1
|
Sonnert ND, Rosen CE, Ghazi AR, Franzosa EA, Duncan-Lowey B, González-Hernández JA, Huck JD, Yang Y, Dai Y, Rice TA, Nguyen MT, Song D, Cao Y, Martin AL, Bielecka AA, Fischer S, Guan C, Oh J, Huttenhower C, Ring AM, Palm NW. A host-microbiota interactome reveals extensive transkingdom connectivity. Nature 2024; 628:171-179. [PMID: 38509360 DOI: 10.1038/s41586-024-07162-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2022] [Accepted: 02/05/2024] [Indexed: 03/22/2024]
Abstract
The myriad microorganisms that live in close association with humans have diverse effects on physiology, yet the molecular bases for these impacts remain mostly unknown1-3. Classical pathogens often invade host tissues and modulate immune responses through interactions with human extracellular and secreted proteins (the 'exoproteome'). Commensal microorganisms may also facilitate niche colonization and shape host biology by engaging host exoproteins; however, direct exoproteome-microbiota interactions remain largely unexplored. Here we developed and validated a novel technology, BASEHIT, that enables proteome-scale assessment of human exoproteome-microbiome interactions. Using BASEHIT, we interrogated more than 1.7 million potential interactions between 519 human-associated bacterial strains from diverse phylogenies and tissues of origin and 3,324 human exoproteins. The resulting interactome revealed an extensive network of transkingdom connectivity consisting of thousands of previously undescribed host-microorganism interactions involving 383 strains and 651 host proteins. Specific binding patterns within this network implied underlying biological logic; for example, conspecific strains exhibited shared exoprotein-binding patterns, and individual tissue isolates uniquely bound tissue-specific exoproteins. Furthermore, we observed dozens of unique and often strain-specific interactions with potential roles in niche colonization, tissue remodelling and immunomodulation, and found that strains with differing host interaction profiles had divergent interactions with host cells in vitro and effects on the host immune system in vivo. Overall, these studies expose a previously unexplored landscape of molecular-level host-microbiota interactions that may underlie causal effects of indigenous microorganisms on human health and disease.
Collapse
Affiliation(s)
- Nicole D Sonnert
- Department of Immunobiology, Yale School of Medicine, New Haven, CT, USA
- Department of Microbial Pathogenesis, Yale School of Medicine, New Haven, CT, USA
| | - Connor E Rosen
- Department of Immunobiology, Yale School of Medicine, New Haven, CT, USA
| | - Andrew R Ghazi
- Department of Biostatistics, Harvard T. H. Chan School of Public Health, Boston, MA, USA
- Infectious Disease and Microbiome Program, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Eric A Franzosa
- Department of Biostatistics, Harvard T. H. Chan School of Public Health, Boston, MA, USA
| | | | | | - John D Huck
- Department of Immunobiology, Yale School of Medicine, New Haven, CT, USA
| | - Yi Yang
- Department of Immunobiology, Yale School of Medicine, New Haven, CT, USA
| | - Yile Dai
- Department of Immunobiology, Yale School of Medicine, New Haven, CT, USA
| | - Tyler A Rice
- Department of Immunobiology, Yale School of Medicine, New Haven, CT, USA
| | - Mytien T Nguyen
- Department of Immunobiology, Yale School of Medicine, New Haven, CT, USA
| | - Deguang Song
- Department of Immunobiology, Yale School of Medicine, New Haven, CT, USA
| | - Yiyun Cao
- Department of Immunobiology, Yale School of Medicine, New Haven, CT, USA
| | - Anjelica L Martin
- Department of Immunobiology, Yale School of Medicine, New Haven, CT, USA
| | - Agata A Bielecka
- Department of Immunobiology, Yale School of Medicine, New Haven, CT, USA
| | - Suzanne Fischer
- Department of Immunobiology, Yale School of Medicine, New Haven, CT, USA
| | - Changhui Guan
- The Jackson Laboratory for Genomic Medicine, Farmington, CT, USA
| | - Julia Oh
- The Jackson Laboratory for Genomic Medicine, Farmington, CT, USA
| | - Curtis Huttenhower
- Department of Biostatistics, Harvard T. H. Chan School of Public Health, Boston, MA, USA
| | - Aaron M Ring
- Department of Immunobiology, Yale School of Medicine, New Haven, CT, USA.
- Department of Pharmacology, Yale School of Medicine, New Haven, CT, USA.
| | - Noah W Palm
- Department of Immunobiology, Yale School of Medicine, New Haven, CT, USA.
| |
Collapse
|
2
|
Kong D, Qian Y, Yu B, Hu Z, Cheng C, Wang Y, Fang Z, Yu J, Xiang S, Cao L, He Y. Interaction of human dendritic cell receptor DEC205/CD205 with keratins. J Biol Chem 2024; 300:105699. [PMID: 38301891 PMCID: PMC10914487 DOI: 10.1016/j.jbc.2024.105699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 01/18/2024] [Accepted: 01/21/2024] [Indexed: 02/03/2024] Open
Abstract
DEC205 (CD205) is one of the major endocytic receptors on dendritic cells and has been widely used as a receptor target in immune therapies. It has been shown that DEC205 can recognize dead cells through keratins in a pH-dependent manner. However, the mechanism underlying the interaction between DEC205 and keratins remains unclear. Here we determine the crystal structures of an N-terminal fragment of human DEC205 (CysR∼CTLD3). The structural data show that DEC205 shares similar overall features with the other mannose receptor family members such as the mannose receptor and Endo180, but the individual domains of DEC205 in the crystal structure exhibit distinct structural features that may lead to specific ligand binding properties of the molecule. Among them, CTLD3 of DEC205 adopts a unique fold of CTLD, which may correlate with the binding of keratins. Furthermore, we examine the interaction of DEC205 with keratins by mutagenesis and biochemical assays based on the structural information and identify an XGGGX motif on keratins that can be recognized by DEC205, thereby providing insights into the interaction between DEC205 and keratins. Overall, these findings not only improve the understanding of the diverse ligand specificities of the mannose receptor family members at the molecular level but may also give clues for the interactions of keratins with their binding partners in the corresponding pathways.
Collapse
Affiliation(s)
- Dandan Kong
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yuanying Qian
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Bowen Yu
- Department of Immunology, School of Basic Medical Sciences, Weifang Medical University, Weifang, China
| | - Zhenzheng Hu
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Chen Cheng
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yuanyuan Wang
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zhen Fang
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jun Yu
- Department of Biochemistry and Molecular Biology, Key Laboratory of Immune Microenvironment and Disease, Tianjin Medical University, Tianjin, China
| | - Song Xiang
- Department of Biochemistry and Molecular Biology, Key Laboratory of Immune Microenvironment and Disease, Tianjin Medical University, Tianjin, China
| | - Longxing Cao
- School of Life Science, Westlake University, Hangzhou, Zhejiang, China
| | - Yongning He
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Shanghai Key Laboratory for Cancer Systems Regulation and Clinical Translation, Shanghai, China; Department of Biliary-Pancreatic Surgery, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| |
Collapse
|
3
|
Stefanovic N, Irvine AD. Filaggrin and beyond: New insights into the skin barrier in atopic dermatitis and allergic diseases, from genetics to therapeutic perspectives. Ann Allergy Asthma Immunol 2024; 132:187-195. [PMID: 37758055 DOI: 10.1016/j.anai.2023.09.009] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 08/22/2023] [Accepted: 09/19/2023] [Indexed: 10/03/2023]
Abstract
Atopic dermatitis (AD) is the most common inflammatory skin disease worldwide, affecting 20% of children and 5% of adults. One critical component in the pathophysiology of AD is the epidermal skin barrier, with its outermost layer, the stratum corneum (SC), conferring biochemical properties that enable resilience against environmental threats and maintain homeostasis. The skin barrier may be conceptualized as a key facilitator of complex interactions between genetics, host immunity, the cutaneous microbiome, and environmental exposures. The key genetic risk factor for AD development and persistence is a loss-of-function mutation in FLG, with recent advances in genomics focusing on rare variant discovery, establishment of pathogenic mechanisms, and exploration of the role of other epidermal differentiation complex gene variants in AD. Aberrant type 2 inflammatory responses down-regulate the transcription of key epidermal barrier genes, alter the composition of SC lipids, and induce further injury through a neurocutaneous feedback loop and the itch-scratch cycle. The dysbiotic epidermis exhibits reduced bacterial diversity and enhanced colonization with Staphylococcus and Malassezia species, which contribute to both direct barrier injury through the action of bacterial toxins and perpetuation of the inflammatory cascades. Enhanced understanding of each of the pathogenic mechanisms underpinning barrier disruption has led to the development of novel topical and systemic molecules, including interleukin (IL)-4Ra, IL-13, PDE4, and Janus-associated kinase inhibitors, whose clinical effectiveness exceeds conventional treatment modalities. In this narrative review, we aim to summarize the current understanding of the above-mentioned pathophysiological and therapeutic mechanisms, with a focus on the genetic, cellular, and molecular mechanisms underpinning AD development.
Collapse
Affiliation(s)
| | - Alan D Irvine
- Clinical Medicine, Trinity College Dublin, Dublin, Ireland.
| |
Collapse
|
4
|
Risser F, López-Morales J, Nash MA. Adhesive Virulence Factors of Staphylococcus aureus Resist Digestion by Coagulation Proteases Thrombin and Plasmin. ACS BIO & MED CHEM AU 2022; 2:586-599. [PMID: 36573096 PMCID: PMC9782320 DOI: 10.1021/acsbiomedchemau.2c00042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 08/22/2022] [Accepted: 08/22/2022] [Indexed: 12/30/2022]
Abstract
Staphylococcus aureus (S. aureus) is an invasive and life-threatening pathogen that has undergone extensive coevolution with its mammalian hosts. Its molecular adaptations include elaborate mechanisms for immune escape and hijacking of the coagulation and fibrinolytic pathways. These capabilities are enacted by virulence factors including microbial surface components recognizing adhesive matrix molecules (MSCRAMMs) and the plasminogen-activating enzyme staphylokinase (SAK). Despite the ability of S. aureus to modulate coagulation, until now the sensitivity of S. aureus virulence factors to digestion by proteases of the coagulation system was unknown. Here, we used protein engineering, biophysical assays, and mass spectrometry to study the susceptibility of S. aureus MSCRAMMs to proteolytic digestion by human thrombin, plasmin, and plasmin/SAK complexes. We found that MSCRAMMs were highly resistant to proteolysis, and that SAK binding to plasmin enhanced this resistance. We mapped thrombin, plasmin, and plasmin/SAK cleavage sites of nine MSCRAMMs and performed biophysical, bioinformatic, and stability analysis to understand structural and sequence features common to protease-susceptible sites. Overall, our study offers comprehensive digestion patterns of S. aureus MSCRAMMs by thrombin, plasmin, and plasmin/SAK complexes and paves the way for new studies into this resistance and virulence mechanism.
Collapse
Affiliation(s)
- Fanny Risser
- Institute
of Physical Chemistry, Department of Chemistry, University of Basel, 4058 Basel, Switzerland,Department
of Biosystems Sciences and Engineering, ETH Zurich, 4058 Basel, Switzerland
| | - Joanan López-Morales
- Institute
of Physical Chemistry, Department of Chemistry, University of Basel, 4058 Basel, Switzerland,Department
of Biosystems Sciences and Engineering, ETH Zurich, 4058 Basel, Switzerland
| | - Michael A. Nash
- Institute
of Physical Chemistry, Department of Chemistry, University of Basel, 4058 Basel, Switzerland,Department
of Biosystems Sciences and Engineering, ETH Zurich, 4058 Basel, Switzerland,E-mail:
| |
Collapse
|
5
|
Lu Y, Cai WJ, Ren Z, Han P. The Role of Staphylococcal Biofilm on the Surface of Implants in Orthopedic Infection. Microorganisms 2022; 10:1909. [PMID: 36296183 PMCID: PMC9612000 DOI: 10.3390/microorganisms10101909] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 09/11/2022] [Accepted: 09/20/2022] [Indexed: 08/27/2023] Open
Abstract
Despite advanced implant sterilization and aseptic surgical techniques, implant-associated infection remains a major challenge for orthopedic surgeries. The subject of bacterial biofilms is receiving increasing attention, probably as a result of the wide acknowledgement of the ubiquity of biofilms in the clinical environment, as well as the extreme difficulty in eradicating them. Biofilm can be defined as a structured microbial community of cells that are attached to a substratum and embedded in a matrix of extracellular polymeric substances (EPS) that they have produced. Biofilm development has been proposed as occurring in a multi-step process: (i) attachment and adherence, (ii) accumulation/maturation due to cellular aggregation and EPS production, and (iii) biofilm detachment (also called dispersal) of bacterial cells. In all these stages, characteristic proteinaceous and non-proteinaceous compounds are expressed, and their expression is strictly controlled. Bacterial biofilm formation around implants shelters the bacteria and encourages the persistence of infection, which could lead to implant failure and osteomyelitis. These complications need to be treated by major revision surgeries and extended antibiotic therapies, which could lead to high treatment costs and even increase mortality. Effective preventive and therapeutic measures to reduce risks for implant-associated infections are thus in urgent need.
Collapse
Affiliation(s)
| | | | | | - Pei Han
- Shanghai Sixth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| |
Collapse
|
6
|
Huang W, Le S, Sun Y, Lin DJ, Yao M, Shi Y, Yan J. Mechanical Stabilization of a Bacterial Adhesion Complex. J Am Chem Soc 2022; 144:16808-16818. [PMID: 36070862 PMCID: PMC9501914 DOI: 10.1021/jacs.2c03961] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
![]()
The adhesions between Gram-positive bacteria and their
hosts are
exposed to varying magnitudes of tensile forces. Here, using an ultrastable
magnetic tweezer-based single-molecule approach, we show the catch-bond
kinetics of the prototypical adhesion complex of SD-repeat protein
G (SdrG) to a peptide from fibrinogen β (Fgβ) over a physiologically
important force range from piconewton (pN) to tens of pN, which was
not technologically accessible to previous studies. At 37 °C,
the lifetime of the complex exponentially increases from seconds at
several pN to ∼1000 s as the force reaches 30 pN, leading to
mechanical stabilization of the adhesion. The dissociation transition
pathway is determined as the unbinding of a critical β-strand
peptide (“latch” strand of SdrG that secures the entire
adhesion complex) away from its binding cleft, leading to the dissociation
of the Fgβ ligand. Similar mechanical stabilization behavior
is also observed in several homologous adhesions, suggesting the generality
of catch-bond kinetics in such bacterial adhesions. We reason that
such mechanical stabilization confers multiple advantages in the pathogenesis
and adaptation of bacteria.
Collapse
Affiliation(s)
- Wenmao Huang
- Department of Physics, National University of Singapore, Singapore 117542.,Mechanobiology Institute, National University of Singapore, Singapore 117411
| | - Shimin Le
- Department of Physics, National University of Singapore, Singapore 117542.,Research Institute for Biomimetics and Soft Matter, Fujian Provincial Key Lab for Soft Functional Materials Research, Department of Physics, Xiamen University, Xiamen 361005, China
| | - Yuze Sun
- Mechanobiology Institute, National University of Singapore, Singapore 117411
| | - Dennis Jingxiong Lin
- Department of Physics, National University of Singapore, Singapore 117542.,Mechanobiology Institute, National University of Singapore, Singapore 117411
| | - Mingxi Yao
- Mechanobiology Institute, National University of Singapore, Singapore 117411.,Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Yi Shi
- Institute of Materials Research and Engineering, A*STAR, 2 Fusionopolis Way, Innovis, #08-03, Singapore 138634
| | - Jie Yan
- Department of Physics, National University of Singapore, Singapore 117542.,Mechanobiology Institute, National University of Singapore, Singapore 117411.,Centre for Bioimaging Sciences, National University of Singapore, Singapore 117546
| |
Collapse
|
7
|
Prencipe F, Alsibaee A, Khaddem Z, Norton P, Towell AM, Ali AFM, Reid G, Fleury OM, Foster TJ, Geoghegan JA, Rozas I, Brennan MP. Allantodapsone is a Pan-Inhibitor of Staphylococcus aureus Adhesion to Fibrinogen, Loricrin, and Cytokeratin 10. Microbiol Spectr 2022; 10:e0117521. [PMID: 35647689 PMCID: PMC9241669 DOI: 10.1128/spectrum.01175-21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Accepted: 04/17/2022] [Indexed: 11/20/2022] Open
Abstract
Staphylococcus aureus infections have become a major challenge in health care due to increasing antibiotic resistance. We aimed to design small molecule inhibitors of S. aureus surface proteins to be developed as colonization inhibitors. We identified allantodapsone in an initial screen searching for inhibitors of clumping factors A and B (ClfA and ClfB). We used microbial adhesion assays to investigate the effect of allantodapsone on extracellular matrix protein interactions. Allantodapsone inhibited S. aureus Newman adhesion to fibrinogen with an IC50 of 21.3 μM (95% CI 4.5-102 μM), minimum adhesion inhibitory concentration (MAIC) of 100 μM (40.2 μg/mL). Additionally, allantodapsone inhibited adhesion of Lactococcus lactis strains exogenously expressing the clumping factors to fibrinogen (L. lactis ClfA, IC50 of 3.8 μM [95% CI 1.0-14.3 μM], MAIC 10 μM, 4.0 μg/mL; and L. lactis ClfB, IC50 of 11.0 μM [95% CI 0.9-13.6 μM], MAIC 33 μM, 13.3 μg/mL), indicating specific inhibition. Furthermore, the dapsone and alloxan fragments of allantodapsone did not have any inhibitory effect. Adhesion of S. aureus Newman to L2v loricrin is dependent on the expression of ClfB. Allantodapsone caused a dose dependent inhibition of S. aureus adhesion to the L2v loricrin fragment, with full inhibition at 40 μM (OD600 0.11 ± 0.01). Furthermore, recombinant ClfB protein binding to L2v loricrin was inhibited by allantodapsone (P < 0.0001). Allantodapsone also demonstrated dose dependent inhibition of S. aureus Newman adhesion to cytokeratin 10 (CK10). Allantodapsone is the first small molecule inhibitor of the S. aureus clumping factors with potential for development as a colonization inhibitor. IMPORTANCE S. aureus colonization of the nares and the skin provide a reservoir of bacteria that can be transferred to wounds that can ultimately result in systemic infections. Antibiotic resistance can make these infections difficult to treat with significant associated morbidity and mortality. We have identified and characterized a first-in-class small molecule inhibitor of the S. aureus clumping factors A and B, which has the potential to be developed further as a colonization inhibitor.
Collapse
Affiliation(s)
- Filippo Prencipe
- School of Chemistry, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland
| | - Aishah Alsibaee
- School of Pharmacy and Biomedical Sciences, RCSI University of Medicine and Health Sciences, Dublin, Ireland
| | - Zainab Khaddem
- School of Pharmacy and Biomedical Sciences, RCSI University of Medicine and Health Sciences, Dublin, Ireland
| | - Padraig Norton
- School of Pharmacy and Biomedical Sciences, RCSI University of Medicine and Health Sciences, Dublin, Ireland
| | - Aisling M. Towell
- Department of Microbiology, Moyne Institute of Preventive Medicine, School of Genetics and Microbiology, Trinity College Dublin, Dublin, Ireland
| | - Afnan F. M. Ali
- School of Pharmacy and Biomedical Sciences, RCSI University of Medicine and Health Sciences, Dublin, Ireland
| | - Gerard Reid
- School of Chemistry, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland
| | - Orla M. Fleury
- Department of Microbiology, Moyne Institute of Preventive Medicine, School of Genetics and Microbiology, Trinity College Dublin, Dublin, Ireland
| | - Timothy J. Foster
- Department of Microbiology, Moyne Institute of Preventive Medicine, School of Genetics and Microbiology, Trinity College Dublin, Dublin, Ireland
| | - Joan A. Geoghegan
- Department of Microbiology, Moyne Institute of Preventive Medicine, School of Genetics and Microbiology, Trinity College Dublin, Dublin, Ireland
- Institute of Microbiology and Infection, University of Birmingham, Edgbaston, Birmingham, United Kingdom
| | - Isabel Rozas
- School of Chemistry, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland
| | - Marian P. Brennan
- School of Pharmacy and Biomedical Sciences, RCSI University of Medicine and Health Sciences, Dublin, Ireland
| |
Collapse
|
8
|
Berry KA, Verhoef MTA, Leonard AC, Cox G. Staphylococcus aureus adhesion to the host. Ann N Y Acad Sci 2022; 1515:75-96. [PMID: 35705378 DOI: 10.1111/nyas.14807] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Staphylococcus aureus is a pathobiont capable of colonizing and infecting most tissues within the human body, resulting in a multitude of different clinical outcomes. Adhesion of S. aureus to the host is crucial for both host colonization and the establishment of infections. Underlying the pathogen's success is a complex and diverse arsenal of adhesins. In this review, we discuss the different classes of adhesins, including a consideration of the various adhesion sites throughout the body and the clinical outcomes of each infection type. The development of therapeutics targeting the S. aureus host-pathogen interaction is a relatively understudied area. Due to the increasing global threat of antimicrobial resistance, it is crucial that innovative and alternative approaches are considered. Neutralizing virulence factors, through the development of antivirulence agents, could reduce bacterial pathogenicity and the ever-increasing burden of S. aureus infections. This review provides insight into potentially efficacious adhesion-associated targets for the development of novel decolonizing and antivirulence strategies.
Collapse
Affiliation(s)
- Kirsten A Berry
- Department of Molecular and Cellular Biology, College of Biological Sciences, University of Guelph, Guelph, Ontario, Canada
| | - Mackenzie T A Verhoef
- Department of Molecular and Cellular Biology, College of Biological Sciences, University of Guelph, Guelph, Ontario, Canada
| | - Allison C Leonard
- Department of Molecular and Cellular Biology, College of Biological Sciences, University of Guelph, Guelph, Ontario, Canada
| | - Georgina Cox
- Department of Molecular and Cellular Biology, College of Biological Sciences, University of Guelph, Guelph, Ontario, Canada
| |
Collapse
|
9
|
Colonization and Infection of Indwelling Medical Devices by Staphylococcus aureus with an Emphasis on Orthopedic Implants. Int J Mol Sci 2022; 23:ijms23115958. [PMID: 35682632 PMCID: PMC9180976 DOI: 10.3390/ijms23115958] [Citation(s) in RCA: 40] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 05/23/2022] [Accepted: 05/24/2022] [Indexed: 02/08/2023] Open
Abstract
The use of indwelling medical devices has constantly increased in recent years and has revolutionized the quality of life of patients affected by different diseases. However, despite the improvement of hygiene conditions in hospitals, implant-associated infections remain a common and serious complication in prosthetic surgery, mainly in the orthopedic field, where infection often leads to implant failure. Staphylococcus aureus is the most common cause of biomaterial-centered infection. Upon binding to the medical devices, these bacteria proliferate and develop dense communities encased in a protective matrix called biofilm. Biofilm formation has been proposed as occurring in several stages-(1) attachment; (2) proliferation; (3) dispersal-and involves a variety of host and staphylococcal proteinaceous and non-proteinaceous factors. Moreover, biofilm formation is strictly regulated by several control systems. Biofilms enable staphylococci to avoid antimicrobial activity and host immune response and are a source of persistent bacteremia as well as of localized tissue destruction. While considerable information is available on staphylococcal biofilm formation on medical implants and important results have been achieved on the treatment of biofilms, preclinical and clinical applications need to be further investigated. Thus, the purpose of this review is to gather current studies about the mechanism of infection of indwelling medical devices by S. aureus with a special focus on the biochemical factors involved in biofilm formation and regulation. We also provide a summary of the current therapeutic strategies to combat biomaterial-associated infections and highlight the need to further explore biofilm physiology and conduct research for innovative anti-biofilm approaches.
Collapse
|
10
|
Fibronectin binding protein B binds to loricrin and promotes corneocyte adhesion by Staphylococcus aureus. Nat Commun 2022; 13:2517. [PMID: 35523796 PMCID: PMC9076634 DOI: 10.1038/s41467-022-30271-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Accepted: 04/19/2022] [Indexed: 12/23/2022] Open
Abstract
Colonisation of humans by Staphylococcus aureus is a major risk factor for infection, yet the bacterial and host factors involved are not fully understood. The first step during skin colonisation is adhesion of the bacteria to corneocytes in the stratum corneum where the cornified envelope protein loricrin is the main ligand for S. aureus. Here we report a novel loricrin-binding protein of S. aureus, the cell wall-anchored fibronectin binding protein B (FnBPB). Single-molecule force spectroscopy revealed both weak and ultra-strong (2 nN) binding of FnBPB to loricrin and that mechanical stress enhanced the strength of these bonds. Treatment with a peptide derived from fibrinogen decreased the frequency of strong interactions, suggesting that both ligands bind to overlapping sites within FnBPB. Finally, we show that FnBPB promotes adhesion to human corneocytes by binding strongly to loricrin, highlighting the relevance of this interaction to skin colonisation. The first step during skin colonization by is its adhesion to corneocytes. Da Costa et al. show that the cell wall-anchored fibronectin binding protein B (FnBPB) of S. aureus binds to loricrin. Applying single cell force spectroscopy, they demonstrate that this interaction promotes adhesion of S. aureus to human corneocytes.
Collapse
|
11
|
Yu B, Kong D, Cheng C, Xiang D, Cao L, Liu Y, He Y. Assembly and recognition of keratins: A structural perspective. Semin Cell Dev Biol 2021; 128:80-89. [PMID: 34654627 DOI: 10.1016/j.semcdb.2021.09.018] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 09/22/2021] [Accepted: 09/29/2021] [Indexed: 12/21/2022]
Abstract
Keratins are one of the major components of cytoskeletal network and assemble into fibrous structures named intermediate filaments (IFs), which are important for maintaining the mechanical properties of cells and tissues. Over the past decades, evidence has shown that the functions of keratins go beyond providing mechanical support for cells, they interact with multiple cellular components and are widely involved in the pathways of cell proliferation, differentiation, motility and death. However, the structural details of keratins and IFs are largely missing and many questions remain regarding the mechanisms of keratin assembly and recognition. Here we briefly review the current structural models and assembly of keratins as well as the interactions of keratins with the binding partners, which may provide a structural view for understanding the mechanisms of keratins in the biological activities and the related diseases.
Collapse
Affiliation(s)
- Bowen Yu
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Department of Immunology, School of Basic Medical Sciences, Weifang Medical University, Weifang, China
| | - Dandan Kong
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Chen Cheng
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Dongxi Xiang
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Department of Biliary-Pancreatic Surgery, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Longxing Cao
- School of Life Science, Westlake University, Hangzhou, Zhejiang, China
| | - Yingbin Liu
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Department of Biliary-Pancreatic Surgery, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yongning He
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Department of Biliary-Pancreatic Surgery, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai, China.
| |
Collapse
|
12
|
Alfaiz FA. Molecular studies of immunological enzyme clumping factor B for the inhibition of Staphylococcus aureus with essential oils of Nigella sativa. J Mol Recognit 2021; 34:e2941. [PMID: 34626016 DOI: 10.1002/jmr.2941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Revised: 09/14/2021] [Accepted: 09/26/2021] [Indexed: 11/09/2022]
Abstract
Essential oils from black cumin seeds (Nigella sativa) have largely been used in the manufacturing of nutraceuticals and functional food products due to the presence of a wide variety of bioactive compounds. However, their applications in the pharmaceutical sector have recently attracted interest and started blooming. The present research elucidates the in silico and in vitro efficacies of active leads from essential oil of N sativa against the human pathogenic bacterium Staphylococcus aureus. Biofilm development has become an inevitable situation in the health care sector. Lowering the efficacies of antimicrobial drugs is one of the vital ramifications that resulted in the emergence of multidrug resistance. Clumping factor B (clfB) of S aureus plays a key role in the human immune functions during pathogenesis. Through STRING analysis, the interacting protein partners of clfB were found to regulate biofilm pathway. Therefore, eight ligands from essential oil are docked with the critical clfB protein, which revealed p-cymene, thymoquinone and carvacrol as the robust ligands with highest binding affinity. Therefore, antibiofilm potential of N sativa essential oil at in vitro states was evaluated against S aureus. Further, real time PCR analysis showed that the expression of clfB and intercellular adhesion gene (icaA and icaD) was significantly altered upon treatment with essential oil. Altogether, the findings confirmed the antibiofilm efficacy of N sativa essential oil against S aureus. Hence, the essential oil from N. sativa was envisaged to be promising candidate to treat S aureus biofilm mediated infection.
Collapse
Affiliation(s)
- Faiz Abdulaziz Alfaiz
- Department of Biology, College of Science in Zulfi, Majmaah University, Majmaah, Saudi Arabia
| |
Collapse
|
13
|
Sun Z, Zhang X, Zhou D, Zhou K, Li Q, Lin H, Lu W, Liu H, Lu J, Lin X, Li K, Xu T, Zhu M, Bao Q, Zhang H. Identification of Three Clf-Sdr Subfamily Proteins in Staphylococcus warneri, and Comparative Genomics Analysis of a Locus Encoding CWA Proteins in Staphylococcus Species. Front Microbiol 2021; 12:691087. [PMID: 34394031 PMCID: PMC8360574 DOI: 10.3389/fmicb.2021.691087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Accepted: 06/28/2021] [Indexed: 11/13/2022] Open
Abstract
Coagulase-negative Staphylococcus warneri is an opportunistic pathogen that is capable of causing several infections, especially in patients with indwelling medical devices. Here, we determined the complete genome sequence of a clinical S. warneri strain isolated from the blood culture of a 1-year-old nursling patient with acute upper respiratory infection. Genome-wide phylogenetic analysis confirmed the phylogenetic relationships between S. warneri and other Staphylococcus species. Using comparative genomics, we identified three cell wall-anchored (CWA) proteins at the same locus (sdr), named SdrJ, SdrK, and SdrL, on the chromosome sequences of different S. warneri strains. Structural predictions showed that SdrJ/K/L have structural features characteristic of Sdr proteins but exceptionally contained an unusual N-terminal repeat region. However, the C-terminal repetitive (R) region of SdrJ contains a significantly larger proportion of alanine (142/338, 42.01%) than the previously reported SdrI (37.00%). Investigation of the genetic organization revealed that the sdrJ/K/L genes were always followed by one or two glycosyltransferase genes, gtfA and gtfB and were present in an ∼56 kb region bordered by a pair of 8 bp identical direct repeats, named Sw-Sdr. This region was further found to be located on a 160-kb region subtended by a pair of 160-bp direct repeats along with other virulence genes and resistance genes. Sw-Sdr contained a putative integrase that was probably a remnant of a functional integrase. Evidence suggests that Sw-Sdr is improbably an efficient pathogenicity island. A large-scale investigation of Staphylococcus genomes showed that sdr loci were a potential hotspot of insertion sequences (ISs), which could lead to intraspecific diversity at these loci. Our work expanded the repository of Staphylococcus Sdr proteins, and for the first time, we established the connection between sdr loci and phylogenetic relationships and compared the sdr loci in different Staphylococcus species, which provided large insights into the genetic environment of CWA genes in Staphylococcus.
Collapse
Affiliation(s)
- Zhewei Sun
- Key Laboratory of Medical Genetics of Zhejiang Province, Key Laboratory of Laboratory Medicine, Ministry of Education, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, China.,The Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical University, Wenzhou, China.,School of Laboratory Medicine and Life Sciences, Institute of Biomedical Informatics, Wenzhou Medical University, Wenzhou, China
| | - Xueya Zhang
- Key Laboratory of Medical Genetics of Zhejiang Province, Key Laboratory of Laboratory Medicine, Ministry of Education, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, China.,The Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical University, Wenzhou, China.,School of Laboratory Medicine and Life Sciences, Institute of Biomedical Informatics, Wenzhou Medical University, Wenzhou, China
| | - Danying Zhou
- Key Laboratory of Medical Genetics of Zhejiang Province, Key Laboratory of Laboratory Medicine, Ministry of Education, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, China.,School of Laboratory Medicine and Life Sciences, Institute of Biomedical Informatics, Wenzhou Medical University, Wenzhou, China
| | - Kexin Zhou
- Key Laboratory of Medical Genetics of Zhejiang Province, Key Laboratory of Laboratory Medicine, Ministry of Education, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, China.,School of Laboratory Medicine and Life Sciences, Institute of Biomedical Informatics, Wenzhou Medical University, Wenzhou, China
| | - Qiaoling Li
- Key Laboratory of Medical Genetics of Zhejiang Province, Key Laboratory of Laboratory Medicine, Ministry of Education, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, China.,The Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical University, Wenzhou, China.,School of Laboratory Medicine and Life Sciences, Institute of Biomedical Informatics, Wenzhou Medical University, Wenzhou, China
| | - Hailong Lin
- Key Laboratory of Medical Genetics of Zhejiang Province, Key Laboratory of Laboratory Medicine, Ministry of Education, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, China.,The Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical University, Wenzhou, China.,School of Laboratory Medicine and Life Sciences, Institute of Biomedical Informatics, Wenzhou Medical University, Wenzhou, China
| | - Wei Lu
- Key Laboratory of Medical Genetics of Zhejiang Province, Key Laboratory of Laboratory Medicine, Ministry of Education, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, China.,School of Laboratory Medicine and Life Sciences, Institute of Biomedical Informatics, Wenzhou Medical University, Wenzhou, China
| | - Hongmao Liu
- Key Laboratory of Medical Genetics of Zhejiang Province, Key Laboratory of Laboratory Medicine, Ministry of Education, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, China.,The Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical University, Wenzhou, China.,School of Laboratory Medicine and Life Sciences, Institute of Biomedical Informatics, Wenzhou Medical University, Wenzhou, China
| | - Junwan Lu
- Key Laboratory of Medical Genetics of Zhejiang Province, Key Laboratory of Laboratory Medicine, Ministry of Education, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, China.,School of Laboratory Medicine and Life Sciences, Institute of Biomedical Informatics, Wenzhou Medical University, Wenzhou, China
| | - Xi Lin
- Key Laboratory of Medical Genetics of Zhejiang Province, Key Laboratory of Laboratory Medicine, Ministry of Education, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, China.,School of Laboratory Medicine and Life Sciences, Institute of Biomedical Informatics, Wenzhou Medical University, Wenzhou, China
| | - Kewei Li
- Key Laboratory of Medical Genetics of Zhejiang Province, Key Laboratory of Laboratory Medicine, Ministry of Education, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, China.,School of Laboratory Medicine and Life Sciences, Institute of Biomedical Informatics, Wenzhou Medical University, Wenzhou, China
| | - Teng Xu
- Institute of Translational Medicine, Baotou Central Hospital, Baotou, China
| | - Mei Zhu
- Department of Clinical Laboratory, Zhejiang Hospital, Hangzhou, China
| | - Qiyu Bao
- Key Laboratory of Medical Genetics of Zhejiang Province, Key Laboratory of Laboratory Medicine, Ministry of Education, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, China.,School of Laboratory Medicine and Life Sciences, Institute of Biomedical Informatics, Wenzhou Medical University, Wenzhou, China
| | - Hailin Zhang
- The Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical University, Wenzhou, China.,School of Laboratory Medicine and Life Sciences, Institute of Biomedical Informatics, Wenzhou Medical University, Wenzhou, China
| |
Collapse
|
14
|
Staphylococcus aureus vWF-binding protein triggers a strong interaction between clumping factor A and host vWF. Commun Biol 2021; 4:453. [PMID: 33846500 PMCID: PMC8041789 DOI: 10.1038/s42003-021-01986-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Accepted: 03/15/2021] [Indexed: 12/13/2022] Open
Abstract
The Staphylococcus aureus cell wall-anchored adhesin ClfA binds to the very large blood circulating protein, von Willebrand factor (vWF) via vWF-binding protein (vWbp), a secreted protein that does not bind the cell wall covalently. Here we perform force spectroscopy studies on living bacteria to unravel the molecular mechanism of this interaction. We discover that the presence of all three binding partners leads to very high binding forces (2000 pN), largely outperforming other known ternary complexes involving adhesins. Strikingly, our experiments indicate that a direct interaction involving features of the dock, lock and latch mechanism must occur between ClfA and vWF to sustain the extreme tensile strength of the ternary complex. Our results support a previously undescribed mechanism whereby vWbp activates a direct, ultra-strong interaction between ClfA and vWF. This intriguing interaction represents a potential target for therapeutic interventions, including synthetic peptides inhibiting the ultra-strong interactions between ClfA and its ligands. Through force spectroscopy studies on living bacteria, Viljoen et al. characterise the binding of S. aureus to host von Willebrand factor (vWF). They propose that S. aureus vWF-binding protein triggers an ultra-strong interaction between the adhesin clumping factor A and vWF.
Collapse
|
15
|
Wang J, Zhang M, Wang M, Zang J, Zhang X, Hang T. Structural insights into the intermolecular interaction of the adhesin SdrC in the pathogenicity of Staphylococcus aureus. ACTA CRYSTALLOGRAPHICA SECTION F-STRUCTURAL BIOLOGY COMMUNICATIONS 2021; 77:47-53. [PMID: 33620037 DOI: 10.1107/s2053230x21000741] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Accepted: 01/21/2021] [Indexed: 11/10/2022]
Abstract
Staphylococcus aureus is an opportunistic disease-causing pathogen that is widely found in the community and on medical equipment. A series of virulence factors secreted by S. aureus can trigger severe diseases such as sepsis, endocarditis and toxic shock, and thus have a great impact on human health. The transformation of S. aureus from a colonization state to a pathogenic state during its life cycle is intimately associated with the initiation of bacterial aggregation and biofilm accumulation. SdrC, an S. aureus surface protein, can act as an adhesin to promote cell attachment and aggregation by an unknown mechanism. Here, structural studies demonstrate that SdrC forms a unique dimer through intermolecular interaction. It is proposed that the dimerization of SdrC enhances the efficiency of bacteria-host attachment and therefore contributes to the pathogenicity of S. aureus.
Collapse
Affiliation(s)
- Junchao Wang
- School of Life Sciences, Anhui University, 111 Jiulong Road, Hefei, Anhui 230601, People's Republic of China
| | - Min Zhang
- School of Life Sciences, Anhui University, 111 Jiulong Road, Hefei, Anhui 230601, People's Republic of China
| | - Mingzhu Wang
- Institute of Health Sciences and Technology, Anhui University, 111 Jiulong Road, Hefei, Anhui 230601, People's Republic of China
| | - Jianye Zang
- Hefei National Laboratory for Physical Sciences at Microscale, CAS Center for Excellence in Biomacromolecules, Collaborative Innovation Center of Chemistry for Life Sciences and School of Life Sciences, University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui 230026, People's Republic of China
| | - Xuan Zhang
- Hefei National Laboratory for Physical Sciences at Microscale, CAS Center for Excellence in Biomacromolecules, Collaborative Innovation Center of Chemistry for Life Sciences and School of Life Sciences, University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui 230026, People's Republic of China
| | - Tianrong Hang
- School of Life Sciences, Anhui University, 111 Jiulong Road, Hefei, Anhui 230601, People's Republic of China
| |
Collapse
|
16
|
Elboshra MME, Hamedelnil YF, Moglad EH, Altayb HN. Prevalence and characterization of virulence genes among methicillin-resistant Staphylococcus aureus isolated from Sudanese patients in Khartoum state. New Microbes New Infect 2020; 38:100784. [PMID: 33194210 PMCID: PMC7642864 DOI: 10.1016/j.nmni.2020.100784] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Revised: 10/06/2020] [Accepted: 10/09/2020] [Indexed: 12/27/2022] Open
Abstract
Staphylococcus aureus is a versatile pathogen that can cause a variety of diseases, ranging from mild to fatal infection. This study aimed to detect the virulence genes (cna, ica, hlg and sdrE) in S. aureus isolated from different types of infections in Sudanese patients admitted to different hospital in Khartoum state. This is a descriptive cross-sectional study conducted over a period of 4 months from 1 April to 30 July 2017 in Khartoum. Overall, 65 S. aureus isolates were identified using standard biochemical and microbiologic tests. Antibiotic susceptibility testing was performed using the Kirby-Bauer disc diffusion method. Nucleic acid was extracted using the guanidine hydrochloride method, and all the genes except for sdrE were detected by multiplex PCR. The ica gene was the predominant one, found in 73.85% of the isolates, with sdrE found in 38.46%, cna in 29.25% and hlg in 7.69%. The relationship between the virulence genes and resistance to antibiotics showed that the highest resistance was observed in isolates with ica and sdrE, followed by cna and hlg. There were significant relationships between methicillin resistance and the presence of sdrE and ica genes (p 0.01 for both) and between ciprofloxacin resistance and the presence of sdrE gene (p 0.03).
Collapse
Affiliation(s)
- M M E Elboshra
- Department of Medical Microbiology, College of Medical Laboratory Sciences, Sudan University for Science and Technology, Khartoum, Sudan
| | - Y F Hamedelnil
- Department of Medical Microbiology, College of Medical Laboratory Sciences, Sudan University for Science and Technology, Khartoum, Sudan
| | - E H Moglad
- Department of Pharmaceutics, College of Pharmacy, Prince Sattam bin Abdulaziz University, P.O.Box 173 Alkharj 11942.,Department of Microbiology, Medicinal and Aromatic Plants and Traditional Medicine Research Institute (MAPTMRI), National Center for Research, Khartoum, Sudan
| | - H N Altayb
- Biochemistry Department, Faculty of Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| |
Collapse
|
17
|
Pickering AC, Fitzgerald JR. The Role of Gram-Positive Surface Proteins in Bacterial Niche- and Host-Specialization. Front Microbiol 2020; 11:594737. [PMID: 33193271 PMCID: PMC7658395 DOI: 10.3389/fmicb.2020.594737] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Accepted: 10/05/2020] [Indexed: 11/25/2022] Open
Abstract
Gram-positive bacterial pathogens have an array of proteins on their cell surface that mediate interactions with the host environment. In particular, bacterial cell wall-associated (CWA) proteins play key roles in both colonization and pathogenesis. Furthermore, some CWA proteins promote specialization for host-species or mediate colonization of specific anatomical niches within a host. In this mini review, we provide examples of the many ways by which major pathogens, such as Staphylococci, Streptococci and Listeria monocytogenes, utilize CWA proteins for both host- and niche-specialization. We describe different biological mechanisms mediated by CWA proteins including: the acquisition of iron from hemoglobin in the bloodstream, adherence to and invasion of host cells, and innate immune evasion through binding to the plasma proteins fibrinogen, immunoglobulin G, and complement. We also discuss the limitations of using animal models for understanding the role of specific CWA proteins in host-specialization and how transformative technologies, such as CRISPR-Cas, offer tremendous potential for developing transgenic models that simulate the host environment of interest. Improved understanding of the role of CWA proteins in niche- or host-specificity will allow the design of new therapeutic approaches which target key host–pathogen interactions underpinning Gram-positive bacterial infections.
Collapse
Affiliation(s)
- Amy C Pickering
- The Roslin Institute and Edinburgh Infectious Diseases, University of Edinburgh, Easter Bush Campus, Edinburgh, United Kingdom
| | - J Ross Fitzgerald
- The Roslin Institute and Edinburgh Infectious Diseases, University of Edinburgh, Easter Bush Campus, Edinburgh, United Kingdom
| |
Collapse
|
18
|
Schulte T, Sala BM, Nilvebrant J, Nygren PÅ, Achour A, Shernyukov A, Agback T, Agback P. Assigned NMR backbone resonances of the ligand-binding region domain of the pneumococcal serine-rich repeat protein (PsrP-BR) reveal a rigid monomer in solution. BIOMOLECULAR NMR ASSIGNMENTS 2020; 14:195-200. [PMID: 32314099 PMCID: PMC7462905 DOI: 10.1007/s12104-020-09944-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Accepted: 04/08/2020] [Indexed: 06/11/2023]
Abstract
The pneumococcal serine rich repeat protein (PsrP) is displayed on the surface of Streptococcus pneumoniae with a suggested role in colonization in the human upper respiratory tract. Full-length PsrP is a 4000 residue-long multi-domain protein comprising a positively charged functional binding region (BR) domain for interaction with keratin and extracellular DNA during pneumococcal adhesion and biofilm formation, respectively. The previously determined crystal structure of the BR domain revealed a flat compressed barrel comprising two sides with an extended β-sheet on one side, and another β-sheet that is distorted by loops and β-turns on the other side. Crystallographic B-factors indicated a relatively high mobility of loop regions that were hypothesized to be important for binding. Furthermore, the crystal structure revealed an inter-molecular β-sheet formed between edge strands of two symmetry-related molecules, which could promote bacterial aggregation during biofilm formation. Here we report the near complete 15N/13C/1H backbone resonance assignment of the BR domain of PsrP, revealing a secondary structure profile that is almost identical to the X-ray structure. Dynamic 15N-T1, T2 and NOE data suggest a monomeric and rigid structure of BR with disordered residues only at the N- and C-termini. The presented peak assignment will allow us to identify BR residues that are crucial for ligand binding.
Collapse
Affiliation(s)
- Tim Schulte
- Science for Life Laboratory, Department of Medicine, Solna, Karolinska Institute, and Division of Infectious Diseases, Karolinska University Hospital, SE-171 76, Stockholm, Sweden
| | - Benedetta Maria Sala
- Science for Life Laboratory, Department of Medicine, Solna, Karolinska Institute, and Division of Infectious Diseases, Karolinska University Hospital, SE-171 76, Stockholm, Sweden
- Division of Protein Engineering, Department of Protein Science, School of Engineering Sciences in Chemistry, Biotechnology and Health, AlbaNova University Center, Royal Institute of Technology, and Science for Life Laboratory, SE-100 44, Stockholm, Sweden
| | - Johan Nilvebrant
- Division of Protein Engineering, Department of Protein Science, School of Engineering Sciences in Chemistry, Biotechnology and Health, AlbaNova University Center, Royal Institute of Technology, and Science for Life Laboratory, SE-100 44, Stockholm, Sweden
| | - Per-Åke Nygren
- Division of Protein Engineering, Department of Protein Science, School of Engineering Sciences in Chemistry, Biotechnology and Health, AlbaNova University Center, Royal Institute of Technology, and Science for Life Laboratory, SE-100 44, Stockholm, Sweden
| | - Adnane Achour
- Science for Life Laboratory, Department of Medicine, Solna, Karolinska Institute, and Division of Infectious Diseases, Karolinska University Hospital, SE-171 76, Stockholm, Sweden
| | - Andrey Shernyukov
- Department of Molecular Sciences, Swedish University of Agricultural Sciences, PO Box 7015, 750 07, Uppsala, Sweden
- Laboratory of Magnetic Radiospectroscopy, N.N. Vorozhtsov Institute of Organic Chemistry, SB RAS, Lavrentiev ave. 9, Novosibirsk, Russia, 630090
| | - Tatiana Agback
- Department of Molecular Sciences, Swedish University of Agricultural Sciences, PO Box 7015, 750 07, Uppsala, Sweden
| | - Peter Agback
- Department of Molecular Sciences, Swedish University of Agricultural Sciences, PO Box 7015, 750 07, Uppsala, Sweden.
| |
Collapse
|
19
|
Dufrêne YF, Viljoen A. Binding Strength of Gram-Positive Bacterial Adhesins. Front Microbiol 2020; 11:1457. [PMID: 32670256 PMCID: PMC7330015 DOI: 10.3389/fmicb.2020.01457] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Accepted: 06/04/2020] [Indexed: 11/13/2022] Open
Abstract
Bacterial pathogens are equipped with specialized surface-exposed proteins that bind strongly to ligands on host tissues and biomaterials. These adhesins play critical roles during infection, especially during the early step of adhesion where the cells are exposed to physical stress. Recent single-molecule experiments have shown that staphylococci interact with their ligands through a wide diversity of mechanosensitive molecular mechanisms. Adhesin-ligand interactions are activated by tensile force and can be ten times stronger than classical non-covalent biological bonds. Overall these studies demonstrate that Gram-positive adhesins feature unusual stress-dependent molecular interactions, which play essential roles during bacterial colonization and dissemination. With an increasing prevalence of multidrug resistant infections caused by Staphylococcus aureus and Staphylococcus epidermidis, chemotherapeutic targeting of adhesins offers an innovative alternative to antibiotics.
Collapse
Affiliation(s)
- Yves F Dufrêne
- Louvain Institute of Biomolecular Science and Technology, Catholic University of Louvain, Louvain-la-Neuve, Belgium
| | - Albertus Viljoen
- Louvain Institute of Biomolecular Science and Technology, Catholic University of Louvain, Louvain-la-Neuve, Belgium
| |
Collapse
|
20
|
Leonard AC, Petrie LE, Cox G. Bacterial Anti-adhesives: Inhibition of Staphylococcus aureus Nasal Colonization. ACS Infect Dis 2019; 5:1668-1681. [PMID: 31374164 DOI: 10.1021/acsinfecdis.9b00193] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Bacterial adhesion to the skin and mucosa is often a fundamental and early step in host colonization, the establishment of bacterial infections, and pathology. This process is facilitated by adhesins on the surface of the bacterial cell that recognize host cell molecules. Interfering with bacterial host cell adhesion, so-called anti-adhesive therapeutics, offers promise for the development of novel approaches to control bacterial infections. In this review, we focus on the discovery of anti-adhesives targeting the high priority pathogen Staphylococcus aureus. This organism remains a major clinical burden, and S. aureus nasal colonization is associated with poor clinical outcomes. We describe the molecular basis of nasal colonization and highlight potentially efficacious targets for the development of novel nasal decolonization strategies.
Collapse
Affiliation(s)
- Allison C. Leonard
- College of Biological Sciences, Department of Molecular and Cellular Biology, University of Guelph, 50 Stone Rd E, Guelph, Ontario N1G 2W1, Canada
| | - Laurenne E. Petrie
- College of Biological Sciences, Department of Molecular and Cellular Biology, University of Guelph, 50 Stone Rd E, Guelph, Ontario N1G 2W1, Canada
| | - Georgina Cox
- College of Biological Sciences, Department of Molecular and Cellular Biology, University of Guelph, 50 Stone Rd E, Guelph, Ontario N1G 2W1, Canada
| |
Collapse
|
21
|
The MSCRAMM Family of Cell-Wall-Anchored Surface Proteins of Gram-Positive Cocci. Trends Microbiol 2019; 27:927-941. [PMID: 31375310 DOI: 10.1016/j.tim.2019.06.007] [Citation(s) in RCA: 71] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2019] [Revised: 06/10/2019] [Accepted: 06/19/2019] [Indexed: 01/21/2023]
Abstract
The microbial surface components recognizing adhesive matrix molecules (MSCRAMMs) are a family of proteins that are defined by the presence of two adjacent IgG-like folded subdomains. These promote binding to ligands by mechanisms that involve major conformational changes exemplified by the binding to fibrinogen by the 'dock-lock-latch' mechanism or to collagen by the 'collagen hug'. Clumping factors A and B are two such MSCRAMMs that have several important roles in the pathogenesis of Staphylococcus aureus infections. MSCRAMM architecture, ligand binding, and roles in infection and colonization are examined with a focus on recent developments with clumping factors.
Collapse
|
22
|
Foster TJ. Surface Proteins of Staphylococcus aureus. Microbiol Spectr 2019; 7:10.1128/microbiolspec.gpp3-0046-2018. [PMID: 31267926 PMCID: PMC10957221 DOI: 10.1128/microbiolspec.gpp3-0046-2018] [Citation(s) in RCA: 67] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2018] [Indexed: 12/20/2022] Open
Abstract
The surface of Staphylococcus aureus is decorated with over 20 proteins that are covalently anchored to peptidoglycan by the action of sortase A. These cell wall-anchored (CWA) proteins can be classified into several structural and functional groups. The largest is the MSCRAMM family, which is characterized by tandemly repeated IgG-like folded domains that bind peptide ligands by the dock lock latch mechanism or the collagen triple helix by the collagen hug. Several CWA proteins comprise modules that have different functions, and some individual domains can bind different ligands, sometimes by different mechanisms. For example, the N-terminus of the fibronectin binding proteins comprises an MSCRAMM domain which binds several ligands, while the C-terminus is composed of tandem fibronectin binding repeats. Surface proteins promote adhesion to host cells and tissue, including components of the extracellular matrix, contribute to biofilm formation by stimulating attachment to the host or indwelling medical devices followed by cell-cell accumulation via homophilic interactions between proteins on neighboring cells, help bacteria evade host innate immune responses, participate in iron acquisition from host hemoglobin, and trigger invasion of bacteria into cells that are not normally phagocytic. The study of genetically manipulated strains using animal infection models has shown that many CWA proteins contribute to pathogenesis. Fragments of CWA proteins have the potential to be used in multicomponent vaccines to prevent S. aureus infections.
Collapse
|
23
|
Crystal structure of GAPDH of Streptococcus agalactiae and characterization of its interaction with extracellular matrix molecules. Microb Pathog 2018; 127:359-367. [PMID: 30553015 DOI: 10.1016/j.micpath.2018.12.020] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2018] [Revised: 11/10/2018] [Indexed: 11/21/2022]
Abstract
GAPDH being a key enzyme in the glycolytic pathway is one of the surface adhesins of many Gram-positive bacteria including Streptococcus agalactiae. This anchorless adhesin is known to bind to host plasminogen (PLG) and fibrinogen (Fg), which enhances the virulence and modulates the host immune system. The crystal structure of the recombinant GAPDH from S. agalactiae (SagGAPDH) was determined at 2.6 Å resolution by molecular replacement. The structure was found to be highly conserved with a typical NAD binding domain and a catalytic domain. In this paper, using biolayer interferometry studies, we report that the multifunctional SagGAPDH enzyme binds to a variety of host molecules such as PLG, Fg, laminin, transferrin and mucin with a KD value of 4.4 × 10-7 M, 9.8 × 10-7 M, 1 × 10-5 M, 9.7 × 10-12 M and 1.4 × 10-7 M respectively. The ligand affinity blots reveal that SagGAPDH binds specifically to α and β subunits of Fg and the competitive binding ELISA assay reveals that the Fg and PLG binding sites on GAPDH does not overlap each other. The PLG binding motif of GAPDH varies with organisms, however positively charged residues in the hydrophobic surroundings is essential for PLG binding. The lysine analogue competitive binding assay and lysine succinylation experiments deciphered the role of SagGAPDH lysines in PLG binding. On structural comparison with S. pneumoniae GAPDH, K171 of SagGAPDH is being predicted to be involved in PLG binding. Further SagGAPDH exhibited enzymatic activity in the presence of Fg, PLG and transferrin. This suggests that these host molecules does not mask the active site and bind at some other region of GAPDH.
Collapse
|
24
|
Zhu Q, Wen W, Wang W, Sun B. Transcriptional regulation of virulence factors Spa and ClfB by the SpoVG-Rot cascade in Staphylococcus aureus. Int J Med Microbiol 2018; 309:39-53. [PMID: 30392856 DOI: 10.1016/j.ijmm.2018.10.006] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2018] [Revised: 09/25/2018] [Accepted: 10/18/2018] [Indexed: 12/15/2022] Open
Abstract
Staphylococcus aureus can produce numerous surface proteins involved in the adhesion and internalization of host cells, immune evasion, and inflammation initiation. Among these surface proteins, the microbial surface components recognizing adhesive matrix molecules contain many crucial cell wall-anchored virulence factors. The Sar-family regulatory protein Rot has been reported to regulate many important extracellular virulence factors at the transcriptional level, including Spa and clumping factor B. SpoVG, a global regulator in S. aureus, is known to control the expression of numerous genes. Here, we demonstrate that SpoVG can positively regulate the transcription of rot by directly binding to its promoter. SpoVG can also positively regulate the transcription of spa and clfB through direct-binding to their promoters and in a Rot-mediated manner. Furthermore, SpoVG can positively modulate the human fibrinogen-binding ability of S. aureus. In addition, phosphorylation of SpoVG by the serine/threonine kinase, Stk1, can positively regulate its binding to the promoters of rot, spa, and clfB. The human cell infection assay showed that the adhesion and internalization abilities were reduced in the spoVG mutant strain in comparison to those in the wild-type strain. Collectively, our data reveal a SpoVG-Rot regulatory cascade and novel molecular mechanisms in the virulence control in S. aureus.
Collapse
Affiliation(s)
- Qing Zhu
- Division of Molecular Medicine, Hefei National Laboratory for Physical Sciences at Microscale, the CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Life Sciences, University of Science and Technology of China, China
| | - Wen Wen
- Division of Molecular Medicine, Hefei National Laboratory for Physical Sciences at Microscale, the CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Life Sciences, University of Science and Technology of China, China
| | - Wanying Wang
- Division of Molecular Medicine, Hefei National Laboratory for Physical Sciences at Microscale, the CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Life Sciences, University of Science and Technology of China, China
| | - Baolin Sun
- Division of Molecular Medicine, Hefei National Laboratory for Physical Sciences at Microscale, the CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Life Sciences, University of Science and Technology of China, China.
| |
Collapse
|
25
|
Feuillie C, Vitry P, McAleer MA, Kezic S, Irvine AD, Geoghegan JA, Dufrêne YF. Adhesion of Staphylococcus aureus to Corneocytes from Atopic Dermatitis Patients Is Controlled by Natural Moisturizing Factor Levels. mBio 2018; 9:e01184-18. [PMID: 30108169 PMCID: PMC6094479 DOI: 10.1128/mbio.01184-18] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2018] [Accepted: 07/06/2018] [Indexed: 02/06/2023] Open
Abstract
The bacterial pathogen Staphylococcus aureus plays an important role in atopic dermatitis (AD), a chronic disorder that mostly affects children. Colonization of the skin of AD patients by S. aureus exacerbates the disease, but the molecular determinants of the bacterium-skin adhesive interactions are poorly understood. Specifically, reduced levels of natural moisturizing factor (NMF) in the stratum corneum have been shown to be associated with more severe AD symptoms, but whether this is directly related to S. aureus adhesion is still an open question. Here, we demonstrate a novel relationship between NMF expression in AD skin and strength of bacterial adhesion. Low-NMF corneocytes, unlike high-NMF ones, are covered by a dense layer of nanoscale villus protrusions. S. aureus bacteria isolated from AD skin bind much more strongly to corneocytes when the NMF level is reduced. Strong binding forces originate from a specific interaction between the bacterial adhesion clumping factor B (ClfB) and skin ligands. Remarkably, mechanical tension dramatically strengthens ClfB-mediated adhesion, as observed with catch bonds, demonstrating that physical stress plays a role in promoting colonization of AD skin by S. aureus Collectively, our findings demonstrate that patient NMF levels regulate the strength of S. aureus-corneocyte adhesion, the first step in skin colonization, and suggest that the ClfB binding mechanism could represent a potential target for new therapeutic treatments.IMPORTANCE Bacterium-skin interactions play important roles in skin disorders, yet their molecular details are poorly understood. In this study, we decipher the molecular forces at play during adhesion of Staphylococcus aureus to skin corneocytes in the clinically important context of atopic dermatitis (AD), also known as eczema. We identify a unique relationship between the level of natural moisturizing factor (NMF) in the skin and the strength of bacterium-corneocyte adhesion. Bacterial adhesion is primarily mediated by the surface protein clumping factor B (ClfB) and is enhanced by physical stress, highlighting the role of protein mechanobiology in skin colonization. Similar to a catch bond behavior, this mechanism represents a promising target for the development of novel antistaphylococcal agents.
Collapse
Affiliation(s)
- Cécile Feuillie
- Institute of Life Sciences, Université Catholique de Louvain, Louvain-la-Neuve, Belgium
| | - Pauline Vitry
- Institute of Life Sciences, Université Catholique de Louvain, Louvain-la-Neuve, Belgium
| | - Maeve A McAleer
- National Children's Research Centre, Our Lady's Children's Hospital, Dublin, Ireland
- Pediatric Dermatology, Our Lady's Children's Hospital, Dublin, Ireland
- Clinical Medicine, Trinity College Dublin, Dublin, Ireland
| | - Sanja Kezic
- Coronel Institute of Occupational Health, Academic Medical Center, Amsterdam, The Netherlands
| | - Alan D Irvine
- National Children's Research Centre, Our Lady's Children's Hospital, Dublin, Ireland
- Pediatric Dermatology, Our Lady's Children's Hospital, Dublin, Ireland
- Clinical Medicine, Trinity College Dublin, Dublin, Ireland
| | - Joan A Geoghegan
- Department of Microbiology, Moyne Institute of Preventive Medicine, School of Genetics and Microbiology, Trinity College Dublin, Dublin, Ireland
| | - Yves F Dufrêne
- Institute of Life Sciences, Université Catholique de Louvain, Louvain-la-Neuve, Belgium
- Walloon Excellence in Life Sciences and Biotechnology (WELBIO), Wavre, Belgium
| |
Collapse
|
26
|
Solanki V, Tiwari M, Tiwari V. Host-bacteria interaction and adhesin study for development of therapeutics. Int J Biol Macromol 2018; 112:54-64. [PMID: 29414732 DOI: 10.1016/j.ijbiomac.2018.01.151] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2017] [Revised: 01/17/2018] [Accepted: 01/21/2018] [Indexed: 12/15/2022]
Abstract
Host-pathogen interaction is one of the most important areas of study to understand the adhesion of the pathogen to the host organisms. To adhere on the host cell surface, bacteria assemble the diverse adhesive structures on its surface, which play a foremost role in targeting to the host cell. We have highlighted different bacterial adhesins which are either protein mediated or glycan mediated. The present article listed examples of different bacterial adhesin proteins involved in the interactions with their host, types and subtypes of the fimbriae and non-fimbriae bacterial adhesins. Different bacterial surface adhesin subunits interact with host via different host surface biomolecules. We have also discussed the interactome of some of the pathogens with their host. Therefore, the present study will help researchers to have a detailed understanding of different interacting bacterial adhesins and henceforth, develop new therapies, adhesin specific antibodies and vaccines, which can effectively control pathogenicity of the pathogens.
Collapse
Affiliation(s)
- Vandana Solanki
- Department of Biochemistry, Central University of Rajasthan, Ajmer 305817, India
| | - Monalisa Tiwari
- Department of Biochemistry, Central University of Rajasthan, Ajmer 305817, India
| | - Vishvanath Tiwari
- Department of Biochemistry, Central University of Rajasthan, Ajmer 305817, India.
| |
Collapse
|
27
|
Vitry P, Valotteau C, Feuillie C, Bernard S, Alsteens D, Geoghegan JA, Dufrêne YF. Force-Induced Strengthening of the Interaction between Staphylococcus aureus Clumping Factor B and Loricrin. mBio 2017; 8:e01748-17. [PMID: 29208742 PMCID: PMC5717387 DOI: 10.1128/mbio.01748-17] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2017] [Accepted: 10/27/2017] [Indexed: 02/02/2023] Open
Abstract
Bacterial pathogens that colonize host surfaces are subjected to physical stresses such as fluid flow and cell surface contacts. How bacteria respond to such mechanical cues is an important yet poorly understood issue. Staphylococcus aureus uses a repertoire of surface proteins to resist shear stress during the colonization of host tissues, but whether their adhesive functions can be modulated by physical forces is not known. Here, we show that the interaction of S. aureus clumping factor B (ClfB) with the squamous epithelial cell envelope protein loricrin is enhanced by mechanical force. We find that ClfB mediates S. aureus adhesion to loricrin through weak and strong molecular interactions both in a laboratory strain and in a clinical isolate. Strong forces (~1,500 pN), among the strongest measured for a receptor-ligand bond, are consistent with a high-affinity "dock, lock, and latch" binding mechanism involving dynamic conformational changes in the adhesin. Notably, we demonstrate that the strength of the ClfB-loricrin bond increases as mechanical force is applied. These findings favor a two-state model whereby bacterial adhesion to loricrin is enhanced through force-induced conformational changes in the ClfB molecule, from a weakly binding folded state to a strongly binding extended state. This force-sensitive mechanism may provide S. aureus with a means to finely tune its adhesive properties during the colonization of host surfaces, helping cells to attach firmly under high shear stress and to detach and spread under low shear stress.IMPORTANCEStaphylococcus aureus colonizes the human skin and the nose and can cause various disorders, including superficial skin lesions and invasive infections. During nasal colonization, the S. aureus surface protein clumping factor B (ClfB) binds to the squamous epithelial cell envelope protein loricrin, but the molecular interactions involved are poorly understood. Here, we unravel the molecular mechanism guiding the ClfB-loricrin interaction. We show that the ClfB-loricrin bond is remarkably strong, consistent with a high-affinity "dock, lock, and latch" binding mechanism. We discover that the ClfB-loricrin interaction is enhanced under tensile loading, thus providing evidence that the function of an S. aureus surface protein can be activated by physical stress.
Collapse
Affiliation(s)
- Pauline Vitry
- Institute of Life Sciences, Université Catholique de Louvain, Louvain-la-Neuve, Belgium
| | - Claire Valotteau
- Institute of Life Sciences, Université Catholique de Louvain, Louvain-la-Neuve, Belgium
| | - Cécile Feuillie
- Institute of Life Sciences, Université Catholique de Louvain, Louvain-la-Neuve, Belgium
| | - Simon Bernard
- Institute of Life Sciences, Université Catholique de Louvain, Louvain-la-Neuve, Belgium
| | - David Alsteens
- Institute of Life Sciences, Université Catholique de Louvain, Louvain-la-Neuve, Belgium
| | - Joan A Geoghegan
- Department of Microbiology, Moyne Institute of Preventive Medicine, School of Genetics and Microbiology, Trinity College Dublin, Dublin, Ireland
| | - Yves F Dufrêne
- Institute of Life Sciences, Université Catholique de Louvain, Louvain-la-Neuve, Belgium
- Walloon Excellence in Life Sciences and Biotechnology (WELBIO), Wavre, Belgium
| |
Collapse
|
28
|
Abstract
PURPOSE OF REVIEW Atopic dermatitis (AD) is a chronic, relapsing inflammatory skin disorder that is a major public health burden worldwide. AD lesions are often colonized by Staphylococcus aureus and Staphylococcus epidermidis. An important aspect of Staphylococcus spp. is their propensity to form biofilms, adhesive surface-attached colonies that become highly resistant to antibiotics and immune responses, and recent studies have found that clinical isolates colonizing AD skin are often biofilm-positive. Biofilm formation results in complex bacterial communities that have unique effects on keratinocytes and host immunity. This review will summarize recent studies exploring the role of staphyloccocal biofilms in atopic dermatitis and the implications for treatment. RECENT FINDINGS Recent studies suggest an important role for biofilms in the pathogenesis of numerous dermatologic diseases including AD. S. aureus biofilms have been found to colonize the eccrine ducts of AD skin, and these biofilms influence secretion of keratinocyte cytokines and trigger differentiation and apoptosis of keratinocytes. These activities may act to disrupt barrier function and promote disease pathogenesis as well as allergen sensitization. Formation of biofilm is a successful strategy that protects the bacteria from environmental danger, antibiotics, and phagocytosis, enabling chronic persistence in the host. An increasing number of S. aureus skin isolates are resistant to conventional antibiotics, and staphylococcal biofilm communities are prevalent on the skin of individuals with AD. Staphylococcal colonization of the skin impacts skin barrier function and plays multiple important roles in AD pathogenesis.
Collapse
|
29
|
Catheterization alters bladder ecology to potentiate Staphylococcus aureus infection of the urinary tract. Proc Natl Acad Sci U S A 2017; 114:E8721-E8730. [PMID: 28973850 DOI: 10.1073/pnas.1707572114] [Citation(s) in RCA: 77] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Methicillin-resistant Staphylococcus aureus (MRSA) is an emerging cause of catheter-associated urinary tract infection (CAUTI), which frequently progresses to more serious invasive infections. We adapted a mouse model of CAUTI to investigate how catheterization increases an individual's susceptibility to MRSA UTI. This analysis revealed that catheterization was required for MRSA to achieve high-level, persistent infection in the bladder. As shown previously, catheter placement induced an inflammatory response resulting in the release of the host protein fibrinogen (Fg), which coated the bladder and implant. Following infection, we showed that MRSA attached to the urothelium and implant in patterns that colocalized with deposited Fg. Furthermore, MRSA exacerbated the host inflammatory response to stimulate the additional release and accumulation of Fg in the urinary tract, which facilitated MRSA colonization. Consistent with this model, analysis of catheters from patients with S. aureus-positive cultures revealed colocalization of Fg, which was deposited on the catheter, with S. aureus Clumping Factors A and B (ClfA and ClfB) have been shown to contribute to MRSA-Fg interactions in other models of disease. We found that mutants in clfA had significantly greater Fg-binding defects than mutants in clfB in several in vitro assays. Paradoxically, only the ClfB- strain was significantly attenuated in the CAUTI model. Together, these data suggest that catheterization alters the urinary tract environment to promote MRSA CAUTI pathogenesis by inducing the release of Fg, which the pathogen enhances to persist in the urinary tract despite the host's robust immune response.
Collapse
|
30
|
Hiding in plain sight: immune evasion by the staphylococcal protein SdrE. Biochem J 2017; 474:1803-1806. [PMID: 28490660 DOI: 10.1042/bcj20170132] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2017] [Revised: 04/12/2017] [Accepted: 04/18/2017] [Indexed: 11/17/2022]
Abstract
The human immune system is responsible for identification and destruction of invader cells, such as the bacterial pathogen Staphylococcus aureus In response, S. aureus brings to the fight a large number of virulence factors, including several that allow it to evade the host immune response. The staphylococcal surface protein SdrE was recently reported to bind to complement Factor H, an important regulator of complement activation. Factor H attaches to the surface of host cells to inhibit complement activation and amplification, preventing the destruction of the host cell. SdrE binding to Factor H allows S. aureus to mimic a host cell and reduces bacterial killing by granulocytes. In a new study published in Biochemical Journal, Zhang et al. describe crystal structures of SdrE and its complex with the C-terminal portion of Factor H. The structure of SdrE and its interaction with the Factor H peptide closely resemble a family of surface proteins that recognize extracellular matrix components such as fibrinogen. However, unbound SdrE forms a novel 'Closed' conformation with an occluded peptide-binding groove. These structures reveal a fascinating mechanism for immune evasion and provide a potential avenue for the development of novel antimicrobial agents to target SdrE.
Collapse
|
31
|
Zhang Y, Wu M, Hang T, Wang C, Yang Y, Pan W, Zang J, Zhang M, Zhang X. Staphylococcus aureus SdrE captures complement factor H's C-terminus via a novel 'close, dock, lock and latch' mechanism for complement evasion. Biochem J 2017; 474:1619-1631. [PMID: 28258151 PMCID: PMC5415847 DOI: 10.1042/bcj20170085] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2017] [Revised: 03/02/2017] [Accepted: 03/03/2017] [Indexed: 12/30/2022]
Abstract
Complement factor H (CFH) is a soluble complement regulatory protein essential for the down-regulation of the alternative pathway on interaction with specific markers on the host cell surface. It recognizes the complement component 3b (C3b) and 3d (C3d) fragments in addition to self cell markers (i.e. glycosaminoglycans, sialic acid) to distinguish host cells that deserve protection from pathogens that should be eliminated. The Staphylococcus aureus surface protein serine-aspartate repeat protein E (SdrE) was previously reported to bind human CFH as an immune-evasion tactic. However, the molecular mechanism underlying SdrE-CFH-mediated immune evasion remains unknown. In the present study, we identified a novel region at CFH's C-terminus (CFH1206-1226), which binds SdrE N2 and N3 domains (SdrEN2N3) with high affinity, and determined the crystal structures of apo-SdrEN2N3 and the SdrEN2N3-CFH1206-1226 complex. Comparison of the structure of the CFH-SdrE complex with other CFH structures reveals that CFH's C-terminal tail flips from the main body to insert into the ligand-binding groove of SdrE. In addition, SdrEN2N3 adopts a 'close' state in the absence of CFH, which undergoes a large conformational change on CFH binding, suggesting a novel 'close, dock, lock and latch' (CDLL) mechanism for SdrE to recognize its ligand. Our findings imply that SdrE functions as a 'clamp' to capture CFH's C-terminal tail via a unique CDLL mechanism and sequesters CFH on the surface of S. aureus for complement evasion.
Collapse
Affiliation(s)
- Yingjie Zhang
- School of Life Science, Anhui University, 111 Jiulong Road, Hefei 230601, China
| | - Minhao Wu
- Hefei National Laboratory for Physical Sciences at Microscale, CAS Center for Excellence in Biomacromolecules, Collaborative Innovation Center of Chemistry for Life Sciences, and School of Life Sciences, University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui 230026, China
- Key Laboratory of Structural Biology, Chinese Academy of Sciences, 96 Jinzhai Road, Hefei, Anhui 230026, China
| | - Tianrong Hang
- Hefei National Laboratory for Physical Sciences at Microscale, CAS Center for Excellence in Biomacromolecules, Collaborative Innovation Center of Chemistry for Life Sciences, and School of Life Sciences, University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui 230026, China
- Key Laboratory of Structural Biology, Chinese Academy of Sciences, 96 Jinzhai Road, Hefei, Anhui 230026, China
| | - Chengliang Wang
- Hefei National Laboratory for Physical Sciences at Microscale, CAS Center for Excellence in Biomacromolecules, Collaborative Innovation Center of Chemistry for Life Sciences, and School of Life Sciences, University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui 230026, China
- Key Laboratory of Structural Biology, Chinese Academy of Sciences, 96 Jinzhai Road, Hefei, Anhui 230026, China
| | - Ye Yang
- School of Life Science, Anhui University, 111 Jiulong Road, Hefei 230601, China
| | - Weimin Pan
- School of Life Science, Anhui University, 111 Jiulong Road, Hefei 230601, China
| | - Jianye Zang
- Hefei National Laboratory for Physical Sciences at Microscale, CAS Center for Excellence in Biomacromolecules, Collaborative Innovation Center of Chemistry for Life Sciences, and School of Life Sciences, University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui 230026, China
- Key Laboratory of Structural Biology, Chinese Academy of Sciences, 96 Jinzhai Road, Hefei, Anhui 230026, China
| | - Min Zhang
- School of Life Science, Anhui University, 111 Jiulong Road, Hefei 230601, China
| | - Xuan Zhang
- Hefei National Laboratory for Physical Sciences at Microscale, CAS Center for Excellence in Biomacromolecules, Collaborative Innovation Center of Chemistry for Life Sciences, and School of Life Sciences, University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui 230026, China
- Key Laboratory of Structural Biology, Chinese Academy of Sciences, 96 Jinzhai Road, Hefei, Anhui 230026, China
| |
Collapse
|
32
|
Keratin mediates the recognition of apoptotic and necrotic cells through dendritic cell receptor DEC205/CD205. Proc Natl Acad Sci U S A 2016; 113:13438-13443. [PMID: 27821726 DOI: 10.1073/pnas.1609331113] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Clearance of dead cells is critical for maintaining homeostasis and prevents autoimmunity and inflammation. When cells undergo apoptosis and necrosis, specific markers are exposed and recognized by the receptors on phagocytes. DEC205 (CD205) is an endocytotic receptor on dendritic cells with antigen presentation function and has been widely used in immune therapies for vaccine generation. It has been shown that human DEC205 recognizes apoptotic and necrotic cells in a pH-dependent fashion. However, the natural ligand(s) of DEC205 remains unknown. Here we find that keratins are the cellular ligands of human DEC205. DEC205 binds to keratins specifically at acidic, but not basic, pH through its N-terminal domains. Keratins form intermediate filaments and are important for maintaining the strength of cells and tissues. Our results suggest that keratins also function as cell markers of apoptotic and necrotic cells and mediate a pH-dependent pathway for the immune recognition of dead cells.
Collapse
|
33
|
Crosby HA, Kwiecinski J, Horswill AR. Staphylococcus aureus Aggregation and Coagulation Mechanisms, and Their Function in Host-Pathogen Interactions. ADVANCES IN APPLIED MICROBIOLOGY 2016; 96:1-41. [PMID: 27565579 DOI: 10.1016/bs.aambs.2016.07.018] [Citation(s) in RCA: 77] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The human commensal bacterium Staphylococcus aureus can cause a wide range of infections ranging from skin and soft tissue infections to invasive diseases like septicemia, endocarditis, and pneumonia. Muticellular organization almost certainly contributes to S. aureus pathogenesis mechanisms. While there has been considerable focus on biofilm formation and its role in colonizing prosthetic joints and indwelling devices, less attention has been paid to nonsurface-attached group behavior like aggregation and clumping. S. aureus is unique in its ability to coagulate blood, and it also produces multiple fibrinogen-binding proteins that facilitate clumping. Formation of clumps, which are large, tightly packed groups of cells held together by fibrin(ogen), has been demonstrated to be important for S. aureus virulence and immune evasion. Clumps of cells are able to avoid detection by the host's immune system due to a fibrin(ogen) coat that acts as a shield, and the size of the clumps facilitates evasion of phagocytosis. In addition, clumping could be an important early step in establishing infections that involve tight clusters of cells embedded in host matrix proteins, such as soft tissue abscesses and endocarditis. In this review, we discuss clumping mechanisms and regulation, as well as what is known about how clumping contributes to immune evasion.
Collapse
Affiliation(s)
- H A Crosby
- University of Iowa, Iowa City, IA, United States
| | - J Kwiecinski
- University of Iowa, Iowa City, IA, United States
| | - A R Horswill
- University of Iowa, Iowa City, IA, United States
| |
Collapse
|
34
|
Nagarajan R, Hendrickx APA, Ponnuraj K. The crystal structure of the ligand-binding region of serine-glutamate repeat containing protein A (SgrA) ofEnterococcus faeciumreveals a new protein fold: functional characterization and insights into its adhesion function. FEBS J 2016; 283:3039-55. [DOI: 10.1111/febs.13792] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2015] [Revised: 05/12/2016] [Accepted: 06/22/2016] [Indexed: 12/21/2022]
Affiliation(s)
- Revathi Nagarajan
- Centre of Advanced Study in Crystallography and Biophysics; University of Madras; Chennai India
| | | | - Karthe Ponnuraj
- Centre of Advanced Study in Crystallography and Biophysics; University of Madras; Chennai India
| |
Collapse
|
35
|
Ko YP, Flick MJ. Fibrinogen Is at the Interface of Host Defense and Pathogen Virulence in Staphylococcus aureus Infection. Semin Thromb Hemost 2016; 42:408-21. [PMID: 27056151 PMCID: PMC5514417 DOI: 10.1055/s-0036-1579635] [Citation(s) in RCA: 59] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Fibrinogen not only plays a pivotal role in hemostasis but also serves key roles in antimicrobial host defense. As a rapidly assembled provisional matrix protein, fibrin(ogen) can function as an early line of host protection by limiting bacterial growth, suppressing dissemination of microbes to distant sites, and mediating host bacterial killing. Fibrinogen-mediated host antimicrobial activity occurs predominantly through two general mechanisms, namely, fibrin matrices functioning as a protective barrier and fibrin(ogen) directly or indirectly driving host protective immune function. The potential of fibrin to limit bacterial infection and disease has been countered by numerous bacterial species evolving and maintaining virulence factors that engage hemostatic system components within vertebrate hosts. Bacterial factors have been isolated that simply bind fibrinogen or fibrin, promote fibrin polymer formation, or promote fibrin dissolution. Staphylococcus aureus is an opportunistic gram-positive bacterium, the causative agent of a wide range of human infectious diseases, and a prime example of a pathogen exquisitely sensitive to host fibrinogen. Indeed, current data suggest fibrinogen serves as a context-dependent determinant of host defense or pathogen virulence in Staphylococcus infection whose ultimate contribution is dictated by the expression of S. aureus virulence factors, the path of infection, and the tissue microenvironment.
Collapse
Affiliation(s)
- Ya-Ping Ko
- Center for Infectious and Inflammatory Diseases, Institute for Biosciences and Technology, Texas A&M Health Science Center, Houston, Texas
| | - Matthew J. Flick
- Division of Experimental Hematology and Cancer Biology, Cancer and Blood Diseases Institute, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio
| |
Collapse
|
36
|
Binding of Human Fibrinogen to MRP Enhances Streptococcus suis Survival in Host Blood in a αXβ2 Integrin-dependent Manner. Sci Rep 2016; 6:26966. [PMID: 27231021 PMCID: PMC4882601 DOI: 10.1038/srep26966] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2016] [Accepted: 05/11/2016] [Indexed: 12/11/2022] Open
Abstract
The Gram-positive bacterium Streptococcus suis serotype 2 (S. suis 2), an important zoonotic pathogen, induces strong systemic infections in humans; sepsis and meningitis are the most common clinical manifestations and are often accompanied by bacteremia. However, the mechanisms of S. suis 2 survival in human blood are not well understood. In our previous study, we identified muramidase-released protein (MRP), a novel human fibrinogen (hFg)-binding protein (FBP) in S. suis 2 that is an important epidemic infection marker with an unknown mechanism in pathogenesis. The present study demonstrates that the N-terminus of MRP (a.a. 283–721) binds to both the Aα and Bβ chains of the D fragment of hFg. Strikingly, the hFg-MRP interaction improved the survival of S. suis 2 in human blood and led to the aggregation and exhaustion of polymorphonuclear neutrophils (PMNs) via an αXβ2 integrin-dependent mechanism. Other Fg-binding proteins, such as M1 (GAS) and FOG (GGS), also induced PMNs aggregation; however, the mechanisms of these FBP-hFg complexes in the evasion of PMN-mediated innate immunity remain unclear. MRP is conserved across highly virulent strains in Europe and Asia, and these data shed new light on the function of MRP in S. suis pathogenesis.
Collapse
|
37
|
Isopeptide bond in collagen- and fibrinogen-binding MSCRAMMs. Biophys Rev 2016; 8:75-83. [PMID: 28510145 DOI: 10.1007/s12551-015-0191-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2015] [Accepted: 12/14/2015] [Indexed: 10/22/2022] Open
Abstract
The internal isopeptide bonds are amide bonds formed autocatalytically between the side chains of Lys and Asn/Asp residues and have been discovered recently. These bonds are well conserved in Gram-positive bacterial pilin proteins and are also observed over a wide range of Gram-positive bacterial surface proteins. The presence of these bonds confers the pilus subunits with remarkable properties in terms of thermal stability and resistance to proteases. Like pili, microbial surface components recognizing adhesive matrix molecules (MSCRAMMs) are also surface proteins found only in Gram-positive bacteria. They specifically interact with the extracellular matrix (ECM) molecules like collagen, fibrinogen, fibronectin, laminin, etc. Many biophysical and biochemical studies have been carried out to characterize the isopeptide bonds in pili proteins from Gram-positive bacteria, but no attempts have been made to study the isopeptide bonds in MSCRAMMs. This short review aims to study the significance of the isopeptide bonds in relation to their function, by analyzing the crystal structures of collagen- and fibrinogen-binding MSCRAMMs. In this analysis, interestingly, we observed that the putative isopeptide bonds are restricted to the collagen-binding MSCRAMMs. Based on analogy with bacterial pilus subunits, we hypothesize that the collagen-binding MSCRAMMs possessing putative isopeptide bonds exhibit similar structural properties, which could help the bacteria in colonizing the host and provide resistance against host-defense mechanisms.
Collapse
|
38
|
Zhang X, Wu M, Zhuo W, Gu J, Zhang S, Ge J, Yang M. Crystal structures of Bbp from Staphylococcus aureus reveal the ligand binding mechanism with Fibrinogen α. Protein Cell 2015; 6:757-66. [PMID: 26349459 PMCID: PMC4598324 DOI: 10.1007/s13238-015-0205-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2015] [Accepted: 07/29/2015] [Indexed: 12/01/2022] Open
Abstract
Bone sialoprotein-binding protein (Bbp), a MSCRAMMs (Microbial Surface Components Recognizing Adhesive Matrix Molecules) family protein expressed on the surface of Staphylococcus aureus (S. aureus), mediates adherence to fibrinogen α (Fg α), a component in the extracellular matrix of the host cell and is important for infection and pathogenesis. In this study, we solved the crystal structures of apo-Bbp273−598 and Bbp273−598-Fg α561−575 complex at a resolution of 2.03 Å and 1.45 Å, respectively. Apo-Bbp273−598 contained the ligand binding region N2 and N3 domains, both of which followed a DE variant IgG fold characterized by an additional D1 strand in N2 domain and D1′ and D2′ strands in N3 domain. The peptide mapped to the Fg α561−575 bond to Bbp273−598 on the open groove between the N2 and N3 domains. Strikingly, the disordered C-terminus in the apo-form reorganized into a highly-ordered loop and a β-strand G′′ covering the ligand upon ligand binding. BbpAla298–Gly301 in the N2 domain of the Bbp273−598-Fg α561−575 complex, which is a loop in the apo-form, formed a short α-helix to interact tightly with the peptide. In addition, BbpSer547–Gln561 in the N3 domain moved toward the binding groove to make contact directly with the peptide, while BbpAsp338–Gly355 and BbpThr365–Tyr387 in N2 domain shifted their configurations to stabilize the reorganized C-terminus mainly through strong hydrogen bonds. Altogether, our results revealed the molecular basis for Bbp-ligand interaction and advanced our understanding of S. aureus infection process.
Collapse
Affiliation(s)
- Xinyue Zhang
- Key Laboratory for Protein Sciences of Ministry of Education, Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Meng Wu
- Key Laboratory for Protein Sciences of Ministry of Education, Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Wei Zhuo
- Key Laboratory for Protein Sciences of Ministry of Education, Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Jinke Gu
- Key Laboratory for Protein Sciences of Ministry of Education, Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Sensen Zhang
- Key Laboratory for Protein Sciences of Ministry of Education, Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Jingpeng Ge
- Key Laboratory for Protein Sciences of Ministry of Education, Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Maojun Yang
- Key Laboratory for Protein Sciences of Ministry of Education, Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing, 100084, China.
| |
Collapse
|
39
|
Sequence type 1 group B Streptococcus, an emerging cause of invasive disease in adults, evolves by small genetic changes. Proc Natl Acad Sci U S A 2015; 112:6431-6. [PMID: 25941374 DOI: 10.1073/pnas.1504725112] [Citation(s) in RCA: 74] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
The molecular mechanisms underlying pathogen emergence in humans is a critical but poorly understood area of microbiologic investigation. Serotype V group B Streptococcus (GBS) was first isolated from humans in 1975, and rates of invasive serotype V GBS disease significantly increased starting in the early 1990s. We found that 210 of 229 serotype V GBS strains (92%) isolated from the bloodstream of nonpregnant adults in the United States and Canada between 1992 and 2013 were multilocus sequence type (ST) 1. Elucidation of the complete genome of a 1992 ST-1 strain revealed that this strain had the highest homology with a GBS strain causing cow mastitis and that the 1992 ST-1 strain differed from serotype V strains isolated in the late 1970s by acquisition of cell surface proteins and antimicrobial resistance determinants. Whole-genome comparison of 202 invasive ST-1 strains detected significant recombination in only eight strains. The remaining 194 strains differed by an average of 97 SNPs. Phylogenetic analysis revealed a temporally dependent mode of genetic diversification consistent with the emergence in the 1990s of ST-1 GBS as major agents of human disease. Thirty-one loci were identified as being under positive selective pressure, and mutations at loci encoding polysaccharide capsule production proteins, regulators of pilus expression, and two-component gene regulatory systems were shown to affect the bacterial phenotype. These data reveal that phenotypic diversity among ST-1 GBS is mainly driven by small genetic changes rather than extensive recombination, thereby extending knowledge into how pathogens adapt to humans.
Collapse
|
40
|
Cell Wall-Anchored Surface Proteins of Staphylococcus aureus: Many Proteins, Multiple Functions. Curr Top Microbiol Immunol 2015; 409:95-120. [PMID: 26667044 DOI: 10.1007/82_2015_5002] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Staphylococcus aureus persistently colonizes about 20 % of the population and is intermittently associated with the remainder. The organism can cause superficial skin infections and life-threatening invasive diseases. The surface of the bacterial cell displays a variety of proteins that are covalently anchored to peptidoglycan. They perform many functions including adhesion to host cells and tissues, invasion of non-phagocytic cells, and evasion of innate immune responses. The proteins have been categorized into distinct classes based on structural and functional analysis. Many surface proteins are multifunctional. Cell wall-anchored proteins perform essential functions supporting survival and proliferation during the commensal state and during invasive infections. The ability of cell wall-anchored proteins to bind to desquamated epithelial cells is important during colonization, and the binding to fibrinogen is of particular significance in pathogenesis.
Collapse
|
41
|
Leclerc EA, Huchenq A, Kezic S, Serre G, Jonca N. Mice deficient for the epidermal dermokine β and γ isoforms display transient cornification defects. J Cell Sci 2014; 127:2862-72. [PMID: 24794495 DOI: 10.1242/jcs.144808] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Expression of the human dermokine gene (DMKN) leads to the production of four dermokine isoform families. The secreted α, β and γ isoforms have an epidermis-restricted expression pattern, with Dmkn β and γ being specifically expressed by the granular keratinocytes. The δ isoforms are intracellular and ubiquitous. Here, we performed an in-depth characterization of Dmkn expression in mouse skin and found an expression pattern that was less complex than in humans. In particular, mRNA coding for the δ family were absent. Homozygous mice null for the Dmkn β and γ isoforms had no obvious phenotype but only a temporary scaly skin during the first week of life. The pups null for the Dmkn β and γ isoforms had smaller keratohyalin granules and their cornified envelopes were more sensitive to mechanical stress. At the molecular level, amounts of profilaggrin and filaggrin monomers were reduced whereas amino acid components of the natural moisturizing factor were increased. In addition, the electrophoretic mobility of involucrin was modified, suggesting post-translational modifications. Finally, the mice null for the Dmkn β and γ isoforms strongly overexpressed Dmkn α. These data are evocative of compensatory mechanisms relevant to the temporary phenotype. Overall, we improved the knowledge of Dmkn expression in mouse and highlighted a role for Dmkn β and γ in cornification.
Collapse
Affiliation(s)
- Emilie A Leclerc
- UMR 5165 / U1056 'Différenciation Epidermique et Autoimmunité Rhumatoïde' (CNRS - INSERM - Université Toulouse III - CHU de Toulouse), Hôpital Purpan, Place du Dr Baylac, TSA 40031, 31059 Toulouse Cedex 9, France
| | - Anne Huchenq
- UMR 5165 / U1056 'Différenciation Epidermique et Autoimmunité Rhumatoïde' (CNRS - INSERM - Université Toulouse III - CHU de Toulouse), Hôpital Purpan, Place du Dr Baylac, TSA 40031, 31059 Toulouse Cedex 9, France
| | - Sanja Kezic
- Coronel Institute of Occupational Health, Academic Medical Center, 1105 Amsterdam, The Netherlands
| | - Guy Serre
- UMR 5165 / U1056 'Différenciation Epidermique et Autoimmunité Rhumatoïde' (CNRS - INSERM - Université Toulouse III - CHU de Toulouse), Hôpital Purpan, Place du Dr Baylac, TSA 40031, 31059 Toulouse Cedex 9, France
| | - Nathalie Jonca
- UMR 5165 / U1056 'Différenciation Epidermique et Autoimmunité Rhumatoïde' (CNRS - INSERM - Université Toulouse III - CHU de Toulouse), Hôpital Purpan, Place du Dr Baylac, TSA 40031, 31059 Toulouse Cedex 9, France
| |
Collapse
|
42
|
Foster TJ, Geoghegan JA, Ganesh VK, Höök M. Adhesion, invasion and evasion: the many functions of the surface proteins of Staphylococcus aureus. Nat Rev Microbiol 2014; 12:49-62. [PMID: 24336184 DOI: 10.1038/nrmicro3161] [Citation(s) in RCA: 970] [Impact Index Per Article: 97.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Staphylococcus aureus is an important opportunistic pathogen and persistently colonizes about 20% of the human population. Its surface is 'decorated' with proteins that are covalently anchored to the cell wall peptidoglycan. Structural and functional analysis has identified four distinct classes of surface proteins, of which microbial surface component recognizing adhesive matrix molecules (MSCRAMMs) are the largest class. These surface proteins have numerous functions, including adhesion to and invasion of host cells and tissues, evasion of immune responses and biofilm formation. Thus, cell wall-anchored proteins are essential virulence factors for the survival of S. aureus in the commensal state and during invasive infections, and targeting them with vaccines could combat S. aureus infections.
Collapse
Affiliation(s)
- Timothy J Foster
- Microbiology Department, Moyne Institute of Preventive Medicine, Trinity College, Dublin 2, Ireland
| | - Joan A Geoghegan
- Microbiology Department, Moyne Institute of Preventive Medicine, Trinity College, Dublin 2, Ireland
| | - Vannakambadi K Ganesh
- Center for Infectious and Inflammatory Diseases, Institute of Biosciences and Technology, Texas A & M University Health Science Center, Houston, Texas 77030, USA
| | - Magnus Höök
- Center for Infectious and Inflammatory Diseases, Institute of Biosciences and Technology, Texas A & M University Health Science Center, Houston, Texas 77030, USA
| |
Collapse
|
43
|
Schulte T, Löfling J, Mikaelsson C, Kikhney A, Hentrich K, Diamante A, Ebel C, Normark S, Svergun D, Henriques-Normark B, Achour A. The basic keratin 10-binding domain of the virulence-associated pneumococcal serine-rich protein PsrP adopts a novel MSCRAMM fold. Open Biol 2014; 4:130090. [PMID: 24430336 PMCID: PMC3909270 DOI: 10.1098/rsob.130090] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Streptococcus pneumoniae is a major human pathogen, and a leading cause of disease and death worldwide. Pneumococcal invasive disease is triggered by initial asymptomatic colonization of the human upper respiratory tract. The pneumococcal serine-rich repeat protein (PsrP) is a lung-specific virulence factor whose functional binding region (BR) binds to keratin-10 (KRT10) and promotes pneumococcal biofilm formation through self-oligomerization. We present the crystal structure of the KRT10-binding domain of PsrP (BR187–385) determined to 2.0 Å resolution. BR187–385 adopts a novel variant of the DEv-IgG fold, typical for microbial surface components recognizing adhesive matrix molecules adhesins, despite very low sequence identity. An extended β-sheet on one side of the compressed, two-sided barrel presents a basic groove that possibly binds to the acidic helical rod domain of KRT10. Our study also demonstrates the importance of the other side of the barrel, formed by extensive well-ordered loops and stabilized by short β-strands, for interaction with KRT10.
Collapse
Affiliation(s)
- Tim Schulte
- Science for Life Laboratory, Center for Infectious Medicine (CIM), Department of Medicine, Karolinska University Hospital Huddinge, Karolinska Institutet Science Park, Tomtebodavägen 23A Solna, Stockholm 17165, Sweden
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Seo HS, Minasov G, Seepersaud R, Doran KS, Dubrovska I, Shuvalova L, Anderson WF, Iverson TM, Sullam PM. Characterization of fibrinogen binding by glycoproteins Srr1 and Srr2 of Streptococcus agalactiae. J Biol Chem 2013; 288:35982-96. [PMID: 24165132 PMCID: PMC3861647 DOI: 10.1074/jbc.m113.513358] [Citation(s) in RCA: 71] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The serine-rich repeat glycoproteins of Gram-positive bacteria comprise a large family of cell wall proteins. Streptococcus agalactiae (group B streptococcus, GBS) expresses either Srr1 or Srr2 on its surface, depending on the strain. Srr1 has recently been shown to bind fibrinogen, and this interaction contributes to the pathogenesis of GBS meningitis. Although strains expressing Srr2 appear to be hypervirulent, no ligand for this adhesin has been described. We now demonstrate that Srr2 also binds human fibrinogen and that this interaction promotes GBS attachment to endothelial cells. Recombinant Srr1 and Srr2 bound fibrinogen in vitro, with affinities of KD = 2.1 × 10−5 and 3.7 × 10−6m, respectively, as measured by surface plasmon resonance spectroscopy. The binding site for Srr1 and Srr2 was localized to tandem repeats 6–8 of the fibrinogen Aα chain. The structures of both the Srr1 and Srr2 binding regions were determined and, in combination with mutagenesis studies, suggest that both Srr1 and Srr2 interact with a segment of these repeats via a “dock, lock, and latch” mechanism. Moreover, properties of the latch region may account for the increased affinity between Srr2 and fibrinogen. Together, these studies identify how greater affinity of Srr2 for fibrinogen may contribute to the increased virulence associated with Srr2-expressing strains.
Collapse
Affiliation(s)
- Ho Seong Seo
- From the Division of Infectious Diseases, Veterans Affairs Medical Center, University of California at San Francisco and the Northern California Institute for Research and Education, San Francisco, California 94121
| | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Seo HS, Xiong YQ, Sullam PM. Role of the serine-rich surface glycoprotein Srr1 of Streptococcus agalactiae in the pathogenesis of infective endocarditis. PLoS One 2013; 8:e64204. [PMID: 23717569 PMCID: PMC3662765 DOI: 10.1371/journal.pone.0064204] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2013] [Accepted: 04/12/2013] [Indexed: 11/26/2022] Open
Abstract
The binding of bacteria to fibrinogen and platelets are important events in the pathogenesis of infective endocarditis. Srr1 is a serine-rich repeat glycoprotein of Streptococcus agalactiae that binds directly to the Aα chain of human fibrinogen. To assess the impact of Srr1 on the pathogenesis of endocarditis due to S. agalactiae, we first examined the binding of this organism to immobilized human platelets. Strains expressing Srr1 had significantly higher levels of binding to human platelets in vitro, as compared with isogenic Δsrr1 mutants. In addition, platelet binding was inhibited by pretreatment with anti-fibrinogen IgG or purified Srr1 binding region. To assess the contribution of Srr1 to pathogenicity, we compared the relative virulence of S. agalactiae NCTC 10/84 strain and its Δsrr1 mutant in a rat model of endocarditis, where animals were co-infected with the WT and the mutant strains at a 1∶1 ratio. At 72 h post-infection, bacterial densities (CFU/g) of the WT strain within vegetations, kidneys, and spleens were significantly higher, as compared with the Δsrr1 mutant. These results indicate that Srr1 contributes to the pathogenesis of endocarditis due to S. agalactiae, at least in part through its role in fibrinogen-mediated platelet binding.
Collapse
Affiliation(s)
- Ho Seong Seo
- Division of Infectious Diseases, Veterans Affairs Medical Center and the University of California San Francisco, San Francisco, California, United States of America
| | - Yan Q. Xiong
- Department of Medicine, Los Angeles Biomedical Research Institute at Harbor-UCLA Medical Center, Torrance, California, United States of America
- Geffen School of Medicine at UCLA, Los Angeles, California, United States of America
| | - Paul M. Sullam
- Division of Infectious Diseases, Veterans Affairs Medical Center and the University of California San Francisco, San Francisco, California, United States of America
- * E-mail:
| |
Collapse
|
46
|
Wang X, Ge J, Liu B, Hu Y, Yang M. Structures of SdrD from Staphylococcus aureus reveal the molecular mechanism of how the cell surface receptors recognize their ligands. Protein Cell 2013; 4:277-85. [PMID: 23549613 DOI: 10.1007/s13238-013-3009-x] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2013] [Accepted: 02/25/2013] [Indexed: 11/25/2022] Open
Abstract
Staphylococcus aureus is the most important Gram-positive colonizer of human skin and nasal passage, causing high morbidity and mortality. SD-repeat containing protein D (SdrD), an MSCRAMM (Microbial Surface Components Recognizing Adhesive Matrix Molecules) family surface protein, plays an important role in S. aureus adhesion and pathogenesis, while its binding target and molecular mechanism remain largely unknown. Here we solved the crystal structures of SdrD N2-N3 domain and N2-N3-B1 domain. Through structural analysis and comparisons, we characterized the ligand binding site of SdrD, and proposed a featured sequence motif of its potential ligands. In addition, the structures revealed for the first time the interactions between B1 domain and N2-N3 domain among B domain-containing MSCRAMMs. Our results may help in understanding the roles SdrD plays in S. aureus adhesion and shed light on the development of novel antibiotics.
Collapse
Affiliation(s)
- Xiao Wang
- Key Laboratory for Protein Sciences of Ministry of Education, Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | | | | | | | | |
Collapse
|
47
|
Mulcahy ME, Geoghegan JA, Monk IR, O'Keeffe KM, Walsh EJ, Foster TJ, McLoughlin RM. Nasal colonisation by Staphylococcus aureus depends upon clumping factor B binding to the squamous epithelial cell envelope protein loricrin. PLoS Pathog 2012; 8:e1003092. [PMID: 23300445 PMCID: PMC3531522 DOI: 10.1371/journal.ppat.1003092] [Citation(s) in RCA: 107] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2012] [Accepted: 11/05/2012] [Indexed: 01/22/2023] Open
Abstract
Staphylococcus aureus asymptomatically colonises the anterior nares, but the host and bacterial factors that facilitate colonisation remain incompletely understood. The S. aureus surface protein ClfB has been shown to mediate adherence to squamous epithelial cells in vitro and to promote nasal colonisation in both mice and humans. Here, we demonstrate that the squamous epithelial cell envelope protein loricrin represents the major target ligand for ClfB during S. aureus nasal colonisation. In vitro adherence assays indicated that bacteria expressing ClfB bound loricrin most likely by the “dock, lock and latch” mechanism. Using surface plasmon resonance we showed that ClfB bound cytokeratin 10 (K10), a structural protein of squamous epithelial cells, and loricrin with similar affinities that were in the low µM range. Loricrin is composed of three separate regions comprising GS-rich omega loops. Each loop was expressed separately and found to bind ClfB, However region 2 bound with highest affinity. To investigate if the specific interaction between ClfB and loricrin was sufficient to facilitate S. aureus nasal colonisation, we compared the ability of ClfB+S. aureus to colonise the nares of wild-type and loricrin-deficient (Lor−/−) mice. In the absence of loricrin, S. aureus nasal colonisation was significantly impaired. Furthermore a ClfB− mutant colonised wild-type mice less efficiently than the parental ClfB+ strain whereas a similar lower level of colonisation was observed with both the parental strain and the ClfB− mutant in the Lor−/− mice. The ability of ClfB to support nasal colonisation by binding loricrin in vivo was confirmed by the ability of Lactococcus lactis expressing ClfB to be retained in the nares of WT mice but not in the Lor−/− mice. By combining in vitro biochemical analysis with animal model studies we have identified the squamous epithelial cell envelope protein loricrin as the target ligand for ClfB during nasal colonisation by S. aureus. Staphylococcus aureus is an important human commensal, present permanently in the noses of about 20% of the population and representing a significant risk factor for infection. The host and bacterial factors that facilitate nasal colonisation remain to be fully characterised. S. aureus adheres to the squamous epithelial cells found in the nose. Proteins expressed on the surface of S. aureus, including clumping factor B (ClfB), are responsible for this interaction. We demonstrate that loricrin, a major component of the squamous epithelial cell envelope, represents the primary ligand for ClfB and that the interaction between ClfB and loricrin is required for efficient nasal colonisation by S. aureus. Using purified proteins we have demonstrated that ClfB binds loricrin and propose a mechanism by which this binding occurs. We have established a murine model of S. aureus nasal colonisation and have demonstrated reduced colonisation in loricrin-deficient mice compared to wild-type mice which is dependent upon ClfB. Using Lactococcus lactis as a surrogate host expressing ClfB, we could show that the interaction between ClfB and loricrin in the nares is sufficient to support nasal colonisation. Cumulatively, these data show that the ClfB-loricrin interaction is crucial for nasal colonisation by S. aureus.
Collapse
Affiliation(s)
- Michelle E. Mulcahy
- Department of Microbiology, Moyne Institute of Preventive Medicine, Trinity College Dublin, Dublin, Ireland
| | - Joan A. Geoghegan
- Department of Microbiology, Moyne Institute of Preventive Medicine, Trinity College Dublin, Dublin, Ireland
| | - Ian R. Monk
- Department of Microbiology, Moyne Institute of Preventive Medicine, Trinity College Dublin, Dublin, Ireland
| | - Kate M. O'Keeffe
- School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland
| | - Evelyn J. Walsh
- Department of Microbiology, Moyne Institute of Preventive Medicine, Trinity College Dublin, Dublin, Ireland
| | - Timothy J. Foster
- Department of Microbiology, Moyne Institute of Preventive Medicine, Trinity College Dublin, Dublin, Ireland
| | - Rachel M. McLoughlin
- School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland
- * E-mail:
| |
Collapse
|
48
|
Seo HS, Mu R, Kim BJ, Doran KS, Sullam PM. Binding of glycoprotein Srr1 of Streptococcus agalactiae to fibrinogen promotes attachment to brain endothelium and the development of meningitis. PLoS Pathog 2012; 8:e1002947. [PMID: 23055927 PMCID: PMC3464228 DOI: 10.1371/journal.ppat.1002947] [Citation(s) in RCA: 85] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2012] [Accepted: 08/20/2012] [Indexed: 12/11/2022] Open
Abstract
The serine-rich repeat glycoprotein Srr1 of Streptococcus agalactiae (GBS) is thought to be an important adhesin for the pathogenesis of meningitis. Although expression of Srr1 is associated with increased binding to human brain microvascular endothelial cells (hBMEC), the molecular basis for this interaction is not well defined. We now demonstrate that Srr1 contributes to GBS attachment to hBMEC via the direct interaction of its binding region (BR) with human fibrinogen. When assessed by Far Western blotting, Srr1 was the only protein in GBS extracts that bound fibrinogen. Studies using recombinant Srr1-BR and purified fibrinogen in vitro confirmed a direct protein-protein interaction. Srr1-BR binding was localized to amino acids 283–410 of the fibrinogen Aα chain. Structural predictions indicated that the conformation of Srr1-BR is likely to resemble that of SdrG and other related staphylococcal proteins that bind to fibrinogen through a “dock, lock, and latch” mechanism (DLL). Deletion of the predicted latch domain of Srr1-BR abolished the interaction of the BR with fibrinogen. In addition, a mutant GBS strain lacking the latch domain exhibited reduced binding to hBMEC, and was significantly attenuated in an in vivo model of meningitis. These results indicate that Srr1 can bind fibrinogen directly likely through a DLL mechanism, which has not been described for other streptococcal adhesins. This interaction was important for the pathogenesis of GBS central nervous system invasion and subsequent disease progression. Streptococcus agalactiae (Group B streptococcus, GBS) is a leading cause of meningitis in newborns and infants. This life-threatening infection of the brain and surrounding tissues continues to result in a high incidence of morbidity and mortality, despite antibiotic therapy. A key factor in disease production is the ability of this organism to invade the central nervous system, via the bloodstream. We now report that a GBS surface protein called Srr1 binds fibrinogen, a major protein in human blood. This interaction enhances the attachment of GBS to brain vascular endothelial cells, and contributes to the development of meningitis. A mutation in Srr1 that specifically disrupted binding to fibrinogen significantly reduced GBS attachment to brain endothelium, and markedly reduced virulence in an in vivo model of GBS disease. These studies have identified a new mechanism by which Srr1 contributes to GBS invasion of the central nervous system and may provide a basis for novel therapies targeting Srr1 binding.
Collapse
Affiliation(s)
- Ho Seong Seo
- Division of Infectious Diseases, Veterans Affairs Medical Center and the University of California, San Francisco, California, United States of America
| | - Rong Mu
- Department of Biology and Center for Microbial Sciences, San Diego State University, San Diego, California, United States of America
| | - Brandon J. Kim
- Department of Biology and Center for Microbial Sciences, San Diego State University, San Diego, California, United States of America
| | - Kelly S. Doran
- Department of Biology and Center for Microbial Sciences, San Diego State University, San Diego, California, United States of America
- Department of Pediatrics, University of California at San Diego, School of Medicine, La Jolla, California, United States of America
| | - Paul M. Sullam
- Division of Infectious Diseases, Veterans Affairs Medical Center and the University of California, San Francisco, California, United States of America
- * E-mail:
| |
Collapse
|