to raise specific rat anti-sera to select IEs with uniform expression of candidate PfEMP1 proteins. Our data document that IgM-binding PfEMP1 proteins are common in each of the three clones studied, and that the binding epitopes are mainly found in DBLε and DBLζ domains near the C-terminus.
Collapse
Affiliation(s)
- Maria Del Pilar Quintana
- Centre for Medical Parasitology at Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Gertrude Ecklu-Mensah
- Centre for Medical Parasitology at Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.,Department of Immunology, Noguchi Memorial Institute for Medical Research, University of Ghana, Legon, Ghana
| | - Sergey O Tcherniuk
- Charles E Schmidt College of Medicine, Florida Atlantic University, Boca Raton, FL, USA
| | - Sisse Bolm Ditlev
- Centre for Medical Parasitology at Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Andrew V Oleinikov
- Charles E Schmidt College of Medicine, Florida Atlantic University, Boca Raton, FL, USA
| | - Lars Hviid
- Centre for Medical Parasitology at Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark. .,Department of Infectious Diseases, Rigshospitalet, Copenhagen, Denmark.
| | - Mary Lopez-Perez
- Centre for Medical Parasitology at Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
16
|
Chan JA, Boyle MJ, Moore KA, Reiling L, Lin Z, Hasang W, Avril M, Manning L, Mueller I, Laman M, Davis T, Smith JD, Rogerson SJ, Simpson JA, Fowkes FJI, Beeson JG. Antibody Targets on the Surface of Plasmodium falciparum-Infected Erythrocytes That Are Associated With Immunity to Severe Malaria in Young Children. J Infect Dis 2019; 219:819-828. [PMID: 30365004 PMCID: PMC6376912 DOI: 10.1093/infdis/jiy580] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2018] [Accepted: 10/15/2018] [Indexed: 12/28/2022] Open
Abstract
BACKGROUND Sequestration of Plasmodium falciparum-infected erythrocytes (IEs) in the microvasculature contributes to pathogenesis of severe malaria in children. This mechanism is mediated by antigens expressed on the IE surface. However, knowledge of specific targets and functions of antibodies to IE surface antigens that protect against severe malaria is limited. METHODS Antibodies to IE surface antigens were examined in a case-control study of young children in Papua New Guinea presenting with severe or uncomplicated malaria (n = 448), using isolates with a virulent phenotype associated with severe malaria, and functional opsonic phagocytosis assays. We used genetically modified isolates and recombinant P. falciparum erythrocyte membrane protein 1 (PfEMP1) domains to quantify PfEMP1 as a target of antibodies associated with disease severity. RESULTS Antibodies to the IE surface and recombinant PfEMP1 domains were significantly higher in uncomplicated vs severe malaria and were boosted following infection. The use of genetically modified P. falciparum revealed that PfEMP1 was a major target of antibodies and that PfEMP1-specific antibodies were associated with reduced odds of severe malaria. Furthermore, antibodies promoting the opsonic phagocytosis of IEs by monocytes were lower in those with severe malaria. CONCLUSIONS Findings suggest that PfEMP1 is a dominant target of antibodies associated with reduced risk of severe malaria, and function in part by promoting opsonic phagocytosis.
Collapse
Affiliation(s)
- Jo-Anne Chan
- Burnet Institute for Medical Research and Public Health, Melbourne
| | - Michelle J Boyle
- Burnet Institute for Medical Research and Public Health, Melbourne
| | - Kerryn A Moore
- Burnet Institute for Medical Research and Public Health, Melbourne
- Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, University of Melbourne, Parkville
- Murdoch Children’s Research Institute, Royal Children’s Hospital, Melbourne
| | - Linda Reiling
- Burnet Institute for Medical Research and Public Health, Melbourne
| | - Zaw Lin
- Burnet Institute for Medical Research and Public Health, Melbourne
| | - Wina Hasang
- Department of Medicine, Melbourne School of Population and Global Health, University of Melbourne, Parkville, Australia
| | - Marion Avril
- Center for Infectious Diseases Research, Seattle, Washington
| | - Laurens Manning
- Papua New Guinea Institute of Medical Research, Madang
- University of Western Australia, Perth
| | - Ivo Mueller
- Walter and Eliza Hall Institute of Medical Research, Parkville
| | - Moses Laman
- Papua New Guinea Institute of Medical Research, Madang
| | | | - Joseph D Smith
- Center for Infectious Diseases Research, Seattle, Washington
| | - Stephen J Rogerson
- Department of Medicine, Melbourne School of Population and Global Health, University of Melbourne, Parkville, Australia
| | - Julie A Simpson
- Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, University of Melbourne, Parkville
| | - Freya J I Fowkes
- Burnet Institute for Medical Research and Public Health, Melbourne
- Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, University of Melbourne, Parkville
- Department of Epidemiology and Preventive Medicine, Monash University, Melbourne, Victoria, Australia
- Department of Infectious Diseases, Monash University, Melbourne, Victoria, Australia
| | - James G Beeson
- Burnet Institute for Medical Research and Public Health, Melbourne
- Department of Medicine, Melbourne School of Population and Global Health, University of Melbourne, Parkville, Australia
- Department of Microbiology, Monash University, Melbourne, Victoria, Australia
| |
Collapse
|
17
|
Comprehensive analysis of antibody responses to Plasmodium falciparum erythrocyte membrane protein 1 domains. Vaccine 2018; 36:6826-6833. [PMID: 30262245 DOI: 10.1016/j.vaccine.2018.08.058] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2018] [Revised: 08/03/2018] [Accepted: 08/22/2018] [Indexed: 12/31/2022]
Abstract
Acquired antibodies directed towards antigens expressed on the surface of merozoites and infected erythrocytes play an important role in protective immunity to Plasmodium falciparum malaria. P. falciparum erythrocyte membrane protein 1 (PfEMP1), the major parasite component of the infected erythrocyte surface, has been implicated in malaria pathology, parasite sequestration and host immune evasion. However, the extent to which unique PfEMP1 domains interact with host immune response remains largely unknown. In this study, we sought to comprehensively understand the naturally acquired antibody responses targeting different Duffy binding-like (DBL), and Cysteine-rich interdomain region (CIDR) domains in a Ugandan cohort. Consequently, we created a protein library consisting of full-length DBL (n = 163) and CIDR (n = 108) domains derived from 62-var genes based on 3D7 genome. The proteins were expressed by a wheat germ cell-free system; a system that yields plasmodial proteins that are comparatively soluble, intact, biologically active and immunoreactive to human sera. Our findings suggest that all PfEMP1 DBL and CIDR domains, regardless of PfEMP1 group, are targets of naturally acquired immunity. The breadth of the immune response expands with children's age. We concurrently identified 10 DBL and 8 CIDR domains whose antibody responses were associated with reduced risk to symptomatic malaria in the Ugandan children cohort. This study highlights that only a restricted set of specific domains are essential for eliciting naturally acquired protective immunity in malaria. In light of current data, tandem domains in PfEMP1s PF3D7_0700100 and PF3D7_0425800 (DC4) are recommended for extensive evaluation in larger population cohorts to further assess their potential as alternative targets for malaria vaccine development.
Collapse
|
18
|
The Plasmodium falciparum transcriptome in severe malaria reveals altered expression of genes involved in important processes including surface antigen-encoding var genes. PLoS Biol 2018; 16:e2004328. [PMID: 29529020 PMCID: PMC5864071 DOI: 10.1371/journal.pbio.2004328] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2017] [Revised: 03/22/2018] [Accepted: 02/16/2018] [Indexed: 01/13/2023] Open
Abstract
Within the human host, the malaria parasite Plasmodium falciparum is exposed to multiple selection pressures. The host environment changes dramatically in severe malaria, but the extent to which the parasite responds to-or is selected by-this environment remains unclear. From previous studies, the parasites that cause severe malaria appear to increase expression of a restricted but poorly defined subset of the PfEMP1 variant, surface antigens. PfEMP1s are major targets of protective immunity. Here, we used RNA sequencing (RNAseq) to analyse gene expression in 44 parasite isolates that caused severe and uncomplicated malaria in Papuan patients. The transcriptomes of 19 parasite isolates associated with severe malaria indicated that these parasites had decreased glycolysis without activation of compensatory pathways; altered chromatin structure and probably transcriptional regulation through decreased histone methylation; reduced surface expression of PfEMP1; and down-regulated expression of multiple chaperone proteins. Our RNAseq also identified novel associations between disease severity and PfEMP1 transcripts, domains, and smaller sequence segments and also confirmed all previously reported associations between expressed PfEMP1 sequences and severe disease. These findings will inform efforts to identify vaccine targets for severe malaria and also indicate how parasites adapt to-or are selected by-the host environment in severe malaria.
Collapse
|
19
|
Kessler A, Dankwa S, Bernabeu M, Harawa V, Danziger SA, Duffy F, Kampondeni SD, Potchen MJ, Dambrauskas N, Vigdorovich V, Oliver BG, Hochman SE, Mowrey WB, MacCormick IJC, Mandala WL, Rogerson SJ, Sather DN, Aitchison JD, Taylor TE, Seydel KB, Smith JD, Kim K. Linking EPCR-Binding PfEMP1 to Brain Swelling in Pediatric Cerebral Malaria. Cell Host Microbe 2017; 22:601-614.e5. [PMID: 29107642 DOI: 10.1016/j.chom.2017.09.009] [Citation(s) in RCA: 78] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2017] [Revised: 08/06/2017] [Accepted: 09/22/2017] [Indexed: 11/16/2022]
Abstract
Brain swelling is a major predictor of mortality in pediatric cerebral malaria (CM). However, the mechanisms leading to swelling remain poorly defined. Here, we combined neuroimaging, parasite transcript profiling, and laboratory blood profiles to develop machine-learning models of malarial retinopathy and brain swelling. We found that parasite var transcripts encoding endothelial protein C receptor (EPCR)-binding domains, in combination with high parasite biomass and low platelet levels, are strong indicators of CM cases with malarial retinopathy. Swelling cases presented low platelet levels and increased transcript abundance of parasite PfEMP1 DC8 and group A EPCR-binding domains. Remarkably, the dominant transcript in 50% of swelling cases encoded PfEMP1 group A CIDRα1.7 domains. Furthermore, a recombinant CIDRα1.7 domain from a pediatric CM brain autopsy inhibited the barrier-protective properties of EPCR in human brain endothelial cells in vitro. Together, these findings suggest a detrimental role for EPCR-binding CIDRα1 domains in brain swelling.
Collapse
Affiliation(s)
- Anne Kessler
- Department of Medicine, Albert Einstein College of Medicine and Montefiore Medical Center, Bronx, NY 10461, USA
| | - Selasi Dankwa
- Center for Infectious Disease Research, Seattle, WA 98109, USA
| | - Maria Bernabeu
- Center for Infectious Disease Research, Seattle, WA 98109, USA
| | - Visopo Harawa
- Malawi-Liverpool Wellcome Trust Clinical Research Programme, Blantyre BT3, Malawi; University of Malawi, College of Medicine, Biomedical Department, Blantyre BT3, Malawi
| | | | - Fergal Duffy
- Center for Infectious Disease Research, Seattle, WA 98109, USA
| | | | - Michael J Potchen
- Department of Imaging Sciences, University of Rochester, Rochester, NY 14642, USA
| | | | | | - Brian G Oliver
- Center for Infectious Disease Research, Seattle, WA 98109, USA
| | - Sarah E Hochman
- Department of Medicine, New York University Langone Health, New York, NY 10016, USA
| | - Wenzhu B Mowrey
- Department of Medicine, Albert Einstein College of Medicine and Montefiore Medical Center, Bronx, NY 10461, USA
| | - Ian J C MacCormick
- Malawi-Liverpool Wellcome Trust Clinical Research Programme, Blantyre BT3, Malawi; Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh EH16 4SB, UK; Department of Eye and Vision Sciences, University of Liverpool, Liverpool L69 3BX, UK
| | - Wilson L Mandala
- Malawi-Liverpool Wellcome Trust Clinical Research Programme, Blantyre BT3, Malawi; University of Malawi, College of Medicine, Biomedical Department, Blantyre BT3, Malawi; Academy of Medical Sciences, Malawi University of Science and Technology, Thyolo BT3, Malawi
| | - Stephen J Rogerson
- Department of Medicine at the Doherty Institute, The University of Melbourne, Melbourne, VIC 3000, Australia
| | - D Noah Sather
- Center for Infectious Disease Research, Seattle, WA 98109, USA
| | | | - Terrie E Taylor
- Blantyre Malaria Project, Blantyre BT3, Malawi; Department of Osteopathic Medical Specialities, College of Osteopathic Medicine, Michigan State University, East Lansing, MI 48824, USA
| | - Karl B Seydel
- Blantyre Malaria Project, Blantyre BT3, Malawi; Department of Osteopathic Medical Specialities, College of Osteopathic Medicine, Michigan State University, East Lansing, MI 48824, USA.
| | - Joseph D Smith
- Center for Infectious Disease Research, Seattle, WA 98109, USA; Department of Global Health, University of Washington, Seattle, WA 98195, USA.
| | - Kami Kim
- Department of Medicine, Albert Einstein College of Medicine and Montefiore Medical Center, Bronx, NY 10461, USA.
| |
Collapse
|
20
|
Shabani E, Hanisch B, Opoka RO, Lavstsen T, John CC. Plasmodium falciparum EPCR-binding PfEMP1 expression increases with malaria disease severity and is elevated in retinopathy negative cerebral malaria. BMC Med 2017; 15:183. [PMID: 29025399 PMCID: PMC5639490 DOI: 10.1186/s12916-017-0945-y] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/10/2017] [Accepted: 09/15/2017] [Indexed: 01/01/2023] Open
Abstract
BACKGROUND Expression of group A and the A-like subset of group B Plasmodium falciparum erythrocyte membrane protein 1 (PfEMP1) is associated with severe malaria (SM). The diversity of var sequences combined with the challenges of distinct classification of patient pathologies has made studying the role of distinct PfEMP1 variants on malaria disease severity challenging. The application of retinopathy in the recent years has provided a further method to clinically evaluate children with cerebral malaria (CM). The question of whether children with clinical CM but no retinopathy represent a completely different disease process or a subgroup within the spectrum of CM remains an important question in malaria. In the current study, we use newly designed primer sets with the best coverage to date in a large cohort of children with SM to determine the role of var genes in malaria disease severity and especially CM as discriminated by retinopathy. METHODS We performed qRT-PCR targeting the different subsets of these var genes on samples from Ugandan children with CM (n = 98, of whom 50 had malarial retinopathy [RP] and 47 did not [RN]), severe malarial anemia (SMA, n = 47), and asymptomatic parasitemia (AP, n = 14). The primers used in this study were designed based on var sequences from 226 Illumina whole genome sequenced P. falciparum field isolates. RESULTS Increasing severity of illness was associated with increasing levels of endothelial protein C receptor (EPCR)-binding PfEMP1. EPCR-binding PfEMP1 transcript levels were highest in children with combined CM and SMA and then decreased by level of disease severity: RP CM > RN CM > SMA > AP. CONCLUSIONS The study findings indicate that PfEMP1 binding to EPCR is important in the pathogenesis of SM, including RN CM, and suggest that increased expression of EPCR-binding PfEMP1 is associated with progressively more severe disease. Agents that block EPCR-binding of PfEMP1 could provide novel interventions to prevent or decrease disease severity in malaria.
Collapse
Affiliation(s)
- Estela Shabani
- Ryan White Center for Pediatric Infectious Diseases and Global Health, Indiana University, 1044 W Walnut St R4 402D, Indianapolis, Indiana, USA.,Department of Pediatrics, Division of Global Pediatrics, University of Minnesota, Minneapolis, Minnesota, USA
| | | | - Robert O Opoka
- Department of Pediatrics and Child Health, Makerere University School of Medicine, Kampala, Uganda
| | - Thomas Lavstsen
- Centre for Medical Parasitology, Department of International Health, Immunology and Microbiology, University of Copenhagen and Department of Infectious Diseases, Copenhagen, Denmark
| | - Chandy C John
- Ryan White Center for Pediatric Infectious Diseases and Global Health, Indiana University, 1044 W Walnut St R4 402D, Indianapolis, Indiana, USA. .,Department of Pediatrics, Division of Global Pediatrics, University of Minnesota, Minneapolis, Minnesota, USA.
| |
Collapse
|
21
|
Abdi AI, Hodgson SH, Muthui MK, Kivisi CA, Kamuyu G, Kimani D, Hoffman SL, Juma E, Ogutu B, Draper SJ, Osier F, Bejon P, Marsh K, Bull PC. Plasmodium falciparum malaria parasite var gene expression is modified by host antibodies: longitudinal evidence from controlled infections of Kenyan adults with varying natural exposure. BMC Infect Dis 2017; 17:585. [PMID: 28835215 PMCID: PMC5569527 DOI: 10.1186/s12879-017-2686-0] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2017] [Accepted: 08/15/2017] [Indexed: 11/10/2022] Open
Abstract
Background The PfEMP1 family of Plasmodium falciparum antigens play a key role in pathogenesis of severe malaria through their insertion into the surface of parasite infected erythrocytes, and adhesion to host cells. Previous studies have suggested that parasites expressing PfEMP1 subclasses group A and DC8, associated with severe malaria, may have a growth advantage in immunologically naïve individuals. However, this idea has not been tested in longitudinal studies. Methods Here we assessed expression of the var genes encoding PfEMP1, in parasites sampled from volunteers with varying prior exposure to malaria, following experimental infection by sporozoites (PfSPZ). Using qPCR, we tested for associations between the expression of various var subgroups in surviving parasite populations from each volunteer and 1) the levels of participants’ antibodies to infected erythrocytes before challenge infection and 2) the apparent in vivo parasite multiplication rate. Results We show that 1) expression of var genes encoding for group A and DC8-like PfEMP1 were associated with low levels of antibodies to infected erythrocytes (αIE) before challenge, and 2) expression of a DC8-like CIDRα1.1 domain was associated with higher apparent parasite multiplication rate in a manner that was independent of levels of prior antibodies to infected erythrocytes. Conclusions This study provides insight into the role of antibodies to infected erythrocytes surface antigens in the development of naturally acquired immunity and may help explain why specific PfEMP1 variants may be associated with severe malaria. Trial registration Pan African Clinical Trial Registry: PACTR201211000433272. Date of registration: 10th October 2012.
Collapse
Affiliation(s)
- Abdirahman I Abdi
- KEMRI-Wellcome Trust Research Programme, CGMRC, P.O. Box 230-80108, Kilifi County, Kenya. .,Pwani University, P. O. Box 195-80108, Kilifi, Kenya.
| | | | - Michelle K Muthui
- KEMRI-Wellcome Trust Research Programme, CGMRC, P.O. Box 230-80108, Kilifi County, Kenya
| | - Cheryl A Kivisi
- KEMRI-Wellcome Trust Research Programme, CGMRC, P.O. Box 230-80108, Kilifi County, Kenya.,Pwani University, P. O. Box 195-80108, Kilifi, Kenya
| | - Gathoni Kamuyu
- KEMRI-Wellcome Trust Research Programme, CGMRC, P.O. Box 230-80108, Kilifi County, Kenya
| | - Domtila Kimani
- KEMRI-Wellcome Trust Research Programme, CGMRC, P.O. Box 230-80108, Kilifi County, Kenya
| | | | - Elizabeth Juma
- Centre for Clinical Research, Kenya Medical Research Institute, Nairobi, Kenya.,Centre for Research in Therapeutic Sciences, Strathmore University, Nairobi, Kenya
| | - Bernhards Ogutu
- Centre for Clinical Research, Kenya Medical Research Institute, Nairobi, Kenya.,Centre for Research in Therapeutic Sciences, Strathmore University, Nairobi, Kenya
| | | | - Faith Osier
- KEMRI-Wellcome Trust Research Programme, CGMRC, P.O. Box 230-80108, Kilifi County, Kenya
| | - Philip Bejon
- KEMRI-Wellcome Trust Research Programme, CGMRC, P.O. Box 230-80108, Kilifi County, Kenya
| | - Kevin Marsh
- KEMRI-Wellcome Trust Research Programme, CGMRC, P.O. Box 230-80108, Kilifi County, Kenya
| | - Peter C Bull
- Department of Pathology, University of Cambridge, 17 Tennis Court Road, Cambridge, CB2 1QP, UK.
| |
Collapse
|
22
|
The Severity of Plasmodium falciparum Infection Is Associated with Transcript Levels of var Genes Encoding Endothelial Protein C Receptor-Binding P. falciparum Erythrocyte Membrane Protein 1. Infect Immun 2017; 85:IAI.00841-16. [PMID: 28138022 DOI: 10.1128/iai.00841-16] [Citation(s) in RCA: 58] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2016] [Accepted: 01/23/2017] [Indexed: 11/20/2022] Open
Abstract
By attaching infected erythrocytes to the vascular lining, Plasmodium falciparum parasites leave blood circulation and avoid splenic clearance. This sequestration is central to pathogenesis. Severe malaria is associated with parasites expressing an antigenically distinct P. falciparum erythrocyte membrane protein 1 (PfEMP1) subset mediating binding to endothelial receptors. Previous studies indicate that PfEMP1 adhesins with so-called CIDRα1 domains capable of binding endothelial protein C receptor (EPCR) constitute the PfEMP1 subset associated with severe pediatric malaria. To analyze the relative importance of different subtypes of CIDRα1 domains, we compared Pfemp1 transcript levels in children with severe malaria (including 9 fatal and 114 surviving cases), children hospitalized with uncomplicated malaria (n = 42), children with mild malaria not requiring hospitalization (n = 10), and children with parasitemia and no ongoing fever (n = 12). High levels of transcripts encoding EPCR-binding PfEMP1 were found in patients with symptomatic infections, and the abundance of these transcripts increased with disease severity. The compositions of CIDRα1 subtype transcripts varied markedly between patients, and none of the subtypes were dominant. Transcript-level analyses targeting other domain types indicated that subtypes of DBLβ or DBLζ domains might mediate binding phenomena that, in conjunction with EPCR binding, could contribute to pathogenesis. These observations strengthen the rationale for targeting the PfEMP1-EPCR interaction by vaccines and adjunctive therapies. Interventions should target EPCR binding of all CIDRα1 subtypes.
Collapse
|
23
|
Bernabeu M, Smith JD. EPCR and Malaria Severity: The Center of a Perfect Storm. Trends Parasitol 2016; 33:295-308. [PMID: 27939609 DOI: 10.1016/j.pt.2016.11.004] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2016] [Revised: 11/07/2016] [Accepted: 11/10/2016] [Indexed: 12/20/2022]
Abstract
Severe malaria due to Plasmodium falciparum infection causes nearly half a million deaths per year. The different symptomatology and disease manifestations among patients have hampered understanding of severe malaria pathology and complicated efforts to develop targeted disease interventions. Infected erythrocyte sequestration in the microvasculature plays a critical role in the development of severe disease, and there is increasing evidence that cytoadherent parasites interact with host factors to enhance the damage caused by the parasite. The recent discovery that parasite binding to endothelial protein C receptor (EPCR) is associated with severe disease has suggested new mechanisms of pathology and provided new avenues for severe malaria adjunctive therapy research.
Collapse
Affiliation(s)
- Maria Bernabeu
- Center for Infectious Disease Research, Seattle, WA 98109, USA
| | - Joseph D Smith
- Center for Infectious Disease Research, Seattle, WA 98109, USA; Department of Global Health, University of Washington, Seattle, WA 98195, USA.
| |
Collapse
|
24
|
Cytoadhesion to gC1qR through Plasmodium falciparum Erythrocyte Membrane Protein 1 in Severe Malaria. PLoS Pathog 2016; 12:e1006011. [PMID: 27835682 PMCID: PMC5106025 DOI: 10.1371/journal.ppat.1006011] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2016] [Accepted: 10/19/2016] [Indexed: 11/19/2022] Open
Abstract
Cytoadhesion of Plasmodium falciparum infected erythrocytes to gC1qR has been associated with severe malaria, but the parasite ligand involved is currently unknown. To assess if binding to gC1qR is mediated through the P. falciparum erythrocyte membrane protein 1 (PfEMP1) family, we analyzed by static binding assays and qPCR the cytoadhesion and var gene transcriptional profile of 86 P. falciparum isolates from Mozambican children with severe and uncomplicated malaria, as well as of a P. falciparum 3D7 line selected for binding to gC1qR (Pf3D7gC1qR). Transcript levels of DC8 correlated positively with cytoadhesion to gC1qR (rho = 0.287, P = 0.007), were higher in isolates from children with severe anemia than with uncomplicated malaria, as well as in isolates from Europeans presenting a first episode of malaria (n = 21) than Mozambican adults (n = 25), and were associated with an increased IgG recognition of infected erythrocytes by flow cytometry. Pf3D7gC1qR overexpressed the DC8 type PFD0020c (5.3-fold transcript levels relative to Seryl-tRNA-synthetase gene) compared to the unselected line (0.001-fold). DBLβ12 from PFD0020c bound to gC1qR in ELISA-based binding assays and polyclonal antibodies against this domain were able to inhibit binding to gC1qR of Pf3D7gC1qR and four Mozambican P. falciparum isolates by 50%. Our results show that DC8-type PfEMP1s mediate binding to gC1qR through conserved surface epitopes in DBLβ12 domain which can be inhibited by strain-transcending functional antibodies. This study supports a key role for gC1qR in malaria-associated endovascular pathogenesis and suggests the feasibility of designing interventions against severe malaria targeting this specific interaction. Plasmodium falciparum sequesters in vital organs. This phenomenon mediated by cytoadhesion of infected-erythrocytes to host receptors in the microvasculature, contributes to the development of severe malaria. Although cytoadhesion to Endothelial Protein-C Receptor has a central role in severe malaria, other host receptors are also likely to be involved. Our results generated by the analysis of P. falciparum isolates from Mozambican patients and laboratory parasite lines indicate that a specific domain (DBLβ12) from DC8-type PfEMP1s can bind to the human receptor gC1qR, previously associated with severe malaria. Our findings revealed that antibodies against PfEMP1 could provide strain-transcending inhibition of gC1qR-binding. Overall, these results support a key role for the adhesion to gC1qR in malaria-associated endovascular pathogenesis and the feasibility of new interventions targeting this specific interaction.
Collapse
|
25
|
Chan JA, Howell KB, Langer C, Maier AG, Hasang W, Rogerson SJ, Petter M, Chesson J, Stanisic DI, Duffy MF, Cooke BM, Siba PM, Mueller I, Bull PC, Marsh K, Fowkes FJI, Beeson JG. A single point in protein trafficking by Plasmodium falciparum determines the expression of major antigens on the surface of infected erythrocytes targeted by human antibodies. Cell Mol Life Sci 2016; 73:4141-58. [PMID: 27193441 PMCID: PMC5042999 DOI: 10.1007/s00018-016-2267-1] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2016] [Revised: 04/22/2016] [Accepted: 05/06/2016] [Indexed: 11/30/2022]
Abstract
Antibodies to blood-stage antigens of Plasmodium falciparum play a pivotal role in human immunity to malaria. During parasite development, multiple proteins are trafficked from the intracellular parasite to the surface of P. falciparum-infected erythrocytes (IEs). However, the relative importance of different proteins as targets of acquired antibodies, and key pathways involved in trafficking major antigens remain to be clearly defined. We quantified antibodies to surface antigens among children, adults, and pregnant women from different malaria-exposed regions. We quantified the importance of antigens as antibody targets using genetically engineered P. falciparum with modified surface antigen expression. Genetic deletion of the trafficking protein skeleton-binding protein-1 (SBP1), which is involved in trafficking the surface antigen PfEMP1, led to a dramatic reduction in antibody recognition of IEs and the ability of human antibodies to promote opsonic phagocytosis of IEs, a key mechanism of parasite clearance. The great majority of antibody epitopes on the IE surface were SBP1-dependent. This was demonstrated using parasite isolates with different genetic or phenotypic backgrounds, and among antibodies from children, adults, and pregnant women in different populations. Comparisons of antibody reactivity to parasite isolates with SBP1 deletion or inhibited PfEMP1 expression suggest that PfEMP1 is the dominant target of acquired human antibodies, and that other P. falciparum IE surface proteins are minor targets. These results establish SBP1 as part of a critical pathway for the trafficking of major surface antigens targeted by human immunity, and have key implications for vaccine development, and quantifying immunity in populations.
Collapse
Affiliation(s)
- Jo-Anne Chan
- Burnet Institute for Medical Research and Public Health, 85 Commercial Road, Melbourne, VIC, 3001, Australia
- Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia
- Department of Medical Biology, University of Melbourne, Parkville, VIC, Australia
| | - Katherine B Howell
- Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia
| | - Christine Langer
- Burnet Institute for Medical Research and Public Health, 85 Commercial Road, Melbourne, VIC, 3001, Australia
| | - Alexander G Maier
- Research School of Biology, Australian National University, Canberra, ACT, Australia
| | - Wina Hasang
- Department of Medicine, University of Melbourne, Parkville, VIC, Australia
| | - Stephen J Rogerson
- Department of Medicine, University of Melbourne, Parkville, VIC, Australia
| | - Michaela Petter
- Department of Medicine, University of Melbourne, Parkville, VIC, Australia
| | - Joanne Chesson
- Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia
| | | | - Michael F Duffy
- Department of Medicine, University of Melbourne, Parkville, VIC, Australia
| | - Brian M Cooke
- Programs in Infection and Immunity and Cardiovascular Disease, Monash Biomedicine Discovery Institute, Monash University, Melbourne, VIC, Australia
- Department of Microbiology, Monash University, Melbourne, VIC, Australia
| | - Peter M Siba
- Papua New Guinea Institute of Medical Research, Madang, Papua New Guinea
| | - Ivo Mueller
- Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia
| | - Peter C Bull
- Centre for Geographic Medicine Research, Coast, Kenya Medical Research Institute, Kilifi, Kenya
| | - Kevin Marsh
- Centre for Geographic Medicine Research, Coast, Kenya Medical Research Institute, Kilifi, Kenya
| | - Freya J I Fowkes
- Burnet Institute for Medical Research and Public Health, 85 Commercial Road, Melbourne, VIC, 3001, Australia
- Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia
- Melbourne School of Public Health, University of Melbourne, Parkville, VIC, Australia
- Department of Epidemiology and Preventive Medicine and Department of Infectious Diseases, Monash University, Melbourne, VIC, Australia
| | - James G Beeson
- Burnet Institute for Medical Research and Public Health, 85 Commercial Road, Melbourne, VIC, 3001, Australia.
- Department of Medicine, University of Melbourne, Parkville, VIC, Australia.
- Department of Microbiology, Monash University, Melbourne, VIC, Australia.
| |
Collapse
|
26
|
Moles E, Moll K, Ch'ng JH, Parini P, Wahlgren M, Fernàndez-Busquets X. Development of drug-loaded immunoliposomes for the selective targeting and elimination of rosetting Plasmodium falciparum-infected red blood cells. J Control Release 2016; 241:57-67. [PMID: 27620073 DOI: 10.1016/j.jconrel.2016.09.006] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2016] [Revised: 09/06/2016] [Accepted: 09/07/2016] [Indexed: 11/20/2022]
Abstract
Parasite proteins exported to the surface of Plasmodium falciparum-parasitized red blood cells (pRBCs) have a major role in severe malaria clinical manifestation, where pRBC cytoadhesion and rosetting processes have been strongly linked with microvascular sequestration while avoiding both spleen filtration and immune surveillance. The parasite-derived and pRBC surface-exposed PfEMP1 protein has been identified as one of the responsible elements for rosetting and, therefore, considered as a promising vaccine candidate for the generation of rosette-disrupting antibodies against severe malaria. However, the potential role of anti-rosetting antibodies as targeting molecules for the functionalization of antimalarial drug-loaded nanovectors has never been studied. Our manuscript presents a proof-of-concept study where the activity of an immunoliposomal vehicle with a dual performance capable of specifically recognizing and disrupting rosettes while simultaneously eliminating those pRBCs forming them has been assayed in vitro. A polyclonal antibody against the NTS-DBL1α N-terminal domain of a rosetting PfEMP1 variant has been selected as targeting molecule and lumefantrine as the antimalarial payload. After 30min incubation with 2μM encapsulated drug, a 70% growth inhibition for all parasitic forms in culture (IC50: 414nM) and a reduction in ca. 60% of those pRBCs with a rosetting phenotype (IC50: 747nM) were achieved. This immunoliposomal approach represents an innovative combination therapy for the improvement of severe malaria therapeutics having a broader spectrum of activity than either anti-rosetting antibodies or free drugs on their own.
Collapse
Affiliation(s)
- Ernest Moles
- Nanomalaria Group, Institute for Bioengineering of Catalonia (IBEC), Baldiri Reixac 10-12, ES-08028 Barcelona, Spain; Barcelona Institute for Global Health (ISGlobal), Barcelona Center for International Health Research (CRESIB, Hospital Clínic-Universitat de Barcelona), Rosselló 149-153, ES-08036 Barcelona, Spain; Nanoscience and Nanotechnology Institute (IN2UB), University of Barcelona, Martí i Franquès 1, ES-08028 Barcelona, Spain.
| | - Kirsten Moll
- Department of Microbiology, Tumor and Cell Biology (MTC), Karolinska Institutet, Stockholm, Sweden
| | - Jun-Hong Ch'ng
- Department of Microbiology, Tumor and Cell Biology (MTC), Karolinska Institutet, Stockholm, Sweden; Department of Microbiology, National University of Singapore, Singapore
| | - Paolo Parini
- Department of Laboratory Medicine (LABMED), H5, Division of Clinical Chemistry, Karolinska Institutet, Huddinge, Sweden
| | - Mats Wahlgren
- Department of Microbiology, Tumor and Cell Biology (MTC), Karolinska Institutet, Stockholm, Sweden
| | - Xavier Fernàndez-Busquets
- Nanomalaria Group, Institute for Bioengineering of Catalonia (IBEC), Baldiri Reixac 10-12, ES-08028 Barcelona, Spain; Barcelona Institute for Global Health (ISGlobal), Barcelona Center for International Health Research (CRESIB, Hospital Clínic-Universitat de Barcelona), Rosselló 149-153, ES-08036 Barcelona, Spain; Nanoscience and Nanotechnology Institute (IN2UB), University of Barcelona, Martí i Franquès 1, ES-08028 Barcelona, Spain.
| |
Collapse
|
27
|
Holding T, Recker M. Maintenance of phenotypic diversity within a set of virulence encoding genes of the malaria parasite Plasmodium falciparum. J R Soc Interface 2016; 12:20150848. [PMID: 26674193 PMCID: PMC4707858 DOI: 10.1098/rsif.2015.0848] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Infection by the human malaria parasite Plasmodium falciparum results in a broad spectrum of clinical outcomes, ranging from severe and potentially life-threatening malaria to asymptomatic carriage. In a process of naturally acquired immunity, individuals living in malaria-endemic regions build up a level of clinical protection, which attenuates infection severity in an exposure-dependent manner. Underlying this shift in the immunoepidemiology as well as the observed range in malaria pathogenesis is the var multigene family and the phenotypic diversity embedded within. The var gene-encoded surface proteins Plasmodium falciparum erythrocyte membrane protein 1 mediate variant-specific binding of infected red blood cells to a diverse set of host receptors that has been linked to specific disease manifestations, including cerebral and pregnancy-associated malaria. Here, we show that cross-reactive immune responses, which minimize the within-host benefit of each additionally expressed gene during infection, can cause selection for maximum phenotypic diversity at the genome level. We further show that differential functional constraints on protein diversification stably maintain uneven ratios between phenotypic groups, in line with empirical observation. Our results thus suggest that the maintenance of phenotypic diversity within P. falciparum is driven by an evolutionary trade-off that optimizes between within-host parasite fitness and between-host selection pressure.
Collapse
Affiliation(s)
- Thomas Holding
- Centre for Mathematics and the Environment, University of Exeter, Penryn Campus, Penryn TR10 9EZ, UK
| | - Mario Recker
- Centre for Mathematics and the Environment, University of Exeter, Penryn Campus, Penryn TR10 9EZ, UK
| |
Collapse
|
28
|
Jespersen JS, Wang CW, Mkumbaye SI, Minja DT, Petersen B, Turner L, Petersen JE, Lusingu JP, Theander TG, Lavstsen T. Plasmodium falciparum var genes expressed in children with severe malaria encode CIDRα1 domains. EMBO Mol Med 2016; 8:839-50. [PMID: 27354391 PMCID: PMC4967939 DOI: 10.15252/emmm.201606188] [Citation(s) in RCA: 72] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Most severe Plasmodium falciparum infections are experienced by young children. Severe symptoms are precipitated by vascular sequestration of parasites expressing a particular subset of the polymorphic P. falciparum erythrocyte membrane protein 1 (PfEMP1) adhesion molecules. Parasites binding human endothelial protein C receptor (EPCR) through the CIDRα1 domain of certain PfEMP1 were recently associated with severe malaria in children. However, it has remained unclear to which extend the EPCR‐binding CIDRα1 domains epitomize PfEMP1 expressed in severe malaria. Here, we characterized the near full‐length transcripts dominating the var transcriptome in children with severe malaria and found that the only common feature of the encoded PfEMP1 was CIDRα1 domains. Such genes were highly and dominantly expressed in both children with severe malarial anaemia and cerebral malaria. These observations support the hypothesis that the CIDRα1‐EPCR interaction is key to the pathogenesis of severe malaria and strengthen the rationale for pursuing a vaccine or adjunctive treatment aiming at inhibiting or reducing the damaging effects of this interaction.
Collapse
Affiliation(s)
- Jakob S Jespersen
- Centre for Medical Parasitology, Department of Immunology & Microbiology, University of Copenhagen, Copenhagen, Denmark Department of Infectious Diseases, Rigshospitalet, Copenhagen, Denmark
| | - Christian W Wang
- Centre for Medical Parasitology, Department of Immunology & Microbiology, University of Copenhagen, Copenhagen, Denmark Department of Infectious Diseases, Rigshospitalet, Copenhagen, Denmark
| | - Sixbert I Mkumbaye
- Kilimanjaro Christian Medical University College, Kilimanjaro Clinical Research Institute, Moshi, Tanzania
| | - Daniel Tr Minja
- National Institute for Medical Research, Tanga Research Centre, Tanga, Tanzania
| | - Bent Petersen
- Centre for Biological Sequence Analysis, Technical University of Denmark, Kgs. Lyngby, Denmark
| | - Louise Turner
- Centre for Medical Parasitology, Department of Immunology & Microbiology, University of Copenhagen, Copenhagen, Denmark Department of Infectious Diseases, Rigshospitalet, Copenhagen, Denmark
| | - Jens Ev Petersen
- Centre for Medical Parasitology, Department of Immunology & Microbiology, University of Copenhagen, Copenhagen, Denmark Department of Infectious Diseases, Rigshospitalet, Copenhagen, Denmark
| | - John Pa Lusingu
- Centre for Medical Parasitology, Department of Immunology & Microbiology, University of Copenhagen, Copenhagen, Denmark Department of Infectious Diseases, Rigshospitalet, Copenhagen, Denmark National Institute for Medical Research, Tanga Research Centre, Tanga, Tanzania
| | - Thor G Theander
- Centre for Medical Parasitology, Department of Immunology & Microbiology, University of Copenhagen, Copenhagen, Denmark Department of Infectious Diseases, Rigshospitalet, Copenhagen, Denmark
| | - Thomas Lavstsen
- Centre for Medical Parasitology, Department of Immunology & Microbiology, University of Copenhagen, Copenhagen, Denmark Department of Infectious Diseases, Rigshospitalet, Copenhagen, Denmark
| |
Collapse
|
29
|
Interaction between Endothelial Protein C Receptor and Intercellular Adhesion Molecule 1 to Mediate Binding of Plasmodium falciparum-Infected Erythrocytes to Endothelial Cells. mBio 2016; 7:mBio.00615-16. [PMID: 27406562 PMCID: PMC4958245 DOI: 10.1128/mbio.00615-16] [Citation(s) in RCA: 78] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Intercellular adhesion molecule 1 (ICAM-1) and the endothelial protein C receptor (EPCR) are candidate receptors for the deadly complication cerebral malaria. However, it remains unclear if Plasmodium falciparum parasites with dual binding specificity are involved in cytoadhesion or different parasite subpopulations bind in brain microvessels. Here, we investigated this issue by studying different subtypes of ICAM-1-binding parasite lines. We show that two parasite lines expressing domain cassette 13 (DC13) of the P. falciparum erythrocyte membrane protein 1 (PfEMP1) family have dual binding specificity for EPCR and ICAM-1 and further mapped ICAM-1 binding to the first DBLβ domain following the PfEMP1 head structure in both proteins. As PfEMP1 head structures have diverged between group A (EPCR binders) and groups B and C (CD36 binders), we also investigated how ICAM-1-binding parasites with different coreceptor binding traits influence P. falciparum-infected erythrocyte binding to endothelial cells. Whereas levels of binding to tumor necrosis factor alpha (TNF-α)-stimulated endothelial cells from the lung and brain by all ICAM-1-binding parasite lines increased, group A (EPCR and ICAM-1) was less dependent than group B (CD36 and ICAM-1) on ICAM-1 upregulation. Furthermore, both group A DC13 parasite lines had higher binding levels to brain endothelial cells (a microvascular niche with limited CD36 expression). This study shows that ICAM-1 is a coreceptor for a subset of EPCR-binding parasites and provides the first evidence of how EPCR and ICAM-1 interact to mediate parasite binding to both resting and TNF-α-activated primary brain and lung endothelial cells. Cerebral malaria is a severe neurological complication of P. falciparum infection associated with infected erythrocyte (IE) binding in cerebral vessels. Yet little is known about the mechanisms by which parasites adhere in the brain or other microvascular sites. Here, we studied parasite lines expressing group A DC13-containing PfEMP1 variants, a subset that has previously been shown to have high brain cell- and other endothelial cell-binding activities. We show that DC13-containing PfEMP1 variants have dual EPCR- and ICAM-1-binding activities and that both receptors are involved in parasite adherence to lung and brain endothelial cells. As both EPCR and ICAM-1 are implicated in cerebral malaria, these findings suggest the possibility that parasites with dual binding activities are involved in parasite sequestration to microvascular beds with low CD36 expression, such as the brain, and we urge more research into the multiadhesive properties of PfEMP1 variants.
Collapse
|
30
|
Severe adult malaria is associated with specific PfEMP1 adhesion types and high parasite biomass. Proc Natl Acad Sci U S A 2016; 113:E3270-9. [PMID: 27185931 DOI: 10.1073/pnas.1524294113] [Citation(s) in RCA: 74] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The interplay between cellular and molecular determinants that lead to severe malaria in adults is unexplored. Here, we analyzed parasite virulence factors in an infected adult population in India and investigated whether severe malaria isolates impair endothelial protein C receptor (EPCR), a protein involved in coagulation and endothelial barrier permeability. Severe malaria isolates overexpressed specific members of the Plasmodium falciparum var gene/PfEMP1 (P. falciparum erythrocyte membrane protein 1) family that bind EPCR, including DC8 var genes that have previously been linked to severe pediatric malaria. Machine learning analysis revealed that DC6- and DC8-encoding var transcripts in combination with high parasite biomass were the strongest indicators of patient hospitalization and disease severity. We found that DC8 CIDRα1 domains from severe malaria isolates had substantial differences in EPCR binding affinity and blockade activity for its ligand activated protein C. Additionally, even a low level of inhibition exhibited by domains from two cerebral malaria isolates was sufficient to interfere with activated protein C-barrier protective activities in human brain endothelial cells. Our findings demonstrate an interplay between parasite biomass and specific PfEMP1 adhesion types in the development of adult severe malaria, and indicate that low impairment of EPCR function may contribute to parasite virulence.
Collapse
|
31
|
Guillotte M, Nato F, Juillerat A, Hessel A, Marchand F, Lewit-Bentley A, Bentley GA, Vigan-Womas I, Mercereau-Puijalon O. Functional analysis of monoclonal antibodies against the Plasmodium falciparum PfEMP1-VarO adhesin. Malar J 2016; 15:28. [PMID: 26772184 PMCID: PMC4715314 DOI: 10.1186/s12936-015-1016-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2015] [Accepted: 11/24/2015] [Indexed: 01/30/2023] Open
Abstract
Background Rosetting, namely the capacity of the Plasmodium falciparum-infected red blood cells to bind uninfected RBCs, is commonly observed in African children with severe malaria. Rosetting results from specific interactions between a subset of variant P. falciparum erythrocyte membrane protein 1 (PfEMP1) adhesins encoded by var genes, serum components and RBC receptors. Rosette formation is a redundant phenotype, as there exists more than one var gene encoding a rosette-mediating PfEMP1 in each genome and hence a diverse array of underlying interactions. Moreover, field diversity creates a large panel of rosetting-associated serotypes and studies with human immune sera indicate that surface-reacting antibodies are essentially variant-specific. To gain better insight into the interactions involved in rosetting and map surface epitopes, a panel of monoclonal antibodies (mAbs) was investigated. Methods Monoclonal antibodies were isolated from mice immunized with PfEMP1-VarO recombinant domains. They were characterized using ELISA and reactivity with the native PfEMP1-VarO adhesin on immunoblots of reduced and unreduced extracts, as well as SDS-extracts of Palo Alto 89F5 VarO schizonts. Functionality was assessed using inhibition of Palo Alto 89F5 VarO rosette formation and disruption of Palo Alto 89F5 VarO rosettes. Competition ELISAs were performed with biotinylated antibodies against DBL1 to identify reactivity groups. Specificity of mAbs reacting with the DBL1 adhesion domain was explored using recombinant proteins carrying mutations abolishing RBC binding or binding to heparin, a potent inhibitor of rosette formation. Results Domain-specific, surface-reacting mAbs were obtained for four individual domains (DBL1, CIDR1, DBL2, DBL4). Monoclonal antibodies reacting with DBL1 potently inhibited the formation of rosettes and disrupted Palo Alto 89F5 VarO rosettes. Most surface-reactive mAbs and all mAbs interfering with rosetting reacted on parasite immunoblots with disulfide bond-dependent PfEMP1 epitopes. Based on competition ELISA and binding to mutant DBL1 domains, two distinct binding sites for rosette-disrupting mAbs were identified in close proximity to the RBC-binding site. Conclusions Rosette-inhibitory antibodies bind to conformation-dependent epitopes located close to the RBC-binding site and distant from the heparin-binding site. These results provide novel clues for a rational intervention strategy that targets rosetting. Electronic supplementary material The online version of this article (doi:10.1186/s12936-015-1016-5) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Micheline Guillotte
- Institut Pasteur, Unité d'Immunologie Moléculaire des Parasites, 25-28 rue du Dr ROUX, 75015, Paris, France. .,URA CNRS 2581, 25-28 rue du Dr ROUX, 75015, Paris, France.
| | - Farida Nato
- Institut Pasteur, Plate-forme de Production de Protéines recombinantes et d'Anticorps (PF5), 25-28 rue du Dr ROUX, 75015, Paris, France.
| | - Alexandre Juillerat
- Institut Pasteur, Unité d'Immunologie Structurale, 25-28 rue du Dr ROUX, 75015, Paris, France. .,CNRS URA 2185, 25-28 rue du Dr ROUX, 75015, Paris, France.
| | - Audrey Hessel
- Institut Pasteur, Unité d'Immunologie Moléculaire des Parasites, 25-28 rue du Dr ROUX, 75015, Paris, France. .,Institut Pasteur, Unité d'Immunologie Structurale, 25-28 rue du Dr ROUX, 75015, Paris, France.
| | - Françoise Marchand
- Institut Pasteur, Plate-forme de Production de Protéines recombinantes et d'Anticorps (PF5), 25-28 rue du Dr ROUX, 75015, Paris, France.
| | - Anita Lewit-Bentley
- Institut Pasteur, Unité d'Immunologie Structurale, 25-28 rue du Dr ROUX, 75015, Paris, France. .,CNRS URA 2185, 25-28 rue du Dr ROUX, 75015, Paris, France.
| | - Graham A Bentley
- Institut Pasteur, Unité d'Immunologie Structurale, 25-28 rue du Dr ROUX, 75015, Paris, France. .,CNRS URA 2185, 25-28 rue du Dr ROUX, 75015, Paris, France.
| | - Inès Vigan-Womas
- Institut Pasteur, Unité d'Immunologie Moléculaire des Parasites, 25-28 rue du Dr ROUX, 75015, Paris, France. .,URA CNRS 2581, 25-28 rue du Dr ROUX, 75015, Paris, France. .,Institut Pasteur de Madagascar, Unité d'Immunologie des Maladies Infectieuses, BP 1274, Antananarivo 101, Madagascar.
| | - Odile Mercereau-Puijalon
- Institut Pasteur, Unité d'Immunologie Moléculaire des Parasites, 25-28 rue du Dr ROUX, 75015, Paris, France. .,URA CNRS 2581, 25-28 rue du Dr ROUX, 75015, Paris, France.
| |
Collapse
|
32
|
Abstract
The Plasmodium falciparum erythrocyte membrane protein 1 antigens that are inserted onto the surface of P. falciparum infected erythrocytes play a key role both in the pathology of severe malaria and as targets of naturally acquired immunity. They might be considered unlikely vaccine targets because they are extremely diverse. However, several lines of evidence suggest that underneath this molecular diversity there are a restricted set of epitopes which may act as effective targets for a vaccine against severe malaria. Here we review some of the recent developments in this area of research, focusing on work that has assessed the potential of these molecules as possible vaccine targets.
Collapse
|
33
|
Differential Plasmodium falciparum surface antigen expression among children with Malarial Retinopathy. Sci Rep 2015; 5:18034. [PMID: 26657042 PMCID: PMC4677286 DOI: 10.1038/srep18034] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2015] [Accepted: 11/10/2015] [Indexed: 11/08/2022] Open
Abstract
Retinopathy provides a window into the underlying pathology of life-threatening malarial coma ("cerebral malaria"), allowing differentiation between 1) coma caused by sequestration of Plasmodium falciparum-infected erythrocytes in the brain and 2) coma with other underlying causes. Parasite sequestration in the brain is mediated by PfEMP1; a diverse parasite antigen that is inserted into the surface of infected erythrocytes and adheres to various host receptors. PfEMP1 sub-groups called "DC8" and "DC13" have been proposed to cause brain pathology through interactions with endothelial protein C receptor. To test this we profiled PfEMP1 gene expression in parasites from children with clinically defined cerebral malaria, who either had or did not have accompanying retinopathy. We found no evidence for an elevation of DC8 or DC13 PfEMP1 expression in children with retinopathy. However, the proportional expression of a broad subgroup of PfEMP1 called "group A" was elevated in retinopathy patients suggesting that these variants may play a role in the pathology of cerebral malaria. Interventions targeting group A PfEMP1 may be effective at reducing brain pathology.
Collapse
|
34
|
Larremore DB, Sundararaman SA, Liu W, Proto WR, Clauset A, Loy DE, Speede S, Plenderleith LJ, Sharp PM, Hahn BH, Rayner JC, Buckee CO. Ape parasite origins of human malaria virulence genes. Nat Commun 2015; 6:8368. [PMID: 26456841 PMCID: PMC4633637 DOI: 10.1038/ncomms9368] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2015] [Accepted: 08/14/2015] [Indexed: 12/22/2022] Open
Abstract
Antigens encoded by the var gene family are major virulence factors of the human malaria parasite Plasmodium falciparum, exhibiting enormous intra- and interstrain diversity. Here we use network analysis to show that var architecture and mosaicism are conserved at multiple levels across the Laverania subgenus, based on var-like sequences from eight single-species and three multi-species Plasmodium infections of wild-living or sanctuary African apes. Using select whole-genome amplification, we also find evidence of multi-domain var structure and synteny in Plasmodium gaboni, one of the ape Laverania species most distantly related to P. falciparum, as well as a new class of Duffy-binding-like domains. These findings indicate that the modular genetic architecture and sequence diversity underlying var-mediated host-parasite interactions evolved before the radiation of the Laverania subgenus, long before the emergence of P. falciparum. Antigens encoded by var genes are major virulence factors of the human malaria parasite Plasmodium falciparum. Here, Larremore et al. identify var-like genes in distantly related Plasmodium species infecting African apes, indicating that these genes already existed in an ancestral ape parasite many millions of years ago.
Collapse
Affiliation(s)
- Daniel B Larremore
- Center for Communicable Disease Dynamics, Harvard School of Public Health, Boston, Massachusetts 02115, USA.,Department of Epidemiology, Harvard School of Public Health, Boston, Massachusetts 02115, USA
| | - Sesh A Sundararaman
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA.,Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Weimin Liu
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - William R Proto
- Sanger Institute Malaria Programme, The Wellcome Trust Sanger Institute, Hinxton, Cambridge CB10 1SA, UK
| | - Aaron Clauset
- Department of Computer Science, University of Colorado, Boulder, Colorado 80309, USA.,Santa Fe Institute, Santa Fe, New Mexico 87501, USA.,BioFrontiers Institute, University of Colorado, Boulder, Colorado 80303, USA
| | - Dorothy E Loy
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA.,Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Sheri Speede
- Sanaga-Yong Chimpanzee Rescue Center, IDA-Africa, Portland, Oregon 97204, USA
| | - Lindsey J Plenderleith
- Institute of Evolutionary Biology and Centre for Immunity, Infection and Evolution, University of Edinburgh, Edinburgh EH9 3JT, UK
| | - Paul M Sharp
- Institute of Evolutionary Biology and Centre for Immunity, Infection and Evolution, University of Edinburgh, Edinburgh EH9 3JT, UK
| | - Beatrice H Hahn
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA.,Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Julian C Rayner
- Sanger Institute Malaria Programme, The Wellcome Trust Sanger Institute, Hinxton, Cambridge CB10 1SA, UK
| | - Caroline O Buckee
- Center for Communicable Disease Dynamics, Harvard School of Public Health, Boston, Massachusetts 02115, USA.,Department of Epidemiology, Harvard School of Public Health, Boston, Massachusetts 02115, USA
| |
Collapse
|
35
|
Arama C, Skinner J, Doumtabe D, Portugal S, Tran TM, Jain A, Traore B, Doumbo OK, Davies DH, Troye-Blomberg M, Dolo A, Felgner PL, Crompton PD. Genetic Resistance to Malaria Is Associated With Greater Enhancement of Immunoglobulin (Ig)M Than IgG Responses to a Broad Array of Plasmodium falciparum Antigens. Open Forum Infect Dis 2015; 2:ofv118. [PMID: 26361633 PMCID: PMC4564391 DOI: 10.1093/ofid/ofv118] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2015] [Accepted: 07/28/2015] [Indexed: 11/17/2022] Open
Abstract
The breadth and magnitude of P. falciparum-specific IgM and IgG responses are greater in the malaria-resistant Fulani versus the malaria-susceptible Dogon, and P. falciparum-specific IgM responses more strongly distinguish the two ethnic groups. Background. People of the Fulani ethnic group are more resistant to malaria compared with genetically distinct ethnic groups, such as the Dogon people, in West Africa, and studies suggest that this resistance is mediated by enhanced antibody responses to Plasmodium falciparum antigens. However, prior studies measured antibody responses to <0.1% of P falciparum proteins, so whether the Fulani mount an enhanced and broadly reactive immunoglobulin (Ig)M and IgG response to P falciparum remains unknown. In general, little is known about the extent to which host genetics influence the overall antigen specificity of IgM and IgG responses to natural infections. Methods. In a cross-sectional study in Mali, we collected plasma from asymptomatic, age-matched Fulani (n = 24) and Dogon (n = 22) adults with or without concurrent P falciparum infection. We probed plasma against a protein microarray containing 1087 P falciparum antigens and compared IgM and IgG profiles by ethnicity. Results. We found that the breadth and magnitude of P falciparum-specific IgM and IgG responses were significantly higher in the malaria-resistant Fulani versus the malaria-susceptible Dogon, and, unexpectedly, P falciparum-specific IgM responses more strongly distinguished the 2 ethnic groups. Conclusions. These findings point to an underappreciated role for IgM in protection from malaria, and they suggest that host genetics may influence the antigen specificity of IgM and IgG responses to infection.
Collapse
Affiliation(s)
- Charles Arama
- Malaria Research and Training Centre, Department of Epidemiology of Parasitic Diseases, International Center of Excellence in Research , University of Sciences, Technique and Technology of Bamako , Mali
| | - Jeff Skinner
- Laboratory of Immunogenetics , National Institute of Allergy and Infectious Diseases, National Institutes of Health , Rockville, Maryland
| | - Didier Doumtabe
- Malaria Research and Training Centre, Department of Epidemiology of Parasitic Diseases, International Center of Excellence in Research , University of Sciences, Technique and Technology of Bamako , Mali
| | - Silvia Portugal
- Laboratory of Immunogenetics , National Institute of Allergy and Infectious Diseases, National Institutes of Health , Rockville, Maryland
| | - Tuan M Tran
- Laboratory of Immunogenetics , National Institute of Allergy and Infectious Diseases, National Institutes of Health , Rockville, Maryland
| | | | - Boubacar Traore
- Malaria Research and Training Centre, Department of Epidemiology of Parasitic Diseases, International Center of Excellence in Research , University of Sciences, Technique and Technology of Bamako , Mali
| | - Ogobara K Doumbo
- Malaria Research and Training Centre, Department of Epidemiology of Parasitic Diseases, International Center of Excellence in Research , University of Sciences, Technique and Technology of Bamako , Mali
| | | | | | - Amagana Dolo
- Malaria Research and Training Centre, Department of Epidemiology of Parasitic Diseases, International Center of Excellence in Research , University of Sciences, Technique and Technology of Bamako , Mali
| | | | - Peter D Crompton
- Laboratory of Immunogenetics , National Institute of Allergy and Infectious Diseases, National Institutes of Health , Rockville, Maryland
| |
Collapse
|
36
|
Guillotte M, Juillerat A, Igonet S, Hessel A, Petres S, Crublet E, Le Scanf C, Lewit-Bentley A, Bentley GA, Vigan-Womas I, Mercereau-Puijalon O. Immunogenicity of the Plasmodium falciparum PfEMP1-VarO Adhesin: Induction of Surface-Reactive and Rosette-Disrupting Antibodies to VarO Infected Erythrocytes. PLoS One 2015. [PMID: 26222304 PMCID: PMC4519321 DOI: 10.1371/journal.pone.0134292] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Adhesion of Plasmodium falciparum-infected red blood cells (iRBC) to human erythrocytes (i.e. rosetting) is associated with severe malaria. Rosetting results from interactions between a subset of variant PfEMP1 (Plasmodium falciparum erythrocyte membrane protein 1) adhesins and specific erythrocyte receptors. Interfering with such interactions is considered a promising intervention against severe malaria. To evaluate the feasibility of a vaccine strategy targetting rosetting, we have used here the Palo Alto 89F5 VarO rosetting model. PfEMP1-VarO consists of five Duffy-Binding Like domains (DBL1-5) and one Cysteine-rich Interdomain Region (CIDR1). The binding domain has been mapped to DBL1 and the ABO blood group was identified as the erythrocyte receptor. Here, we study the immunogenicity of all six recombinant PfEMP1-VarO domains and the DBL1- CIDR1 Head domain in BALB/c and outbred OF1 mice. Five readouts of antibody responses are explored: ELISA titres on the recombinant antigen, VarO-iRBC immunoblot reactivity, VarO-iRBC surface-reactivity, capacity to disrupt VarO rosettes and the capacity to prevent VarO rosette formation. For three domains, we explore influence of the expression system on antigenicity and immunogenicity. We show that correctly folded PfEMP1 domains elicit high antibody titres and induce a homogeneous response in outbred and BALB/c mice after three injections. High levels of rosette-disrupting and rosette-preventing antibodies are induced by DBL1 and the Head domain. Reduced-alkylated or denatured proteins fail to induce surface-reacting and rosette-disrupting antibodies, indicating that surface epitopes are conformational. We also report limited cross-reactivity between some PfEMP1 VarO domains. These results highlight the high immunogenicity of the individual domains in outbred animals and provide a strong basis for a rational vaccination strategy targeting rosetting.
Collapse
MESH Headings
- Adhesins, Bacterial/chemistry
- Adhesins, Bacterial/genetics
- Adhesins, Bacterial/immunology
- Animals
- Antibodies, Protozoan/blood
- Antigens, Protozoan/chemistry
- Antigens, Protozoan/genetics
- Cross Reactions
- Epitopes/chemistry
- Epitopes/genetics
- Erythrocytes/parasitology
- Female
- Humans
- Malaria Vaccines/chemistry
- Malaria Vaccines/genetics
- Malaria Vaccines/immunology
- Malaria, Falciparum/immunology
- Malaria, Falciparum/parasitology
- Malaria, Falciparum/prevention & control
- Mice
- Mice, Inbred BALB C
- Plasmodium falciparum/genetics
- Plasmodium falciparum/immunology
- Plasmodium falciparum/pathogenicity
- Protein Structure, Tertiary
- Protozoan Proteins/chemistry
- Protozoan Proteins/genetics
- Protozoan Proteins/immunology
- Recombinant Proteins/chemistry
- Recombinant Proteins/genetics
- Recombinant Proteins/immunology
- Rosette Formation
Collapse
Affiliation(s)
- Micheline Guillotte
- Institut Pasteur, Unité d'Immunologie Moléculaire des Parasites, Paris, France
- Centre National de la Recherche Scientifique, Unité de recherche associée 2581, Paris, France
| | - Alexandre Juillerat
- Institut Pasteur, Unité d'Immunologie Structurale, Paris, France
- Centre National de la Recherche Scientifique, Unité de recherche associée 2185, Paris, France
| | - Sébastien Igonet
- Institut Pasteur, Unité d'Immunologie Structurale, Paris, France
- Centre National de la Recherche Scientifique, Unité de recherche associée 2185, Paris, France
| | - Audrey Hessel
- Institut Pasteur, Unité d'Immunologie Moléculaire des Parasites, Paris, France
- Institut Pasteur, Unité d'Immunologie Structurale, Paris, France
| | - Stéphane Petres
- Institut Pasteur, Plate-forme de Protéines recombinantes (PFPR), Paris, France
| | - Elodie Crublet
- Institut Pasteur, Plate-forme de Protéines recombinantes (PFPR), Paris, France
| | - Cécile Le Scanf
- Bordeaux Biothèques Santé, Groupe hospitalier Pellegrin, Centre Hospitalier Universitaire de Bordeaux - Bordeaux, France
| | - Anita Lewit-Bentley
- Institut Pasteur, Unité d'Immunologie Structurale, Paris, France
- Centre National de la Recherche Scientifique, Unité de recherche associée 2185, Paris, France
| | - Graham A. Bentley
- Institut Pasteur, Unité d'Immunologie Structurale, Paris, France
- Centre National de la Recherche Scientifique, Unité de recherche associée 2185, Paris, France
| | - Inès Vigan-Womas
- Institut Pasteur, Unité d'Immunologie Moléculaire des Parasites, Paris, France
- Centre National de la Recherche Scientifique, Unité de recherche associée 2581, Paris, France
| | - Odile Mercereau-Puijalon
- Institut Pasteur, Unité d'Immunologie Moléculaire des Parasites, Paris, France
- Centre National de la Recherche Scientifique, Unité de recherche associée 2581, Paris, France
- * E-mail:
| |
Collapse
|
37
|
Multiple Plasmodium falciparum Erythrocyte Membrane Protein 1 Variants per Genome Can Bind IgM via Its Fc Fragment Fcμ. Infect Immun 2015. [PMID: 26216422 PMCID: PMC4567627 DOI: 10.1128/iai.00337-15] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The Plasmodium falciparum erythrocyte membrane protein 1 (PfEMP1) adhesive proteins expressed on the surfaces of infected erythrocytes (IEs) are of key importance in the pathogenesis of P. falciparum malaria. Several structurally and functionally defined PfEMP1 types have been associated with severe clinical manifestations, such as cerebral malaria in children and placental malaria in pregnant women. PfEMP1 that can bind the Fc part of IgM (Fcμ) characterizes one such type, although the functional significance of this IgM binding to PfEMP1 remains unclear. In this study, we report the identification and functional analysis of five IgM-binding PfEMP1 proteins encoded by P. falciparum NF54. In addition to the VAR2CSA-type PFL0030c protein, already known to bind Fcμ and to mediate chondroitin sulfate A (CSA)-specific adhesion of IEs in the placenta, we found four PfEMP1 proteins not previously known to bind IgM this way. Although they all contained Duffy binding-like ε (DBLε) domains similar to those in VAR2CSA-type PfEMP1, they did not mediate IE adhesion to CSA, and IgM binding did not shield IEs from phagocytosis of IgG-opsonized IEs. In this way, these new IgM-binding PfEMP1 proteins resemble the rosette-mediating and IgM-binding PfEMP1 HB3VAR06, but none of them mediated formation of rosettes. We could map the capacity for Fc-specific IgM binding to DBLε domains near the C terminus for three of the four PfEMP1 proteins tested. Our study provides new evidence regarding Fc-dependent binding of IgM to PfEMP1, which appears to be a common and multifunctional phenotype.
Collapse
|
38
|
Semblat JP, Ghumra A, Czajkowsky DM, Wallis R, Mitchell DA, Raza A, Rowe JA. Identification of the minimal binding region of a Plasmodium falciparum IgM binding PfEMP1 domain. Mol Biochem Parasitol 2015; 201:76-82. [PMID: 26094597 PMCID: PMC4539346 DOI: 10.1016/j.molbiopara.2015.06.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2015] [Revised: 05/22/2015] [Accepted: 06/08/2015] [Indexed: 11/29/2022]
Abstract
Many pathogens bind the Fc region of host immunoglobulin to evade immunity. We examined a Plasmodium falciparum IgM binding PfEMP1 domain TM284var1 DBL4ζ. We identified the minimal IgM binding region comprising subdomain 2 and flanking regions. Specific charged amino acids were mutated but did not markedly affect IgM binding. Existing models of PfEMP1-IgM interaction need to be revised.
Binding of host immunoglobulin is a common immune evasion mechanism demonstrated by microbial pathogens. Previous work showed that the malaria parasite Plasmodium falciparum binds the Fc-region of human IgM molecules, resulting in a coating of IgM on the surface of infected erythrocytes. IgM binding is a property of P. falciparum strains showing virulence-related phenotypes such as erythrocyte rosetting. The parasite ligands for IgM binding are members of the diverse P. falciparum Erythrocyte Membrane Protein One (PfEMP1) family. However, little is known about the amino acid sequence requirements for IgM binding. Here we studied an IgM binding domain from a rosette-mediating PfEMP1 variant, DBL4ζ of TM284var1, and found that the minimal IgM binding region mapped to the central region of the DBL domain, comprising all of subdomain 2 and adjoining parts of subdomains 1 and 3. Site-directed mutagenesis of charged amino acids within subdomain 2, predicted by molecular modelling to form the IgM binding site, showed no marked effect on IgM binding properties. Overall, this study identifies the minimal IgM binding region of a PfEMP1 domain, and indicates that the existing homology model of PfEMP1-IgM interaction is incorrect. Further work is needed to identify the specific interaction site for IgM within the minimal binding region of PfEMP1.
Collapse
Affiliation(s)
- Jean-Philippe Semblat
- Institute of Immunology and Infection Research, Centre for Immunity, Infection and Evolution, School of Biological Sciences, University of Edinburgh, Edinburgh EH9 3FL, United Kingdom
| | - Ashfaq Ghumra
- Institute of Immunology and Infection Research, Centre for Immunity, Infection and Evolution, School of Biological Sciences, University of Edinburgh, Edinburgh EH9 3FL, United Kingdom
| | - Daniel M Czajkowsky
- Bio-ID Center, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Russell Wallis
- Department of Infection, Immunity and Inflammation, University of Leicester, Leicester, United Kingdom
| | - Daniel A Mitchell
- Clinical Sciences Research Laboratories, Warwick Medical School, Coventry CV2 2DX, United Kingdom
| | - Ahmed Raza
- Institute of Immunology and Infection Research, Centre for Immunity, Infection and Evolution, School of Biological Sciences, University of Edinburgh, Edinburgh EH9 3FL, United Kingdom
| | - J Alexandra Rowe
- Institute of Immunology and Infection Research, Centre for Immunity, Infection and Evolution, School of Biological Sciences, University of Edinburgh, Edinburgh EH9 3FL, United Kingdom.
| |
Collapse
|
39
|
IgG antibodies to endothelial protein C receptor-binding cysteine-rich interdomain region domains of Plasmodium falciparum erythrocyte membrane protein 1 are acquired early in life in individuals exposed to malaria. Infect Immun 2015; 83:3096-103. [PMID: 26015475 DOI: 10.1128/iai.00271-15] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2015] [Accepted: 05/11/2015] [Indexed: 11/20/2022] Open
Abstract
Severe malaria syndromes are precipitated by Plasmodium falciparum parasites binding to endothelial receptors on the vascular lining. This binding is mediated by members of the highly variant P. falciparum erythrocyte membrane protein 1 (PfEMP1) family. We have previously identified a subset of PfEMP1 proteins associated with severe malaria and found that the receptor for these PfEMP1 variants is endothelial protein C receptor (EPCR). The binding is mediated through the amino-terminal cysteine-rich interdomain region (CIDR) of the subtypes α1.1 and α1.4 to α1.8. In this study, we investigated the acquisition of anti-CIDR antibodies using plasma samples collected in four study villages with different malaria transmission intensities in northeastern Tanzania during a period with a decline in malaria transmission. We show that individuals exposed to high levels of malaria transmission acquire antibodies to EPCR-binding CIDR domains early in life and that these antibodies are acquired more rapidly than antibodies to other CIDR domains. The rate by which antibodies to EPCR-binding CIDR domains are acquired in populations in areas where malaria is endemic is determined by the malaria transmission intensity, and on a population level, the antibodies are rapidly lost if transmission is interrupted. This indicates that sustained exposure is required to maintain the production of the antibodies.
Collapse
|
40
|
Hviid L, Jensen ATR. PfEMP1 - A Parasite Protein Family of Key Importance in Plasmodium falciparum Malaria Immunity and Pathogenesis. ADVANCES IN PARASITOLOGY 2015; 88:51-84. [PMID: 25911365 DOI: 10.1016/bs.apar.2015.02.004] [Citation(s) in RCA: 107] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Plasmodium falciparum causes the most severe form of malaria and is responsible for essentially all malaria-related deaths. The accumulation in various tissues of erythrocytes infected by mature P. falciparum parasites can lead to circulatory disturbances and inflammation, and is thought to be a central element in the pathogenesis of the disease. It is mediated by the interaction of parasite ligands on the erythrocyte surface and a range of host receptor molecules in many organs and tissues. Among several proteins and protein families implicated in this process, the P. falciparum erythrocyte membrane protein 1 (PfEMP1) family of high-molecular weight and highly variable antigens appears to be the most prominent. In this chapter, we aim to provide a systematic overview of the current knowledge about these proteins, their structure, their function, how they are presented on the erythrocyte surface, and how the var genes encoding them are regulated. The role of PfEMP1 in the pathogenesis of malaria, PfEMP1-specific immune responses, and the prospect of PfEMP1-specific vaccination against malaria are also covered briefly.
Collapse
Affiliation(s)
- Lars Hviid
- Centre for Medical Parasitology, University of Copenhagen and Copenhagen University Hospital (Rigshospitalet), Copenhagen, Denmark
| | - Anja T R Jensen
- Centre for Medical Parasitology, University of Copenhagen and Copenhagen University Hospital (Rigshospitalet), Copenhagen, Denmark
| |
Collapse
|
41
|
Binding of subdomains 1/2 of PfEMP1-DBL1α to heparan sulfate or heparin mediates Plasmodium falciparum rosetting. PLoS One 2015; 10:e0118898. [PMID: 25742651 PMCID: PMC4351205 DOI: 10.1371/journal.pone.0118898] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2014] [Accepted: 01/20/2015] [Indexed: 11/24/2022] Open
Abstract
The capacity of Plasmodium falciparum parasitized erythrocytes (pRBC) to adhere to the endothelial lining in the microvasculature and to red blood cells (RBC) is associated with the virulence of the parasite, the pathogenesis and development of severe malaria. Rosetting, the binding of uninfected RBC to pRBC, is frequently observed in individuals with severe malaria and is mediated by the N-terminal NTS-DBL1α domain of the adhesin Plasmodium falciparum erythrocyte membrane protein 1 (PfEMP1) expressed at the surface of the pRBC. Heparan sulfate has been suggested to be an important receptor for the NTS-DBL1α variant IT4var60 expressed by the parasite FCR3S1.2. Here, we have determined the binding site of NTS-DBL1α (IT4var60) to the RBC and heparin using a set of recombinant, mutated proteins expressed in and purified from E. coli. All the variants were studied for their ability to bind to RBC, their capacities to disrupt FCR3S1.2 rosettes, their affinities for heparin and their binding to rosette-disruptive mAbs. Our results suggest that NTS-DBL1α mediates binding to RBC through a limited number of basic amino acid residues localized on the surface of subdomains 1 (SD1) and 2 (SD2). The SD2-binding site is localized in close proximity to one of two previously identified binding sites in the rosetting PfEMP1 of the parasite PaloAlto-varO. The binding site in SD2 of NTS-DBL1α could represent a template for the development of anti-rosetting drugs.
Collapse
|
42
|
Stevenson L, Huda P, Jeppesen A, Laursen E, Rowe JA, Craig A, Streicher W, Barfod L, Hviid L. Investigating the function of Fc-specific binding of IgM to Plasmodium falciparum erythrocyte membrane protein 1 mediating erythrocyte rosetting. Cell Microbiol 2015; 17:819-31. [PMID: 25482886 PMCID: PMC4737123 DOI: 10.1111/cmi.12403] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2014] [Revised: 11/28/2014] [Accepted: 12/01/2014] [Indexed: 02/02/2023]
Abstract
Acquired protection from Plasmodium falciparum malaria takes years to develop, probably reflecting the ability of the parasites to evade immunity. A recent example of this is the binding of the Fc region of IgM to VAR2CSA‐type PfEMP1. This interferes with specific IgG recognition and phagocytosis of opsonized infected erythrocytes (IEs) without compromising the placental IE adhesion mediated by this PfEMP1 type. IgM also binds via Fc to several other PfEMP1 proteins, where it has been proposed to facilitate rosetting (binding of uninfected erythrocytes to a central IE). To further dissect the functional role of Fc‐mediated IgM binding to PfEMP1, we studied the PfEMP1 protein HB3VAR06, which mediates rosetting and binds IgM. Binding of IgM to this PfEMP1 involved the Fc domains Cμ3‐Cμ4 in IgM and the penultimate DBL domain (DBLζ2) at the C‐terminus of HB3VAR06. However, IgM binding did not inhibit specific IgG labelling of HB3VAR06 or shield IgG‐opsonized IEs from phagocytosis. Instead, IgM was required for rosetting, and each pentameric IgM molecule could bind two HB3VAR06 molecules. Together, our data indicate that the primary function of Fc‐mediated IgM binding in rosetting is not to shield IE from specific IgG recognition and phagocytosis as in VAR2CSA‐type PfEMP1. Rather, the function appears to be strengthening of IE–erythrocyte interactions. In conclusion, our study provides new evidence on the molecular details and functional significance of rosetting, a long‐recognized marker of parasites that cause severe P. falciparum malaria.
Collapse
Affiliation(s)
- Liz Stevenson
- Centre for Medical Parasitology, Department of International Health, Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.,Department of Infectious Diseases, Copenhagen University Hospital (Rigshospitalet), Copenhagen, Denmark
| | - Pie Huda
- Niels Bohr Institute, Faculty of Science, University of Copenhagen, Copenhagen, Denmark
| | - Anine Jeppesen
- Centre for Medical Parasitology, Department of International Health, Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.,Department of Infectious Diseases, Copenhagen University Hospital (Rigshospitalet), Copenhagen, Denmark
| | - Erik Laursen
- Centre for Medical Parasitology, Department of International Health, Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.,Department of Infectious Diseases, Copenhagen University Hospital (Rigshospitalet), Copenhagen, Denmark
| | - J Alexandra Rowe
- Institute of Immunology and Infection Research, University of Edinburgh, Edinburgh, UK
| | - Alister Craig
- Liverpool School of Tropical Medicine, Liverpool, UK
| | - Werner Streicher
- Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Lea Barfod
- Centre for Medical Parasitology, Department of International Health, Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.,Department of Infectious Diseases, Copenhagen University Hospital (Rigshospitalet), Copenhagen, Denmark
| | - Lars Hviid
- Centre for Medical Parasitology, Department of International Health, Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.,Department of Infectious Diseases, Copenhagen University Hospital (Rigshospitalet), Copenhagen, Denmark
| |
Collapse
|
43
|
Conway DJ. Paths to a malaria vaccine illuminated by parasite genomics. Trends Genet 2015; 31:97-107. [PMID: 25620796 PMCID: PMC4359294 DOI: 10.1016/j.tig.2014.12.005] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2014] [Revised: 12/19/2014] [Accepted: 12/19/2014] [Indexed: 11/24/2022]
Abstract
Discovery of vaccine candidate antigens by parasite genome sequence analyses. Genetic crosses, linkage group selection, and functional studies on parasites. Characterizing developmental and epigenetic variation alongside allelic polymorphism. Selection by naturally acquired immune responses helps to focus vaccine design.
More human death and disease is caused by malaria parasites than by all other eukaryotic pathogens combined. As early as the sequencing of the first human genome, malaria parasite genomics was prioritized to fuel the discovery of vaccine candidate antigens. This stimulated increased research on malaria, generating new understanding of the cellular and molecular mechanisms of infection and immunity. This review of recent developments illustrates how new approaches in parasite genomics, and increasingly large amounts of data from population studies, are helping to identify antigens that are promising lead targets. Although these results have been encouraging, effective discovery and characterization need to be coupled with more innovation and funding to translate findings into newly designed vaccine products for clinical trials.
Collapse
Affiliation(s)
- David J Conway
- Pathogen Molecular Biology Department, Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, Keppel Street, London WC1E 7HT, UK.
| |
Collapse
|
44
|
Albrecht L, Angeletti D, Moll K, Blomqvist K, Valentini D, D'Alexandri FL, Maurer M, Wahlgren M. B-cell epitopes in NTS-DBL1α of PfEMP1 recognized by human antibodies in Rosetting Plasmodium falciparum. PLoS One 2014; 9:e113248. [PMID: 25438249 PMCID: PMC4249881 DOI: 10.1371/journal.pone.0113248] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2014] [Accepted: 10/21/2014] [Indexed: 11/20/2022] Open
Abstract
Plasmodium falciparum is the most lethal of the human malaria parasites. The virulence is associated with the capacity of the infected red blood cell (iRBC) to sequester inside the deep microvasculature where it may cause obstruction of the blood-flow when binding is excessive. Rosetting, the adherence of the iRBC to uninfected erythrocytes, has been found associated with severe malaria and found to be mediated by the NTS-DBL1α-domain of Plasmodium falciparum Erythrocyte Membrane Protein 1 (PfEMP1). Here we show that the reactivity of plasma of Cameroonian children with the surface of the FCR3S1.2-iRBC correlated with the capacity to disrupt rosettes and with the antibody reactivity with a recombinant PfEMP1 (NTS-DBL1α of IT4var60) expressed by parasite FCR3S1.2. The plasma-reactivity in a microarray, consisting of 96 overlapping 15-mer long peptides covering the NTS-DBL1α domain from IT4var60 sequence, was compared with their capacity to disrupt rosettes and we identified five peptides where the reactivity were correlated. Three of the peptides were localized in subdomain-1 and 2. The other two peptide-sequences were localized in the NTS-domain and in subdomain-3. Further, principal component analysis and orthogonal partial least square analysis generated a model that supported these findings. In conclusion, human antibody reactivity with short linear-peptides of NTS-DBL1α of PfEMP1 suggests subdomains 1 and 2 to hold anti-rosetting epitopes recognized by anti-rosetting antibodies. The data suggest rosetting to be mediated by the variable areas of PfEMP1 but also to involve structurally relatively conserved areas of the molecule that may induce biologically active antibodies.
Collapse
Affiliation(s)
- Letusa Albrecht
- Department of Microbiology, Tumor- and Cell Biology (MTC), Karolinska Institutet, Stockholm, Sweden
- * E-mail: (MW); (LA)
| | - Davide Angeletti
- Department of Microbiology, Tumor- and Cell Biology (MTC), Karolinska Institutet, Stockholm, Sweden
| | - Kirsten Moll
- Department of Microbiology, Tumor- and Cell Biology (MTC), Karolinska Institutet, Stockholm, Sweden
| | - Karin Blomqvist
- Department of Microbiology, Tumor- and Cell Biology (MTC), Karolinska Institutet, Stockholm, Sweden
| | - Davide Valentini
- Therapeutic Immunology (TIM), Department of Laboratory Medicine, Karolinska Institutet, Stockholm, Sweden
- CAST, Karolinska University Hospital, Huddinge, Sweden
| | | | - Markus Maurer
- Therapeutic Immunology (TIM), Department of Laboratory Medicine, Karolinska Institutet, Stockholm, Sweden
- CAST, Karolinska University Hospital, Huddinge, Sweden
| | - Mats Wahlgren
- Department of Microbiology, Tumor- and Cell Biology (MTC), Karolinska Institutet, Stockholm, Sweden
- * E-mail: (MW); (LA)
| |
Collapse
|
45
|
Opi DH, Ochola LB, Tendwa M, Siddondo BR, Ocholla H, Fanjo H, Ghumra A, Ferguson DJP, Rowe JA, Williams TN. Mechanistic Studies of the Negative Epistatic Malaria-protective Interaction Between Sickle Cell Trait and α +thalassemia. EBioMedicine 2014; 1:29-36. [PMID: 25893206 PMCID: PMC4397954 DOI: 10.1016/j.ebiom.2014.10.006] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Background Individually, the red blood cell (RBC) polymorphisms sickle cell trait (HbAS) and α+thalassemia protect against severe Plasmodium falciparum malaria. It has been shown through epidemiological studies that the co-inheritance of both conditions results in a loss of the protection afforded by each, but the biological mechanisms remain unknown. Methods We used RBCs from > 300 donors of various HbAS and α+thalassemia genotype combinations to study the individual and combinatorial effects of these polymorphisms on a range of putative P. falciparum virulence phenotypes in-vitro, using four well-characterized P. falciparum laboratory strains. We studied cytoadhesion of parasitized RBCs (pRBCs) to the endothelial receptors CD36 and ICAM1, rosetting of pRBCs with uninfected RBCs, and pRBC surface expression of the parasite-derived adhesion molecule P. falciparum erythrocyte membrane protein-1 (PfEMP1). Findings We confirmed previous reports that HbAS pRBCs show reduced cytoadhesion, rosetting and PfEMP1 expression levels compared to normal pRBC controls. Furthermore, we found that co-inheritance of HbAS with α+thalassemia consistently reversed these effects, such that pRBCs of mixed genotype showed levels of cytoadhesion, rosetting and PfEMP1 expression that were indistinguishable from those seen in normal pRBCs. However, pRBCs with α+thalassemia alone showed parasite strain-specific effects on adhesion, and no consistent reduction in PfEMP1 expression. Interpretation Our data support the hypothesis that the negative epistasis between HbAS and α+thalassemia observed in epidemiological studies might be explained by host genotype-specific changes in the pRBC-adhesion properties that contribute to parasite sequestration and disease pathogenesis in vivo. The mechanism by which α+thalassemia on its own protects against severe malaria remains unresolved.
Collapse
Affiliation(s)
- D Herbert Opi
- Kenya Medical Research Institute-Wellcome Trust Research Programme, 80108 Kilifi, Kenya ; Centre for Immunity, Infection and Evolution, Institute of Immunology and Infection Research, School of Biological Sciences, University of Edinburgh, EH9 3FL, United Kingdom
| | - Lucy B Ochola
- Kenya Medical Research Institute-Wellcome Trust Research Programme, 80108 Kilifi, Kenya
| | - Metrine Tendwa
- Kenya Medical Research Institute-Wellcome Trust Research Programme, 80108 Kilifi, Kenya
| | - Bethsheba R Siddondo
- Kenya Medical Research Institute-Wellcome Trust Research Programme, 80108 Kilifi, Kenya
| | - Harold Ocholla
- Kenya Medical Research Institute-Wellcome Trust Research Programme, 80108 Kilifi, Kenya
| | - Harry Fanjo
- Kenya Medical Research Institute-Wellcome Trust Research Programme, 80108 Kilifi, Kenya
| | - Ashfaq Ghumra
- Centre for Immunity, Infection and Evolution, Institute of Immunology and Infection Research, School of Biological Sciences, University of Edinburgh, EH9 3FL, United Kingdom
| | - David J P Ferguson
- Nuffield Department of Clinical Laboratory Science, University of Oxford, John Radcliffe Hospital, OX3 9DU, Oxford, United Kingdom
| | - J Alexandra Rowe
- Centre for Immunity, Infection and Evolution, Institute of Immunology and Infection Research, School of Biological Sciences, University of Edinburgh, EH9 3FL, United Kingdom
| | - Thomas N Williams
- Kenya Medical Research Institute-Wellcome Trust Research Programme, 80108 Kilifi, Kenya ; Department of Medicine, Imperial College, St Mary's Hospital, Praed Street, London W21NY, United Kingdom
| |
Collapse
|
46
|
Warimwe GM, Fegan G, Kiragu EW, Musyoki JN, Macharia AW, Marsh K, Williams TN, Bull PC. An assessment of the impact of host polymorphisms on Plasmodium falciparum var gene expression patterns among Kenyan children. BMC Infect Dis 2014; 14:524. [PMID: 25267261 PMCID: PMC4262213 DOI: 10.1186/1471-2334-14-524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2014] [Accepted: 09/24/2014] [Indexed: 11/16/2022] Open
Abstract
BACKGROUND Host genotype accounts for a component of the variability in susceptibility to childhood Plasmodium falciparum malaria. However, despite numerous examples of host polymorphisms associated with tolerance or resistance to infection, direct evidence for an impact of host genetic polymorphisms on the in vivo parasite population is difficult to obtain. Parasite molecules whose expression is most likely to be associated with such adaptation are those that are directly involved in the host-parasite interaction. A prime candidate is the family of parasite var gene-encoded molecules on P. falciparum-infected erythrocytes, PfEMP1, which binds various host molecules and facilitates parasite sequestration in host tissues to avoid clearance by the spleen. METHODS To assess the impact of host genotype on the infecting parasite population we used a published parasite var gene sequence dataset to compare var gene expression patterns between parasites from children with polymorphisms in molecules thought to interact with or modulate display of PfEMP1 on the infected erythrocyte surface: ABO blood group, haemoglobin S, alpha-thalassaemia, the T188G polymorphism of CD36 and the K29M polymorphism of ICAM1. RESULTS Expression levels of 'group A-like' var genes, which encode a specific group of PfEMP1 variants previously associated with low host immunity and severe malaria, showed signs of elevation among children of blood group AB. No other host factor tested showed evidence for an association with var expression. CONCLUSIONS Our preliminary findings suggest that host ABO blood group may have a measurable impact on the infecting parasite population. This needs to be verified in larger studies.
Collapse
Affiliation(s)
- George M Warimwe
- />Kenya Medical Research Institute-Wellcome Trust Research Programme, Kilifi, Kenya
- />The Jenner Institute, University of Oxford, Oxford, UK
| | - Gregory Fegan
- />Kenya Medical Research Institute-Wellcome Trust Research Programme, Kilifi, Kenya
- />Nuffield Department of Clinical Medicine, University of Oxford, Oxford, UK
| | - Esther W Kiragu
- />Kenya Medical Research Institute-Wellcome Trust Research Programme, Kilifi, Kenya
| | - Jennifer N Musyoki
- />Kenya Medical Research Institute-Wellcome Trust Research Programme, Kilifi, Kenya
| | - Alexander W Macharia
- />Kenya Medical Research Institute-Wellcome Trust Research Programme, Kilifi, Kenya
| | - Kevin Marsh
- />Kenya Medical Research Institute-Wellcome Trust Research Programme, Kilifi, Kenya
- />Nuffield Department of Clinical Medicine, University of Oxford, Oxford, UK
| | - Thomas N Williams
- />Kenya Medical Research Institute-Wellcome Trust Research Programme, Kilifi, Kenya
- />Department of Medicine, Imperial College, London, UK
| | - Peter C Bull
- />Kenya Medical Research Institute-Wellcome Trust Research Programme, Kilifi, Kenya
- />Nuffield Department of Clinical Medicine, University of Oxford, Oxford, UK
| |
Collapse
|
47
|
The role of PfEMP1 adhesion domain classification in Plasmodium falciparum pathogenesis research. Mol Biochem Parasitol 2014; 195:82-7. [PMID: 25064606 DOI: 10.1016/j.molbiopara.2014.07.006] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2014] [Revised: 06/14/2014] [Accepted: 07/14/2014] [Indexed: 11/24/2022]
Abstract
The Plasmodium falciparum erythrocyte membrane protein 1 (PfEMP1) family has a key role in parasite survival, transmission, and virulence. PfEMP1 are exported to the erythrocyte membrane and mediate binding of infected erythrocytes to the endothelial lining of blood vessels. This process aids parasite survival by avoiding spleen-dependent killing mechanisms, but it is associated with adhesion-based disease complications. Switching between PfEMP1 proteins enables parasites to evade host immunity and modifies parasite tropism for different microvascular beds. The PfEMP1 protein family is one of the most diverse adhesion modules in nature. This review covers PfEMP1 adhesion domain classification and the significant role it is playing in deciphering and deconvoluting P. falciparum cytoadhesion and disease.
Collapse
|
48
|
B-cell responses to pregnancy-restricted and -unrestricted Plasmodium falciparum erythrocyte membrane protein 1 antigens in Ghanaian women naturally exposed to malaria parasites. Infect Immun 2014; 82:1860-71. [PMID: 24566620 DOI: 10.1128/iai.01514-13] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Protective immunity to Plasmodium falciparum malaria acquired after natural exposure is largely antibody mediated. IgG-specific P. falciparum EMP1 (PfEMP1) proteins on the infected erythrocyte surface are particularly important. The transient antibody responses and the slowly acquired protective immunity probably reflect the clonal antigenic variation and allelic polymorphism of PfEMP1. However, it is likely that other immune-evasive mechanisms are also involved, such as interference with formation and maintenance of immunological memory. We measured PfEMP1-specific antibody levels by enzyme-linked immunosorbent assay (ELISA) and memory B-cell frequencies by enzyme-linked immunosorbent spot (ELISPOT) assay in a cohort of P. falciparum-exposed nonpregnant Ghanaian women. The antigens used were a VAR2CSA-type PfEMP1 (IT4VAR04) with expression restricted to parasites infecting the placenta, as well as two commonly recognized PfEMP1 proteins (HB3VAR06 and IT4VAR60) implicated in rosetting and not pregnancy restricted. This enabled, for the first time, a direct comparison in the same individuals of immune responses specific for a clinically important parasite antigen expressed only during well-defined periods (pregnancy) to responses specific for comparable antigens expressed independent of pregnancy. Our data indicate that PfEMP1-specific B-cell memory is adequately acquired even when antigen exposure is infrequent (e.g., VAR2CSA-type PfEMP1). Furthermore, immunological memory specific for VAR2CSA-type PfEMP1 can be maintained for many years without antigen reexposure and after circulating antigen-specific IgG has disappeared. The study provides evidence that natural exposure to P. falciparum leads to formation of durable B-cell immunity to clinically important PfEMP1 antigens. This has encouraging implications for current efforts to develop PfEMP1-based vaccines.
Collapse
|
49
|
Using the PfEMP1 head structure binding motif to deal a blow at severe malaria. PLoS One 2014; 9:e88420. [PMID: 24516657 PMCID: PMC3917906 DOI: 10.1371/journal.pone.0088420] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2013] [Accepted: 11/12/2013] [Indexed: 01/13/2023] Open
Abstract
Plasmodium falciparum (Pf) malaria causes 200 million cases worldwide, 8 million being severe and complicated leading to ∼1 million deaths and ∼100,000 abortions annually. Plasmodium falciparum erythrocyte membrane protein 1 (PfEMP1) has been implicated in cytoadherence and infected erythrocyte rosette formation, associated with cerebral malaria; chondroitin sulphate-A attachment and infected erythrocyte sequestration related to pregnancy-associated malaria and other severe forms of disease. An endothelial cell high activity binding peptide is described in several of this ∼300 kDa hypervariable protein's domains displaying a conserved motif (GACxPxRRxxLC); it established H-bonds with other binding peptides to mediate red blood cell group A and chondroitin sulphate attachment. This motif (when properly modified) induced PfEMP1-specific strain-transcending, fully-protective immunity for the first time in experimental challenge in Aotus monkeys, opening the way forward for a long sought-after vaccine against severe malaria.
Collapse
|
50
|
Rosetting Plasmodium falciparum-infected erythrocytes bind to human brain microvascular endothelial cells in vitro, demonstrating a dual adhesion phenotype mediated by distinct P. falciparum erythrocyte membrane protein 1 domains. Infect Immun 2013; 82:949-59. [PMID: 24343658 PMCID: PMC3958005 DOI: 10.1128/iai.01233-13] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Adhesion interactions between Plasmodium falciparum-infected erythrocytes (IE) and human cells underlie the pathology of severe malaria. IE cytoadhere to microvascular endothelium or form rosettes with uninfected erythrocytes to survive in vivo by sequestering IE in the microvasculature and avoiding splenic clearance mechanisms. Both rosetting and cytoadherence are mediated by the parasite-derived IE surface protein family Plasmodium falciparum erythrocyte membrane protein 1 (PfEMP1). Rosetting and cytoadherence have been widely studied as separate entities; however, the ability of rosetting P. falciparum strains to cytoadhere has received little attention. Here, we show that IE of the IT/R29 strain expressing a rosette-mediating PfEMP1 variant (IT4var09) cytoadhere in vitro to a human brain microvascular endothelial cell line (HBEC-5i). Cytoadherence was inhibited by heparin and by treatment of HBEC-5i with heparinase III, suggesting that the endothelial receptors for IE binding are heparan sulfate proteoglycans. Antibodies to the N-terminal regions of the IT4var09 PfEMP1 variant (NTS-DBL1α and DBL2γ domains) specifically inhibited and reversed cytoadherence down to low concentrations (<10 μg/ml of total IgG). Surface plasmon resonance experiments showed that the NTS-DBLα and DBL2γ domains bind strongly to heparin, with half-maximal binding at a concentration of ∼0.5 μM in both cases. Therefore, cytoadherence of IT/R29 IE is distinct from rosetting, which is primarily mediated by NTS-DBL1α interactions with complement receptor 1. These data show that IT4var09-expressing parasites are capable of dual interactions with both endothelial cells and uninfected erythrocytes via distinct receptor-ligand interactions.
Collapse
|