1
|
Lkharrazi A, Tobler K, Marti S, Bratus-Neuenschwander A, Vogt B, Fraefel C. AAV2 can replicate its DNA by a rolling hairpin or rolling circle mechanism, depending on the helper virus. J Virol 2024:e0128224. [PMID: 39382273 DOI: 10.1128/jvi.01282-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Accepted: 09/13/2024] [Indexed: 10/10/2024] Open
Abstract
Adeno-associated virus type 2 (AAV2) is a small, non-pathogenic, helper virus-dependent parvovirus with a single-stranded (ss) DNA genome of approximately 4.7 kb. AAV2 DNA replication requires the presence of a helper virus such as adenovirus type 5 (AdV5) or herpes simplex virus type 1 (HSV-1) and is generally assumed to occur as a strand-displacement rolling hairpin (RHR) mechanism initiated at the AAV2 3' inverted terminal repeat (ITR). We have recently shown that AAV2 replication supported by HSV-1 leads to the formation of double-stranded head-to-tail concatemers, which provides evidence for a rolling circle replication (RCR) mechanism. We have revisited AAV2 DNA replication and specifically compared the formation of AAV2 replication intermediates in the presence of either HSV-1 or AdV5 as the helper virus. The results confirmed that the AAV2 DNA replication mechanism is helper virus-dependent and follows a strand-displacement RHR mechanism when AdV5 is the helper virus and primarily an RCR mechanism when HSV-1 is the helper virus. We also demonstrate that recombination plays a negligible role in AAV2 genome replication. Interestingly, the formation of high-molecular-weight AAV2 DNA concatemers in the presence of HSV-1 as the helper virus was dependent on an intact HSV-1 DNA polymerase. IMPORTANCE AAV is a small helper virus-dependent, non-pathogenic parvovirus. The AAV genome replication mechanism was extensively studied in the presence of AdV as the helper virus and described to proceed using RHR. Surprisingly, HSV-1 co-infection facilitates RCR of the AAV2 DNA. We directly compared AdV5 and HSV-1 supported AAV2 DNA replication and showed that AAV2 can adapt its replication mechanism to the helper virus. A detailed understanding of the AAV replication mechanism expands our knowledge of virus biology and can contribute to increase gene therapy vector production.
Collapse
Affiliation(s)
- Anouk Lkharrazi
- Institute of Virology, University of Zurich, Zurich, Switzerland
| | - Kurt Tobler
- Institute of Virology, University of Zurich, Zurich, Switzerland
| | - Sara Marti
- Institute of Virology, University of Zurich, Zurich, Switzerland
| | | | - Bernd Vogt
- Institute of Virology, University of Zurich, Zurich, Switzerland
| | - Cornel Fraefel
- Institute of Virology, University of Zurich, Zurich, Switzerland
| |
Collapse
|
2
|
Schreiber T, Prange A, Schäfer P, Iwen T, Grützner R, Marillonnet S, Lepage A, Javelle M, Paul W, Tissier A. Efficient scar-free knock-ins of several kilobases in plants by engineered CRISPR-Cas endonucleases. MOLECULAR PLANT 2024; 17:824-837. [PMID: 38520090 DOI: 10.1016/j.molp.2024.03.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 02/28/2024] [Accepted: 03/20/2024] [Indexed: 03/25/2024]
Abstract
In plants and mammals, non-homologous end-joining is the dominant pathway to repair DNA double-strand breaks, making it challenging to generate knock-in events. In this study, we identified two groups of exonucleases from the herpes virus and the bacteriophage T7 families that conferred an up to 38-fold increase in homology-directed repair frequencies when fused to Cas9/Cas12a in a tobacco mosaic virus-based transient assay in Nicotiana benthamiana. We achieved precise and scar-free insertion of several kilobases of DNA both in transient and stable transformation systems. In Arabidopsis thaliana, fusion of Cas9 to a herpes virus family exonuclease led to 10-fold higher frequencies of knock-ins in the first generation of transformants. In addition, we demonstrated stable and heritable knock-ins in wheat in 1% of the primary transformants. Taken together, our results open perspectives for the routine production of heritable knock-in and gene replacement events in plants.
Collapse
Affiliation(s)
- Tom Schreiber
- Department of Cell and Metabolic Biology, Leibniz Institute of Plant Biochemistry, Weinberg 3, 06120 Halle (Saale), Germany
| | - Anja Prange
- Department of Cell and Metabolic Biology, Leibniz Institute of Plant Biochemistry, Weinberg 3, 06120 Halle (Saale), Germany
| | - Petra Schäfer
- Department of Cell and Metabolic Biology, Leibniz Institute of Plant Biochemistry, Weinberg 3, 06120 Halle (Saale), Germany
| | - Thomas Iwen
- Department of Cell and Metabolic Biology, Leibniz Institute of Plant Biochemistry, Weinberg 3, 06120 Halle (Saale), Germany
| | - Ramona Grützner
- Department of Cell and Metabolic Biology, Leibniz Institute of Plant Biochemistry, Weinberg 3, 06120 Halle (Saale), Germany
| | - Sylvestre Marillonnet
- Department of Cell and Metabolic Biology, Leibniz Institute of Plant Biochemistry, Weinberg 3, 06120 Halle (Saale), Germany
| | - Aurélie Lepage
- Limagrain, Centre de Recherche, Route d'Ennezat, CS 90126, 63720 Chappes, France
| | - Marie Javelle
- Limagrain, Centre de Recherche, Route d'Ennezat, CS 90126, 63720 Chappes, France
| | - Wyatt Paul
- Limagrain, Centre de Recherche, Route d'Ennezat, CS 90126, 63720 Chappes, France
| | - Alain Tissier
- Department of Cell and Metabolic Biology, Leibniz Institute of Plant Biochemistry, Weinberg 3, 06120 Halle (Saale), Germany.
| |
Collapse
|
3
|
Justice JL, Reed TJ, Phelan B, Greco TM, Hutton JE, Cristea IM. DNA-PK and ATM drive phosphorylation signatures that antagonistically regulate cytokine responses to herpesvirus infection or DNA damage. Cell Syst 2024; 15:339-361.e8. [PMID: 38593799 PMCID: PMC11098675 DOI: 10.1016/j.cels.2024.03.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 01/09/2024] [Accepted: 03/15/2024] [Indexed: 04/11/2024]
Abstract
The DNA-dependent protein kinase, DNA-PK, is an essential regulator of DNA damage repair. DNA-PK-driven phosphorylation events and the activated DNA damage response (DDR) pathways are also components of antiviral intrinsic and innate immune responses. Yet, it is not clear whether and how the DNA-PK response differs between these two forms of nucleic acid stress-DNA damage and DNA virus infection. Here, we define DNA-PK substrates and the signature cellular phosphoproteome response to DNA damage or infection with the nuclear-replicating DNA herpesvirus, HSV-1. We establish that DNA-PK negatively regulates the ataxia-telangiectasia-mutated (ATM) DDR kinase during viral infection. In turn, ATM blocks the binding of DNA-PK and the nuclear DNA sensor IFI16 to viral DNA, thereby inhibiting cytokine responses. However, following DNA damage, DNA-PK enhances ATM activity, which is required for IFN-β expression. These findings demonstrate that the DDR autoregulates cytokine expression through the opposing modulation of DDR kinases.
Collapse
Affiliation(s)
- Joshua L Justice
- Department of Molecular Biology, Princeton University, Washington Road, Princeton, NJ 08544, USA
| | - Tavis J Reed
- Department of Molecular Biology, Princeton University, Washington Road, Princeton, NJ 08544, USA
| | - Brett Phelan
- Department of Molecular Biology, Princeton University, Washington Road, Princeton, NJ 08544, USA
| | - Todd M Greco
- Department of Molecular Biology, Princeton University, Washington Road, Princeton, NJ 08544, USA
| | - Josiah E Hutton
- Department of Molecular Biology, Princeton University, Washington Road, Princeton, NJ 08544, USA
| | - Ileana M Cristea
- Department of Molecular Biology, Princeton University, Washington Road, Princeton, NJ 08544, USA.
| |
Collapse
|
4
|
Shitrit A, Nisnevich V, Rozenshtein N, Kobo H, Phan HV, Tay S, Szpara M, Weitzman MD, Drayman N, Kobiler O. Shared sequence characteristics identified in non-canonical rearrangements of HSV-1 genomes. J Virol 2023; 97:e0095523. [PMID: 37991369 PMCID: PMC10734421 DOI: 10.1128/jvi.00955-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Accepted: 10/26/2023] [Indexed: 11/23/2023] Open
Abstract
IMPORTANCE Mutations and genetic rearrangements are the primary driving forces of evolution. Viruses provide valuable model systems for investigating these mechanisms due to their rapid evolutionary rates and vast genetic variability. To investigate genetic rearrangements in the double-stranded DNA genome of herpes simplex virus type 1, the viral population was serially passaged in various cell types. The serial passaging led to formation of defective genomes, resulted from cell-specific non-canonical rearrangements (NCRs). Interestingly, we discovered shared sequence characteristics underlying the formation of these NCRs across all cell types. Moreover, most NCRs identified in clinical samples shared these characteristics. Based on our findings, we propose a model elucidating the formation of NCRs during viral replication within the nucleus of eukaryotic cells.
Collapse
Affiliation(s)
- Alina Shitrit
- Department of Clinical Microbiology and Immunology, School of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Valerya Nisnevich
- Department of Clinical Microbiology and Immunology, School of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Nofar Rozenshtein
- Department of Clinical Microbiology and Immunology, School of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Hila Kobo
- Genomic Research Unit, Faculty of Life Science, Tel Aviv University, Tel Aviv, Israel
| | - Hoang Van Phan
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, Illinois, USA
- Institute for Genomics and Systems Biology, University of Chicago, Chicago, Illinois, USA
| | - Savaş Tay
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, Illinois, USA
- Institute for Genomics and Systems Biology, University of Chicago, Chicago, Illinois, USA
| | - Moriah Szpara
- Department of Biochemistry and Molecular Biology, Department of Biology, Center for Infectious Disease Dynamics, and the Huck Institutes of the Life Sciences, Pennsylvania State University, University Park, Pennsylvania, USA
| | - Matthew D. Weitzman
- Division of Protective Immunity, The Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Nir Drayman
- Department of Molecular Biology and Biochemistry, School of Biological Sciences, University of California, Irvine, California, USA
- Center for Virus Research, University of California, Irvine, California, USA
| | - Oren Kobiler
- Department of Clinical Microbiology and Immunology, School of Medicine, Tel Aviv University, Tel Aviv, Israel
| |
Collapse
|
5
|
Sutter J, Bruggeman PJ, Wigdahl B, Krebs FC, Miller V. Manipulation of Oxidative Stress Responses by Non-Thermal Plasma to Treat Herpes Simplex Virus Type 1 Infection and Disease. Int J Mol Sci 2023; 24:4673. [PMID: 36902102 PMCID: PMC10003306 DOI: 10.3390/ijms24054673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 02/16/2023] [Accepted: 02/24/2023] [Indexed: 03/04/2023] Open
Abstract
Herpes simplex virus type 1 (HSV-1) is a contagious pathogen with a large global footprint, due to its ability to cause lifelong infection in patients. Current antiviral therapies are effective in limiting viral replication in the epithelial cells to alleviate clinical symptoms, but ineffective in eliminating latent viral reservoirs in neurons. Much of HSV-1 pathogenesis is dependent on its ability to manipulate oxidative stress responses to craft a cellular environment that favors HSV-1 replication. However, to maintain redox homeostasis and to promote antiviral immune responses, the infected cell can upregulate reactive oxygen and nitrogen species (RONS) while having a tight control on antioxidant concentrations to prevent cellular damage. Non-thermal plasma (NTP), which we propose as a potential therapy alternative directed against HSV-1 infection, is a means to deliver RONS that affect redox homeostasis in the infected cell. This review emphasizes how NTP can be an effective therapy for HSV-1 infections through the direct antiviral activity of RONS and via immunomodulatory changes in the infected cells that will stimulate anti-HSV-1 adaptive immune responses. Overall, NTP application can control HSV-1 replication and address the challenges of latency by decreasing the size of the viral reservoir in the nervous system.
Collapse
Affiliation(s)
- Julia Sutter
- Center for Molecular Virology and Gene Therapy, Institute for Molecular Medicine and Infectious Disease, Department of Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, PA 19129, USA
| | - Peter J. Bruggeman
- Department of Mechanical Engineering, University of Minnesota, Minneapolis, MN 55455, USA
| | - Brian Wigdahl
- Center for Molecular Virology and Gene Therapy, Institute for Molecular Medicine and Infectious Disease, Department of Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, PA 19129, USA
| | - Fred C. Krebs
- Center for Molecular Virology and Gene Therapy, Institute for Molecular Medicine and Infectious Disease, Department of Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, PA 19129, USA
| | - Vandana Miller
- Center for Molecular Virology and Gene Therapy, Institute for Molecular Medicine and Infectious Disease, Department of Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, PA 19129, USA
| |
Collapse
|
6
|
Hartenian E, Mendez AS, Didychuk AL, Khosla S, Glaunsinger B. DNA processing by the Kaposi's sarcoma-associated herpesvirus alkaline exonuclease SOX contributes to viral gene expression and infectious virion production. Nucleic Acids Res 2022; 51:182-197. [PMID: 36537232 PMCID: PMC9841436 DOI: 10.1093/nar/gkac1190] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 11/22/2022] [Accepted: 11/29/2022] [Indexed: 12/24/2022] Open
Abstract
Alkaline exonucleases (AE) are present in several large DNA viruses including bacteriophage λ and herpesviruses, where they play roles in viral DNA processing during genome replication. Given the genetic conservation of AEs across viruses infecting different kingdoms of life, these enzymes likely assume central roles in the lifecycles of viruses where they have yet to be well characterized. Here, we applied a structure-guided functional analysis of the bifunctional AE in the oncogenic human gammaherpesvirus Kaposi's sarcoma-associated herpesvirus (KSHV), called SOX. In addition to identifying a preferred DNA substrate preference for SOX, we define key residues important for DNA binding and DNA processing, and how SOX activity on DNA partially overlaps with its functionally separable cleavage of mRNA. By engineering these SOX mutants into KSHV, we reveal roles for its DNase activity in viral gene expression and infectious virion production. Our results provide mechanistic insight into gammaherpesviral AE activity as well as areas of functional conservation between this mammalian virus AE and its distant relative in phage λ.
Collapse
Affiliation(s)
| | - Aaron S Mendez
- Correspondence may also be addressed to Aaron S. Mendez.
| | - Allison L Didychuk
- Department of Plant and Microbial Biology, University of California Berkeley, CA 94720, USA,Department of Molecular Biophysics & Biochemistry, Yale University, New Haven, CT 06511, USA
| | - Shivani Khosla
- Department of Molecular and Cell Biology, University of California Berkeley, CA 94720, USA
| | | |
Collapse
|
7
|
Cao K, Zhang Y, Yao Q, Peng Y, Pan Q, Jiao Q, Ren K, Sun F, Zhang Q, Guo R, Zhang J, Chen T. Hypericin blocks the function of HSV-1 alkaline nuclease and suppresses viral replication. JOURNAL OF ETHNOPHARMACOLOGY 2022; 296:115524. [PMID: 35811028 DOI: 10.1016/j.jep.2022.115524] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 06/23/2022] [Accepted: 07/04/2022] [Indexed: 06/15/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Hypericum perforatum L. has a long history in many countries of being used as a herbal medicine. It is also widely used in Chinese herbal medicine for the treatment of infections. Hypericin, a main component extracted from Hypericum perforatum L., has attracted the attention of many researchers for its remarkable antiviral, antitumor and antidepressant effects. AIM OF THE STUDY To find plant molecules that inhibit the alkaline nuclease (AN) of herpes simplex virus type 1 (HSV-1) and suppress viral replication. MATERIALS AND METHODS Bioinformatics methods were used to determine which compounds from a variety of natural compounds in our laboratory interact with AN. By this means we predicted that hypericin may interact with AN and suppress HSV-1 replication. Experiments were then carried out to verify whether hypericin inhibits the bioactivity of AN. The Pichia pastoris expression system was used to obtain recombinant AN. The exonuclease and endonuclease activity of AN treated with hypericin were tested by electrophoresis. Immunohistochemical staining of the HSV-1 nucleocapsids was used to find out whether hypericin inhibits the intracellular function of AN. Real-time PCR and western blotting analysis were performed to test viral gene expression and viral protein synthesis. The extent of viral replication inhibited by hypericin was determined by a plaque assay and a time of addition assay. RESULTS Recombinant AN was obtained by Pichia pastoris expression system. The exonuclease and endonuclease activity of recombinant AN were inhibited by hypericin in the electrophoresis assay. Hypericin showed no inhibitory effect on BeyoZonase™ Super Nuclease or DNase I. T5 Exonuclease activity was inhibited partially by10 μM hypericin, and was completely suppressed by 50 μM hypericin. Hind Ⅲ was inhibited by hypericin at concentrations greater than 100 μM, but EcoR I, BamH I, and Sal I were not inhibited by hypericin. HSV-1 nucleocapsids gathered in the nucleus when the viruses were treated with hypericin. Plaque formation was significantly reduced by hypericin (EC50 against HSV-1 F is 2.59 ± 0.08 μM and EC50 against HSV-1 SM44 is 2.94 ± 0.10 μM). UL12, ICP27, ICP8, gD, and UL53 gene expression (P < 0.01, 4.0 μM hypericin treated group vs control group) and ICP4 (P < 0.05, 6.0 μM hypericin treated group vs control group), ICP8 and gD (P < 0.05, 2.0 μM hypericin treated group vs control group) protein synthesis were inhibited by hypericin. In the time of addition assay, HSV-1 was suppressed by hypericin in the early stages of viral replication. Hypericin exhibits potent virucidal activity against HSV-1 and inhibits the adsorption and penetration of HSV-1. CONCLUSION Hypericin inhibits the bioactivity of AN and suppresses HSV-1 replication. The data revealed a novel mechanism of the antiherpetic effect of hypericin.
Collapse
Affiliation(s)
- Kang Cao
- Department of Pathogen Biology, Chengdu Medical College, Chengdu, China
| | - Yan Zhang
- Department of Pathogen Biology, Chengdu Medical College, Chengdu, China; Department of Pathology, Fourth People's Hospital of Zhenjiang City, Zhenjiang, China
| | - Qian Yao
- Key Laboratory of Medicinal and Edible Plants Resources Development of Sichuan Education Department, Sichuan Industrial Institute of Antibiotics, School of Pharmacy, Chengdu University, Chengdu, China
| | - Yanjuan Peng
- Department of Pharmacology, Chengdu Medical College, Chengdu, China
| | - Qu Pan
- Department of Pathogen Biology, Chengdu Medical College, Chengdu, China
| | - Qiuxia Jiao
- Department of Pathogen Biology, Chengdu Medical College, Chengdu, China
| | - Ke Ren
- School of Laboratory Medicine, Chengdu Medical College, Chengdu, China
| | - Fenghui Sun
- School of Laboratory Medicine, Chengdu Medical College, Chengdu, China
| | - Qian Zhang
- Department of Nursing, The Second People's Hospital of Xindu District, Chengdu, China
| | - Ran Guo
- Grade 2019 of Clinical Medicine, Chengdu Medical College, Chengdu, China
| | - Jiali Zhang
- Grade 2019 of Clinical Medicine, Chengdu Medical College, Chengdu, China
| | - Tian Chen
- Department of Pathogen Biology, Chengdu Medical College, Chengdu, China.
| |
Collapse
|
8
|
Abstract
Genetic recombination is used as a tool for modifying the composition of poxvirus genomes in both discovery and applied research. This review documents the history behind the development of these tools as well as what has been learned about the processes that catalyze virus recombination and the links between it and DNA replication and repair. The study of poxvirus recombination extends back to the 1930s with the discovery that one virus can reactivate another by a process later shown to generate recombinants. In the years that followed it was shown that recombinants can be produced in virus-by-virus crosses within a genus (e.g., variola-by-rabbitpox) and efforts were made to produce recombination-based genetic maps with modest success. The marker rescue mapping method proved more useful and led to methods for making genetically engineered viruses. Many further insights into the mechanism of recombination have been provided by transfection studies which have shown that this is a high-frequency process associated with hybrid DNA formation and inextricably linked to replication. The links reflect the fact that poxvirus DNA polymerases, specifically the vaccinia virus E9 enzyme, can catalyze strand transfer in in vivo and in vitro reactions dependent on the 3'-to-5' proofreading exonuclease and enhanced by the I3 replicative single-strand DNA binding protein. These reactions have shaped the composition of virus genomes and are modulated by constraints imposed on virus-virus interactions by viral replication in cytoplasmic factories. As recombination reactions are used for replication fork assembly and repair in many biological systems, further study of these reactions may provide new insights into still poorly understood features of poxvirus DNA replication.
Collapse
Affiliation(s)
- David Hugh Evans
- Department of Medical Microbiology & Immunology and Li Ka Shing Institute of Virology, The University of Alberta, Edmonton, AB T6G 2J7, Canada
| |
Collapse
|
9
|
Wright LR, Wright DL, Weller SK. Viral Nucleases from Herpesviruses and Coronavirus in Recombination and Proofreading: Potential Targets for Antiviral Drug Discovery. Viruses 2022; 14:1557. [PMID: 35891537 PMCID: PMC9324378 DOI: 10.3390/v14071557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 07/08/2022] [Accepted: 07/11/2022] [Indexed: 02/05/2023] Open
Abstract
In this review, we explore recombination in two very different virus families that have become major threats to human health. The Herpesviridae are a large family of pathogenic double-stranded DNA viruses involved in a range of diseases affecting both people and animals. Coronaviridae are positive-strand RNA viruses (CoVs) that have also become major threats to global health and economic stability, especially in the last two decades. Despite many differences, such as the make-up of their genetic material (DNA vs. RNA) and overall mechanisms of genome replication, both human herpes viruses (HHVs) and CoVs have evolved to rely heavily on recombination for viral genome replication, adaptation to new hosts and evasion of host immune regulation. In this review, we will focus on the roles of three viral exonucleases: two HHV exonucleases (alkaline nuclease and PolExo) and one CoV exonuclease (ExoN). We will review the roles of these three nucleases in their respective life cycles and discuss the state of drug discovery efforts against these targets.
Collapse
Affiliation(s)
- Lee R. Wright
- Department of Pharmaceutical Sciences, University of Connecticut School of Pharmacy, Storrs, CT 06269, USA; (L.R.W.); (D.L.W.)
| | - Dennis L. Wright
- Department of Pharmaceutical Sciences, University of Connecticut School of Pharmacy, Storrs, CT 06269, USA; (L.R.W.); (D.L.W.)
| | - Sandra K. Weller
- Department of Molecular Biology and Biophysics, University of Connecticut School of Medicine, 263 Farmington Ave., Farmington, CT 06030, USA
| |
Collapse
|
10
|
Lopez A, Nichols Doyle R, Sandoval C, Nisson K, Yang V, Fregoso OI. Viral Modulation of the DNA Damage Response and Innate Immunity: Two Sides of the Same Coin. J Mol Biol 2022; 434:167327. [PMID: 34695379 PMCID: PMC9119581 DOI: 10.1016/j.jmb.2021.167327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 10/16/2021] [Accepted: 10/18/2021] [Indexed: 11/29/2022]
Abstract
The DDR consists of multiple pathways that sense, signal, and respond to anomalous DNA. To promote efficient replication, viruses have evolved to engage and even modulate the DDR. In this review, we will discuss a select set of diverse viruses and the range of mechanisms they evolved to interact with the DDR and some of the subsequent cellular consequences. There is a dichotomy in that the DDR can be both beneficial for viruses yet antiviral. We will also review the connection between the DDR and innate immunity. Previously believed to be disparate cellular functions, more recent research is emerging that links these processes. Furthermore, we will discuss some discrepancies in the literature that we propose can be remedied by utilizing more consistent DDR-focused assays. By doing so, we hope to obtain a much clearer understanding of how broadly these mechanisms and phenotypes are conserved among all viruses. This is crucial for human health since understanding how viruses manipulate the DDR presents an important and tractable target for antiviral therapies.
Collapse
Affiliation(s)
- Andrew Lopez
- Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles, CA, USA; Molecular Biology Institute, University of California, Los Angeles, CA, USA
| | - Randilea Nichols Doyle
- Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles, CA, USA
| | - Carina Sandoval
- Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles, CA, USA; Molecular Biology Institute, University of California, Los Angeles, CA, USA
| | - Karly Nisson
- Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles, CA, USA; Molecular Biology Institute, University of California, Los Angeles, CA, USA
| | - Vivian Yang
- Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles, CA, USA; Molecular Biology Institute, University of California, Los Angeles, CA, USA
| | - Oliver I Fregoso
- Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles, CA, USA; Molecular Biology Institute, University of California, Los Angeles, CA, USA.
| |
Collapse
|
11
|
Collin V, Flamand L. [The importance of telomeres in human herpesvirus-6A/B infections]. Med Sci (Paris) 2022; 38:168-176. [PMID: 35179471 DOI: 10.1051/medsci/2022008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Herpesviruses are undisputed masters of disguise. The ability to become invisible to the immune system effectors is a complex process resting on a variety of stealth approaches. Among these, human herpesviruses-6A and -6B (HHV-6A/B) have developed the unique ability to integrate their genome within the ends of chromosomes allowing viral persistence in the absence of viral protein expression. This aptitude, unique to HHV-6A/B among human herpesviruses, requires close interactions between the telomeric regions of chromosomes and the viral genome. In this review article, the biology of telomeres and the mechanisms responsible for viral integration are discussed. In closing, the possible biological consequences of HHV-6A/B integration into chromosomal DNA are discussed.
Collapse
Affiliation(s)
- Vanessa Collin
- Axe des maladies infectieuses et immunitaires, Centre de recherche du CHU de Québec - Université Laval, Québec, 2705 boulevard Laurier, Québec, Canada
| | - Louis Flamand
- Axe des maladies infectieuses et immunitaires, Centre de recherche du CHU de Québec - Université Laval, Québec, 2705 boulevard Laurier, Québec, Canada - Département de microbiologie, maladies infectieuses et immunologie, Faculté de médecine, Université Laval, Québec, 2705 boulevard Laurier, Québec, Canada
| |
Collapse
|
12
|
Benitez EK, Lomova Kaufman A, Cervantes L, Clark DN, Ayoub PG, Senadheera S, Osborne K, Sanchez JM, Crisostomo RV, Wang X, Reuven N, Shaul Y, Hollis RP, Romero Z, Kohn DB. Global and Local Manipulation of DNA Repair Mechanisms to Alter Site-Specific Gene Editing Outcomes in Hematopoietic Stem Cells. Front Genome Ed 2021; 2:601541. [PMID: 34713224 PMCID: PMC8525354 DOI: 10.3389/fgeed.2020.601541] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Accepted: 11/16/2020] [Indexed: 12/26/2022] Open
Abstract
Monogenic disorders of the blood system have the potential to be treated by autologous stem cell transplantation of ex vivo genetically modified hematopoietic stem and progenitor cells (HSPCs). The sgRNA/Cas9 system allows for precise modification of the genome at single nucleotide resolution. However, the system is reliant on endogenous cellular DNA repair mechanisms to mend a Cas9-induced double stranded break (DSB), either by the non-homologous end joining (NHEJ) pathway or by the cell-cycle regulated homology-directed repair (HDR) pathway. Here, we describe a panel of ectopically expressed DNA repair factors and Cas9 variants assessed for their ability to promote gene correction by HDR or inhibit gene disruption by NHEJ at the HBB locus. Although transient global overexpression of DNA repair factors did not improve the frequency of gene correction in primary HSPCs, localization of factors to the DSB by fusion to the Cas9 protein did alter repair outcomes toward microhomology-mediated end joining (MMEJ) repair, an HDR event. This strategy may be useful when predictable gene editing outcomes are imperative for therapeutic success.
Collapse
Affiliation(s)
- Elizabeth K Benitez
- Department of Microbiology, Immunology & Molecular Genetics, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, United States
| | - Anastasia Lomova Kaufman
- Department of Microbiology, Immunology & Molecular Genetics, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, United States
| | - Lilibeth Cervantes
- Department of Microbiology, Immunology & Molecular Genetics, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, United States
| | - Danielle N Clark
- Department of Microbiology, Immunology & Molecular Genetics, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, United States
| | - Paul G Ayoub
- Department of Microbiology, Immunology & Molecular Genetics, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, United States
| | - Shantha Senadheera
- Department of Microbiology, Immunology & Molecular Genetics, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, United States
| | - Kyle Osborne
- Department of Microbiology, Immunology & Molecular Genetics, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, United States
| | - Julie M Sanchez
- Department of Microbiology, Immunology & Molecular Genetics, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, United States
| | - Ralph Valentine Crisostomo
- Department of Microbiology, Immunology & Molecular Genetics, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, United States
| | - Xiaoyan Wang
- Department of General Internal Medicine and Health Services Research, University of California, Los Angeles, Los Angeles, CA, United States
| | - Nina Reuven
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
| | - Yosef Shaul
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
| | - Roger P Hollis
- Department of Microbiology, Immunology & Molecular Genetics, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, United States
| | - Zulema Romero
- Department of Microbiology, Immunology & Molecular Genetics, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, United States
| | - Donald B Kohn
- Department of Microbiology, Immunology & Molecular Genetics, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, United States
| |
Collapse
|
13
|
Packard JE, Dembowski JA. HSV-1 DNA Replication-Coordinated Regulation by Viral and Cellular Factors. Viruses 2021; 13:v13102015. [PMID: 34696446 PMCID: PMC8539067 DOI: 10.3390/v13102015] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 10/02/2021] [Accepted: 10/04/2021] [Indexed: 12/14/2022] Open
Abstract
DNA replication is an integral step in the herpes simplex virus type 1 (HSV-1) life cycle that is coordinated with the cellular DNA damage response, repair and recombination of the viral genome, and viral gene transcription. HSV-1 encodes its own DNA replication machinery, including an origin binding protein (UL9), single-stranded DNA binding protein (ICP8), DNA polymerase (UL30), processivity factor (UL42), and a helicase/primase complex (UL5/UL8/UL52). In addition, HSV-1 utilizes a combination of accessory viral and cellular factors to coordinate viral DNA replication with other viral and cellular processes. The purpose of this review is to outline the roles of viral and cellular proteins in HSV-1 DNA replication and replication-coupled processes, and to highlight how HSV-1 may modify and adapt cellular proteins to facilitate productive infection.
Collapse
|
14
|
Hoffman D, Rodriguez W, Macveigh-Fierro D, Miles J, Muller M. The KSHV ORF20 Protein Interacts with the Viral Processivity Factor ORF59 and Promotes Viral Reactivation. Microbiol Spectr 2021; 9:e0014521. [PMID: 34106579 PMCID: PMC8552657 DOI: 10.1128/spectrum.00145-21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Accepted: 05/04/2021] [Indexed: 11/20/2022] Open
Abstract
Upon Kaposi's Sarcoma-associated herpesvirus (KSHV) lytic reactivation, rapid and widespread amplification of viral DNA (vDNA) triggers significant nuclear reorganization. As part of this striking shift in nuclear architecture, viral replication compartments are formed as sites of lytic vDNA production along with remarkable spatial remodeling and the relocalization of cellular and viral proteins. These viral replication compartments house several lytic gene products that coordinate viral gene expression, vDNA replication, and nucleocapsid assembly. The viral proteins and mechanisms that regulate this overhaul of the nuclear landscape during KSHV replication remain largely unknown. KSHV's ORF20 is a widely conserved lytic gene among all herpesviruses, suggesting it may have a fundamental contribution to the progression of herpesviral infection. Here, we utilized a promiscuous biotin ligase proximity labeling method to identify the proximal interactome of ORF20, which includes several replication-associated viral proteins, one of which is ORF59, the KSHV DNA processivity factor. Using coimmunoprecipitation and immunofluorescence assays, we confirmed the interaction between ORF20 and ORF59 and tracked the localization of both proteins to KSHV replication compartments. To further characterize the function of ORF20, we generated an ORF20-deficient KSHV and compared its replicative fitness to that of wild-type virus. Virion production was significantly diminished in the ORF20-deficient virus as observed by supernatant transfer assays. Additionally, we tied this defect in viable virion formation to a reduction in viral late gene expression. Lastly, we observed an overall reduction in vDNA replication in the ORF20-deficient virus, implying a key role for ORF20 in the regulation of lytic replication. Taken together, these results capture the essential role of KSHV ORF20 in progressing viral lytic infection by regulating vDNA replication alongside other crucial lytic proteins within KSHV replication compartments. IMPORTANCE Kaposi's Sarcoma-associated herpesvirus (KSHV) is a herpesvirus that induces lifelong infection, and as such, its lytic replication is carefully controlled to allow for efficient dissemination from its long-term reservoir and for the spread of the virus to new hosts. Viral DNA replication involves many host and viral proteins, coordinating both in time and space to successfully progress through the viral life cycle. Yet, this process is still not fully understood. We investigated the role of the poorly characterized viral protein ORF20, and through proximity labeling, we found that ORF20 interacts with ORF59 in replication compartments and affects DNA replication and subsequent steps of the late viral life cycle. Collectively, these results provide insights into the possible contribution of ORF20 to the complex lytic DNA replication process and suggest that this highly conserved protein may be an important modulator of this key viral mechanism.
Collapse
Affiliation(s)
- D. Hoffman
- Microbiology Department, University of Massachusetts Amherst, Amherst, Massachusetts, USA
| | - W. Rodriguez
- Microbiology Department, University of Massachusetts Amherst, Amherst, Massachusetts, USA
| | - D. Macveigh-Fierro
- Microbiology Department, University of Massachusetts Amherst, Amherst, Massachusetts, USA
| | - J. Miles
- Microbiology Department, University of Massachusetts Amherst, Amherst, Massachusetts, USA
| | - M. Muller
- Microbiology Department, University of Massachusetts Amherst, Amherst, Massachusetts, USA
| |
Collapse
|
15
|
Scarpa M, Kapoor S, Tvedte ES, Doshi KA, Zou YS, Singh P, Lee JK, Chatterjee A, Ali MKM, Bromley RE, Hotopp JCD, Rassool FV, Baer MR. Pim kinase inhibitor co-treatment decreases alternative non-homologous end-joining DNA repair and genomic instability induced by topoisomerase 2 inhibitors in cells with FLT3 internal tandem duplication. Oncotarget 2021; 12:1763-1779. [PMID: 34504649 PMCID: PMC8416564 DOI: 10.18632/oncotarget.28042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Accepted: 07/28/2021] [Indexed: 01/11/2023] Open
Abstract
Acute myeloid leukemia (AML) with fms-like tyrosine kinase 3 internal tandem duplication (FLT3-ITD) relapses with new chromosome abnormalities following chemotherapy, implicating genomic instability. Error-prone alternative non-homologous end-joining (Alt-NHEJ) DNA double-strand break (DSB) repair is upregulated in FLT3-ITD-expresssing cells, driven by c-Myc. The serine/threonine kinase Pim-1 is upregulated downstream of FLT3-ITD, and inhibiting Pim increases topoisomerase 2 (TOP2) inhibitor chemotherapy drug induction of DNA DSBs and apoptosis. We hypothesized that Pim inhibition increases DNA DSBs by downregulating Alt-NHEJ, also decreasing genomic instability. Alt-NHEJ activity, measured with a green fluorescent reporter construct, increased in FLT3-ITD-transfected Ba/F3-ITD cells treated with TOP2 inhibitors, and this increase was abrogated by Pim kinase inhibitor AZD1208 co-treatment. TOP2 inhibitor and AZD1208 co-treatment downregulated cellular and nuclear expression of c-Myc and Alt-NHEJ repair pathway proteins DNA polymerase θ, DNA ligase 3 and XRCC1 in FLT3-ITD cell lines and AML patient blasts. ALT-NHEJ protein downregulation was preceded by c-Myc downregulation, inhibited by c-Myc overexpression and induced by c-Myc knockdown or inhibition. TOP2 inhibitor treatment increased chromosome breaks in metaphase spreads in FLT3-ITD-expressing cells, and AZD1208 co-treatment abrogated these increases. Thus Pim kinase inhibitor co-treatment both enhances TOP2 inhibitor cytotoxicity and decreases TOP2 inhibitor-induced genomic instability in cells with FLT3-ITD.
Collapse
Affiliation(s)
- Mario Scarpa
- University of Maryland Greenebaum Comprehensive Cancer Center, Baltimore, MD, USA
- Department of Medicine, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Shivani Kapoor
- University of Maryland Greenebaum Comprehensive Cancer Center, Baltimore, MD, USA
| | | | - Kshama A. Doshi
- University of Maryland Greenebaum Comprehensive Cancer Center, Baltimore, MD, USA
| | - Ying S. Zou
- University of Maryland Greenebaum Comprehensive Cancer Center, Baltimore, MD, USA
- Department of Pathology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Prerna Singh
- University of Maryland Greenebaum Comprehensive Cancer Center, Baltimore, MD, USA
| | - Jonelle K. Lee
- University of Maryland Greenebaum Comprehensive Cancer Center, Baltimore, MD, USA
| | - Aditi Chatterjee
- University of Maryland Greenebaum Comprehensive Cancer Center, Baltimore, MD, USA
- Department of Medicine, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Moaath K. Mustafa Ali
- University of Maryland Greenebaum Comprehensive Cancer Center, Baltimore, MD, USA
- Department of Medicine, University of Maryland School of Medicine, Baltimore, MD, USA
| | | | - Julie C. Dunning Hotopp
- University of Maryland Greenebaum Comprehensive Cancer Center, Baltimore, MD, USA
- Institute for Genome Sciences, Baltimore, MD, USA
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Feyruz V. Rassool
- University of Maryland Greenebaum Comprehensive Cancer Center, Baltimore, MD, USA
- Department of Radiation Oncology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Maria R. Baer
- University of Maryland Greenebaum Comprehensive Cancer Center, Baltimore, MD, USA
- Department of Medicine, University of Maryland School of Medicine, Baltimore, MD, USA
- Veterans Affairs Medical Center, Baltimore, MD, USA
| |
Collapse
|
16
|
Bermek O, Williams RS. The three-component helicase/primase complex of herpes simplex virus-1. Open Biol 2021; 11:210011. [PMID: 34102080 PMCID: PMC8187027 DOI: 10.1098/rsob.210011] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Herpes simplex virus type 1 (HSV-1) is one of the nine herpesviruses that infect humans. HSV-1 encodes seven proteins to replicate its genome in the hijacked human cell. Among these are the herpes virus DNA helicase and primase that are essential components of its replication machinery. In the HSV-1 replisome, the helicase-primase complex is composed of three components including UL5 (helicase), UL52 (primase) and UL8 (non-catalytic subunit). UL5 and UL52 subunits are functionally interdependent, and the UL8 component is required for the coordination of UL5 and UL52 activities proceeding in opposite directions with respect to the viral replication fork. Anti-viral compounds currently under development target the functions of UL5 and UL52. Here, we review the structural and functional properties of the UL5/UL8/UL52 complex and highlight the gaps in knowledge to be filled to facilitate molecular characterization of the structure and function of the helicase-primase complex for development of alternative anti-viral treatments.
Collapse
Affiliation(s)
- Oya Bermek
- Genome Integrity and Structural Biology Laboratory, Department of Health and Human Services, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC 27709, USA
| | - R Scott Williams
- Genome Integrity and Structural Biology Laboratory, Department of Health and Human Services, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC 27709, USA
| |
Collapse
|
17
|
Gribble J, Stevens LJ, Agostini ML, Anderson-Daniels J, Chappell JD, Lu X, Pruijssers AJ, Routh AL, Denison MR. The coronavirus proofreading exoribonuclease mediates extensive viral recombination. PLoS Pathog 2021; 17:e1009226. [PMID: 33465137 PMCID: PMC7846108 DOI: 10.1371/journal.ppat.1009226] [Citation(s) in RCA: 163] [Impact Index Per Article: 54.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Revised: 01/29/2021] [Accepted: 12/08/2020] [Indexed: 12/14/2022] Open
Abstract
Recombination is proposed to be critical for coronavirus (CoV) diversity and emergence of SARS-CoV-2 and other zoonotic CoVs. While RNA recombination is required during normal CoV replication, the mechanisms and determinants of CoV recombination are not known. CoVs encode an RNA proofreading exoribonuclease (nsp14-ExoN) that is distinct from the CoV polymerase and is responsible for high-fidelity RNA synthesis, resistance to nucleoside analogues, immune evasion, and virulence. Here, we demonstrate that CoVs, including SARS-CoV-2, MERS-CoV, and the model CoV murine hepatitis virus (MHV), generate extensive and diverse recombination products during replication in culture. We show that the MHV nsp14-ExoN is required for native recombination, and that inactivation of ExoN results in decreased recombination frequency and altered recombination products. These results add yet another critical function to nsp14-ExoN, highlight the uniqueness of the evolved coronavirus replicase, and further emphasize nsp14-ExoN as a central, completely conserved, and vulnerable target for inhibitors and attenuation of SARS-CoV-2 and future emerging zoonotic CoVs.
Collapse
Affiliation(s)
- Jennifer Gribble
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee, United States of America
- Vanderbilt Institute for Infection, Immunology, and Inflammation (VI4), Vanderbilt University Medical Center, Nashville, Tennessee, United States of America
| | - Laura J. Stevens
- Department of Pediatrics, Vanderbilt University Medical Center, Nashville, Tennessee, United States of America
| | - Maria L. Agostini
- Department of Pediatrics, Vanderbilt University Medical Center, Nashville, Tennessee, United States of America
| | - Jordan Anderson-Daniels
- Department of Pediatrics, Vanderbilt University Medical Center, Nashville, Tennessee, United States of America
| | - James D. Chappell
- Department of Pediatrics, Vanderbilt University Medical Center, Nashville, Tennessee, United States of America
| | - Xiaotao Lu
- Department of Pediatrics, Vanderbilt University Medical Center, Nashville, Tennessee, United States of America
| | - Andrea J. Pruijssers
- Department of Pediatrics, Vanderbilt University Medical Center, Nashville, Tennessee, United States of America
| | - Andrew L. Routh
- Department of Biochemistry and Molecular Biology, University of Texas–Medical Branch, Galveston, Texas, United States of America
- Sealy Center for Structural Biology and Molecular Biophysics, University of Texas–Medical Branch, Galveston, Texas, United States of America
| | - Mark R. Denison
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee, United States of America
- Vanderbilt Institute for Infection, Immunology, and Inflammation (VI4), Vanderbilt University Medical Center, Nashville, Tennessee, United States of America
- Department of Pediatrics, Vanderbilt University Medical Center, Nashville, Tennessee, United States of America
| |
Collapse
|
18
|
Dogrammatzis C, Waisner H, Kalamvoki M. "Non-Essential" Proteins of HSV-1 with Essential Roles In Vivo: A Comprehensive Review. Viruses 2020; 13:E17. [PMID: 33374862 PMCID: PMC7824580 DOI: 10.3390/v13010017] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Revised: 12/17/2020] [Accepted: 12/18/2020] [Indexed: 12/19/2022] Open
Abstract
Viruses encode for structural proteins that participate in virion formation and include capsid and envelope proteins. In addition, viruses encode for an array of non-structural accessory proteins important for replication, spread, and immune evasion in the host and are often linked to virus pathogenesis. Most virus accessory proteins are non-essential for growth in cell culture because of the simplicity of the infection barriers or because they have roles only during a state of the infection that does not exist in cell cultures (i.e., tissue-specific functions), or finally because host factors in cell culture can complement their absence. For these reasons, the study of most nonessential viral factors is more complex and requires development of suitable cell culture systems and in vivo models. Approximately half of the proteins encoded by the herpes simplex virus 1 (HSV-1) genome have been classified as non-essential. These proteins have essential roles in vivo in counteracting antiviral responses, facilitating the spread of the virus from the sites of initial infection to the peripheral nervous system, where it establishes lifelong reservoirs, virus pathogenesis, and other regulatory roles during infection. Understanding the functions of the non-essential proteins of herpesviruses is important to understand mechanisms of viral pathogenesis but also to harness properties of these viruses for therapeutic purposes. Here, we have provided a comprehensive summary of the functions of HSV-1 non-essential proteins.
Collapse
Affiliation(s)
| | | | - Maria Kalamvoki
- Department of Microbiology, Molecular Genetics, and Immunology, University of Kansas Medical Center, Kansas City, KS 66160, USA; (C.D.); (H.W.)
| |
Collapse
|
19
|
Casto AM, Huang MLW, Xie H, Jerome KR, Wald A, Johnston CM, Greninger AL. Herpes Simplex Virus Mistyping due to HSV-1 × HSV-2 Interspecies Recombination in Viral Gene Encoding Glycoprotein B. Viruses 2020; 12:E860. [PMID: 32781734 PMCID: PMC7472045 DOI: 10.3390/v12080860] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Revised: 07/28/2020] [Accepted: 08/03/2020] [Indexed: 12/26/2022] Open
Abstract
Human herpes simplex viruses (HSV) 1 and 2 are extremely common human pathogens with overlapping disease spectra. Infections due to HSV-1 and HSV-2 are distinguished in clinical settings using sequence-based "typing" assays. Here we describe a case of HSV mistyping caused by a previously undescribed HSV-1 × HSV-2 recombination event in UL27, the HSV gene that encodes glycoprotein B. This is the first documented case of HSV mistyping caused by an HSV-1 × HSV-2 recombination event and the first description of an HSV interspecies recombination event in UL27, which is frequently used as a target for diagnostics and experimental therapeutics. We also review the primer and probe target sequences for a commonly used HSV typing assay from nearly 700 HSV-1 and HSV-2 samples and find that about 4% of HSV-1 samples have a single nucleotide change in at least one of these loci, which could impact assay performance. Our findings illustrate how knowledge of naturally occurring genomic variation in HSV-1 and HSV-2 is essential for the design and interpretation of molecular diagnostics for these viruses.
Collapse
Affiliation(s)
- Amanda M. Casto
- Division of Allergy and Infectious Diseases, Department of Medicine, University of Washington, Seattle, WA 98195, USA; (A.W.); (C.M.J.)
- Vaccine and Infectious Diseases Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA;
| | - Meei-Li W. Huang
- Department of Laboratory Medicine, University of Washington, Seattle, WA 98195, USA; (M.-L.W.H.); (H.X.); (A.L.G.)
| | - Hong Xie
- Department of Laboratory Medicine, University of Washington, Seattle, WA 98195, USA; (M.-L.W.H.); (H.X.); (A.L.G.)
| | - Keith R. Jerome
- Vaccine and Infectious Diseases Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA;
- Department of Laboratory Medicine, University of Washington, Seattle, WA 98195, USA; (M.-L.W.H.); (H.X.); (A.L.G.)
| | - Anna Wald
- Division of Allergy and Infectious Diseases, Department of Medicine, University of Washington, Seattle, WA 98195, USA; (A.W.); (C.M.J.)
- Vaccine and Infectious Diseases Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA;
- Department of Laboratory Medicine, University of Washington, Seattle, WA 98195, USA; (M.-L.W.H.); (H.X.); (A.L.G.)
- Department of Epidemiology, University of Washington, Seattle, WA 98195, USA
| | - Christine M. Johnston
- Division of Allergy and Infectious Diseases, Department of Medicine, University of Washington, Seattle, WA 98195, USA; (A.W.); (C.M.J.)
| | - Alexander L. Greninger
- Department of Laboratory Medicine, University of Washington, Seattle, WA 98195, USA; (M.-L.W.H.); (H.X.); (A.L.G.)
| |
Collapse
|
20
|
Li D, Lopez A, Sandoval C, Nichols Doyle R, Fregoso OI. HIV Vpr Modulates the Host DNA Damage Response at Two Independent Steps to Damage DNA and Repress Double-Strand DNA Break Repair. mBio 2020; 11:e00940-20. [PMID: 32753492 PMCID: PMC7407082 DOI: 10.1128/mbio.00940-20] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Accepted: 07/02/2020] [Indexed: 12/27/2022] Open
Abstract
The DNA damage response (DDR) is a signaling cascade that is vital to ensuring the fidelity of the host genome in the presence of genotoxic stress. Growing evidence has emphasized the importance of both activation and repression of the host DDR by diverse DNA and RNA viruses. Previous work has shown that HIV-1 is also capable of engaging the host DDR, primarily through the conserved accessory protein Vpr. However, the extent of this engagement has remained unclear. Here, we show that HIV-1 and HIV-2 Vpr directly induce DNA damage and stall DNA replication, leading to the activation of several markers of double- and single-strand DNA breaks. Despite causing damage and activating the DDR, we found that Vpr represses the repair of double-strand breaks (DSB) by inhibiting homologous recombination (HR) and nonhomologous end joining (NHEJ). Mutational analyses of Vpr revealed that DNA damage and DDR activation are independent from repression of HR and Vpr-mediated cell cycle arrest. Moreover, we show that repression of HR does not require cell cycle arrest but instead may precede this long-standing enigmatic Vpr phenotype. Together, our data uncover that Vpr globally modulates the host DDR at at least two independent steps, offering novel insight into the primary functions of lentiviral Vpr and the roles of the DNA damage response in lentiviral replication.IMPORTANCE The DNA damage response (DDR) is a signaling cascade that safeguards the genome from genotoxic agents, including human pathogens. However, the DDR has also been utilized by many pathogens, such as human immunodeficiency virus (HIV), to enhance infection. To properly treat HIV-positive individuals, we must understand how the virus usurps our own cellular processes. Here, we have found that an important yet poorly understood gene in HIV, Vpr, targets the DDR at two unique steps: it causes damage and activates DDR signaling, and it represses the ability of cells to repair this damage, which we hypothesize is central to the primary function of Vpr. In clarifying these important functions of Vpr, our work highlights the multiple ways human pathogens engage the DDR and further suggests that modulation of the DDR is a novel way to help in the fight against HIV.
Collapse
Affiliation(s)
- Donna Li
- Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles, California, USA
| | - Andrew Lopez
- Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles, California, USA
- Molecular Biology Institute, University of California, Los Angeles, California, USA
| | - Carina Sandoval
- Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles, California, USA
- Molecular Biology Institute, University of California, Los Angeles, California, USA
| | - Randilea Nichols Doyle
- Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles, California, USA
| | - Oliver I Fregoso
- Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles, California, USA
- Molecular Biology Institute, University of California, Los Angeles, California, USA
| |
Collapse
|
21
|
Meier AF, Fraefel C, Seyffert M. The Interplay between Adeno-Associated Virus and its Helper Viruses. Viruses 2020; 12:E662. [PMID: 32575422 PMCID: PMC7354565 DOI: 10.3390/v12060662] [Citation(s) in RCA: 75] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2020] [Revised: 06/15/2020] [Accepted: 06/18/2020] [Indexed: 12/14/2022] Open
Abstract
The adeno-associated virus (AAV) is a small, nonpathogenic parvovirus, which depends on helper factors to replicate. Those helper factors can be provided by coinfecting helper viruses such as adenoviruses, herpesviruses, or papillomaviruses. We review the basic biology of AAV and its most-studied helper viruses, adenovirus type 5 (AdV5) and herpes simplex virus type 1 (HSV-1). We further outline the direct and indirect interactions of AAV with those and additional helper viruses.
Collapse
Affiliation(s)
| | | | - Michael Seyffert
- Institute of Virology, University of Zurich, CH-8057 Zurich, Switzerland; (A.F.M.); (C.F.)
| |
Collapse
|
22
|
RAD52: Viral Friend or Foe? Cancers (Basel) 2020; 12:cancers12020399. [PMID: 32046320 PMCID: PMC7072633 DOI: 10.3390/cancers12020399] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Revised: 02/06/2020] [Accepted: 02/06/2020] [Indexed: 02/06/2023] Open
Abstract
Mammalian Radiation Sensitive 52 (RAD52) is a gene whose scientific reputation has recently seen a strong resurgence. In the past decade, RAD52, which was thought to be dispensable for most DNA repair and recombination reactions in mammals, has been shown to be important for a bevy of DNA metabolic pathways. One of these processes is termed break-induced replication (BIR), a mechanism that can be used to re-start broken replication forks and to elongate the ends of chromosomes in telomerase-negative cells. Viruses have historically evolved a myriad of mechanisms in which they either conscript cellular factors or, more frequently, inactivate them as a means to enable their own replication and survival. Recent data suggests that Adeno-Associated Virus (AAV) may replicate its DNA in a BIR-like fashion and/or utilize RAD52 to facilitate viral transduction and, as such, likely conscripts/requires the host RAD52 protein to promote its perpetuation.
Collapse
|
23
|
Current understanding of human herpesvirus 6 (HHV-6) chromosomal integration. Antiviral Res 2020; 176:104720. [PMID: 32044155 DOI: 10.1016/j.antiviral.2020.104720] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Revised: 01/21/2020] [Accepted: 01/23/2020] [Indexed: 12/12/2022]
Abstract
Human herpesvirus 6A (HHV-6A) and 6B (HHV-6B) are members of the genus Roseolovirus in the Betaherpesvirinae subfamily. HHV-6B infects humans in the first years of life, has a seroprevalence of more than 90% and causes Roseola Infantum, but less is known about HHV-6A. While most other herpesviruses maintain their latent genome as a circular episome, HHV-6A and HHV-6B (HHV-6A/B) have been shown to integrate their genome into the telomeres of infected cells. HHV-6A/B can also integrate into the chromosomes of germ cells, resulting in individuals carrying a copy of the virus genome in every nucleated cell of their bodies. This review highlights our current understanding of HHV-6A/B integration and reactivation as well as aspects that should be addressed in the future of this relatively young research area. It forms part of an online symposium on the prevention and therapy of DNA virus infections, dedicated to the memory of Mark Prichard.
Collapse
|
24
|
Lanave G, Martella V, Tempesta M, Catella C, Murelli RP, Morrison LA, Lucente MS, Buonavoglia C, Camero M. Antiviral activity of Α-hydroxytropolones on caprine alphaherpesvirus 1 in vitro. Res Vet Sci 2020; 129:99-102. [PMID: 31954321 DOI: 10.1016/j.rvsc.2020.01.011] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Revised: 01/08/2020] [Accepted: 01/10/2020] [Indexed: 11/29/2022]
Abstract
The emergence of human alphaherpesvirus strains (i.e. HHV-1 and -2) resistant to commonly used antiviral drugs has prompted the research for alternative, biologically active anti-herpetic agents. Natural-product and synthetic α-hydroxytropolones (αHTs) have been identified as lead therapeutic agents for a number of infections, including HHV-1 and -2, and several veterinary herpesviruses, i.e. bovine alphaherpesvirus 1 (BoHV-1), equine alphaherpesvirus 1 (EHV-1) and feline alphaherpesvirus 1 (FHV-1). In the present study we evaluated the activity in vitro of two natural and two synthetic α-hydroxytropolones (αHTs) against Caprine alphaherpesvirus 1 (CpHV-1) which is regarded as a useful homologous animal model for the study of HSV-2 infection, chiefly for the assessment of antiviral drugs in in vivo studies. AlphaHTs were able to decrease significantly CpHV-1 viral titres up to 4.25 log10 TCID50/50 μl and suppressed extensively CpHV-1 nucleic acids up to 8.71 log10 viral DNA copy number/10 μl. This study demonstrated the efficacy of αHTs against CpHV-1 in vitro, adding to their activity observed against the human and animal alphaherpesviruses in vitro. The activity of αHTs against CpHV-1 appeared similar but not identical to the patterns of activity observed against other alphaherpesviruses, suggesting virus-related variability in terms of response to specific αHT molecules. These findings open several perspectives in terms of future studies using the CpHV-1 homologous animal model, for the development of therapeutic tools against herpesviruses.
Collapse
Affiliation(s)
- Gianvito Lanave
- Department of Veterinary Medicine, University of Bari, Valenzano, Bari, Italy.
| | - Vito Martella
- Department of Veterinary Medicine, University of Bari, Valenzano, Bari, Italy
| | - Maria Tempesta
- Department of Veterinary Medicine, University of Bari, Valenzano, Bari, Italy
| | - Cristiana Catella
- Department of Veterinary Medicine, University of Bari, Valenzano, Bari, Italy
| | - Ryan P Murelli
- Department of Chemistry, Brooklyn College, The City University of New York, Brooklyn, NY, USA; The Graduate Center of the City University of New York, New York, NY, USA
| | - Lynda A Morrison
- Departments of Molecular Microbiology and Immunology and of Internal Medicine, Saint Louis University School of Medicine, St. Louis, MO, USA
| | | | - Canio Buonavoglia
- Department of Veterinary Medicine, University of Bari, Valenzano, Bari, Italy
| | - Michele Camero
- Department of Veterinary Medicine, University of Bari, Valenzano, Bari, Italy
| |
Collapse
|
25
|
Reuven N, Adler J, Broennimann K, Myers N, Shaul Y. Recruitment of DNA Repair MRN Complex by Intrinsically Disordered Protein Domain Fused to Cas9 Improves Efficiency of CRISPR-Mediated Genome Editing. Biomolecules 2019; 9:E584. [PMID: 31597252 PMCID: PMC6843829 DOI: 10.3390/biom9100584] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Revised: 10/02/2019] [Accepted: 10/05/2019] [Indexed: 12/11/2022] Open
Abstract
CRISPR/Cas9 is a powerful tool for genome editing in cells and organisms. Nevertheless, introducing directed templated changes by homology-directed repair (HDR) requires the cellular DNA repair machinery, such as the MRN complex (Mre11/Rad50/Nbs1). To improve the process, we tailored chimeric constructs of Cas9, in which SpCas9 was fused at its N- or C-terminus to a 126aa intrinsically disordered domain from HSV-1 alkaline nuclease (UL12) that recruits the MRN complex. The chimeric Cas9 constructs were two times more efficient in homology-directed editing of endogenous loci in tissue culture cells. This effect was dependent upon the MRN-recruiting activity of the domain and required lower amounts of the chimeric Cas9 in comparison with unmodified Cas9. The new constructs improved the yield of edited cells when making endogenous point mutations or inserting small tags encoded by oligonucleotide donor DNA (ssODN), and also with larger insertions encoded by plasmid DNA donor templates. Improved editing was achieved with both transfected plasmid-encoded Cas9 constructs as well as recombinant Cas9 protein transfected as ribonucleoprotein complexes. Our strategy was highly efficient in restoring a genetic defect in a cell line, exemplifying the possible implementation of our strategy in gene therapy. These constructs provide a simple approach to improve directed editing.
Collapse
Affiliation(s)
- Nina Reuven
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot 76100, Israel.
| | - Julia Adler
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot 76100, Israel.
| | - Karin Broennimann
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot 76100, Israel.
| | - Nadav Myers
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot 76100, Israel.
| | - Yosef Shaul
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot 76100, Israel.
| |
Collapse
|
26
|
Tomer E, Cohen EM, Drayman N, Afriat A, Weitzman MD, Zaritsky A, Kobiler O. Coalescing replication compartments provide the opportunity for recombination between coinfecting herpesviruses. FASEB J 2019; 33:9388-9403. [PMID: 31107607 PMCID: PMC6662979 DOI: 10.1096/fj.201900032r] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2019] [Accepted: 04/23/2019] [Indexed: 12/15/2022]
Abstract
Homologous recombination (HR) is considered a major driving force of evolution because it generates and expands genetic diversity. Evidence of HR between coinfecting herpesvirus DNA genomes can be found frequently both in vitro and in clinical isolates. Each herpes simplex virus type 1 (HSV-1) replication compartment (RC) derives from a single incoming genome and maintains a specific territory within the nucleus. This raises intriguing questions about where and when coinfecting viral genomes interact. To study the spatiotemporal requirements for intergenomic recombination, we developed an assay with dual-color FISH that enables detection of HR between different pairs of coinfecting HSV-1 genomes. Our results revealed that HR increases intermingling of RCs derived from different genomes. Furthermore, inhibition of RC movement reduces the rate of HR events among coinfecting viruses. Finally, we observed correlation between nuclear size and the number of RCs per nucleus. Our findings suggest that both viral replication and recombination are subject to nuclear spatial constraints. Other DNA viruses and cellular DNA are likely to encounter similar restrictions.-Tomer, E., Cohen, E. M., Drayman, N., Afriat, A., Weitzman, M. D., Zaritsky, A., Kobiler, O. Coalescing replication compartments provide the opportunity for recombination between coinfecting herpesviruses.
Collapse
Affiliation(s)
- Enosh Tomer
- Department of Clinical Microbiology and Immunology, Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Efrat M. Cohen
- Department of Clinical Microbiology and Immunology, Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Nir Drayman
- Institute for Genomics and Systems Biology and Institute for Molecular Engineering, University of Chicago, Chicago, Illinois, USA
| | - Amichay Afriat
- Department of Clinical Microbiology and Immunology, Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Matthew D. Weitzman
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
- Division of Protective Immunity, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Assaf Zaritsky
- Department of Software and Information Systems Engineering, Ben-Gurion University of the Negev, Be'er Sheva, Israel
| | - Oren Kobiler
- Department of Clinical Microbiology and Immunology, Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
| |
Collapse
|
27
|
Berkowitz AJ, Franson AD, Gazquez Cassals A, Donald KA, Yu AJ, Garimallaprabhakaran AK, Morrison LA, Murelli RP. Importance of lipophilicity for potent anti-herpes simplex virus-1 activity of α-hydroxytropolones. MEDCHEMCOMM 2019; 10:1173-1176. [PMID: 31391890 DOI: 10.1039/c9md00225a] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Accepted: 05/24/2019] [Indexed: 12/25/2022]
Abstract
We previously reported that troponoid compounds profoundly inhibit replication of herpes simplex virus (HSV)-1 and HSV-2 in cell culture, including acyclovir-resistant mutants. Synthesis of 26 alpha-hydroxylated tropolones (αHTs) led to a preliminary structure-activity relationship highlighting the potency of bi-phenyl side chains. Here, we explore the structure-activity relationship in more detail, with a focus on various biaryl and other lipophilic molecules. Along with our prior structure-function analysis, we present a refined structure-activity relationship that reveals the importance of the lipophilicity and nature of the side chain for potent anti-HSV-1 activity in cells. We expect this new information will help guide future optimization of αHTs as HSV antivirals.
Collapse
Affiliation(s)
- Alex J Berkowitz
- Department of Chemistry , Brooklyn College , The City University of New York , Brooklyn , NY , USA . .,Ph.D. Program in Chemistry , The Graduate Center , The City University of New York , New York , NY , USA
| | - Abaigeal D Franson
- Department of Molecular Microbiology and Immunology , Saint Louis University School of Medicine , St. Louis , MO , USA .
| | - Andreu Gazquez Cassals
- Department of Molecular Microbiology and Immunology , Saint Louis University School of Medicine , St. Louis , MO , USA .
| | - Katherine A Donald
- Department of Molecular Microbiology and Immunology , Saint Louis University School of Medicine , St. Louis , MO , USA .
| | - Alice J Yu
- Department of Molecular Microbiology and Immunology , Saint Louis University School of Medicine , St. Louis , MO , USA .
| | | | - Lynda A Morrison
- Department of Molecular Microbiology and Immunology , Saint Louis University School of Medicine , St. Louis , MO , USA . .,Department of Internal Medicine , Saint Louis University School of Medicine , St. Louis , MO , USA
| | - Ryan P Murelli
- Department of Chemistry , Brooklyn College , The City University of New York , Brooklyn , NY , USA . .,Ph.D. Program in Chemistry , The Graduate Center , The City University of New York , New York , NY , USA
| |
Collapse
|
28
|
Marek's Disease Virus Disables the ATR-Chk1 Pathway by Activating STAT3. J Virol 2019; 93:JVI.02290-18. [PMID: 30787154 DOI: 10.1128/jvi.02290-18] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2018] [Accepted: 02/12/2019] [Indexed: 01/05/2023] Open
Abstract
Oncogenic virus replication often leads to genomic instability, causing DNA damage and inducing the DNA damage response (DDR) pathway. The DDR pathway is a cellular pathway that senses DNA damage and regulates the cell cycle to maintain genomic stability. Therefore, the DDR pathway is critical for the viral lifecycle and tumorigenesis. Marek's disease virus (MDV), an alphaherpesvirus that causes lymphoma in chickens, has been shown to induce DNA damage in infected cells. However, the interaction between MDV and the host DDR is unclear. In this study, we observed that MDV infection causes DNA strand breakage in chicken fibroblast (CEF) cells along with an increase in the DNA damage markers p53 and p21. Interestingly, we showed that phosphorylation of STAT3 was increased during MDV infection, concomitantly with a decrease of Chk1 phosphorylation. In addition, we found that MDV infection was enhanced by VE-821, an ATR-specific inhibitor, but attenuated by hydroxyurea, an ATR activator. Moreover, inhibition of STAT3 phosphorylation by Stattic eliminates the ability of MDV to inhibit Chk1 phosphorylation. Finally, we showed that MDV replication was decreased by Stattic treatment. Taken together, these results suggest that MDV disables the ATR-Chk1 pathway through STAT3 activation to benefit its replication.IMPORTANCE MDV is used as a biomedical model to study virus-induced lymphoma due to the similar genomic structures and physiological characteristics of MDV and human herpesviruses. Upon infection, MDV induces DNA damage, which may activate the DDR pathway. The DDR pathway has a dual impact on viruses because it manipulates repair and recombination factors to facilitate viral replication and also initiates antiviral action by regulating other signaling pathways. Many DNA viruses evolve to manipulate the DDR pathway to promote virus replication. In this study, we identified a mechanism used by MDV to inhibit ATR-Chk1 pathways. ATR is a cellular kinase that responds to broken single-stranded DNA, which has been less studied in MDV infection. Our results suggest that MDV infection activates STAT3 to disable the ATR-Chk1 pathway, which is conducive to viral replication. This finding provides new insight into the role of STAT3 in interrupting the ATR-Chk1 pathway during MDV replication.
Collapse
|
29
|
The Role of Marek's Disease Virus UL12 and UL29 in DNA Recombination and the Virus Lifecycle. Viruses 2019; 11:v11020111. [PMID: 30696089 PMCID: PMC6409567 DOI: 10.3390/v11020111] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2019] [Revised: 01/22/2019] [Accepted: 01/25/2019] [Indexed: 02/07/2023] Open
Abstract
Marek’s disease virus (MDV) is an oncogenic alphaherpesvirus that infects chickens and integrates its genome into the telomeres of latently infected cells. MDV encodes two proteins, UL12 and UL29 (ICP8), that are conserved among herpesviruses and could facilitate virus integration. The orthologues of UL12 and UL29 in herpes simplex virus 1 (HSV-1) possess exonuclease and single strand DNA-binding activity, respectively, and facilitate DNA recombination; however, the role of both proteins in the MDV lifecycle remains elusive. To determine if UL12 and/or UL29 are involved in virus replication, we abrogated their expression in the very virulent RB-1B strain. Abrogation of either UL12 or UL29 resulted in a severe impairment of virus replication. We also demonstrated that MDV UL12 can aid in single strand annealing DNA repair, using a well-established reporter cell line. Finally, we assessed the role of UL12 and UL29 in MDV integration and maintenance of the latent virus genome. We could demonstrate that knockdown of UL12 and UL29 does not interfere with the establishment or maintenance of latency. Our data therefore shed light on the role of MDV UL12 and UL29 in MDV replication, DNA repair, and maintenance of the latent virus genome.
Collapse
|
30
|
Herpes simplex virus 1 ICP8 mutant lacking annealing activity is deficient for viral DNA replication. Proc Natl Acad Sci U S A 2018; 116:1033-1042. [PMID: 30598436 DOI: 10.1073/pnas.1817642116] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Most DNA viruses that use recombination-dependent mechanisms to replicate their DNA encode a single-strand annealing protein (SSAP). The herpes simplex virus (HSV) single-strand DNA binding protein (SSB), ICP8, is the central player in all stages of DNA replication. ICP8 is a classical replicative SSB and interacts physically and/or functionally with the other viral replication proteins. Additionally, ICP8 can promote efficient annealing of complementary ssDNA and is thus considered to be a member of the SSAP family. The role of annealing during HSV infection has been difficult to assess in part, because it has not been possible to distinguish between the role of ICP8 as an SSAP from its role as a replicative SSB during viral replication. In this paper, we have characterized an ICP8 mutant, Q706A/F707A (QF), that lacks annealing activity but retains many other functions characteristic of replicative SSBs. Like WT ICP8, the QF mutant protein forms filaments in vitro, binds ssDNA cooperatively, and stimulates the activities of other replication proteins including the viral polymerase, helicase-primase complex, and the origin binding protein. Interestingly, the QF mutant does not complement an ICP8-null virus for viral growth, replication compartment formation, or DNA replication. Thus, we have been able to separate the activities of ICP8 as a replicative SSB from its annealing activity. Taken together, our data indicate that the annealing activity of ICP8 is essential for viral DNA replication in the context of infection and support the notion that HSV-1 uses recombination-dependent mechanisms during DNA replication.
Collapse
|
31
|
Viral Proteins U41 and U70 of Human Herpesvirus 6A Are Dispensable for Telomere Integration. Viruses 2018; 10:v10110656. [PMID: 30469324 PMCID: PMC6267051 DOI: 10.3390/v10110656] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2018] [Revised: 11/16/2018] [Accepted: 11/17/2018] [Indexed: 12/24/2022] Open
Abstract
Human herpesvirus-6A and -6B (HHV-6A and -6B) are two closely related betaherpesviruses that infect humans. Upon primary infection they establish a life-long infection termed latency, where the virus genome is integrated into the telomeres of latently infected cells. Intriguingly, HHV-6A/B can integrate into germ cells, leading to individuals with inherited chromosomally-integrated HHV-6 (iciHHV-6), who have the HHV-6 genome in every cell. It is known that telomeric repeats flanking the virus genome are essential for integration; however, the protein factors mediating integration remain enigmatic. We have previously shown that the putative viral integrase U94 is not essential for telomere integration; thus, we set out to assess the contribution of potential viral recombination proteins U41 and U70 towards integration. We could show that U70 enhances dsDNA break repair via a homology-directed mechanism using a reporter cell line. We then engineered cells to produce shRNAs targeting both U41 and U70 to inhibit their expression during infection. Using these cells in our HHV-6A in vitro integration assay, we could show that U41/U70 were dispensable for telomere integration. Furthermore, additional inhibition of the cellular recombinase Rad51 suggested that it was also not essential, indicating that other cellular and/or viral factors must mediate telomere integration.
Collapse
|
32
|
Abstract
Viral DNA genomes have limited coding capacity and therefore harness cellular factors to facilitate replication of their genomes and generate progeny virions. Studies of viruses and how they interact with cellular processes have historically provided seminal insights into basic biology and disease mechanisms. The replicative life cycles of many DNA viruses have been shown to engage components of the host DNA damage and repair machinery. Viruses have evolved numerous strategies to navigate the cellular DNA damage response. By hijacking and manipulating cellular replication and repair processes, DNA viruses can selectively harness or abrogate distinct components of the cellular machinery to complete their life cycles. Here, we highlight consequences for viral replication and host genome integrity during the dynamic interactions between virus and host.
Collapse
Affiliation(s)
- Matthew D Weitzman
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104
- Division of Protective Immunity and Division of Cancer Pathobiology, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania 19104;
| | - Amélie Fradet-Turcotte
- Department of Molecular Biology, Medical Biochemistry, and Pathology, Faculty of Medicine, Université Laval, Québec G1V 0A6, Canada;
- CHU de Québec Research Center-Université Laval (L'Hôtel-Dieu de Québec), Cancer Research Center, Québec G1R 2J6, Canada
| |
Collapse
|
33
|
Valledor M, Myers RS, Schiller PC. Herpes ICP8 protein stimulates homologous recombination in human cells. PLoS One 2018; 13:e0200955. [PMID: 30110337 PMCID: PMC6093641 DOI: 10.1371/journal.pone.0200955] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2018] [Accepted: 07/04/2018] [Indexed: 12/11/2022] Open
Abstract
Recombineering has transformed functional genomic analysis. Genome modification by recombineering using the phage lambda Red homologous recombination protein Beta in Escherichia coli has approached 100% efficiency. While highly efficient in E. coli, recombineering using the Red Synaptase/Exonuclease pair (SynExo) in other organisms declines in efficiency roughly correlating with phylogenetic distance from E. coli. SynExo recombinases are common to double-stranded DNA viruses infecting a variety of organisms, including humans. Human Herpes virus 1 (HHV1) encodes a SynExo comprised of ICP8 synaptase and UL12 exonuclease. In a previous study, the Herpes SynExo was reconstituted in vitro and shown to catalyze a model recombination reaction. Here we describe stimulation of gene targeting to edit a novel fluorescent protein gene in the human genome using ICP8 and compared its efficiency to that of a "humanized" version of Beta protein from phage λ. ICP8 significantly enhanced gene targeting rates in HEK 293T cells while Beta was not only unable to catalyze recombineering but inhibited gene targeting using endogenous recombination functions, despite both synaptases being well-expressed and localized to the nucleus. This proof of concept encourages developing species-specific SynExo recombinases for genome engineering.
Collapse
Affiliation(s)
- Melvys Valledor
- Department of Neurology, University of Massachusetts Medical School, Worcester, Massachusetts, United States of America
| | - Richard S. Myers
- Department of Biochemistry and Molecular Biology, University of Miami Miller School of Medicine, Miami, Florida, United States of America
| | - Paul C. Schiller
- Department of Orthopaedics, University of Miami Miller School of Medicine, Miami, Florida, United States of America
- Geriatric Research, Education, and Clinical Center and Research Service, Bruce W. Carter VAMC, Miami, Florida, United States of America
| |
Collapse
|
34
|
Loncoman CA, Hartley CA, Coppo MJC, Browning GF, Quinteros JA, Diaz-Méndez A, Thilakarathne D, Fakhri O, Vaz PK, Devlin JM. Replication-independent reduction in the number and diversity of recombinant progeny viruses in chickens vaccinated with an attenuated infectious laryngotracheitis vaccine. Vaccine 2018; 36:5709-5716. [PMID: 30104116 DOI: 10.1016/j.vaccine.2018.08.012] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2018] [Revised: 07/28/2018] [Accepted: 08/05/2018] [Indexed: 01/10/2023]
Abstract
Recombination is closely linked with virus replication and is an important mechanism that contributes to genome diversification and evolution in alphaherpesviruses. Infectious laryngotracheitis (ILTV; Gallid alphaherpesvirus 1) is an alphaherpesvirus that causes respiratory disease in poultry. In the past, natural (field) recombination events between different strains of ILTV generated virulent recombinant viruses that have caused severe disease and economic loss in poultry industries. In this study, chickens were vaccinated with attenuated ILTV vaccines to examine the effect of vaccination on viral recombination and diversity following subsequent co-inoculation with two field strains of ILTV. Two of the vaccines (SA2 and A20) prevented ILTV replication in the trachea after challenge, but the level of viral replication after co-infection in birds that received the Serva ILTV vaccine strain did not differ from that of the mock-vaccinated (control) birds. Even though the levels of viral replication were similar in the two groups, the number of recombinant progeny viruses and the level of viral diversity were significantly lower in the Serva-vaccinated birds than in mock-vaccinated birds. In both the mock-vaccinated and Serva-vaccinated groups, a high proportion of recombinant viruses were detected in naïve in-contact chickens that were housed with the co-inoculated birds. Our results indicate that vaccination can limit the number and diversity of recombinant progeny viruses in a manner that is independent of the level of virus replication. It is possible that immune responses induced by vaccination can select for virus genotypes that replicate well under the pressure of the host immune response.
Collapse
Affiliation(s)
- Carlos A Loncoman
- Asia-Pacific Centre for Animal Health, Department of Veterinary Biosciences, Melbourne Veterinary School, Faculty of Veterinary and Agricultural Sciences, University of Melbourne, Parkville, Victoria 3010, Australia.
| | - Carol A Hartley
- Asia-Pacific Centre for Animal Health, Department of Veterinary Biosciences, Melbourne Veterinary School, Faculty of Veterinary and Agricultural Sciences, University of Melbourne, Parkville, Victoria 3010, Australia
| | - Mauricio J C Coppo
- Asia-Pacific Centre for Animal Health, Department of Veterinary Biosciences, Melbourne Veterinary School, Faculty of Veterinary and Agricultural Sciences, University of Melbourne, Parkville, Victoria 3010, Australia
| | - Glenn F Browning
- Asia-Pacific Centre for Animal Health, Department of Veterinary Biosciences, Melbourne Veterinary School, Faculty of Veterinary and Agricultural Sciences, University of Melbourne, Parkville, Victoria 3010, Australia
| | - José A Quinteros
- Asia-Pacific Centre for Animal Health, Department of Veterinary Biosciences, Melbourne Veterinary School, Faculty of Veterinary and Agricultural Sciences, University of Melbourne, Parkville, Victoria 3010, Australia
| | - Andrés Diaz-Méndez
- Asia-Pacific Centre for Animal Health, Department of Veterinary Biosciences, Melbourne Veterinary School, Faculty of Veterinary and Agricultural Sciences, University of Melbourne, Parkville, Victoria 3010, Australia
| | - Dulari Thilakarathne
- Asia-Pacific Centre for Animal Health, Department of Veterinary Biosciences, Melbourne Veterinary School, Faculty of Veterinary and Agricultural Sciences, University of Melbourne, Parkville, Victoria 3010, Australia
| | - Omid Fakhri
- Asia-Pacific Centre for Animal Health, Department of Veterinary Biosciences, Melbourne Veterinary School, Faculty of Veterinary and Agricultural Sciences, University of Melbourne, Parkville, Victoria 3010, Australia
| | - Paola K Vaz
- Asia-Pacific Centre for Animal Health, Department of Veterinary Biosciences, Melbourne Veterinary School, Faculty of Veterinary and Agricultural Sciences, University of Melbourne, Parkville, Victoria 3010, Australia
| | - Joanne M Devlin
- Asia-Pacific Centre for Animal Health, Department of Veterinary Biosciences, Melbourne Veterinary School, Faculty of Veterinary and Agricultural Sciences, University of Melbourne, Parkville, Victoria 3010, Australia
| |
Collapse
|
35
|
Abstract
Viral DNA genomes have limited coding capacity and therefore harness cellular factors to facilitate replication of their genomes and generate progeny virions. Studies of viruses and how they interact with cellular processes have historically provided seminal insights into basic biology and disease mechanisms. The replicative life cycles of many DNA viruses have been shown to engage components of the host DNA damage and repair machinery. Viruses have evolved numerous strategies to navigate the cellular DNA damage response. By hijacking and manipulating cellular replication and repair processes, DNA viruses can selectively harness or abrogate distinct components of the cellular machinery to complete their life cycles. Here, we highlight consequences for viral replication and host genome integrity during the dynamic interactions between virus and host.
Collapse
Affiliation(s)
- Matthew D Weitzman
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104.,Division of Protective Immunity and Division of Cancer Pathobiology, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania 19104;
| | - Amélie Fradet-Turcotte
- Department of Molecular Biology, Medical Biochemistry, and Pathology, Faculty of Medicine, Université Laval, Québec G1V 0A6, Canada; .,CHU de Québec Research Center-Université Laval (L'Hôtel-Dieu de Québec), Cancer Research Center, Québec G1R 2J6, Canada
| |
Collapse
|
36
|
Antifungal drug ciclopirox olamine reduces HSV-1 replication and disease in mice. Antiviral Res 2018; 156:102-106. [PMID: 29908958 DOI: 10.1016/j.antiviral.2018.06.010] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2018] [Accepted: 06/12/2018] [Indexed: 01/04/2023]
Abstract
Herpes simplex virus (HSV)-1 and HSV-2 cause painful blisters and shallow ulcers in exposed skin and mucosae during primary or recurrent infection. In addition, recurrent and potentially blinding HSV-1 infections of the eye afflict nearly half a million persons in the U.S. Current clinical therapies rely on nucleoside analog drugs such as acyclovir (ACV) or ganciclovir to ameliorate primary infections and reduce the frequency and duration of reactivations. However, these treatments do not fully suppress viral shedding and drug-resistant mutants develop in the eye and in vulnerable, immunosuppressed patients. Herpesvirus DNA replication requires several enzymes in the nucleotidyl transferase superfamily (NTS) that have recombinase and nuclease activities. We previously found that compounds which block NTS enzymes efficiently inhibit replication of HSV-1 and HSV-2 by up to 1 million-fold in Vero and human foreskin fibroblasts. Among the compounds with potent suppressive effects in culture is the anti-fungal drug ciclopirox. Here we report that topical application of ciclopirox olamine to the eyes of mice infected with HSV-1 reduced virus shed from the corneal epithelium compared with saline control, and reduced development of blepharitis to the level of mice treated with ACV. Results were dose-dependent. In addition, treatment with ciclopirox olamine significantly reduced acute and latent HSV-1 infection of the peripheral nervous system. These results support further development of ciclopirox olamine as a repurposed topical agent for HSV infections.
Collapse
|
37
|
Helena JM, Joubert AM, Grobbelaar S, Nolte EM, Nel M, Pepper MS, Coetzee M, Mercier AE. Deoxyribonucleic Acid Damage and Repair: Capitalizing on Our Understanding of the Mechanisms of Maintaining Genomic Integrity for Therapeutic Purposes. Int J Mol Sci 2018; 19:E1148. [PMID: 29641431 PMCID: PMC5979424 DOI: 10.3390/ijms19041148] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2018] [Revised: 03/19/2018] [Accepted: 03/23/2018] [Indexed: 12/31/2022] Open
Abstract
Deoxyribonucleic acid (DNA) is the self-replicating hereditary material that provides a blueprint which, in collaboration with environmental influences, produces a structural and functional phenotype. As DNA coordinates and directs differentiation, growth, survival, and reproduction, it is responsible for life and the continuation of our species. Genome integrity requires the maintenance of DNA stability for the correct preservation of genetic information. This is facilitated by accurate DNA replication and precise DNA repair. DNA damage may arise from a wide range of both endogenous and exogenous sources but may be repaired through highly specific mechanisms. The most common mechanisms include mismatch, base excision, nucleotide excision, and double-strand DNA (dsDNA) break repair. Concurrent with regulation of the cell cycle, these mechanisms are precisely executed to ensure full restoration of damaged DNA. Failure or inaccuracy in DNA repair contributes to genome instability and loss of genetic information which may lead to mutations resulting in disease or loss of life. A detailed understanding of the mechanisms of DNA damage and its repair provides insight into disease pathogeneses and may facilitate diagnosis and the development of targeted therapies.
Collapse
Affiliation(s)
- Jolene Michelle Helena
- Department of Physiology, School of Medicine, Faculty of Health Sciences, University of Pretoria, Pretoria 0002, South Africa.
| | - Anna Margaretha Joubert
- Department of Physiology, School of Medicine, Faculty of Health Sciences, University of Pretoria, Pretoria 0002, South Africa.
| | - Simone Grobbelaar
- Department of Physiology, School of Medicine, Faculty of Health Sciences, University of Pretoria, Pretoria 0002, South Africa.
| | - Elsie Magdalena Nolte
- Department of Physiology, School of Medicine, Faculty of Health Sciences, University of Pretoria, Pretoria 0002, South Africa.
| | - Marcel Nel
- Department of Physiology, School of Medicine, Faculty of Health Sciences, University of Pretoria, Pretoria 0002, South Africa.
| | - Michael Sean Pepper
- Institute for Cellular and Molecular Medicine, Department of Immunology, South African Medical Research Council (SAMRC) Extramural Unit for Stem Cell Research and Therapy, Faculty of Health Sciences, University of Pretoria, Pretoria 0002, South Africa.
| | - Magdalena Coetzee
- Department of Physiology, School of Medicine, Faculty of Health Sciences, University of Pretoria, Pretoria 0002, South Africa.
| | - Anne Elisabeth Mercier
- Department of Physiology, School of Medicine, Faculty of Health Sciences, University of Pretoria, Pretoria 0002, South Africa.
| |
Collapse
|
38
|
Dehghanpir SD, Birkenheuer CH, Yang K, Murelli RP, Morrison LA, Le Grice SFJ, Baines JD. Broad anti-herpesviral activity of α-hydroxytropolones. Vet Microbiol 2017; 214:125-131. [PMID: 29408023 DOI: 10.1016/j.vetmic.2017.12.016] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2017] [Revised: 12/20/2017] [Accepted: 12/22/2017] [Indexed: 01/02/2023]
Abstract
Herpesviruses are ubiquitous in animals and cause economic losses concomitant with many diseases. Most of the domestic animal herpesviruses are within the subfamily Alphaherpesvirinae, which includes human herpes simplex virus 1 (HSV-1). Suppression of HSV-1 replication has been reported with α-hydroxytropolones (αHTs), aromatic ring compounds that have broad bioactivity due to potent chelating activity. It is postulated that αHTs inhibit enzymes within the nucleotidyltransferase superfamily (NTS). These enzymes require divalent cations for nucleic acid cleavage activity. Potential targets include the nuclease component of the herpesvirus terminase (pUL15C), a highly conserved NTS-like enzyme that cleaves viral DNA into genomic lengths prior to packaging into capsids. Inhibition of pUL15C activity in biochemical assays by various αHTs previously revealed a spectrum of potencies. Interestingly, the most potent anti-pUL15C αHT inhibited HSV-1 replication to a limited extent in cell culture. The aim of this study was to evaluate three different αHT molecules with varying biochemical anti-pUL15C activity for a capacity to inhibit replication of veterinary herpesviruses (BoHV-1, EHV-1, and FHV-1) and HSV-1. Given the known discordant potencies between anti-pUL15C and HSV-1 replication inhibition, a second objective was to elucidate the mechanism of action of these compounds. The results show that αHTs broadly inhibit herpesviruses, with similar inhibitory effect against HSV-1, BoHV-1, EHV-1, and FHV-1. Based on immunoblotting, Southern blotting, and real-time qPCR, the compounds were found to specifically inhibit viral DNA replication. Thus, αHTs represent a new class of broadly active anti-herpesviral compounds with potential veterinary applications.
Collapse
Affiliation(s)
- Shannon D Dehghanpir
- Department of Pathobiological Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA, United States
| | - Claire H Birkenheuer
- Department of Pathobiological Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA, United States
| | - Kui Yang
- Department of Pathobiological Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA, United States
| | - Ryan P Murelli
- Department of Chemistry, Brooklyn College, The City University of New York, Brooklyn, NY, PhD Program in Chemistry, The Graduate Center, The City University of New York, New York, NY, United States
| | - Lynda A Morrison
- Department of Molecular Microbiology & Immunology, Saint Louis University School of Medicine,St. Louis, MO, United States
| | - Stuart F J Le Grice
- Center for Cancer Research, National Cancer Institute, Frederick, MD, United States
| | - Joel D Baines
- Department of Pathobiological Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA, United States.
| |
Collapse
|
39
|
Trigg BJ, Lauer KB, Fernandes Dos Santos P, Coleman H, Balmus G, Mansur DS, Ferguson BJ. The Non-Homologous End Joining Protein PAXX Acts to Restrict HSV-1 Infection. Viruses 2017; 9:E342. [PMID: 29144403 PMCID: PMC5707549 DOI: 10.3390/v9110342] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2017] [Revised: 11/02/2017] [Accepted: 11/06/2017] [Indexed: 01/27/2023] Open
Abstract
Herpes simplex virus 1 (HSV-1) has extensive interactions with the host DNA damage response (DDR) machinery that can be either detrimental or beneficial to the virus. Proteins in the homologous recombination pathway are known to be required for efficient replication of the viral genome, while different members of the classical non-homologous end-joining (c-NHEJ) pathway have opposing effects on HSV-1 infection. Here, we have investigated the role of the recently-discovered c-NHEJ component, PAXX (Paralogue of XRCC4 and XLF), which we found to be excluded from the nucleus during HSV-1 infection. We have established that cells lacking PAXX have an intact innate immune response to HSV-1 but show a defect in viral genome replication efficiency. Counterintuitively, PAXX-/- cells were able to produce greater numbers of infectious virions, indicating that PAXX acts to restrict HSV-1 infection in a manner that is different from other c-NHEJ factors.
Collapse
Affiliation(s)
- Ben J Trigg
- Department of Pathology, University of Cambridge, Tennis Court Road, Cambridge CB2 1QP, UK.
| | - Katharina B Lauer
- Department of Pathology, University of Cambridge, Tennis Court Road, Cambridge CB2 1QP, UK.
| | - Paula Fernandes Dos Santos
- Laboratory of Immunobiology, Department of Microbiology, Immunology and Parasitology, Universidade Federal de Santa Catarina, Santa Catarina 88040-900, Brazil.
| | - Heather Coleman
- Department of Pathology, University of Cambridge, Tennis Court Road, Cambridge CB2 1QP, UK.
| | - Gabriel Balmus
- Wellcome Trust/Cancer Research UK Gurdon Institute, University of Cambridge, Cambridge CB2 1QN, UK.
- Wellcome Trust Sanger Institute, Cambridge CB10 1HH, UK.
| | - Daniel S Mansur
- Laboratory of Immunobiology, Department of Microbiology, Immunology and Parasitology, Universidade Federal de Santa Catarina, Santa Catarina 88040-900, Brazil.
| | - Brian J Ferguson
- Department of Pathology, University of Cambridge, Tennis Court Road, Cambridge CB2 1QP, UK.
| |
Collapse
|
40
|
The Exonuclease Activity of Herpes Simplex Virus 1 UL12 Is Required for Production of Viral DNA That Can Be Packaged To Produce Infectious Virus. J Virol 2017; 91:JVI.01380-17. [PMID: 28956767 DOI: 10.1128/jvi.01380-17] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2017] [Accepted: 09/21/2017] [Indexed: 01/23/2023] Open
Abstract
The herpes simplex virus (HSV) type I alkaline nuclease, UL12, has 5'-to-3' exonuclease activity and shares homology with nucleases from other members of the Herpesviridae family. We previously reported that a UL12-null virus exhibits a severe defect in viral growth. To determine whether the growth defect was a result of loss of nuclease activity or another function of UL12, we introduced an exonuclease-inactivating mutation into the viral genome. The recombinant virus, UL12 D340E (the D340E mutant), behaved identically to the null virus (AN-1) in virus yield experiments, exhibiting a 4-log decrease in the production of infectious virus. Furthermore, both viruses were severely defective in cell-to-cell spread and produced fewer DNA-containing capsids and more empty capsids than wild-type virus. In addition, DNA packaged by the viral mutants was aberrant, as determined by infectivity assays and pulsed-field gel electrophoresis. We conclude that UL12 exonuclease activity is essential for the production of viral DNA that can be packaged to produce infectious virus. This conclusion was bolstered by experiments showing that a series of natural and synthetic α-hydroxytropolones recently reported to inhibit HSV replication also inhibit the nuclease activity of UL12. Taken together, our results demonstrate that the exonuclease activity of UL12 is essential for the production of infectious virus and may be considered a target for development of antiviral agents.IMPORTANCE Herpes simplex virus is a major pathogen, and although nucleoside analogs such as acyclovir are highly effective in controlling HSV-1 or -2 infections in immunocompetent individuals, their use in immunocompromised patients is complicated by the development of resistance. Identification of additional proteins essential for viral replication is necessary to develop improved therapies. In this communication, we confirm that the exonuclease activity of UL12 is essential for viral replication through the analysis of a nuclease-deficient viral mutant. We demonstrate that the exonuclease activity of UL12 is essential for the production of viral progeny and thus provides an attractive, druggable enzymatic target.
Collapse
|
41
|
Bermek O, Weller SK, Griffith JD. The UL8 subunit of the helicase-primase complex of herpes simplex virus promotes DNA annealing and has a high affinity for replication forks. J Biol Chem 2017; 292:15611-15621. [PMID: 28743747 DOI: 10.1074/jbc.m117.799064] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2017] [Revised: 07/20/2017] [Indexed: 12/26/2022] Open
Abstract
During lytic infection, herpes simplex virus (HSV) DNA is replicated by a mechanism involving DNA recombination. For instance, replication of the HSV-1 genome produces X- and Y-branched structures, reminiscent of recombination intermediates. HSV-1's replication machinery includes a trimeric helicase-primase composed of helicase (UL5) and primase (UL52) subunits and a third subunit, UL8. UL8 has been reported to stimulate the helicase and primase activities of the complex in the presence of ICP8, an HSV-1 protein that functions as an annealase, a protein that binds complementary single-stranded DNA (ssDNA) and facilitates its annealing to duplex DNA. UL8 also influences the intracellular localization of the UL5/UL52 subunits, but UL8's catalytic activities are not known. In this study we used a combination of biochemical techniques and transmission electron microscopy. First, we report that UL8 alone forms protein filaments in solution. Moreover, we also found that UL8 binds to ssDNAs >50-nucletides long and promotes the annealing of complementary ssDNA to generate highly branched duplex DNA structures. Finally, UL8 has a very high affinity for replication fork structures containing a gap in the lagging strand as short as 15 nucleotides, suggesting that UL8 may aid in directing or loading the trimeric complex onto a replication fork. The properties of UL8 uncovered here suggest that UL8 may be involved in the generation of the X- and Y-branched structures that are the hallmarks of HSV replication.
Collapse
Affiliation(s)
- Oya Bermek
- From the Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599-7295 and
| | - Sandra K Weller
- Department of Molecular Biology and Biophysics and the Molecular Biology and Biochemistry Graduate Program, University of Connecticut Health Center, Farmington, Connecticut 06030
| | - Jack D Griffith
- From the Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599-7295 and
| |
Collapse
|
42
|
Telomeres and Telomerase: Role in Marek's Disease Virus Pathogenesis, Integration and Tumorigenesis. Viruses 2017; 9:v9070173. [PMID: 28677643 PMCID: PMC5537665 DOI: 10.3390/v9070173] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2017] [Revised: 06/15/2017] [Accepted: 06/26/2017] [Indexed: 12/21/2022] Open
Abstract
Telomeres protect the ends of vertebrate chromosomes from deterioration and consist of tandem nucleotide repeats (TTAGGG)n that are associated with a number of proteins. Shortening of the telomeres occurs during genome replication, thereby limiting the replication potential of somatic cells. To counteract this shortening, vertebrates encode the telomerase complex that maintains telomere length in certain cell types via de novo addition of telomeric repeats. Several herpesviruses, including the highly oncogenic alphaherpesvirus Marek's disease virus (MDV), harbor telomeric repeats (TMR) identical to the host telomere sequences at the ends of their linear genomes. These TMR facilitate the integration of the MDV genome into host telomeres during latency, allowing the virus to persist in the host for life. Integration into host telomeres is critical for disease and tumor induction by MDV, but also enables efficient reactivation of the integrated virus genome. In addition to the TMR, MDV also encodes a telomerase RNA subunit (vTR) that shares 88% sequence identity with the telomerase RNA in chicken (chTR). vTR is highly expressed during all stages of the virus lifecycle, enhances telomerase activity and plays an important role in MDV-induced tumor formation. This review will focus on the recent advances in understanding the role of viral TMR and vTR in MDV pathogenesis, integration and tumorigenesis.
Collapse
|
43
|
Kan Y, Batada NN, Hendrickson EA. Human somatic cells deficient for RAD52 are impaired for viral integration and compromised for most aspects of homology-directed repair. DNA Repair (Amst) 2017; 55:64-75. [PMID: 28549257 DOI: 10.1016/j.dnarep.2017.04.006] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2016] [Revised: 03/25/2017] [Accepted: 04/27/2017] [Indexed: 01/28/2023]
Abstract
Homology-directed repair (HDR) maintains genomic integrity by eliminating lesions such as DNA double-strand breaks (DSBs), interstrand crosslinks (ICLs) and stalled replication forks and thus a deficiency in HDR is associated with genomic instability and cancer predisposition. The mechanism of HDR is best understood and most rigorously characterized in yeast. The inactivation of the fungal radiation sensitive 52 (RAD52) gene, which has both recombination mediator and single-strand annealing (SSA) activities in vitro, leads to severe HDR defects in vivo. Confusingly, however, the inactivation of murine and chicken RAD52 genes resulted in mouse and chicken cells, respectively, that were largely aphenotypic. To clarify this issue, we have generated RAD52 knockout human cell lines. Human RAD52-null cells retain a significant level of SSA activity demonstrating perforce that additional SSA-like activities must exist in human cells. Moreover, we confirmed that the SSA activity associated with RAD52 is involved in, but not absolutely required for, most HDR subpathways. Specifically, a deficiency in RAD52 impaired the repair of DNA DSBs and intriguingly decreased the random integration of recombinant adeno-associated virus (rAAV). Finally, an analysis of pan-cancer genome data from The Cancer Genome Atlas (TCGA) revealed an association between aberrant levels of RAD52 expression and poor overall survival in multiple cancers. In toto, our work demonstrates that RAD52 contributes to the maintenance of genome stability and tumor suppression in human cells.
Collapse
Affiliation(s)
- Yinan Kan
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota Medical School, Minneapolis, MN 55455, United States
| | - Nizar N Batada
- Department of Medical Biophysics, University of Toronto, Toronto, Canada
| | - Eric A Hendrickson
- BMBB Department, University of Minnesota Medical School, 6-155 Jackson Hall, 321 Church St., SE., Minneapolis, MN 55455, United States.
| |
Collapse
|
44
|
Dong X, Guan J, Zheng C, Zheng X. The herpes simplex virus 1 UL36USP deubiquitinase suppresses DNA repair in host cells via deubiquitination of proliferating cell nuclear antigen. J Biol Chem 2017; 292:8472-8483. [PMID: 28348081 DOI: 10.1074/jbc.m117.778076] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2017] [Revised: 03/24/2017] [Indexed: 12/18/2022] Open
Abstract
Herpes simplex virus 1 (HSV-1) infection manipulates distinct host DNA-damage responses to facilitate virus proliferation, but the molecular mechanisms remain to be elucidated. One possible HSV-1 target might be DNA damage-tolerance mechanisms, such as the translesion synthesis (TLS) pathway. In TLS, proliferating cell nuclear antigen (PCNA) is monoubiquitinated in response to DNA damage-caused replication fork stalling. Ubiquitinated PCNA then facilitates the error-prone DNA polymerase η (polη)-mediated TLS, allowing the fork to bypass damaged sites. Because of the involvement of PCNA ubiquitination in DNA-damage repair, we hypothesized that the function of PCNA might be altered by HSV-1. Here we show that PCNA is a substrate of the HSV-1 deubiquitinase UL36USP, which has previously been shown to be involved mainly in virus uptake and maturation. In HSV-1-infected cells, viral infection-associated UL36USP consistently reduced PCNA ubiquitination. The deubiquitination of PCNA inhibited the formation of polη foci and also increased cell sensitivity to DNA-damage agents. Moreover, the catalytically inactive mutant UL36C40A failed to deubiquitinate PCNA. Of note, the levels of virus marker genes increased strikingly in cells infected with wild-type HSV-1, but only moderately in UL36C40A mutant virus-infected cells, indicating that the UL36USP deubiquitinating activity supports HSV-1 virus replication during infection. These findings suggest a role of UL36USP in the DNA damage-response pathway.
Collapse
Affiliation(s)
- Xiaodong Dong
- State Key Lab of Protein and Plant Gene Research; Department of Biochemistry and Molecular Biology, School of Life Sciences, Peking University, Beijing 100871, China
| | - Junhong Guan
- State Key Lab of Protein and Plant Gene Research; Department of Biochemistry and Molecular Biology, School of Life Sciences, Peking University, Beijing 100871, China
| | - Chunfu Zheng
- Institutes of Biology and Medical Sciences, Soochow University, Suzhou 215123, China; Department of Microbiology, Immunology and Infectious Diseases, University of Calgary, Calgary, Alberta T2N 1N4, Canada
| | - Xiaofeng Zheng
- State Key Lab of Protein and Plant Gene Research; Department of Biochemistry and Molecular Biology, School of Life Sciences, Peking University, Beijing 100871, China.
| |
Collapse
|
45
|
Anacker DC, Moody CA. Modulation of the DNA damage response during the life cycle of human papillomaviruses. Virus Res 2016; 231:41-49. [PMID: 27836727 DOI: 10.1016/j.virusres.2016.11.006] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2016] [Revised: 10/31/2016] [Accepted: 11/03/2016] [Indexed: 01/01/2023]
Abstract
Human papillomavirus (HPV) is the most common sexually transmitted viral infection. Infection with certain types of HPV pose a major public health risk as these types are associated with multiple human cancers, including cervical cancer, other anogenital malignancies and an increasing number of head and neck cancers. The HPV life cycle is closely tied to host cell differentiation with late viral events such as structural gene expression and viral genome amplification taking place in the upper layers of the stratified epithelium. The DNA damage response (DDR) is an elaborate signaling network of proteins that regulate the fidelity of replication by detecting, signaling and repairing DNA lesions. ATM and ATR are two kinases that are major regulators of DNA damage detection and repair. A multitude of studies indicate that activation of the ATM (Ataxia telangiectasia mutated) and ATR (Ataxia telangiectasia and Rad3-related) pathways are critical for HPV to productively replicate. This review outlines how HPV interfaces with the ATM- and ATR-dependent DNA damage responses throughout the viral life cycle to create an environment supportive of viral replication and how activation of these pathways could impact genomic stability.
Collapse
Affiliation(s)
- Daniel C Anacker
- Lineberger Comprehensive Cancer Center and the Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, NC, USA
| | - Cary A Moody
- Lineberger Comprehensive Cancer Center and the Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, NC, USA.
| |
Collapse
|
46
|
Lou DI, Kim ET, Meyerson NR, Pancholi NJ, Mohni KN, Enard D, Petrov DA, Weller SK, Weitzman MD, Sawyer SL. An Intrinsically Disordered Region of the DNA Repair Protein Nbs1 Is a Species-Specific Barrier to Herpes Simplex Virus 1 in Primates. Cell Host Microbe 2016; 20:178-88. [PMID: 27512903 PMCID: PMC4982468 DOI: 10.1016/j.chom.2016.07.003] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2016] [Revised: 04/19/2016] [Accepted: 06/28/2016] [Indexed: 12/11/2022]
Abstract
Humans occasionally transmit herpes simplex virus 1 (HSV-1) to captive primates, who reciprocally harbor alphaherpesviruses poised for zoonotic transmission to humans. To understand the basis for the species-specific restriction of HSV-1 in primates, we simulated what might happen during the cross-species transmission of HSV-1 and found that the DNA repair protein Nbs1 from only some primate species is able to promote HSV-1 infection. The Nbs1 homologs that promote HSV-1 infection also interact with the HSV-1 ICP0 protein. ICP0 interaction mapped to a region of structural disorder in the Nbs1 protein. Chimeras reversing patterns of disorder in Nbs1 reversed titers of HSV-1 produced in the cell. By extending this analysis to 1,237 virus-interacting mammalian proteins, we show that proteins that interact with viruses are highly enriched in disorder, suggesting that viruses commonly interact with host proteins through intrinsically disordered domains.
Collapse
Affiliation(s)
- Dianne I Lou
- Molecular Biosciences, University of Texas at Austin, Austin, TX 78712, USA
| | - Eui Tae Kim
- Division of Cancer Pathobiology, Department of Pathology and Laboratory Medicine, The Perelman School of Medicine at the University of Pennsylvania and the Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Nicholas R Meyerson
- BioFrontiers Institute, Department of Molecular, Cellular, and Developmental Biology, University of Colorado Boulder, Boulder, CO 80303, USA
| | - Neha J Pancholi
- Division of Cancer Pathobiology, Department of Pathology and Laboratory Medicine, The Perelman School of Medicine at the University of Pennsylvania and the Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA; Cell and Molecular Biology Graduate Program, The Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Kareem N Mohni
- Department of Molecular Biology and Biophysics, University of Connecticut Health Center, Farmington, CT 06030, USA
| | - David Enard
- Department of Biology, Stanford University, Stanford, CA 94305, USA
| | - Dmitri A Petrov
- Department of Biology, Stanford University, Stanford, CA 94305, USA
| | - Sandra K Weller
- Department of Molecular Biology and Biophysics, University of Connecticut Health Center, Farmington, CT 06030, USA
| | - Matthew D Weitzman
- Division of Cancer Pathobiology, Department of Pathology and Laboratory Medicine, The Perelman School of Medicine at the University of Pennsylvania and the Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA.
| | - Sara L Sawyer
- Molecular Biosciences, University of Texas at Austin, Austin, TX 78712, USA; BioFrontiers Institute, Department of Molecular, Cellular, and Developmental Biology, University of Colorado Boulder, Boulder, CO 80303, USA.
| |
Collapse
|
47
|
Wallaschek N, Gravel A, Flamand L, Kaufer BB. The putative U94 integrase is dispensable for human herpesvirus 6 (HHV-6) chromosomal integration. J Gen Virol 2016; 97:1899-1903. [PMID: 27170009 DOI: 10.1099/jgv.0.000502] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Human herpesvirus 6 (HHV-6) can integrate its genome into the telomeres of host chromosomes and is present in the germline of about 1 % of the human population. HHV-6 encodes a putative integrase U94 that possesses all molecular functions required for recombination including DNA-binding, ATPase, helicase and nuclease activity, and was hypothesized by many researchers to facilitate integration ever since the discovery of HHV-6 integration. However, analysis of U94 in the virus context has been hampered by the lack of reverse-genetic systems and efficient integration assays. Here, we addressed the role of U94 and the cellular recombinase Rad51 in HHV-6 integration. Surprisingly, we could demonstrate that HHV-6 efficiently integrated in the absence of U94 using a new quantitative integration assay. Additional inhibition of the cellular recombinase Rad51 had only a minor impact on virus integration. Our results shed light on this complex integration mechanism that includes factors beyond U94 and Rad51.
Collapse
Affiliation(s)
- Nina Wallaschek
- Institut für Virologie, Freie Universität Berlin, Robert von Ostertag-Straße 7-13, 14163 Berlin, Germany
| | - Annie Gravel
- Division of Infectious Disease and Immunity, CHU de Québec Research Center, Quebec city, Quebec G1V 4G2, Canada
| | - Louis Flamand
- Division of Infectious Disease and Immunity, CHU de Québec Research Center, Quebec city, Quebec G1V 4G2, Canada.,Department of Microbiology, Infectious Disease and Immunology, Faculty of Medicine, Université Laval, Quebec city, Québec, G1V 0A6, Canada
| | - Benedikt B Kaufer
- Institut für Virologie, Freie Universität Berlin, Robert von Ostertag-Straße 7-13, 14163 Berlin, Germany
| |
Collapse
|
48
|
Synthetic α-Hydroxytropolones Inhibit Replication of Wild-Type and Acyclovir-Resistant Herpes Simplex Viruses. Antimicrob Agents Chemother 2016; 60:2140-9. [PMID: 26787704 DOI: 10.1128/aac.02675-15] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2015] [Accepted: 01/14/2016] [Indexed: 12/18/2022] Open
Abstract
Herpes simplex virus 1 (HSV-1) and HSV-2 remain major human pathogens despite the development of anti-HSV therapeutics as some of the first antiviral drugs. Current therapies are incompletely effective and frequently drive the evolution of drug-resistant mutants. We recently determined that certain natural troponoid compounds such as β-thujaplicinol readily suppress HSV-1 and HSV-2 replication. Here, we screened 26 synthetic α-hydroxytropolones with the goals of determining a preliminary structure-activity relationship for the α-hydroxytropolone pharmacophore and providing a starting point for future optimization studies. Twenty-five compounds inhibited HSV-1 and HSV-2 replication at 50 μM, and 10 compounds inhibited HSV-1 and HSV-2 at 5 μM, with similar inhibition patterns and potencies against both viruses being observed. The two most powerful inhibitors shared a common biphenyl side chain, were capable of inhibiting HSV-1 and HSV-2 with a 50% effective concentration (EC50) of 81 to 210 nM, and also strongly inhibited acyclovir-resistant mutants. Moderate to low cytotoxicity was observed for all compounds (50% cytotoxic concentration [CC50] of 50 to >100 μM). Therapeutic indexes ranged from >170 to >1,200. These data indicate that troponoids and specifically α-hydroxytropolones are a promising lead scaffold for development as anti-HSV drugs provided that toxicity can be further minimized. Troponoid drugs are envisioned to be employed alone or in combination with existing nucleos(t)ide analogs to suppress HSV replication far enough to prevent viral shedding and to limit the development of or treat nucleos(t)ide analog-resistant mutants.
Collapse
|
49
|
Homologous Recombination Repair Factors Rad51 and BRCA1 Are Necessary for Productive Replication of Human Papillomavirus 31. J Virol 2015; 90:2639-52. [PMID: 26699641 DOI: 10.1128/jvi.02495-15] [Citation(s) in RCA: 69] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2015] [Accepted: 12/16/2015] [Indexed: 02/06/2023] Open
Abstract
UNLABELLED High-risk human papillomavirus 31 (HPV31)-positive cells exhibit constitutive activation of the ATM-dependent DNA damage response (DDR), which is necessary for productive viral replication. In response to DNA double-strand breaks (DSBs), ATM activation leads to DNA repair through homologous recombination (HR), which requires the principal recombinase protein Rad51, as well as BRCA1. Previous studies from our lab demonstrated that Rad51 and BRCA1 are expressed at high levels in HPV31-positive cells and localize to sites of viral replication. These results suggest that HPV may utilize ATM activity to increase HR activity as a means to facilitate viral replication. In this study, we demonstrate that high-risk HPV E7 expression alone is sufficient for the increase in Rad51 and BRCA1 protein levels. We have found that this increase occurs, at least in part, at the level of transcription. Studies analyzing protein stability indicate that HPV may also protect Rad51 and BRCA1 from turnover, contributing to the overall increase in cellular levels. We also demonstrate that Rad51 is bound to HPV31 genomes, with binding increasing per viral genome upon productive replication. We have found that depletion of Rad51 and BRCA1, as well as inhibition of Rad51's recombinase activity, abrogates productive viral replication upon differentiation. Overall, these results indicate that Rad51 and BRCA1 are required for the process of HPV31 genome amplification and suggest that productive replication occurs in a manner dependent upon recombination. IMPORTANCE Productive replication of HPV31 requires activation of an ATM-dependent DNA damage response, though how ATM activity contributes to replication is unclear. Rad51 and BRCA1 play essential roles in repair of double-strand breaks, as well as the restart of stalled replication forks through homologous recombination (HR). Given that ATM activity is required to initiate HR repair, coupled with the requirement of Rad51 and BRCA1 for productive viral replication, our findings suggest that HPV may utilize ATM activity to ensure localization of recombination factors to productively replicating viral genomes. The finding that E7 increases the levels of Rad51 and BRCA1 suggests that E7 contributes to productive replication by providing DNA repair factors required for viral DNA synthesis. Our studies not only imply a role for recombination in the regulation of productive HPV replication but provide further insight into how HPV manipulates the DDR to facilitate the productive phase of the viral life cycle.
Collapse
|
50
|
ICP8 Filament Formation Is Essential for Replication Compartment Formation during Herpes Simplex Virus Infection. J Virol 2015; 90:2561-70. [PMID: 26676794 DOI: 10.1128/jvi.02854-15] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2015] [Accepted: 12/11/2015] [Indexed: 01/30/2023] Open
Abstract
UNLABELLED Herpes simplex virus (HSV) dramatically reorganizes the infected-cell nucleus, leading to the formation of prereplicative sites and replication compartments. This process is driven by the essential viral single-stranded DNA (ssDNA) binding protein ICP8, which can form double-helical filaments in the absence of DNA. In this paper, we show that two conserved motifs, FNF (F1142, N1143, and F1144) and FW (F843 and W844), are essential for ICP8 self-interactions, and we propose that the FNF motif docks into the FW region during filament formation. Mammalian expression plasmids bearing mutations in these motifs (FNF and FW) were unable to complement an ICP8-null mutant for growth and replication compartment formation. Furthermore, FNF and FW mutants were able to inhibit wild-type (WT) virus plaque formation and filament formation, whereas a double mutant (FNF-FW) was not. These results suggest that single mutant proteins are incorporated into nonproductive ICP8 filaments, while the double mutant is unable to interact with WT ICP8 and does not interfere with WT growth. Cells transfected with WT ICP8 and the helicase-primase (H/P) complex exhibited punctate nuclear structures that resemble prereplicative sites; however, the FNF and FW mutants failed to do so. Taken together, these results suggest that the FNF and FW motifs are required for ICP8 self-interactions and that these interactions may be important for the formation of prereplicative sites and replication compartments. We propose that filaments or other higher-order structures of ICP8 may provide a scaffold onto which other proteins can be recruited to form prereplicative sites and replication compartments. IMPORTANCE For nuclear viruses such as HSV, efficient DNA replication requires the formation of discrete compartments within the infected-cell nucleus in which replication proteins are concentrated and assembled into the HSV replisome. In this paper, we characterize the role of filament formation by the single-stranded DNA binding protein ICP8 in the formation of prereplicative sites and replication compartments. We propose that ICP8 protein filaments generate a protein scaffold for other cellular and viral proteins, resulting in a structure that concentrates both viral DNA and replication proteins. Replication compartments may be similar to other types of cellular membraneless compartments thought to be formed by phase separations caused by low-affinity, multivalent interactions involving proteins and nucleic acids within cells. ICP8 scaffolds could facilitate the formation of replication compartments by mediating interactions with other components of the replication machinery.
Collapse
|