1
|
Bermudez-Santana CI, Gallego-Gómez JC. Toward a Categorization of Virus-ncRNA Interactions in the World of RNA to Disentangle the Tiny Secrets of Dengue Virus. Viruses 2024; 16:804. [PMID: 38793685 PMCID: PMC11125801 DOI: 10.3390/v16050804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 05/14/2024] [Accepted: 05/15/2024] [Indexed: 05/26/2024] Open
Abstract
In recent years, the function of noncoding RNAs (ncRNAs) as regulatory molecules of cell physiology has begun to be better understood. Advances in viral molecular biology have shown that host ncRNAs, cellular factors, and virus-derived ncRNAs and their interplay are strongly disturbed during viral infections. Nevertheless, the folding of RNA virus genomes has also been identified as a critical factor in regulating canonical and non-canonical functions. Due to the influence of host ncRNAs and the structure of RNA viral genomes, complex molecular and cellular processes in infections are modulated. We propose three main categories to organize the current information about RNA-RNA interactions in some well-known human viruses. The first category shows examples of host ncRNAs associated with the immune response triggered in viral infections. Even though miRNAs introduce a standpoint, they are briefly presented to keep researchers moving forward in uncovering other RNAs. The second category outlines interactions between virus-host ncRNAs, while the third describes how the structure of the RNA viral genome serves as a scaffold for processing virus-derived RNAs. Our grouping may provide a comprehensive framework to classify ncRNA-host-cell interactions for emerging viruses and diseases. In this sense, we introduced them to organize DENV-host-cell interactions.
Collapse
Affiliation(s)
- Clara Isabel Bermudez-Santana
- Computational and theoretical RNomics Group, Center of Excellence in Scientific Computing, Universidad Nacional de Colombia, Bogotá 111321, Colombia
| | - Juan Carlos Gallego-Gómez
- Grupo de Medicina de Traslación, Facultad de Medicina, Universidad de Antioquia, Medellín 050010, Colombia;
| |
Collapse
|
2
|
Morando N, Rosenzvit MC, Pando MA, Allmer J. The Role of MicroRNAs in HIV Infection. Genes (Basel) 2024; 15:574. [PMID: 38790203 PMCID: PMC11120859 DOI: 10.3390/genes15050574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Revised: 04/17/2024] [Accepted: 04/23/2024] [Indexed: 05/26/2024] Open
Abstract
MicroRNAs (miRNAs), a class of small, non-coding RNAs, play a pivotal role in regulating gene expression at the post-transcriptional level. These regulatory molecules are integral to many biological processes and have been implicated in the pathogenesis of various diseases, including Human Immunodeficiency Virus (HIV) infection. This review aims to cover the current understanding of the multifaceted roles miRNAs assume in the context of HIV infection and pathogenesis. The discourse is structured around three primary focal points: (i) elucidation of the mechanisms through which miRNAs regulate HIV replication, encompassing both direct targeting of viral transcripts and indirect modulation of host factors critical for viral replication; (ii) examination of the modulation of miRNA expression by HIV, mediated through either viral proteins or the activation of cellular pathways consequent to viral infection; and (iii) assessment of the impact of miRNAs on the immune response and the progression of disease in HIV-infected individuals. Further, this review delves into the potential utility of miRNAs as biomarkers and therapeutic agents in HIV infection, underscoring the challenges and prospects inherent to this line of inquiry. The synthesis of current evidence positions miRNAs as significant modulators of the host-virus interplay, offering promising avenues for enhancing the diagnosis, treatment, and prevention of HIV infection.
Collapse
Affiliation(s)
- Nicolas Morando
- Instituto de Investigaciones Biomédicas en Retrovirus y Sida (INBIRS), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET)-Universidad de Buenos Aires, Buenos Aires 1121, Argentina; (N.M.); (M.A.P.)
| | - Mara Cecilia Rosenzvit
- Departamento de Microbiología, Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires 1121, Argentina;
- Instituto de Investigaciones en Microbiología y Parasitología Médica (IMPaM, UBA-CONICET), Universidad de Buenos Aires, Buenos Aires 1121, Argentina
| | - Maria A. Pando
- Instituto de Investigaciones Biomédicas en Retrovirus y Sida (INBIRS), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET)-Universidad de Buenos Aires, Buenos Aires 1121, Argentina; (N.M.); (M.A.P.)
| | - Jens Allmer
- Medical Informatics and Bioinformatics, Institute for Measurement Engineering and Sensor Technology, Hochschule Ruhr West, University of Applied Sciences, 45479 Mülheim an der Ruhr, Germany
| |
Collapse
|
3
|
Alpuche-Lazcano SP, Scarborough RJ, Gatignol A. MicroRNAs and long non-coding RNAs during transcriptional regulation and latency of HIV and HTLV. Retrovirology 2024; 21:5. [PMID: 38424561 PMCID: PMC10905857 DOI: 10.1186/s12977-024-00637-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Accepted: 02/21/2024] [Indexed: 03/02/2024] Open
Abstract
Human immunodeficiency virus (HIV) and human T cell leukemia virus (HTLV) have replicative and latent stages of infection. The status of the viruses is dependent on the cells that harbour them and on different events that change the transcriptional and post-transcriptional events. Non-coding (nc)RNAs are key factors in the regulation of retrovirus replication cycles. Notably, micro (mi)RNAs and long non-coding (lnc)RNAs are important regulators that can induce switches between active transcription-replication and latency of retroviruses and have important impacts on their pathogenesis. Here, we review the functions of miRNAs and lncRNAs in the context of HIV and HTLV. We describe how specific miRNAs and lncRNAs are involved in the regulation of the viruses' transcription, post-transcriptional regulation and latency. We further discuss treatment strategies using ncRNAs for HIV and HTLV long remission, reactivation or possible cure.
Collapse
Affiliation(s)
- Sergio P Alpuche-Lazcano
- Virus-Cell Interactions Laboratory, Lady Davis Institute for Medical Research, 3999, Côte Ste Catherine St., Montréal, QC, H3T 1E2, Canada
- Department of Medicine, Division of Experimental Medicine, McGill University, Montréal, QC, H4A 3J1, Canada
- National Research Council Canada, Montréal, QC, H4P 2R2, Canada
| | - Robert J Scarborough
- Virus-Cell Interactions Laboratory, Lady Davis Institute for Medical Research, 3999, Côte Ste Catherine St., Montréal, QC, H3T 1E2, Canada
- Department of Microbiology and Immunology, McGill University, Montréal, QC, H3A 2B4, Canada
| | - Anne Gatignol
- Virus-Cell Interactions Laboratory, Lady Davis Institute for Medical Research, 3999, Côte Ste Catherine St., Montréal, QC, H3T 1E2, Canada.
- Department of Medicine, Division of Experimental Medicine, McGill University, Montréal, QC, H4A 3J1, Canada.
- Department of Medicine, Division of Infectious Diseases, McGill University, Montréal, QC, H4A 3J1, Canada.
- Department of Microbiology and Immunology, McGill University, Montréal, QC, H3A 2B4, Canada.
| |
Collapse
|
4
|
Liyanage TD, Nikapitiya C, De Zoysa M. Chitosan nanoparticles-based in vivo delivery of miR-155 modulates the Viral haemorrhagic septicaemia virus-induced antiviral immune responses in zebrafish (Danio rerio). FISH & SHELLFISH IMMUNOLOGY 2024; 144:109234. [PMID: 37984615 DOI: 10.1016/j.fsi.2023.109234] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 10/24/2023] [Accepted: 11/14/2023] [Indexed: 11/22/2023]
Abstract
Viral haemorrhagic septicaemia virus (VHSV) is one of the highly pathogenic virus, which causes viral haemorrhagic septicaemia disease in both marine and freshwater fish. Micro RNA-155 (miRNA-155) is a multifunctional small non-coding RNA and it involves regulation of immune responses during viral infection. In this study, dre-miR-155 mimics were encapsulated into chitosan nanoparticles (CNPs). Resulted encapsulated product (miR-155-CNPs) was investigated for its immunomodulation role in zebrafish during experimentally challenged VHSV infection. Successful encapsulation of dre-miR-155 mimics into CNPs was confirmed through average nanoparticle (NPs) size (341.45 ± 10.00 nm), increased encapsulation efficiency percentage (98.80%), bound dre-miR-155 with chitosan, sustained release in vitro (up to 40%), and the integrity of RNA. Overexpressed miR-155 was observed in gills, muscle, and kidney tissues (5.42, 19.62, and 140.72-folds, respectively) after intraperitoneal delivery of miR-155-CNPs into zebrafish upon VHSV infection (miR-155-CNPs + VHSV). The miR-155-CNPs + VHSV infected fish had the highest cumulative survival (85%), which was associated with low viral copy numbers. The miR-155-overexpressing fish showed significantly decreased expression of ifnγ, irf2bpl, irf9, socs1a, il10, and caspase3, compared to that of the miR-155 inhibitor + VHSV infected fish group. In contrast, il1β, tnfα, il6, cd8a, and p53 expressions were upregulated in miR-155-overexpressed zebrafish compared to that of the control. The overall findings indicate the successful delivery of dre-miR-155 through miR-155-CNPs that enabled restriction of VHSV infection in zebrafish presumably by modulating immune gene expression.
Collapse
Affiliation(s)
- T D Liyanage
- College of Veterinary Medicine and Research Institute of Veterinary Medicine, Chungnam National University, Yuseong-gu, Daejeon 34134, Republic of Korea; Department of Microbiology and Immunology, University of Otago, 9054, Dunedin, New Zealand
| | - Chamilani Nikapitiya
- College of Veterinary Medicine and Research Institute of Veterinary Medicine, Chungnam National University, Yuseong-gu, Daejeon 34134, Republic of Korea
| | - Mahanama De Zoysa
- College of Veterinary Medicine and Research Institute of Veterinary Medicine, Chungnam National University, Yuseong-gu, Daejeon 34134, Republic of Korea.
| |
Collapse
|
5
|
Lodge R, Xu Z, Eklund M, Stürzel C, Kirchhoff F, Tremblay MJ, Hobman TC, Cohen ÉA. MicroRNA-25/93 induction by Vpu as a mechanism for counteracting MARCH1-restriction on HIV-1 infectivity in macrophages. mBio 2023; 14:e0195023. [PMID: 37773002 PMCID: PMC10653795 DOI: 10.1128/mbio.01950-23] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Accepted: 08/11/2023] [Indexed: 09/30/2023] Open
Abstract
IMPORTANCE In order to efficiently produce infectious viral particles, HIV must counter several restrictions exerted by host cell antiviral proteins. MARCH1 is a member of the MARCH protein family that restricts HIV infection by limiting the incorporation of viral envelope glycoproteins into nascent virions. Here, we identified two regulatory RNAs, microRNAs-25 and -93, induced by the HIV-1 accessory protein Vpu, that downregulate MARCH1 mRNA. We also show that Vpu induces these cellular microRNAs in macrophages by hijacking the cellular β-catenin pathway. The notion that HIV-1 has evolved a mechanism to counteract MARCH1 restriction on viral infectivity underlines the importance of MARCH1 in the host antiviral response.
Collapse
Affiliation(s)
- Robert Lodge
- Laboratory of Human Retrovirology, Institut de recherches cliniques de Montréal (IRCM), Montreal, Quebec, Canada
| | - Zaikun Xu
- Department of Cell Biology, University of Alberta, Edmonton, Alberta, Canada
| | - Mckenna Eklund
- Department of Cell Biology, University of Alberta, Edmonton, Alberta, Canada
| | - Christina Stürzel
- Institute of Molecular Virology, Ulm University Medical Center, Ulm, Germany
| | - Frank Kirchhoff
- Institute of Molecular Virology, Ulm University Medical Center, Ulm, Germany
| | - Michel J. Tremblay
- Centre de recherche du centre hospitalier universitaire de Québec, Université Laval, Quebec City, Quebec, Canada
- Département de microbiologie-infectiologie et immunologie, Faculté de médecine, Université Laval, Quebec City, Quebec, Canada
| | - Tom C. Hobman
- Department of Cell Biology, University of Alberta, Edmonton, Alberta, Canada
- Department of Medical Microbiology and Immunology, University of Alberta, Edmonton, Alberta, Canada
- Li Ka Shing Institute of Virology, University of Alberta, Edmonton, Alberta, Canada
| | - Éric A. Cohen
- Laboratory of Human Retrovirology, Institut de recherches cliniques de Montréal (IRCM), Montreal, Quebec, Canada
- Department of Microbiology, Infectious Diseases and Immunology, Université de Montréal, Montreal, Quebec, Canada
| |
Collapse
|
6
|
Trunfio M, Chaillon A, Beliakova-Bethell N, Deiss R, Letendre SL, Riggs PK, Higgins N, Gianella S. Beyond the Syndemic of Opioid Use Disorders and HIV: The Impact of Opioids on Viral Reservoirs. Viruses 2023; 15:1712. [PMID: 37632053 PMCID: PMC10458944 DOI: 10.3390/v15081712] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 07/31/2023] [Accepted: 08/08/2023] [Indexed: 08/27/2023] Open
Abstract
People with HIV are more likely to have opioid use disorder and to be prescribed opioids for chronic pain than the general population; however, the effects of opioids on the immune system and HIV persistence have not been fully elucidated. Opioids may affect HIV reservoirs during their establishment, maintenance, and reactivation by enhancing HIV infectivity and replication due to upregulation of co-receptors and impairment of innate antiviral responses. Opioids may also modulate immune cell functioning and microbial translocation and can reverse viral latency. In this review, we summarize the current findings for and against the modulating effects of opioids on HIV cellular and anatomical reservoirs, highlighting the current limitations that affect in vitro, ex vivo, and in vivo studies in the field. We propose further research targets and potential strategies to approach this topic.
Collapse
Affiliation(s)
- Mattia Trunfio
- Unit of Infectious Diseases, Department of Medical Sciences at Amedeo di Savoia Hospital, University of Turin, 10149 Turin, Italy
- HIV Neurobehavioral Research Program, Department of Psychiatry, University of California San Diego (UCSD), San Diego, CA 92103, USA
| | - Antoine Chaillon
- Division of Infectious Diseases and Global Public Health, Department of Medicine, University of California San Diego (UCSD), La Jolla, CA 92037, USA
| | - Nadejda Beliakova-Bethell
- Division of Infectious Diseases and Global Public Health, Department of Medicine, University of California San Diego (UCSD), La Jolla, CA 92037, USA
- VA San Diego Healthcare System and Veterans Medical Research Foundation, La Jolla, CA 92037, USA
| | - Robert Deiss
- Division of Infectious Diseases and Global Public Health, Department of Medicine, University of California San Diego (UCSD), La Jolla, CA 92037, USA
- VA San Diego Healthcare System and Veterans Medical Research Foundation, La Jolla, CA 92037, USA
- Department of Medicine, Owen Clinic, University of California San Diego (UCSD), San Diego, CA 92037, USA
| | - Scott L. Letendre
- HIV Neurobehavioral Research Program, Department of Psychiatry, University of California San Diego (UCSD), San Diego, CA 92103, USA
| | - Patricia K. Riggs
- Division of Infectious Diseases and Global Public Health, Department of Medicine, University of California San Diego (UCSD), La Jolla, CA 92037, USA
| | - Niamh Higgins
- Division of Infectious Diseases and Global Public Health, Department of Medicine, University of California San Diego (UCSD), La Jolla, CA 92037, USA
| | - Sara Gianella
- Division of Infectious Diseases and Global Public Health, Department of Medicine, University of California San Diego (UCSD), La Jolla, CA 92037, USA
| |
Collapse
|
7
|
Savino F, Gambarino S, Dini M, Savino A, Clemente A, Calvi C, Galliano I, Bergallo M. Peripheral Blood and Nasopharyngeal Swab MiRNA-155 Expression in Infants with Respiratory Syncytial Virus Infection. Viruses 2023; 15:1668. [PMID: 37632011 PMCID: PMC10459845 DOI: 10.3390/v15081668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 07/27/2023] [Accepted: 07/30/2023] [Indexed: 08/27/2023] Open
Abstract
INTRODUCTION MicroRNA (miR) 155 has been implicated in the regulation of innate and adaptive immunity as well as antiviral responses, but its role during respiratory syncytial virus (RSV) infections is not known. The objective of this study was to investigate the expression of miR-155 using pharyngeal swabs and peripheral blood in infants with RSV infection and uninfected controls. METHODS A prospective age-matched study was conducted in primary care in Torino from 1 August 2018 to 31 January 2020. We enrolled 66 subjects, 29 of them patients with RSV infection and 37 age-matched uninfected controls, and collected pharyngeal swabs and peripheral blood in order to assess miR-155 expression with real-time stem-loop-TaqMan real-time PCR. RESULTS The data show that there is no correlation between pharyngeal swabs and peripheral blood with respect to miR-155 expression. The 1/ΔCq miR-155 expression levels in throat swabs in RSV bronchiolitis patients and healthy controls were 0.19 ± 0.11 and 0.21 ± 0.09, respectively, and were not significantly different between healthy controls and bronchiolitis (p = 0.8414). In the peripheral blood, miR-155 levels were higher than those of healthy control subjects: 0.1 ± 0.013 and 0.09 ± 0.0007, respectively; p = 0.0002. DISCUSSION Our data provide evidence that miR-155 expression is higher in peripheral blood during RSV infection but not in swabs. This difference in the timing of sample recruitment could explain the differences obtained in the results; miR-155 activation is probably only assessable in the very early stages of infection in the swab and remains visible for longer in the blood. New investigations are needed in order to clarify whether the miR-155 expression in swabs can be influenced by different stages of virus disease of infants.
Collapse
Affiliation(s)
- Francesco Savino
- Early Infancy Special Care Unit, Regina Margherita Children Hospital, A.O.U. Città della Salute e della Scienza di Torino, 10126 Turin, Italy;
| | - Stefano Gambarino
- Department of Public Health and Pediatric Sciences, Paediatric Laboratory, University of Turin, Medical School, 10136 Turin, Italy; (S.G.); (M.D.); (A.C.); (C.C.); (I.G.)
| | - Maddalena Dini
- Department of Public Health and Pediatric Sciences, Paediatric Laboratory, University of Turin, Medical School, 10136 Turin, Italy; (S.G.); (M.D.); (A.C.); (C.C.); (I.G.)
| | - Andrea Savino
- Post Graduate School of Pediatrics, Univeristy of Turin, 10124 Turin, Italy;
| | - Anna Clemente
- Department of Public Health and Pediatric Sciences, Paediatric Laboratory, University of Turin, Medical School, 10136 Turin, Italy; (S.G.); (M.D.); (A.C.); (C.C.); (I.G.)
| | - Cristina Calvi
- Department of Public Health and Pediatric Sciences, Paediatric Laboratory, University of Turin, Medical School, 10136 Turin, Italy; (S.G.); (M.D.); (A.C.); (C.C.); (I.G.)
- Department of Pediatrics, Infectious Diseases Unit, Regina Margherita Children’s Hospital, University of Turin, Piazza Polonia 94, 10126 Turin, Italy
| | - Ilaria Galliano
- Department of Public Health and Pediatric Sciences, Paediatric Laboratory, University of Turin, Medical School, 10136 Turin, Italy; (S.G.); (M.D.); (A.C.); (C.C.); (I.G.)
- Department of Pediatrics, Infectious Diseases Unit, Regina Margherita Children’s Hospital, University of Turin, Piazza Polonia 94, 10126 Turin, Italy
| | - Massimiliano Bergallo
- Department of Public Health and Pediatric Sciences, Paediatric Laboratory, University of Turin, Medical School, 10136 Turin, Italy; (S.G.); (M.D.); (A.C.); (C.C.); (I.G.)
- Department of Pediatrics, Infectious Diseases Unit, Regina Margherita Children’s Hospital, University of Turin, Piazza Polonia 94, 10126 Turin, Italy
| |
Collapse
|
8
|
Alshahrani SH, Alameri AA, Kahar F, Alexis Ramírez-Coronel A, Fadhel Obaid R, Alsaikhan F, Zabibah RS, Qasim QA, Altalbawy FMA, Fakri Mustafa Y, Mirzaei R, Karampoor S. Overview of the role and action mechanism of microRNA-128 in viral infections. Microb Pathog 2023; 176:106020. [PMID: 36746316 DOI: 10.1016/j.micpath.2023.106020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 01/21/2023] [Accepted: 01/31/2023] [Indexed: 02/07/2023]
Abstract
Recently in vivo and in vitro studies have provided evidence establishing the significance of microRNAs (miRNAs) in both physiological and pathological conditions. In this regard, the role of miRNA-128 (miR-128) in health and diseases has been found, and its critical regulatory role in the context of some viral diseases has been recently identified. For instance, it has been found that miR-128 can serve as an antiviral mediator and significantly limit the replication and dissemination of human immunodeficiency virus type 1 (HIV-1). Besides, it has been noted that poliovirus receptor-related 4 (PVRL4) is post-transcriptionally regulated by miR-128, representing possible miRNA targets that can modulate measles virus infection. Of note, the downregulation of seminal exosomes eca-miR-128 is associated with the long-term persistence of Equine arteritis virus (EAV) in the reproductive tract, and this particular miRNA is a putative regulator of chemokine ligand 16 (C-X-C motif) as determined by target prediction analysis. In this review, the latest information on the role and action mechanism of miR-128 in viral infections will be summarized and discussed in detail.
Collapse
Affiliation(s)
- Shadia Hamoud Alshahrani
- Medical Surgical Nursing Department, King Khalid University, Almahala, Khamis Mushate, Saudi Arabia
| | - Ameer A Alameri
- Department of Chemistry, University of Babylon, Babylon, Iraq
| | - Fitriani Kahar
- Medic Technology Laboratory, Poltekkes Kemenkes Semarang, Indonesia
| | - Andrés Alexis Ramírez-Coronel
- National University of Education, Azogues, Ecuador; Catholic University of Cuenca, Azogues Campus, Ecuador; University of Palermo, Buenos Aires, Argentina; CES University, Colombia, Azogues, Ecuador
| | - Rasha Fadhel Obaid
- Department of Biomedical Engineering, Al-Mustaqbal University College, Babylon, Iraq
| | - Fahad Alsaikhan
- College of Pharmacy, Prince Sattam Bin Abdulaziz University, Alkharj, Kingdom of Saudi Arabia
| | - Rahman S Zabibah
- Medical Laboratory Technology Department, College of Medical Technology, The Islamic University, Najaf, Iraq
| | | | - Farag M A Altalbawy
- National Institute of Laser Enhanced Sciences (NILES), Cairo University, Giza 12613, Egypt; Department of Chemistry, University College of Duba, Tabuk University, Duba 71911, Saudi Arabia
| | - Yasser Fakri Mustafa
- Department of Pharmaceutical Chemistry, College of Pharmacy, University of Mosul, Mosul 41001, Iraq
| | - Rasoul Mirzaei
- Venom and Biotherapeutics Molecules Lab, Medical Biotechnology Department, Biotechnology Research Center, Pasteur Institute of Iran, Tehran, Iran.
| | - Sajad Karampoor
- Gastrointestinal and Liver Diseases Research Center, Iran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
9
|
Rashid F, Zaongo SD, Song F, Chen Y. The diverse roles of miRNAs in HIV pathogenesis: Current understanding and future perspectives. Front Immunol 2023; 13:1091543. [PMID: 36685589 PMCID: PMC9849909 DOI: 10.3389/fimmu.2022.1091543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Accepted: 12/14/2022] [Indexed: 01/07/2023] Open
Abstract
Despite noteworthy progress made in the management and treatment of HIV/AIDS-related disease, including the introduction of the now almost ubiquitous HAART, there remains much to understand with respect to HIV infection. Although some roles that miRNAs play in some diseases have become more obvious of late, the roles of miRNAs in the context of HIV pathogenesis have not, as yet, been elucidated, and require further investigations. miRNAs can either be beneficial or harmful to the host, depending upon the genes they target. Some miRNAs target the 3' UTR of viral mRNAs to accomplish restriction of viral infection. However, upon HIV-1 infection, there are several dysregulated host miRNAs which target their respective host factors to either facilitate or abrogate viral infection. In this review, we discuss the miRNAs which play roles in various aspects of viral pathogenesis. We describe in detail the various mechanisms thereby miRNAs either directly or indirectly regulate HIV-1 infection. Moreover, the predictive roles of miRNAs in various aspects of the HIV viral life cycle are also discussed. Contemporary antiretroviral therapeutic drugs have received much attention recently, due to their success in the treatment of HIV/AIDS; therefore, miRNA involvement in various aspects of antiretroviral therapeutics are also elaborated upon herein. The therapeutic potential of miRNAs are discussed, and we also propose herein that the therapeutic potential of one specific miRNA, miR-34a, warrants further exploration, as this miRNA is known to target three host proteins to promote HIV-1 pathogenesis. Finally, future perspectives and some controversy around the expression of miRNAs by HIV-1 are also discussed.
Collapse
Affiliation(s)
- Farooq Rashid
- Department of Infectious Diseases, Chongqing Public Health Medical Center, Chongqing, China
| | - Silvere D. Zaongo
- Department of Infectious Diseases, Chongqing Public Health Medical Center, Chongqing, China
| | - Fangzhou Song
- Basic Medicine College, Chongqing Medical University, Chongqing, China
| | - Yaokai Chen
- Department of Infectious Diseases, Chongqing Public Health Medical Center, Chongqing, China,*Correspondence: Yaokai Chen,
| |
Collapse
|
10
|
Zhang B, Liu JB, Zhou L, Wang X, Khan S, Hu WH, Ho WZ. Cytosolic DNA sensor activation inhibits HIV infection of macrophages. J Med Virol 2023; 95:e28253. [PMID: 36286245 PMCID: PMC9839519 DOI: 10.1002/jmv.28253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 10/21/2022] [Accepted: 10/22/2022] [Indexed: 01/17/2023]
Abstract
Cytosolic recognition of microbial DNA in macrophages results in the activation of the interferon (IFN)-dependent antiviral innate immunity. Here, we examined whether activating DNA sensors in peripheral blood monocyte-derived macrophages (MDMs) can inhibit human immunodeficiency virus (HIV). We observed that the stimulation of MDMs with poly(dA:dT) or poly(dG:dC) (synthetic ligands for the DNA sensors) inhibited HIV infection and replication. MDMs treated with poly(dA:dT) or poly(dG:dC) expressed higher levels of both type I and type III IFNs than untreated cells. Activation of the DNA sensors in MDMs also induced the expression of the multiple intracellular anti-HIV factors, including IFN-stimulated genes (ISGs: ISG15, ISG56, Viperin, OAS2, GBP5, MxB, and Tetherin) and the HIV restriction microRNAs (miR-29c, miR-138, miR-146a, miR-155, miR-198, and miR-223). In addition, the DNA sensor activation of MDM upregulated the expression of the CC chemokines (RANTES, MIP-1α, MIP-1β), the ligands for HIV entry coreceptor CCR5. These observations indicate that the cytosolic DNA sensors have a protective role in the macrophage intracellular immunity against HIV and that targeting the DNA sensors has therapeutic potential for immune activation-based anti-HIV treatment.
Collapse
Affiliation(s)
| | | | - Lina Zhou
- Department of Pathology and Laboratory Medicine, Temple University Lewis Katz School of Medicine, Philadelphia, Pennsylvania, USA
| | - Xu Wang
- Department of Pathology and Laboratory Medicine, Temple University Lewis Katz School of Medicine, Philadelphia, Pennsylvania, USA
| | - Shazheb Khan
- Department of Pathology and Laboratory Medicine, Temple University Lewis Katz School of Medicine, Philadelphia, Pennsylvania, USA
| | - Wen-Hui Hu
- Department of Pathology and Laboratory Medicine, Temple University Lewis Katz School of Medicine, Philadelphia, Pennsylvania, USA
| | - Wen-Zhe Ho
- Department of Pathology and Laboratory Medicine, Temple University Lewis Katz School of Medicine, Philadelphia, Pennsylvania, USA
| |
Collapse
|
11
|
Periwal N, Bhardwaj U, Sarma S, Arora P, Sood V. In silico analysis of SARS-CoV-2 genomes: Insights from SARS encoded non-coding RNAs. Front Cell Infect Microbiol 2022; 12:966870. [PMID: 36519126 PMCID: PMC9742375 DOI: 10.3389/fcimb.2022.966870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2022] [Accepted: 10/05/2022] [Indexed: 11/29/2022] Open
Abstract
The recent pandemic caused by Severe Acute Respiratory Syndrome Coronavirus-2 has resulted in enormous deaths around the world. Clues from genomic sequences of parent and their mutants can be obtained to understand the evolving pathogenesis of this virus. Apart from the viral proteins, virus-encoded microRNAs (miRNAs) have been shown to play a vital role in regulating viral pathogenesis. Thus we sought to investigate the miRNAs encoded by SARS-CoV-2, its mutants, and the host. Here, we present the results obtained using a dual approach i.e (i) identifying host-encoded miRNAs that might regulate viral pathogenesis and (ii) identifying viral-encoded miRNAs that might regulate host cell signaling pathways and aid in viral pathogenesis. Analysis utilizing the first approach resulted in the identification of ten host-encoded miRNAs that could target the SARS, SARS-CoV-2, and its mutants. Interestingly our analysis revealed that there is a significantly higher number of host miRNAs that could target the SARS-CoV-2 genome as compared to the SARS reference genome. Results from the second approach resulted in the identification of a set of virus-encoded miRNAs which might regulate host signaling pathways. Our analysis further identified a similar "GA" rich motif in the SARS-CoV-2 and its mutant genomes that was shown to play a vital role in lung pathogenesis during severe SARS infections. In summary, we have identified human and virus-encoded miRNAs that might regulate the pathogenesis of SARS coronaviruses and describe similar non-coding RNA sequences in SARS-CoV-2 that were shown to regulate SARS-induced lung pathology in mice.
Collapse
Affiliation(s)
- Neha Periwal
- Department of Biochemistry, Jamia Hamdard, New Delhi, India
| | | | - Sankritya Sarma
- Department of Zoology, Hansraj College, University of Delhi, Delhi, India
| | - Pooja Arora
- Department of Zoology, Hansraj College, University of Delhi, Delhi, India
| | - Vikas Sood
- Department of Biochemistry, Jamia Hamdard, New Delhi, India,*Correspondence: Vikas Sood,
| |
Collapse
|
12
|
Involvement of host microRNAs in flavivirus-induced neuropathology: An update. J Biosci 2022. [PMID: 36222134 PMCID: PMC9425815 DOI: 10.1007/s12038-022-00288-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Flaviviruses are a spectrum of vector-borne RNA viruses that cause potentially severe diseases in humans including encephalitis, acute-flaccid paralysis, cognitive disorders and foetal abnormalities. Japanese encephalitis virus (JEV), Zika virus (ZIKV), West Nile virus (WNV) and Dengue virus (DENV) are globally emerging pathogens that lead to epidemics and outbreaks with continued transmission to newer geographical areas over time. In the past decade, studies have focussed on understanding the pathogenic mechanisms of these viruses in a bid to alleviate their disease burden. MicroRNAs (miRNAs) are short single-stranded RNAs that have emerged as master-regulators of cellular gene expression. The dynamics of miRNAs within a cell have the capacity to modulate hundreds of genes and, consequently, their physiological manifestation. Increasing evidence suggests their role in host response to disease and infection including cell survival, intracellular viral replication and immune activation. In this review, we aim to comprehensively update published evidence on the role of miRNAs in host cells infected with the common neurotropic flaviviruses, with an increased focus on neuropathogenic mechanisms. In addition, we briefly cover therapeutic advancements made in the context of miRNA-based antiviral strategies.
Collapse
|
13
|
Chinniah R, Adimulam T, Nandlal L, Arumugam T, Ramsuran V. The Effect of miRNA Gene Regulation on HIV Disease. Front Genet 2022; 13:862642. [PMID: 35601502 PMCID: PMC9117004 DOI: 10.3389/fgene.2022.862642] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Accepted: 04/13/2022] [Indexed: 12/24/2022] Open
Abstract
Over many years, research on HIV/AIDS has advanced with the introduction of HAART. Despite these advancements, significant gaps remain with respect to aspects in HIV life cycle, with specific attention to virus-host interactions. Investigating virus-host interactions may lead to the implementation of novel therapeutic strategies against HIV/AIDS. Notably, host gene silencing can be facilitated by cellular small non-coding RNAs such as microRNAs paving the way for epigenetic anti-viral therapies. Numerous studies have elucidated the importance of microRNAs in HIV pathogenesis. Some microRNAs can either promote viral infection, while others can be detrimental to viral replication. This is accomplished by targeting the HIV-proviral genome or by regulating host genes required for viral replication and immune responses. In this review, we report on 1) the direct association of microRNAs with HIV infection; 2) the indirect association of known human genetic factors with HIV infection; 3) the regulation of human genes by microRNAs in other diseases that can be explored experimentally to determine their effect on HIV-1 infection; and 4) therapeutic interactions of microRNA against HIV infection.
Collapse
Affiliation(s)
- Romona Chinniah
- Centre for the AIDS Programme of Research in South Africa (CAPRISA), University of KwaZulu-Natal, Durban, South Africa
- School of Laboratory Medicine and Medical Sciences, University of KwaZulu-Natal, Durban, South Africa
| | - Theolan Adimulam
- School of Laboratory Medicine and Medical Sciences, University of KwaZulu-Natal, Durban, South Africa
| | - Louansha Nandlal
- Centre for the AIDS Programme of Research in South Africa (CAPRISA), University of KwaZulu-Natal, Durban, South Africa
| | - Thilona Arumugam
- School of Laboratory Medicine and Medical Sciences, University of KwaZulu-Natal, Durban, South Africa
| | - Veron Ramsuran
- Centre for the AIDS Programme of Research in South Africa (CAPRISA), University of KwaZulu-Natal, Durban, South Africa
- School of Laboratory Medicine and Medical Sciences, University of KwaZulu-Natal, Durban, South Africa
| |
Collapse
|
14
|
Bazié WW, Boucher J, Traoré IT, Kania D, Somé DY, Alary M, Gilbert C. Vesicular MicroRNA as Potential Biomarkers of Viral Rebound. Cells 2022; 11:cells11050859. [PMID: 35269481 PMCID: PMC8909274 DOI: 10.3390/cells11050859] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Revised: 02/24/2022] [Accepted: 02/24/2022] [Indexed: 02/04/2023] Open
Abstract
Changes in the cellular microRNA (miRNA) expression profile in response to HIV infection, replication or latency have been reported. Nevertheless, little is known concerning the abundance of miRNA in extracellular vesicles (EVs). In the search for a reliable predictor of viral rebound, we quantified the amount of miR-29a, miR-146a, and miR-155 in two types of plasma extracellular vesicles. Venous blood was collected from 235 ART-treated and ART-naive persons living with HIV (85 with ongoing viral replication, ≥20 copies/mL) and 60 HIV-negative participants at five HIV testing or treatment centers in Burkina Faso. Large and small plasma EVs were purified and counted, and mature miRNA miR-29a, miR-146a, and miR-155 were measured by RT-qPCR. Diagnostic performance of miRNA levels in large and small EVs was evaluated by a receiver operating characteristic curve analysis. The median duration of HIV infection was 36 months (IQR 14-117). The median duration of ART was 34 months (IQR 13-85). The virus was undetectable in 63.8% of these persons. In the others, viral load ranged from 108 to 33,978 copies/mL (median = 30,032). Large EVs were more abundant in viremic participants than aviremic. All three miRNAs were significantly more abundant in small EVs in persons with detectable HIV RNA, and their expression levels in copies per vesicle were a more reliable indicator of viral replication in ART-treated patients with low viremia (20-1000 copies/mL). HIV replication increased the production of large EVs more than small EVs. Combined with viral load measurement, quantifying EV-associated miRNA abundance relative to the number of vesicles provides a more reliable marker of the viral status. The expression level as copies per small vesicle could predict the viral rebound in ART-treated patients with undetectable viral loads.
Collapse
Affiliation(s)
- Wilfried Wenceslas Bazié
- Axe de Recherche Maladies Infectieuses et Immunitaires, Centre de Recherche du CHU de Québec-Université Laval, Quebec City, QC G1V 4G2, Canada;
- Programme de Recherche sur les Maladies Infectieuses, Centre Muraz, Institut National de Santé Publique, Bobo-Dioulasso 01 BP 390, Burkina Faso; (I.T.T.); (D.K.); (D.Y.S.)
- Correspondence: (W.W.B.); (C.G.); Tel.: +1-(418)-525-4444 (ext. 44104) (W.W.B.); +1-(418)-525-4444 (ext. 46107) (C.G.); Fax: +1-(418)-654-2765 (C.G.)
| | - Julien Boucher
- Axe de Recherche Maladies Infectieuses et Immunitaires, Centre de Recherche du CHU de Québec-Université Laval, Quebec City, QC G1V 4G2, Canada;
| | - Isidore Tiandiogo Traoré
- Programme de Recherche sur les Maladies Infectieuses, Centre Muraz, Institut National de Santé Publique, Bobo-Dioulasso 01 BP 390, Burkina Faso; (I.T.T.); (D.K.); (D.Y.S.)
- Département de Santé Publique, Institut Supérieur des Sciences de la Santé, Université Nazi Boni, Bobo-Dioulasso 01 BP 1091, Burkina Faso
| | - Dramane Kania
- Programme de Recherche sur les Maladies Infectieuses, Centre Muraz, Institut National de Santé Publique, Bobo-Dioulasso 01 BP 390, Burkina Faso; (I.T.T.); (D.K.); (D.Y.S.)
| | - Diane Yirgnur Somé
- Programme de Recherche sur les Maladies Infectieuses, Centre Muraz, Institut National de Santé Publique, Bobo-Dioulasso 01 BP 390, Burkina Faso; (I.T.T.); (D.K.); (D.Y.S.)
| | - Michel Alary
- Axe de Recherche Santé des Populations et Pratiques Optimales en Santé, Centre de Recherche du CHU de Québec-Université Laval, Quebec City, QC G1S 4L8, Canada;
- Département de Médecine Sociale et Préventive, Faculté de Médecine, Université Laval, Quebec City, QC G1V 0A6, Canada
- Institut National de Santé Publique du Québec, Quebec City, QC G1V 5B3, Canada
| | - Caroline Gilbert
- Axe de Recherche Maladies Infectieuses et Immunitaires, Centre de Recherche du CHU de Québec-Université Laval, Quebec City, QC G1V 4G2, Canada;
- Département de Microbiologie-Infectiologie et d’Immunologie, Faculté de Médecine, Université Laval, Quebec City, QC G1V 0A6, Canada
- Correspondence: (W.W.B.); (C.G.); Tel.: +1-(418)-525-4444 (ext. 44104) (W.W.B.); +1-(418)-525-4444 (ext. 46107) (C.G.); Fax: +1-(418)-654-2765 (C.G.)
| |
Collapse
|
15
|
Gibson MS, Noronha-Estima C, Gama-Carvalho M. Therapeutic Metabolic Reprograming Using microRNAs: From Cancer to HIV Infection. Genes (Basel) 2022; 13:273. [PMID: 35205318 PMCID: PMC8872267 DOI: 10.3390/genes13020273] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 01/27/2022] [Accepted: 01/27/2022] [Indexed: 02/04/2023] Open
Abstract
MicroRNAs (miRNAs) are crucial regulators of cellular processes, including metabolism. Attempts to use miRNAs as therapeutic agents are being explored in several areas, including the control of cancer progression. Recent evidence suggests fine tuning miRNA activity to reprogram tumor cell metabolism has enormous potential as an alternative treatment option. Indeed, cancer growth is known to be linked to profound metabolic changes. Likewise, the emerging field of immunometabolism is leading to a refined understanding of how immune cell proliferation and function is governed by glucose homeostasis. Different immune cell types are now known to have unique metabolic signatures that switch in response to a changing environment. T-cell subsets exhibit distinct metabolic profiles which underlie their alternative differentiation and phenotypic functions. Recent evidence shows that the susceptibility of CD4+ T-cells to HIV infection is intimately linked to their metabolic activity, with many of the metabolic features of HIV-1-infected cells resembling those found in tumor cells. In this review, we discuss the use of miRNA modulation to achieve metabolic reprogramming for cancer therapy and explore the idea that the same approach may serve as an effective mechanism to restrict HIV replication and eliminate infected cells.
Collapse
Affiliation(s)
| | | | - Margarida Gama-Carvalho
- BioISI—Biosystems & Integrative Sciences Institute, Faculty of Sciences, University of Lisboa, 1749-016 Lisboa, Portugal; (M.S.G.); (C.N.-E.)
| |
Collapse
|
16
|
Majumdar A, Basu A. Involvement of host microRNAs in flavivirus-induced neuropathology: An update. J Biosci 2022; 47:54. [PMID: 36222134 PMCID: PMC9425815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Accepted: 04/17/2022] [Indexed: 09/07/2024]
Abstract
Flaviviruses are a spectrum of vector-borne RNA viruses that cause potentially severe diseases in humans including encephalitis, acute-flaccid paralysis, cognitive disorders and foetal abnormalities. Japanese encephalitis virus (JEV), Zika virus (ZIKV), West Nile virus (WNV) and Dengue virus (DENV) are globally emerging pathogens that lead to epidemics and outbreaks with continued transmission to newer geographical areas over time. In the past decade, studies have focussed on understanding the pathogenic mechanisms of these viruses in a bid to alleviate their disease burden. MicroRNAs (miRNAs) are short single-stranded RNAs that have emerged as master-regulators of cellular gene expression. The dynamics of miRNAs within a cell have the capacity to modulate hundreds of genes and, consequently, their physiological manifestation. Increasing evidence suggests their role in host response to disease and infection including cell survival, intracellular viral replication and immune activation. In this review, we aim to comprehensively update published evidence on the role of miRNAs in host cells infected with the common neurotropic flaviviruses, with an increased focus on neuropathogenic mechanisms. In addition, we briefly cover therapeutic advancements made in the context of miRNA-based antiviral strategies.
Collapse
Affiliation(s)
- Atreye Majumdar
- National Brain Research Centre, Manesar, Gurugram 122 052 India
| | - Anirban Basu
- National Brain Research Centre, Manesar, Gurugram 122 052 India
| |
Collapse
|
17
|
Qiao J, Peng Q, Qian F, You Q, Feng L, Hu S, Liu W, Huang L, Shu X, Sun B. HIV-1 Vpr protein upregulates microRNA-210-5p expression to induce G2 arrest by targeting TGIF2. PLoS One 2021; 16:e0261971. [PMID: 34965271 PMCID: PMC8716043 DOI: 10.1371/journal.pone.0261971] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Accepted: 12/14/2021] [Indexed: 11/18/2022] Open
Abstract
MicroRNAs (miRNAs) are important molecules that mediate virus-host interactions, mainly by regulating gene expression via gene silencing. Here, we demonstrated that HIV-1 infection upregulated miR-210-5p in HIV-1-inoculated cell lines and in the serum of HIV-1-infected individuals. Luciferase reporter assays and western blotting confirmed that a target protein of miR-210-5p, TGIF2, is regulated by HIV-1 infection. Furthermore, HIV-1 Vpr protein induced miR-210-5p expression. The use of a miR-210-5p inhibitor and TGIF2 overexpression showed that Vpr upregulated miR-210-5p and thereby downregulated TGIF2, which might be one of the mechanisms used by Vpr to induce G2 arrest. Moreover, we identified a transcription factor, NF-κB p50, which upregulated miR-210-5p in response to Vpr protein. In conclusion, we identified a mechanism whereby miR-210-5p, which is induced upon HIV-1 infection, targets TGIF2. This pathway was initiated by Vpr protein activating NF-κB p50, which promoted G2 arrest. These alterations orchestrated by miRNA provide new evidence on how HIV-1 interacts with its host during infection and increase our understanding of the mechanism by which Vpr regulates the cell cycle.
Collapse
Affiliation(s)
- Jialu Qiao
- Wuhan Institute of Biomedical Sciences, School of Medicine, Jianghan University, Wuhan, China
| | - Qian Peng
- Wuhan Institute of Biomedical Sciences, School of Medicine, Jianghan University, Wuhan, China
| | - Feng Qian
- Division of HIV/AIDS, The Second Affiliated Hospital of Soochow University, Soochow, China
| | - Qiang You
- Wuhan Institute of Biomedical Sciences, School of Medicine, Jianghan University, Wuhan, China
| | - Lingyan Feng
- Department of Immunology, School of Medicine, Jianghan University, Wuhan, China
| | - Song Hu
- Wuhan Institute of Biomedical Sciences, School of Medicine, Jianghan University, Wuhan, China
| | - Wei Liu
- Wuhan Institute of Biomedical Sciences, School of Medicine, Jianghan University, Wuhan, China
| | - Lixia Huang
- Department of Immunology, School of Medicine, Jianghan University, Wuhan, China
| | - Xiji Shu
- Wuhan Institute of Biomedical Sciences, School of Medicine, Jianghan University, Wuhan, China
- * E-mail: (BS); (XS)
| | - Binlian Sun
- Wuhan Institute of Biomedical Sciences, School of Medicine, Jianghan University, Wuhan, China
- * E-mail: (BS); (XS)
| |
Collapse
|
18
|
Jafarzadeh A, Naseri A, Shojaie L, Nemati M, Jafarzadeh S, Bannazadeh Baghi H, Hamblin MR, Akhlagh SA, Mirzaei H. MicroRNA-155 and antiviral immune responses. Int Immunopharmacol 2021; 101:108188. [PMID: 34626873 DOI: 10.1016/j.intimp.2021.108188] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 09/19/2021] [Accepted: 09/20/2021] [Indexed: 02/08/2023]
Abstract
The microRNA, miR-155 regulates both adaptive and innate immune responses. In viral infections, miR-155 can affect both innate immunity (interferon response, natural killer cell activity, and macrophage polarization) and adaptive immunity (including generation of anti-viral antibodies, CD8+ cytotoxic T lymphocytes, Th17, Th2, Th1, Tfh and Treg cells). In many viral infections, the proper and timely regulation of miR-155 expression is critical for the induction of an effective anti-virus immune response and viral clearance without any harmful immunopathologic consequences. MiR-155 may also exert pro-viral effects, mainly through the inhibition of the anti-viral interferon response. Thus, dysregulated expression of miR-155 can result in virus persistence and disruption of the normal response to viral infections. This review provides a thorough discussion of the role of miR-155 in immune responses and immunopathologic reactions during viral infections, and highlights its potential as a therapeutic target.
Collapse
Affiliation(s)
- Abdollah Jafarzadeh
- Department of Immunology, School of Medicine, Kerman University of Medical Sciences, Kerman, Iran; Immunology of Infectious Diseases Research Center, Research Institute of Basic Medical Sciences, Rafsanjan University of Medical Sciences, Rafsanjan, Iran.
| | - Alma Naseri
- Department of Immunology, Islamic Azadi university of Zahedan, Zahedan, Iran
| | - Layla Shojaie
- Research Center for Liver Diseases, Keck School of Medicine, Department of Medicine, University of Southern California, Los angeles, CA, USA
| | - Maryam Nemati
- Department of Immunology, School of Medicine, Rafsanjan University of Medical Sciences, Rafsanjan, Iran; Department of Hematology and Laboratory Sciences, School of Para-Medicine, Kerman University of Medical Sciences, Kerman, Iran
| | - Sara Jafarzadeh
- Student Research Committee, School of Medicine, Kerman University of Medical Sciences, Kerman, Iran
| | - Hossein Bannazadeh Baghi
- Department of Virology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran; Infectious and Tropical Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Michael R Hamblin
- Laser Research Centre, Faculty of Health Science, University of Johannesburg, Doornfontein 2028, South Africa
| | | | - Hamed Mirzaei
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran; Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran.
| |
Collapse
|
19
|
Rojas M, Luz-Crawford P, Soto-Rifo R, Reyes-Cerpa S, Toro-Ascuy D. The Landscape of IFN/ISG Signaling in HIV-1-Infected Macrophages and Its Possible Role in the HIV-1 Latency. Cells 2021; 10:2378. [PMID: 34572027 PMCID: PMC8467246 DOI: 10.3390/cells10092378] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Revised: 07/08/2021] [Accepted: 07/13/2021] [Indexed: 12/15/2022] Open
Abstract
A key characteristic of Human immunodeficiency virus type 1 (HIV-1) infection is the generation of latent viral reservoirs, which have been associated with chronic immune activation and sustained inflammation. Macrophages play a protagonist role in this context since they are persistently infected while being a major effector of the innate immune response through the generation of type-I interferons (type I IFN) and IFN-stimulated genes (ISGs). The balance in the IFN signaling and the ISG induction is critical to promote a successful HIV-1 infection. Classically, the IFNs response is fine-tuned by opposing promotive and suppressive signals. In this context, it was described that HIV-1-infected macrophages can also synthesize some antiviral effector ISGs and, positive and negative regulators of the IFN/ISG signaling. Recently, epitranscriptomic regulatory mechanisms were described, being the N6-methylation (m6A) modification on mRNAs one of the most relevant. The epitranscriptomic regulation can affect not only IFN/ISG signaling, but also type I IFN expression, and viral fitness through modifications to HIV-1 RNA. Thus, the establishment of replication-competent latent HIV-1 infected macrophages may be due to non-classical mechanisms of type I IFN that modulate the activation of the IFN/ISG signaling network.
Collapse
Affiliation(s)
- Masyelly Rojas
- Facultad de Ciencias de la Salud, Instituto de Ciencias Biomédicas, Universidad Autónoma de Chile, Santiago 8910060, Chile;
- Centro de Investigación e Innovación Biomédica, Facultad de Medicina, Universidad de los Andes, Santiago 7620001, Chile;
| | - Patricia Luz-Crawford
- Centro de Investigación e Innovación Biomédica, Facultad de Medicina, Universidad de los Andes, Santiago 7620001, Chile;
| | - Ricardo Soto-Rifo
- Molecular and Cellular Virology Laboratory, Virology Program, Faculty of Medicine, Institute of Biomedical Sciences, Universidad of Chile, Santiago 8389100, Chile;
| | - Sebastián Reyes-Cerpa
- Centro de Genómica y Bioinformática, Facultad de Ciencias, Universidad Mayor, Santiago 8580745, Chile
- Escuela de Biotecnología, Facultad de Ciencias, Universidad Mayor, Santiago 8580745, Chile
| | - Daniela Toro-Ascuy
- Facultad de Ciencias de la Salud, Instituto de Ciencias Biomédicas, Universidad Autónoma de Chile, Santiago 8910060, Chile;
| |
Collapse
|
20
|
Salazar C, Galaz M, Ojeda N, Marshall SH. Expression of ssa-miR-155 during ISAV infection in vitro: Putative role as a modulator of the immune response in Salmo salar. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2021; 122:104109. [PMID: 33930457 DOI: 10.1016/j.dci.2021.104109] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Revised: 04/21/2021] [Accepted: 04/21/2021] [Indexed: 06/12/2023]
Abstract
Multiple cellular components are involved in pathogen-host interaction during viral infection; in this context, the role of miRNAs have become highly relevant. We assessed the expression of selected miRNAs during an in vitro infection of a Salmo salar cell line with Infectious Salmon Anemia Virus (ISAV), the causative agent of a severe disease by the same name. Salmon orthologs for miRNAs that regulate antiviral responses were measured using RT-qPCR in an in vitro time-course assay. We observed a modulation of specific miRNAs expression, where ssa-miR-155-5p was differentially over-expressed. Using in silico analysis, we identified the putative mRNA targets for ssa-miR-155-5p, finding a high prevalence of hosts immune response-related genes; moreover, several mRNAs involved in the viral infective process were also identified as targets for this miRNA. Our results suggest a relevant role for miR-155-5p in Salmo salar during an ISAV infection as a regulator of the immune response to the virus.
Collapse
Affiliation(s)
- Carolina Salazar
- Instituto de Biologia, Pontificia Universidad Catolica de Valparaiso, Valparaiso, Chile
| | - Martín Galaz
- Instituto de Biologia, Pontificia Universidad Catolica de Valparaiso, Valparaiso, Chile
| | - Nicolás Ojeda
- Instituto de Biologia, Pontificia Universidad Catolica de Valparaiso, Valparaiso, Chile
| | - Sergio H Marshall
- Instituto de Biologia, Pontificia Universidad Catolica de Valparaiso, Valparaiso, Chile.
| |
Collapse
|
21
|
Zheng Y, Yang Z, Jin C, Chen C, Wu N. hsa-miR-191-5p inhibits replication of human immunodeficiency virus type 1 by downregulating the expression of NUP50. Arch Virol 2021; 166:755-766. [PMID: 33420627 DOI: 10.1007/s00705-020-04899-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Accepted: 10/13/2020] [Indexed: 01/24/2023]
Abstract
MicroRNAs (miRNAs) are important host molecules involved in human immunodeficiency virus type 1 (HIV-1) infection. Antiretroviral therapy (ART) can affect the miRNA expression profile, but differentially expressed miRNAs still remain to be identified. In this study, we used gene chips to analyze miRNA expression profiles in peripheral blood mononuclear cells from ART-naive HIV-1 patients and those receiving ART, as well as from uninfected individuals. We measured differences in miRNA expression by quantitative polymerase chain reaction (qPCR) in an expanded sample. We found significant differences in the expression of has-miR-191-5p among the three groups (P < 0.05). Furthermore, we showed that hsa-miR-191-5p has an inhibitory effect on HIV-1 replication in cell models in vitro. We identified CCR1 and NUP50 as target molecules of hsa-miR-191-5p and found that hsa-miR-191-5p inhibits the expression of CCR1 and NUP50. Knockdown of NUP50 resulted in significant inhibition of HIV-1 replication. In summary, our research shows that hsa-miR-191-5p expression is reduced in HIV-1-infected patients and acts an inhibitor of HIV-1 infection via a mechanism that may involve targeted repression of NUP50 expression.
Collapse
Affiliation(s)
- Yanghao Zheng
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Centre for Infectious Diseases, Collaborative Innovation Centre for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University, Hangzhou, 310003, China
| | | | - Changzhong Jin
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Centre for Infectious Diseases, Collaborative Innovation Centre for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University, Hangzhou, 310003, China
| | - Chaoyu Chen
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Centre for Infectious Diseases, Collaborative Innovation Centre for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University, Hangzhou, 310003, China
| | - Nanping Wu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Centre for Infectious Diseases, Collaborative Innovation Centre for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University, Hangzhou, 310003, China.
| |
Collapse
|
22
|
Bazié WW, Boucher J, Vitry J, Goyer B, Routy JP, Tremblay C, Trottier S, Jenabian MA, Provost P, Alary M, Gilbert C. Plasma Extracellular Vesicle Subtypes May be Useful as Potential Biomarkers of Immune Activation in People With HIV. Pathog Immun 2021; 6:1-28. [PMID: 33987483 PMCID: PMC8109236 DOI: 10.20411/pai.v6i1.384] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Accepted: 11/02/2020] [Indexed: 12/15/2022] Open
Abstract
Background Extracellular vesicles (EVs) are intercellular messengers with epigenetic potential since they can shuttle microRNA (miRNA). EVs and miRNA play a role in human immunodeficiency virus (HIV) infection immunopathogenesis. Chronic immune activation and systemic inflammation during HIV infection despite effective antiretroviral therapy (ART) are associated with non-acquired immunodeficiency syndrome (AIDS) comorbidities in people living with HIV (PLWH). Analysis of plasma EVs and their miRNA content may be useful as immune activation or inflammatory biomarkers in PLWH receiving ART. In this study, we hypothesized that the number, size, and miRNA of large and small EVs could reflect immune activation associated with an elevated CD8 T-cell count or a low CD4/CD8 ratio in PLWH. Methods Plasma EVs subtype purified from PLWH and uninfected controls were sized using dynamic light scattering and quantified using flow cytometry and acetylcholine esterase (AChE) activity. Expression of mature miRNAs miR-92, miR-155, miR-223 was measured by quantitative reverse-transcriptase polymerase chain reaction in EVs and leucocytes. Results HIV infection induces increased production of small EVs in plasma. EV subtypes were differentially enriched in miR-92, miR-155, and miR-223. Positive correlations between CD8 T-cell count and large EVs abundance and small EVs AChE activity were observed. CD4/CD8 ratio was negatively correlated with small EV AChE activity, and miRNA-155 level per small EV was negatively correlated with CD8 T-cell count. Conclusions These findings suggest that quantifying large or small EVs and profiling miRNA content per EV might provide new functional biomarkers of immune activation and inflammation.
Collapse
Affiliation(s)
- Wilfried Wenceslas Bazié
- Centre de recherche du CHU de Québec-Université Laval, Québec, QC, Canada.,Département de microbiologie-infectiologie et d'immunologie, Faculté de médecine, Université Laval, Québec, QC, Canada.,Programme de recherche sur les maladies infectieuses, Centre Muraz, Institut National de Santé Publique, Bobo-Dioulasso, Burkina Faso
| | - Julien Boucher
- Centre de recherche du CHU de Québec-Université Laval, Québec, QC, Canada.,Département de microbiologie-infectiologie et d'immunologie, Faculté de médecine, Université Laval, Québec, QC, Canada
| | - Julien Vitry
- Centre de recherche du CHU de Québec-Université Laval, Québec, QC, Canada.,Département de microbiologie-infectiologie et d'immunologie, Faculté de médecine, Université Laval, Québec, QC, Canada
| | - Benjamin Goyer
- Centre de recherche du CHU de Québec-Université Laval, Québec, QC, Canada
| | - Jean Pierre Routy
- Chronic Viral Illness Service and Division of Hematology, McGill University Health Centre, Montreal, QC, Canada.,Infectious Diseases and Immunity in Global Health Program, Research Institute, McGill University Health Centre, Montréal, QC, Canada
| | - Cécile Tremblay
- Centre de recherche du Centre Hospitalier de l'Université de Montréal, Montréal, QC, Canada.,Département de microbiologie, infectiologie et immunologie, Faculté de médecine, Université de Montréal, Montréal, QC, Canada
| | - Sylvie Trottier
- Centre de recherche du CHU de Québec-Université Laval, Québec, QC, Canada.,Département de microbiologie-infectiologie et d'immunologie, Faculté de médecine, Université Laval, Québec, QC, Canada
| | - Mohammad-Ali Jenabian
- Département des sciences biologiques, Université de Québec à Montréal (UQAM), Montréal, QC, Canada
| | - Patrick Provost
- Centre de recherche du CHU de Québec-Université Laval, Québec, QC, Canada.,Département de microbiologie-infectiologie et d'immunologie, Faculté de médecine, Université Laval, Québec, QC, Canada
| | - Michel Alary
- Centre de recherche du CHU de Québec-Université Laval, Québec, QC, Canada.,Département de médecine sociale et préventive, Faculté de médecine, Université de Laval, Québec, C, Canada.,Institut national de santé publique du Québec, Québec, QC, Canada
| | - Caroline Gilbert
- Centre de recherche du CHU de Québec-Université Laval, Québec, QC, Canada.,Département de microbiologie-infectiologie et d'immunologie, Faculté de médecine, Université Laval, Québec, QC, Canada
| |
Collapse
|
23
|
Mielcarska MB, Gregorczyk-Zboroch KP, Szulc-Da̧browska L, Bossowska-Nowicka M, Wyżewski Z, Cymerys J, Chodkowski M, Kiełbik P, Godlewski MM, Gieryńska M, Toka FN. Participation of Endosomes in Toll-Like Receptor 3 Transportation Pathway in Murine Astrocytes. Front Cell Neurosci 2020; 14:544612. [PMID: 33281554 PMCID: PMC7705377 DOI: 10.3389/fncel.2020.544612] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Accepted: 10/26/2020] [Indexed: 12/25/2022] Open
Abstract
TLR3 provides immediate type I IFN response following entry of stimulatory PAMPs into the CNS, as it is in HSV infection. The receptor plays a vital role in astrocytes, contributing to rapid infection sensing and suppression of viral replication, precluding the spread of virus beyond neurons. The route of TLR3 mobilization culminating in the receptor activation remains unexplained. In this research, we investigated the involvement of various types of endosomes in the regulation of the TLR3 mobility in C8-D1A murine astrocyte cell line. TLR3 was transported rapidly to early EEA1-positive endosomes as well as LAMP1-lysosomes following stimulation with the poly(I:C). Later, TLR3 largely associated with late Rab7-positive endosomes. Twenty-four hours after stimulation, TLR3 co-localized with LAMP1 abundantly in lysosomes of astrocytes. TLR3 interacted with poly(I:C) intracellularly from 1 min to 8 h following cell stimulation. We detected TLR3 on the surface of astrocytes indicating constitutive expression, which increased after poly(I:C) stimulation. Our findings contribute to the understanding of cellular modulation of TLR3 trafficking. Detailed analysis of the TLR3 transportation pathway is an important component in disclosing the fate of the receptor in HSV-infected CNS and may help in the search for rationale therapeutics to control the replication of neuropathic viruses.
Collapse
Affiliation(s)
- Matylda B Mielcarska
- Division of Immunology, Department of Preclinical Sciences, Institute of Veterinary Medicine, Warsaw University of Life Sciences, Warsaw, Poland
| | - Karolina P Gregorczyk-Zboroch
- Division of Immunology, Department of Preclinical Sciences, Institute of Veterinary Medicine, Warsaw University of Life Sciences, Warsaw, Poland
| | - Lidia Szulc-Da̧browska
- Division of Immunology, Department of Preclinical Sciences, Institute of Veterinary Medicine, Warsaw University of Life Sciences, Warsaw, Poland
| | - Magdalena Bossowska-Nowicka
- Division of Immunology, Department of Preclinical Sciences, Institute of Veterinary Medicine, Warsaw University of Life Sciences, Warsaw, Poland
| | - Zbigniew Wyżewski
- Institute of Biological Sciences, Cardinal Stefan Wyszynski University in Warsaw, Warsaw, Poland
| | - Joanna Cymerys
- Division of Microbiology, Department of Preclinical Sciences, Institute of Veterinary Medicine, Warsaw University of Life Sciences, Warsaw, Poland
| | - Marcin Chodkowski
- Division of Microbiology, Department of Preclinical Sciences, Institute of Veterinary Medicine, Warsaw University of Life Sciences, Warsaw, Poland
| | - Paula Kiełbik
- Division of Physiology, Department of Physiological Sciences, Institute of Veterinary Medicine, Warsaw University of Life Sciences, Warsaw, Poland
| | - Michał M Godlewski
- Division of Physiology, Department of Physiological Sciences, Institute of Veterinary Medicine, Warsaw University of Life Sciences, Warsaw, Poland
| | - Małgorzata Gieryńska
- Division of Immunology, Department of Preclinical Sciences, Institute of Veterinary Medicine, Warsaw University of Life Sciences, Warsaw, Poland
| | - Felix N Toka
- Division of Immunology, Department of Preclinical Sciences, Institute of Veterinary Medicine, Warsaw University of Life Sciences, Warsaw, Poland.,Center for Integrative Mammalian Research, Department of Biomedical Sciences, Ross University School of Veterinary Medicine, Basseterre, Saint Kitts and Nevis
| |
Collapse
|
24
|
Homogeneous electrochemical biosensor for microRNA based on enzyme-driven cascaded signal amplification strategy. Anal Bioanal Chem 2020; 413:4681-4688. [PMID: 33185746 DOI: 10.1007/s00216-020-03027-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2020] [Revised: 10/14/2020] [Accepted: 10/23/2020] [Indexed: 10/23/2022]
Abstract
Infectious diseases are a long-standing and severe global public health problem. The rapid diagnosis of infectious diseases is an urgent need to solve this problem. MicroRNA (miRNA) plays an important role in the intervention of some infectious diseases and is expected to become a potential biomarker for the diagnosis and prognosis of infectious diseases. It is of great significance to develop rapid and sensitive methods for detecting miRNA for effective control of infectious diseases. In this study, a simple and highly sensitive homogeneous electrochemical method for microRNAs using enzyme-driven cascaded signal amplification has been developed. In the presence of target miRNA, the reaction system produced plenty of MB-labeled single-nucleotide fragments (MB-MF) containing a few negative charges, which can diffuse to the negative surface of the ITO electrode easily, so an obvious electrochemical signal enhancement was obtained. Without the target, MB-HP contains a relatively large amount of negative charges due to the phosphates on the DNA chain, which cannot be digested by the enzyme and cannot diffuse freely to the negatively charged ITO electrode, so only a small signal was detected. The enhanced electrochemical response has a linear relationship with the logarithm of miRNA concentration in the range of 10 fM to 10 nM and the limit of detection as low as 3.0 fM. Furthermore, the proposed strategy showed the capability of discriminating single-base mismatch and performed eligibly in the analysis of miRNA in cell lysates, exhibiting great potential for disease diagnosis and biomedical research. Graphical abstract.
Collapse
|
25
|
The assessment of selected MiRNAs profile in HIV, HBV, HCV, HIV/HCV, HIV/HBV Co-infection and elite controllers for determination of biomarker. Microb Pathog 2020; 147:104355. [DOI: 10.1016/j.micpath.2020.104355] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Revised: 06/14/2020] [Accepted: 06/17/2020] [Indexed: 02/06/2023]
|
26
|
Goh JY, O'Sullivan SE, Shortall SE, Zordan N, Piccinini AM, Potter HG, Fone KCF, King MV. Gestational poly(I:C) attenuates, not exacerbates, the behavioral, cytokine and mTOR changes caused by isolation rearing in a rat 'dual-hit' model for neurodevelopmental disorders. Brain Behav Immun 2020; 89:100-117. [PMID: 32485291 DOI: 10.1016/j.bbi.2020.05.076] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Revised: 05/28/2020] [Accepted: 05/28/2020] [Indexed: 12/12/2022] Open
Abstract
Many psychiatric illnesses have a multifactorial etiology involving genetic and environmental risk factors that trigger persistent neurodevelopmental impairments. Several risk factors have been individually replicated in rodents, to understand disease mechanisms and evaluate novel treatments, particularly for poorly-managed negative and cognitive symptoms. However, the complex interplay between various factors remains unclear. Rodent dual-hit neurodevelopmental models offer vital opportunities to examine this and explore new strategies for early therapeutic intervention. This study combined gestational administration of polyinosinic:polycytidylic acid (poly(I:C); PIC, to mimic viral infection during pregnancy) with post-weaning isolation of resulting offspring (to mirror adolescent social adversity). After in vitro and in vivo studies required for laboratory-specific PIC characterization and optimization, we administered 10 mg/kg i.p. PIC potassium salt to time-mated Lister hooded dams on gestational day 15. This induced transient hypothermia, sickness behavior and weight loss in the dams, and led to locomotor hyperactivity, elevated striatal cytokine levels, and increased frontal cortical JNK phosphorylation in the offspring at adulthood. Remarkably, instead of exacerbating the well-characterized isolation syndrome, gestational PIC exposure actually protected against a spectrum of isolation-induced behavioral and brain regional changes. Thus isolation reared rats exhibited locomotor hyperactivity, impaired associative memory and reversal learning, elevated hippocampal and frontal cortical cytokine levels, and increased mammalian target of rapamycin (mTOR) activation in the frontal cortex - which were not evident in isolates previously exposed to gestational PIC. Brains from adolescent littermates suggest little contribution of cytokines, mTOR or JNK to early development of the isolation syndrome, or resilience conferred by PIC. But notably hippocampal oxytocin, which can protect against stress, was higher in adolescent PIC-exposed isolates so might contribute to a more favorable outcome. These findings have implications for identifying individuals at risk for disorders like schizophrenia who may benefit from early therapeutic intervention, and justify preclinical assessment of whether adolescent oxytocin manipulations can modulate disease onset or progression.
Collapse
Affiliation(s)
- Jen-Yin Goh
- School of Life Sciences, University of Nottingham, Medical School, Queen's Medical Centre, Nottingham NG7 2UH, UK
| | - Saoirse E O'Sullivan
- School of Medicine, University of Nottingham, Royal Derby Hospital, Derby DE22 3DT, UK
| | - Sinead E Shortall
- School of Life Sciences, University of Nottingham, Medical School, Queen's Medical Centre, Nottingham NG7 2UH, UK
| | - Nicole Zordan
- School of Pharmacy, University of Nottingham, University Park, Nottingham NG7 2RD, UK
| | - Anna M Piccinini
- School of Pharmacy, University of Nottingham, University Park, Nottingham NG7 2RD, UK
| | - Harry G Potter
- Division of Evolution and Genomic Sciences, School of Biological Sciences, Manchester Academic Health Science Centre, University of Manchester, Manchester M13 9PT, UK
| | - Kevin C F Fone
- School of Life Sciences, University of Nottingham, Medical School, Queen's Medical Centre, Nottingham NG7 2UH, UK
| | - Madeleine V King
- School of Life Sciences, University of Nottingham, Medical School, Queen's Medical Centre, Nottingham NG7 2UH, UK.
| |
Collapse
|
27
|
Interleukin-1β Triggers p53-Mediated Downmodulation of CCR5 and HIV-1 Entry in Macrophages through MicroRNAs 103 and 107. mBio 2020; 11:mBio.02314-20. [PMID: 32994328 PMCID: PMC7527731 DOI: 10.1128/mbio.02314-20] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Macrophages are a target of human immunodeficiency virus type 1 (HIV-1) and may serve as a viral reservoir during antiretroviral therapy (ART). Their susceptibility to HIV-1 infection is subject to variations from permissiveness to resistance depending on their origin, tissue localization, and polarization profile. This is in part due to the expression of regulatory microRNAs. Here, we identify two microRNA paralogs, microRNA 103 (miR-103) and miR-107, as regulators of CCR5 expression that are upregulated in noninfected bystander cells of HIV-1-infected-monocyte-derived macrophage (MDM) cultures. Transfection of microRNA 103 mimics in MDMs reduced CCR5 expression levels and inhibited CCR5-dependent HIV-1 entry, whereas the corresponding antagomirs enhanced virus spread in HIV-infected MDMs. Treatment of MDMs with interleukin-1β (IL-1β) enhanced microRNA 103 expression, a condition that we found contributed to the reduction of CCR5 mRNA in IL-1β-exposed MDMs. Interestingly, we show that the induction of miR-103/107 expression is part of a tumor suppressor p53 response triggered by secreted IL-1β that renders macrophages refractory to HIV-1 entry. In a more physiological context, the levels of microRNAs 103 and 107 were found enriched in tissue-resident colon macrophages of healthy donors and alveolar macrophages of individuals under antiretroviral therapy, conceivably contributing to their relative resistance to HIV-1 infection. Overall, these findings highlight the role of p53 in enforcing proinflammatory antiviral responses in macrophages, at least in part, through miR-103/107-mediated downmodulation of CCR5 expression and HIV-1 entry.IMPORTANCE Macrophages are heterogeneous immune cells that display varying susceptibilities to HIV-1 infection, in part due to the expression of small noncoding microRNAs involved in the posttranscriptional regulation of gene expression and silencing. Here, we identify microRNAs 103 and 107 as important p53-regulated effectors of the antiviral response triggered by the proinflammatory cytokine IL-1β in macrophages. These microRNAs, which are enriched in colon macrophages of healthy donors and alveolar macrophages of HIV-infected individuals under antiretroviral therapy, act as inhibitors of HIV-1 entry through their capacity to downregulate the CCR5 coreceptor. These results highlight the important role played by miR-103/107 in modulating CCR5 expression and HIV-1 entry in macrophages. They further underscore a distinct function of the tumor suppressor p53 in enforcing proinflammatory antiviral responses in macrophages, thus providing insight into a cellular pathway that could be targeted to limit the establishment of viral reservoirs in these cells.
Collapse
|
28
|
Covino DA, Kaczor-Urbanowicz KE, Lu J, Chiantore MV, Fiorucci G, Vescio MF, Catapano L, Purificato C, Galluzzo CM, Amici R, Andreotti M, Gauzzi MC, Pellegrini M, Fantuzzi L. Transcriptome Profiling of Human Monocyte-Derived Macrophages Upon CCL2 Neutralization Reveals an Association Between Activation of Innate Immune Pathways and Restriction of HIV-1 Gene Expression. Front Immunol 2020; 11:2129. [PMID: 33072075 PMCID: PMC7531389 DOI: 10.3389/fimmu.2020.02129] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Accepted: 08/05/2020] [Indexed: 01/01/2023] Open
Abstract
Macrophages are key targets of human immunodeficiency virus type 1 (HIV-1) infection and main producers of the proinflammatory chemokine CC chemokine ligand 2 (CCL2), whose expression is induced by HIV-1 both in vitro and in vivo. We previously found that CCL2 neutralization in monocyte-derived macrophages (MDMs) strongly inhibited HIV-1 replication affecting post-entry steps of the viral life cycle. Here, we used RNA-sequencing to deeply characterize the cellular factors and pathways modulated by CCL2 blocking in MDMs and involved in HIV-1 replication restriction. We report that exposure to CCL2 neutralizing antibody profoundly affected the MDM transcriptome. Functional annotation clustering of up-regulated genes identified two clusters enriched for antiviral defense and immune response pathways, comprising several interferon-stimulated, and restriction factor coding genes. Transcripts in the clusters were enriched for RELA and NFKB1 targets, suggesting the activation of the canonical nuclear factor κB pathway as part of a regulatory network involving miR-155 up-regulation. Furthermore, while HIV-1 infection caused small changes to the MDM transcriptome, with no evidence of host defense gene expression and type I interferon signature, CCL2 blocking enabled the activation of a strong host innate response in infected macrophage cultures, and potently inhibited viral genes expression. Notably, an inverse correlation was found between levels of viral transcripts and of the restriction factors APOBEC3A (apolipoprotein B mRNA editing enzyme catalytic polypeptide-like 3 A), ISG15, and MX1. These findings highlight an association between activation of innate immune pathways and HIV-1 restriction upon CCL2 blocking and identify this chemokine as an endogenous factor contributing to the defective macrophage response to HIV-1. Therapeutic targeting of CCL2 may thus strengthen host innate immunity and restrict HIV-1 replication.
Collapse
Affiliation(s)
| | - Karolina Elżbieta Kaczor-Urbanowicz
- UCLA Section of Oral Biology, Division of Oral Biology & Medicine, Center for Oral and Head/Neck Oncology Research, Center for the Health Sciences, UCLA School of Dentistry, University of California at Los Angeles, Los Angeles, CA, United States.,UCLA Institute for Quantitative and Computational Biosciences, University of California at Los Angeles, Los Angeles, CA, United States
| | - Jing Lu
- UCLA Institute for Quantitative and Computational Biosciences, University of California at Los Angeles, Los Angeles, CA, United States
| | | | - Gianna Fiorucci
- Department of Infectious Diseases, Istituto Superiore di Sanità, Rome, Italy.,Institute of Molecular Biology and Pathology, CNR, Rome, Italy
| | | | - Laura Catapano
- National Center for Global Health, Istituto Superiore di Sanità, Rome, Italy
| | - Cristina Purificato
- National Center for Global Health, Istituto Superiore di Sanità, Rome, Italy
| | | | - Roberta Amici
- National Center for Global Health, Istituto Superiore di Sanità, Rome, Italy
| | - Mauro Andreotti
- National Center for Global Health, Istituto Superiore di Sanità, Rome, Italy
| | | | - Matteo Pellegrini
- UCLA Institute for Quantitative and Computational Biosciences, University of California at Los Angeles, Los Angeles, CA, United States
| | - Laura Fantuzzi
- National Center for Global Health, Istituto Superiore di Sanità, Rome, Italy
| |
Collapse
|
29
|
Nguyen H, Gazy N, Venketaraman V. A Role of Intracellular Toll-Like Receptors (3, 7, and 9) in Response to Mycobacterium tuberculosis and Co-Infection with HIV. Int J Mol Sci 2020; 21:E6148. [PMID: 32858917 PMCID: PMC7503332 DOI: 10.3390/ijms21176148] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Revised: 08/21/2020] [Accepted: 08/24/2020] [Indexed: 02/06/2023] Open
Abstract
Mycobacterium tuberculosis (Mtb) is a highly infectious acid-fast bacillus and is known to cause tuberculosis (TB) in humans. It is a leading cause of death from a sole infectious agent, with an estimated 1.5 million deaths yearly worldwide, and up to one third of the world's population has been infected with TB. The virulence and susceptibility of Mtb are further amplified in the presence of Human Immunodeficiency Virus (HIV). Coinfection with Mtb and HIV forms a lethal combination. Previous studies had demonstrated the synergistic effects of Mtb and HIV, with one disease accelerating the disease progression of the other through multiple mechanisms, including the modulation of the immune response to these two pathogens. The response of the endosomal pattern recognition receptors to these two pathogens, specifically toll-like receptors (TLR)-3, -7, and -9, has not been elucidated, with some studies producing mixed results. This article seeks to review the roles of TLR-3, -7, and -9 in response to Mtb infection, as well as Mtb-HIV-coinfection via Toll-interleukin 1 receptor (TIR) domain-containing adaptor inducing INF-β (TRIF)-dependent and myeloid differentiation factor 88 (MyD88)-dependent pathways.
Collapse
Affiliation(s)
- Huy Nguyen
- College of Osteopathic Medicine of the Pacific, Western University of Health Sciences, Pomona, CA 91766-1854, USA
| | - Nicky Gazy
- Beaumont Health System, 5450 Fort St, Trenton, MI 48183, USA
| | - Vishwanath Venketaraman
- College of Osteopathic Medicine of the Pacific, Western University of Health Sciences, Pomona, CA 91766-1854, USA
| |
Collapse
|
30
|
Chen L, Ishigami T, Doi H, Arakawa K, Tamura K. Gut microbiota and atherosclerosis: role of B cell for atherosclerosis focusing on the gut-immune-B2 cell axis. J Mol Med (Berl) 2020; 98:1235-1244. [PMID: 32737524 PMCID: PMC7447622 DOI: 10.1007/s00109-020-01936-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2019] [Revised: 05/13/2020] [Accepted: 06/08/2020] [Indexed: 02/06/2023]
Abstract
Atherosclerosis is the leading cause of cardiovascular mortality and morbidity worldwide and is described as a complex disease involving several different cell types and their molecular products. Recent studies have revealed that atherosclerosis arises from a systemic inflammatory process, including the accumulation and activities of various immune cells. However, the immune system is a complicated network made up of many cell types, hundreds of bioactive cytokines, and millions of different antigens, making it challenging to readily define the associated mechanism of atherosclerosis. Nevertheless, we previously reported a potential persistent inflammatory process underlying atherosclerosis development, centered on a pathological humoral immune response between commensal microbes and activated subpopulations of substantial B cells in the vicinity of the arterial adventitia. Accumulating evidence has indicated the importance of gut microbiota in atherosclerosis development. Commensal microbiota are considered important regulators of immunity and metabolism and also to be possible antigenic sources for atherosclerosis development. However, the interplay between gut microbiota and metabolism with regard to the modulation of atherosclerosis-associated immune responses remains poorly understood. Here, we review the mechanisms by which the gut microbiota may influence atherogenesis, with particular focus on humoral immunity and B cells, especially the gut-immune-B2 cell axis. Under high-fat and high-calorie conditions, signals driven by the intestinal microbiota via the TLR signaling pathway cause B2 cells in the spleen to become functionally active and activated B2 cells then modify responses such as antibody production (generation of active antibodies IgG and IgG3), thereby contributing to the development of atherosclerosis. On the other hand, intestinal microbiota also resulted in recruitment and ectopic activation of B2 cells via the TLR signaling pathway in perivascular adipose tissue (PVAT), and, subsequently, an increase in circulating IgG and IgG3 led to the enhanced disease development. This is a potential link between microbiota alterations and B cells in the context of atherosclerosis. ![]()
Collapse
Affiliation(s)
- Lin Chen
- Department of Medical Science and Cardio-Renal Medicine, Graduate School of Medicine, Yokohama City University, 3-9, Fukuura, Kanazawa-ku, Yokohama, Kanagawa, Japan.,Department of Cardiology, Sir Run Run Hospital, Nanjing Medical University, Long Mian Avenue 109 Jiangning, Nanjing, Jiangsu, China
| | - Tomoaki Ishigami
- Department of Medical Science and Cardio-Renal Medicine, Graduate School of Medicine, Yokohama City University, 3-9, Fukuura, Kanazawa-ku, Yokohama, Kanagawa, Japan.
| | - Hiroshi Doi
- Department of Medical Science and Cardio-Renal Medicine, Graduate School of Medicine, Yokohama City University, 3-9, Fukuura, Kanazawa-ku, Yokohama, Kanagawa, Japan
| | - Kentaro Arakawa
- Department of Medical Science and Cardio-Renal Medicine, Graduate School of Medicine, Yokohama City University, 3-9, Fukuura, Kanazawa-ku, Yokohama, Kanagawa, Japan
| | - Kouichi Tamura
- Department of Medical Science and Cardio-Renal Medicine, Graduate School of Medicine, Yokohama City University, 3-9, Fukuura, Kanazawa-ku, Yokohama, Kanagawa, Japan
| |
Collapse
|
31
|
Ayala-Suárez R, Díez-Fuertes F, Calonge E, De La Torre Tarazona HE, Gracia-Ruíz de Alda M, Capa L, Alcamí J. Insight in miRNome of Long-Term Non-Progressors and Elite Controllers Exposes Potential RNAi Role in Restraining HIV-1 Infection. J Clin Med 2020; 9:jcm9082452. [PMID: 32751854 PMCID: PMC7464121 DOI: 10.3390/jcm9082452] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Revised: 07/17/2020] [Accepted: 07/29/2020] [Indexed: 12/14/2022] Open
Abstract
Long-term non-progressors (LTNP) and elite controllers (EC) represent spontaneous natural models of efficient HIV-1 response in the absence of treatment. The main purposes of this work are to describe the miRNome of HIV-1 infected patients with different extreme phenotypes and identify potentially altered pathways regulated by differentially expressed (DE) miRNAs. The miRNomes from peripheral blood mononuclear cells (PBMCs) of dual phenotype EC-LTNP or LTNP with detectable viremia and HIV-infected patients with typical progression before and after treatment, were obtained through miRNA-Seq and compared among them. The administration of treatment produces 18 DE miRNAs in typical progressors. LTNP condition shows 14 DE miRNA when compared to typical progressors, allowing LTNP phenotype differentiation. A set of four miRNAs: miR-144-3p, miR-18a-5p, miR-451a, and miR-324 is strongly downregulated in LTNP and related to protein regulation as AKT, mTOR, ERK or IKK, involved in immune response pathways. Deregulation of 28 miRNA is observed between EC-LTNP and viremic-LTNP, including previously described anti-HIV miRNAs: miR-29a, associated with LTNP phenotype, and miR-155, targeting different pre-integration complexes such as ADAM10 and TNPO3. A holistic perspective of the changes observed in the miRNome of patients with different phenotypes of HIV-control and non-progression is provided.
Collapse
Affiliation(s)
- Rubén Ayala-Suárez
- AIDS Immunopathology Unit, National Center for Microbiology, Institute of Health Carlos III, Majadahonda, 28220 Madrid, Spain; (R.A.-S.); (E.C.); (H.E.D.L.T.T.); (L.C.)
| | - Francisco Díez-Fuertes
- AIDS Immunopathology Unit, National Center for Microbiology, Institute of Health Carlos III, Majadahonda, 28220 Madrid, Spain; (R.A.-S.); (E.C.); (H.E.D.L.T.T.); (L.C.)
- HIV Unit, Hospital Clínic de Barcelona, 08036 Barcelona, Spain
- Correspondence: (F.D.-F.); (J.A.); Tel.: +34-91-822-3234 (F.D.-F.); +34-91-822-3943 (J.A.)
| | - Esther Calonge
- AIDS Immunopathology Unit, National Center for Microbiology, Institute of Health Carlos III, Majadahonda, 28220 Madrid, Spain; (R.A.-S.); (E.C.); (H.E.D.L.T.T.); (L.C.)
| | - Humberto Erick De La Torre Tarazona
- AIDS Immunopathology Unit, National Center for Microbiology, Institute of Health Carlos III, Majadahonda, 28220 Madrid, Spain; (R.A.-S.); (E.C.); (H.E.D.L.T.T.); (L.C.)
| | - María Gracia-Ruíz de Alda
- Sección de Enfermedades Infecciosas, Medicina Interna, Complejo Hospitalario de Navarra, 31008 Pamplona, Spain;
| | - Laura Capa
- AIDS Immunopathology Unit, National Center for Microbiology, Institute of Health Carlos III, Majadahonda, 28220 Madrid, Spain; (R.A.-S.); (E.C.); (H.E.D.L.T.T.); (L.C.)
| | - José Alcamí
- AIDS Immunopathology Unit, National Center for Microbiology, Institute of Health Carlos III, Majadahonda, 28220 Madrid, Spain; (R.A.-S.); (E.C.); (H.E.D.L.T.T.); (L.C.)
- HIV Unit, Hospital Clínic de Barcelona, 08036 Barcelona, Spain
- Correspondence: (F.D.-F.); (J.A.); Tel.: +34-91-822-3234 (F.D.-F.); +34-91-822-3943 (J.A.)
| |
Collapse
|
32
|
da Silva TP, Bittencourt TL, de Oliveira AL, Prata RBDS, Menezes V, Ferreira H, Nery JADC, de Oliveira EB, Sperandio da Silva GM, Sarno EN, Pinheiro RO. Macrophage Polarization in Leprosy-HIV Co-infected Patients. Front Immunol 2020; 11:1493. [PMID: 32849508 PMCID: PMC7403476 DOI: 10.3389/fimmu.2020.01493] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Accepted: 06/08/2020] [Indexed: 11/24/2022] Open
Abstract
In HIV-infected individuals, a paradoxical clinical deterioration may occur in preexisting leprosy when highly active antiretroviral therapy (HAART)-associated reversal reaction (RR) develops. Leprosy–HIV co-infected patients during HAART may present a more severe form of the disease (RR/HIV), but the immune mechanisms related to the pathogenesis of leprosy–HIV co-infection remain unknown. Although the adaptive immune responses have been extensively studied in leprosy–HIV co-infected individuals, recent studies have described that innate immune cells may drive the overall immune responses to mycobacterial antigens. Monocytes are critical to the innate immune system and play an important role in several inflammatory conditions associated with chronic infections. In leprosy, different tissue macrophage phenotypes have been associated with the different clinical forms of the disease, but it is not clear how HIV infection modulates the phenotype of innate immune cells (monocytes or macrophages) during leprosy. In the present study, we investigated the phenotype of monocytes and macrophages in leprosy–HIV co-infected individuals, with or without RR. We did not observe differences between the monocyte profiles in the studied groups; however, analysis of gene expression within the skin lesion cells revealed that the RR/HIV group presents a higher expression of macrophage scavenger receptor 1 (MRS1), CD209 molecule (CD209), vascular endothelial growth factor (VEGF), arginase 2 (ARG2), and peroxisome proliferator-activated receptor gamma (PPARG) when compared with the RR group. Our data suggest that different phenotypes of tissue macrophages found in the skin from RR and RR/HIV patients could differentially contribute to the progression of leprosy.
Collapse
Affiliation(s)
| | | | | | | | - Vinicius Menezes
- Leprosy Laboratory, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
| | - Helen Ferreira
- Leprosy Laboratory, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
| | | | | | - Gilberto Marcelo Sperandio da Silva
- Chagas Disease Clinic Research Laboratory, Evandro Chagas National Institute of Infectious Diseases, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
| | - Euzenir Nunes Sarno
- Leprosy Laboratory, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
| | - Roberta Olmo Pinheiro
- Leprosy Laboratory, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
| |
Collapse
|
33
|
Wang MR, Wu DD, Luo F, Zhong CJ, Wang X, Zhu N, Wu YJ, Hu HT, Feng Y, Wang X, Xiong HR, Hou W. Methadone Inhibits Viral Restriction Factors and Facilitates HIV Infection in Macrophages. Front Immunol 2020; 11:1253. [PMID: 32719674 PMCID: PMC7350609 DOI: 10.3389/fimmu.2020.01253] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2020] [Accepted: 05/18/2020] [Indexed: 01/15/2023] Open
Abstract
Opioid abuse alters the functions of immune cells in both in vitro and in vivo systems, including macrophages. Here, we investigated the effects of methadone, a widely used opioid receptor agonist for treatment of opiate addiction, on the expression of intracellular viral restriction factors and HIV replication in primary human macrophages. We showed that methadone enhanced the HIV infectivity in primary human macrophages. Mechanistically, methadone treatment of macrophages reduced the expression of interferons (IFN-β and IFN-λ2) and the IFN-stimulated anti-HIV genes (APOBEC3F/G and MxB). In addition, methadone-treated macrophages showed lower levels of several anti-HIV microRNAs (miRNA-28, miR-125b, miR-150, and miR-155) compared to untreated cells. Exogenous IFN-β treatment restored the methadone-induced reduction in the expression of the above genes. These effects of methadone on HIV and the antiviral factors were antagonized by pretreatment of cells with naltrexone. These findings provide additional evidence to support further studies on the role of opiates, including methadone, in the immunopathogenesis of HIV disease.
Collapse
Affiliation(s)
- Mei-Rong Wang
- State Key Laboratory of Virology, Hubei Province Key Laboratory of Allergy and Immunology, School of Basic Medical Sciences, Institute of Medical Virology, Wuhan University, Wuhan, China
| | - Di-Di Wu
- State Key Laboratory of Virology, Hubei Province Key Laboratory of Allergy and Immunology, School of Basic Medical Sciences, Institute of Medical Virology, Wuhan University, Wuhan, China
| | - Fan Luo
- State Key Laboratory of Virology, Hubei Province Key Laboratory of Allergy and Immunology, School of Basic Medical Sciences, Institute of Medical Virology, Wuhan University, Wuhan, China
| | - Chao-Jie Zhong
- State Key Laboratory of Virology, Hubei Province Key Laboratory of Allergy and Immunology, School of Basic Medical Sciences, Institute of Medical Virology, Wuhan University, Wuhan, China
| | - Xin Wang
- State Key Laboratory of Virology, Hubei Province Key Laboratory of Allergy and Immunology, School of Basic Medical Sciences, Institute of Medical Virology, Wuhan University, Wuhan, China
| | - Ni Zhu
- School of Basic Medicine, Hubei University of Science and Technology, Xianning, China
| | - Ying-Jun Wu
- State Key Laboratory of Virology, Hubei Province Key Laboratory of Allergy and Immunology, School of Basic Medical Sciences, Institute of Medical Virology, Wuhan University, Wuhan, China
| | - Hai-Tao Hu
- Department of Microbiology and Immunology, Sealy Center for Vaccine Development and Institute for Human Infections and Immunity, University of Texas Medical Branch, Galveston, TX, United States
| | - Yong Feng
- State Key Laboratory of Virology, Hubei Province Key Laboratory of Allergy and Immunology, School of Basic Medical Sciences, Institute of Medical Virology, Wuhan University, Wuhan, China
| | - Xu Wang
- Department of Pathology and Laboratory Medicine, Temple University Lewis Katz School of Medicine, Philadelphia, PA, United States
| | - Hai-Rong Xiong
- State Key Laboratory of Virology, Hubei Province Key Laboratory of Allergy and Immunology, School of Basic Medical Sciences, Institute of Medical Virology, Wuhan University, Wuhan, China
| | - Wei Hou
- State Key Laboratory of Virology, Hubei Province Key Laboratory of Allergy and Immunology, School of Basic Medical Sciences, Institute of Medical Virology, Wuhan University, Wuhan, China
- School of Basic Medicine, Hubei University of Science and Technology, Xianning, China
| |
Collapse
|
34
|
Liu H, Zhou R, Liu Y, Guo L, Wang X, Hu W, Ho W. HIV infection suppresses TLR3 activation-mediated antiviral immunity in microglia and macrophages. Immunology 2020; 160:269-279. [PMID: 32053234 PMCID: PMC7341545 DOI: 10.1111/imm.13181] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2019] [Revised: 11/30/2019] [Accepted: 02/11/2020] [Indexed: 12/17/2022] Open
Abstract
Monocytic-lineage cells in the central nervous system (CNS), including microglia and brain resident macrophages, are the key players in the CNS innate immunity against viral infections, including human immunodeficiency virus (HIV). However, these cells also serve as the major targets and reservoirs for HIV in the CNS. To address the question of how HIV can establish persistent infection in the target cells in the CNS, we examined whether HIV has the ability to counteract Toll-like receptor 3 (TLR3) activation-mediated antiviral immunity in microglia and macrophages. We observed that HIV latently infected microglial cells (HC69·5) expressed reduced levels of TLR3 and TLR3 activation-mediated interferons (IFN-α/β and IFN-λ) as compared with the uninfected control cells (C20). In addition, HIV infection of primary human macrophages suppressed the expression of TLR3 and the IFNs. HIV infection also inhibited the expression of the antiviral IFN-stimulated genes (ISGs) and the HIV-restriction miRNAs. Mechanistically, HIV infection inhibited the phosphorylation of IFN regulatory factors (IRF3 and IRF7) and signal transducer and activator of transcription proteins (STAT1 and STAT3) in both HIV latently infected microglia and acutely infected macrophages. These findings provide previously unrecognized and sound mechanisms for HIV infection and persistence in the primary target and reservoir cells in the brain.
Collapse
Affiliation(s)
- Hang Liu
- School of Basic Medical SciencesWuhan UniversityWuhanChina
- Department of Pathology and Laboratory MedicineTemple University Lewis Katz School of MedicinePhiladelphiaPAUSA
| | - Run‐Hong Zhou
- Department of Pathology and Laboratory MedicineTemple University Lewis Katz School of MedicinePhiladelphiaPAUSA
| | - Yu Liu
- Department of Pathology and Laboratory MedicineTemple University Lewis Katz School of MedicinePhiladelphiaPAUSA
| | - Le Guo
- Department of Pathology and Laboratory MedicineTemple University Lewis Katz School of MedicinePhiladelphiaPAUSA
| | - Xu Wang
- Department of Pathology and Laboratory MedicineTemple University Lewis Katz School of MedicinePhiladelphiaPAUSA
| | - Wen‐Hui Hu
- Department of Pathology and Laboratory MedicineTemple University Lewis Katz School of MedicinePhiladelphiaPAUSA
| | - Wen‐Zhe Ho
- School of Basic Medical SciencesWuhan UniversityWuhanChina
- Department of Pathology and Laboratory MedicineTemple University Lewis Katz School of MedicinePhiladelphiaPAUSA
| |
Collapse
|
35
|
Su YC, Huang YF, Wu YW, Chen HF, Wu YH, Hsu CC, Hsu YC, Lee JC. MicroRNA-155 inhibits dengue virus replication by inducing heme oxygenase-1-mediated antiviral interferon responses. FASEB J 2020; 34:7283-7294. [PMID: 32277848 DOI: 10.1096/fj.201902878r] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Revised: 02/03/2020] [Accepted: 02/17/2020] [Indexed: 12/21/2022]
Abstract
MicroRNAs (miRNAs) have been reported to directly alter the virus life cycle and virus-host interactions, and so are considered promising molecules for controlling virus infection. In the present study, we observed that miR-155 time-dependently downregulated upon dengue virus (DENV) infection. In contrast, exogenous overexpression of miR-155 appeared to limit viral replication in vitro, suggesting that the low levels of miR-155 would be beneficial for DENV replication. In vivo, overexpression of miR-155 protected ICR suckling mice from the life-threatening effects of DENV infection and reduced virus propagation. Further investigation revealed that the anti-DENV activity of miR-155 was due to target Bach1, resulting in the induction of the heme oxygenase-1 (HO-1)-mediated inhibition of DENV NS2B/NS3 protease activity, ultimately leading to induction of antiviral interferon responses, including interferon-induced protein kinase R (PKR), 2'-5'-oligoadenylate synthetase 1 (OAS1), OAS2, and OAS3 expression, against DENV replication. Collectively, our results provide a promising new strategy to manage DENV infection by modulation of miR-155 expression.
Collapse
Affiliation(s)
- Yu-Chieh Su
- Division of Hematology-Oncology, Department of Internal Medicine, E-Da Hospital, Kaohsiung, Taiwan.,School of Medicine, I-Shou University, Kaohsiung, Taiwan
| | - Yi-Fang Huang
- Department of Biotechnology, College of Life Science, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Yu-Wen Wu
- Department of Biotechnology, College of Life Science, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Hui-Feng Chen
- Department of Biotechnology, College of Life Science, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Yu-Hsuan Wu
- Department of Biotechnology, College of Life Science, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Chia-Chun Hsu
- Department of Biotechnology, College of Life Science, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Yao-Chin Hsu
- Department of Chinese medicine, Chi Mei Medical Center, Tainan, Taiwan
| | - Jin-Ching Lee
- Department of Biotechnology, College of Life Science, Kaohsiung Medical University, Kaohsiung, Taiwan.,Drug Development and Value Creation Research Center, Kaohsiung Medical University, Kaohsiung, Taiwan.,Graduate Institute of Medicine, College of Medicine and Graduate Institute of Natural Products, College of Pharmacy, Kaohsiung Medical University, Kaohsiung, Taiwan.,Department of Medical Research, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan.,Department of Marine Biotechnology and Resources, National Sun Yat-sen University, Kaohsiung, Taiwan
| |
Collapse
|
36
|
Nahand JS, Bokharaei-Salim F, Karimzadeh M, Moghoofei M, Karampoor S, Mirzaei HR, Tbibzadeh A, Jafari A, Ghaderi A, Asemi Z, Mirzaei H, Hamblin MR. MicroRNAs and exosomes: key players in HIV pathogenesis. HIV Med 2020; 21:246-278. [PMID: 31756034 PMCID: PMC7069804 DOI: 10.1111/hiv.12822] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/10/2019] [Indexed: 12/29/2022]
Abstract
OBJECTIVES HIV infection is well known to cause impairment of the human immune system, and until recently was a leading cause of death. It has been shown that T lymphocytes are the main targets of HIV. The virus inactivates T lymphocytes by interfering with a wide range of cellular and molecular targets, leading to suppression of the immune system. The objective of this review is to investigate to what extent microRNAs (miRNAs) are involved in HIV pathogenesis. METHODS The scientific literature (Pubmed and Google scholar) for the period 1988-2019 was searched. RESULTS Mounting evidence has revealed that miRNAs are involved in viral replication and immune response, whether by direct targeting of viral transcripts or through indirect modulation of virus-related host pathways. In addition, exosomes have been found to act as nanoscale carriers involved in HIV pathogenesis. These nanovehicles target their cargos (i.e. DNA, RNA, viral proteins and miRNAs) leading to alteration of the behaviour of recipient cells. CONCLUSIONS miRNAs and exosomes are important players in HIV pathogenesis. Additionally, there are potential diagnostic applications of miRNAs as biomarkers in HIV infection.
Collapse
Affiliation(s)
- Javid Sadri Nahand
- Department of Virology, Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Farah Bokharaei-Salim
- Department of Virology, Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Mohammad Karimzadeh
- Department of Virology, Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Mohsen Moghoofei
- Department of Microbiology, Faculty of Medicine, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Sajad Karampoor
- Department of Virology, Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Hamid Reza Mirzaei
- Department of Medical Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Alireza Tbibzadeh
- Department of Virology, Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Amir Jafari
- Department of Medical Nanotechnology, Faculty of Advanced Technology in Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Amir Ghaderi
- Department of Addiction Studies, School of Medicine, Kashan University of Medical Sciences, Kashan, Iran
| | - Zatollah Asemi
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, I.R. Iran
| | - Hamed Mirzaei
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, I.R. Iran
| | - Michael R. Hamblin
- Wellman Center for Photomedicine, Massachusetts General Hospital, Harvard Medical School, 40 Blossom Street, Boston, MA, 02114, USA
| |
Collapse
|
37
|
Dong B, Borjabad A, Kelschenbach J, Chao W, Volsky DJ, Potash MJ. Prevention and treatment of HIV infection and cognitive disease in mice by innate immune responses. Brain Behav Immun Health 2020; 3:100054. [PMID: 32699842 PMCID: PMC7375446 DOI: 10.1016/j.bbih.2020.100054] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2020] [Accepted: 02/18/2020] [Indexed: 12/20/2022] Open
Abstract
HIV associated neurocognitive impairment afflicts roughly half of infected individuals on antiretroviral therapy. This disease currently has no treatment. We have previously shown that type I interferon is induced by and partially controls infection and neuropathogenesis in mice infected by chimeric HIV, EcoHIV. Here we investigate the intentional ligation of the pattern recognition receptor Toll-like receptor 3 (TLR3) by polyinosinic-polycytidylic acid (poly I:C) for its ability to prevent or control infection and associated cognitive disease in EcoHIV infected mice. We tested topical, injection, and intranasal application of poly I:C in mice during primary infection through injection or sexual transmission or in established infection. We measured different forms of HIV DNA and RNA in tissues by real-time PCR and the development of HIV-associated cognitive disease by the radial arm water maze behavioral test. Our results indicate that poly I:C blocks primary EcoHIV infection of mice prior to reverse transcription and reduces established EcoHIV infection. Prevention or control of viral replication by poly I:C prevents or reverses HIV associated cognitive disease in mice. These findings indicate that poly I:C or other innate immune agonists may be useful in control of HIV cognitive disease.
Collapse
Affiliation(s)
- Baojun Dong
- Division of Infectious Diseases, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Alejandra Borjabad
- Division of Infectious Diseases, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Jennifer Kelschenbach
- Division of Infectious Diseases, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Wei Chao
- Division of Infectious Diseases, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - David J. Volsky
- Division of Infectious Diseases, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Mary Jane Potash
- Division of Infectious Diseases, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| |
Collapse
|
38
|
Cellular microRNA-155 Regulates Virus-Induced Inflammatory Response and Protects against Lethal West Nile Virus Infection. Viruses 2019; 12:v12010009. [PMID: 31861621 PMCID: PMC7019255 DOI: 10.3390/v12010009] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Revised: 12/16/2019] [Accepted: 12/18/2019] [Indexed: 12/16/2022] Open
Abstract
West Nile virus (WNV) is a flavivirus that has disseminated globally as a significant cause of viral encephalitis in humans. MircoRNA-155 (miR-155) regulates various aspects of innate and adaptive immune responses. We previously reported that WNV infection induces upregulation of miR-155 in mice brains. In the current study, we demonstrate the critical role of miR-155 in restricting the pathogenesis of WNV infection in mice. Compared to wild-type (WT) mice, miR-155 knockout mice exhibited significantly higher morbidity and mortality after infection with either a lethal strain, WNV NY99, or a non-lethal strain, WNV Eg101. Increased mortality in miR-155−/− mice was associated with significantly high WNV burden in the serum and brains. Protein levels of interferon (IFN)-α in the serum and brains were higher in miR-155−/− mice. However, miR-155−/− mice exhibited significantly lower protein levels of anti-viral interleukin (IL)-1β, IL-12, IL-6, IL-15, and GM-CSF despite the high viral load. Primary mouse cells lacking miR-155 were more susceptible to infection with WNV compared to cells derived from WT mice. Besides, overexpression of miR-155 in human neuronal cells modulated anti-viral cytokine response and resulted in significantly lower WNV replication. These data collectively indicate that miR-155 restricts WNV production in mouse and human cells and protects against lethal WNV infection in mice.
Collapse
|
39
|
Bayraktar R, Bertilaccio MTS, Calin GA. The Interaction Between Two Worlds: MicroRNAs and Toll-Like Receptors. Front Immunol 2019; 10:1053. [PMID: 31139186 PMCID: PMC6527596 DOI: 10.3389/fimmu.2019.01053] [Citation(s) in RCA: 69] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Accepted: 04/24/2019] [Indexed: 12/12/2022] Open
Abstract
MicroRNAs (miRNAs) are critical mediators of posttranscriptional regulation via their targeting of the imperfect antisense complementary regions of coding and non-coding transcripts. Recently, researchers have shown that miRNAs play roles in many aspects of regulation of immune cell function by targeting of inflammation-associated genes, including Toll-like receptors (TLRs). Besides this indirect regulatory role of miRNAs, they can also act as physiological ligands of specific TLRs and initiate the signaling cascade of immune response. In this review, we summarize the potential roles of miRNAs in regulation of TLR gene expression and TLR signaling, with a focus on the ability of miRNAs bind to TLRs.
Collapse
Affiliation(s)
- Recep Bayraktar
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | | | - George A Calin
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX, United States.,Center for RNA Interference and Non-Coding RNAs, The University of Texas MD Anderson Cancer Center, Houston, TX, United States.,Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| |
Collapse
|
40
|
Zhou X, Tao H, Cai Y, Cui L, Zhao B, Li K. Stage-dependent involvement of ADAM10 and its significance in epileptic seizures. J Cell Mol Med 2019; 23:4494-4504. [PMID: 31087543 PMCID: PMC6584734 DOI: 10.1111/jcmm.14307] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Revised: 01/05/2019] [Accepted: 03/11/2019] [Indexed: 12/22/2022] Open
Abstract
The prevalence of epileptic seizures in Alzheimer's disease (AD) has attracted an increasing amount of attention in recent years, and many cohort studies have found several risk factors associated with the genesis of seizures in AD. Among these factors, young age and severe dementia are seemingly contradictory and independent risk factors, indicating that the pathogenesis of epileptic seizures is, to a certain extent, stage‐dependent. A disintegrin and metalloproteinase domain‐containing protein 10 (ADAM10) is a crucial α‐secretase responsible for ectodomain shedding of its substrates; thus, the function of this protein depends on the biological effects of its substrates. Intriguingly, transgenic models have demonstrated ADAM10 to be associated with epilepsy. Based on the biological effects of its substrates, the potential pathogenic roles of ADAM10 in epileptic seizures can be classified into amyloidogenic processes in the ageing stage and cortical dysplasia in the developmental stage. Therefore, ADAM10 is reviewed here as a stage‐dependent modulator in the pathogenesis of epilepsy. Current data regarding ADAM10 in epileptic seizures were collected and reviewed for potential pathogenic roles (ie amyloidogenic processes and cortical dysplasia) and regulatory mechanisms (ie transcriptional and posttranscriptional regulation). These findings are then discussed in terms of the significance of the stage‐dependent functions of ADAM10 in epilepsy. Several potential targets for seizure control, such as candidate transcription factors and microRNAs that regulate ADAM10, as well as potential genetic screening tools for the early recognition of cortical dysplasia, have been suggested but must be studied in more detail.
Collapse
Affiliation(s)
- Xu Zhou
- Clinical Research Center, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Hua Tao
- Department of Neurology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China.,Guangdong Key Laboratory of Age-related Cardiac and Cerebral Diseases, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Yujie Cai
- Institute of Neurology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Lili Cui
- Institute of Neurology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Bin Zhao
- Guangdong Key Laboratory of Age-related Cardiac and Cerebral Diseases, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China.,Institute of Neurology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Keshen Li
- Institute of Neurology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China.,Stroke Center, Neurology & Neurosurgery Division, Clinical Medicine Research Institute & the First Affiliated Hospital, Jinan University, Guangzhou, China
| |
Collapse
|
41
|
New targets for HIV drug discovery. Drug Discov Today 2019; 24:1139-1147. [PMID: 30885676 DOI: 10.1016/j.drudis.2019.03.013] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2018] [Revised: 01/23/2019] [Accepted: 03/11/2019] [Indexed: 02/07/2023]
Abstract
Recent estimates suggest close to one million people per year die globally owing to HIV-related illnesses. Therefore, there is still a need to identify new targets to develop future treatments. Many of the more recently identified targets are host-related and these might be more difficult for the virus to develop drug resistance to. In addition, there are virus-related targets (capsid and RNAse H) that have yet to be exploited clinically. Several of the newer targets also address virulence factors, virus latency or target persistence. The targets highlighted in this review could represent the next generation of viable candidates for drug discovery projects as well as continue the search for a cure for this disease.
Collapse
|
42
|
Integrated MicroRNA and mRNA Profiling in Zika Virus-Infected Neurons. Viruses 2019; 11:v11020162. [PMID: 30781519 PMCID: PMC6410042 DOI: 10.3390/v11020162] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2019] [Revised: 02/08/2019] [Accepted: 02/14/2019] [Indexed: 12/13/2022] Open
Abstract
Zika virus (ZIKV) infections have caused a wide spectrum of neurological diseases, such as Guillain-Barré syndrome, myelitis, meningoencephalitis, and congenital microcephaly. No effective therapies currently exist for treating patients infected with ZIKV. MicroRNAs (miRNAs) are a group of small RNAs involved in the regulation of a wide variety of cellular and physiological processes. In this study, we analyzed digital miRNA and mRNA profiles in ZIKV-infected primary mouse neurons using the nCounter technology. A total of 599 miRNAs and 770 mRNAs were examined. We demonstrate that ZIKV infection causes global downregulation of miRNAs with only few upregulated miRNAs. ZIKV-modulated miRNAs including miR-155, miR-203, miR-29a, and miR-124-3p are known to play critical role in flavivirus infection, anti-viral immunity and brain injury. ZIKV infection also results in downregulation of miRNA processing enzymes. In contrast, ZIKV infection induces dramatic upregulation of anti-viral, inflammatory and apoptotic genes. Furthermore, our data demonstrate an inverse correlation between ZIKV-modulated miRNAs and target host mRNAs induced by ZIKV. Biofunctional analysis revealed that ZIKV-modulated miRNAs and mRNAs regulate the pathways related to neurological development and neuroinflammatory responses. Functional studies targeting specific miRNA are warranted to develop therapeutics for the management of ZIKV neurological disease.
Collapse
|
43
|
Vitamin D-mediated attenuation of miR-155 in human macrophages infected with dengue virus: Implications for the cytokine response. INFECTION GENETICS AND EVOLUTION 2019; 69:12-21. [PMID: 30639520 DOI: 10.1016/j.meegid.2018.12.033] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2018] [Revised: 12/17/2018] [Accepted: 12/28/2018] [Indexed: 12/18/2022]
Abstract
Clinical manifestations of dengue disease rely on complex interactions between dengue virus (DENV) and host factors that drive altered immune responses, including excessive inflammation. We have recently established that vitamin D can modulate DENV-induced cytokine responses and restrict infection in human macrophages. Cytokine responses are finely regulated by several homeostatic mechanisms, including microRNAs (miRNAs) that can rapidly target specific genes involved in the control of immune signaling pathways. However, the modulation of miRNAs by vitamin D during DENV infection is still unknown. Here, using a qPCR miRNA array we profiled immune-related miRNAs induced by DENV infection in human monocyte-derived macrophages (MDM) differentiated in absence or presence of vitamin D (D3-MDM). We found several miRNAs differentially expressed in both MDM and D3-MDM upon DENV infection. Interestingly, from these, a set of 11 miRNAs were attenuated in D3-MDM as compared to MDM. Gene set enrichment analysis of the predicted mRNA targets of these attenuated miRNAs suggested a predominant role of miR-155-5p in the TLR-induced cytokine responses. Indeed, validation of miR-155-5p attenuation in D3-MDM was linked to increased expression of its target gene SOCS-1, a key component for TLR4 signaling regulation. Likewise, TLR4 activation with LPS further corroborated the same miR-155-5p/SOCS-1 negative correlation observed in D3-MDM upon DENV exposure. Moreover, D3-MDM differentiation induced down-regulation of surface TLR4 that was linked to less TLR4/NF-κB-derived secretion of IL-1β. These data suggest a key role of vitamin D in the control of inflammatory cytokine responses during DENV infection of human macrophages via the TLR4/NF-κB/miR-155-5p/SOCS-1 axis.
Collapse
|
44
|
Giri BR, Mahato RI, Cheng G. Roles of microRNAs in T cell immunity: Implications for strategy development against infectious diseases. Med Res Rev 2018; 39:706-732. [PMID: 30272819 DOI: 10.1002/med.21539] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2018] [Revised: 08/12/2018] [Accepted: 08/14/2018] [Indexed: 12/19/2022]
Abstract
T cell immunity plays a vital role in pathogen infections. MicroRNA (miRNAs) are small, single-stranded noncoding RNAs that regulate T cell immunity by targeting key transcriptional factors, signaling proteins, and cytokines associated with T cell activation, differentiation, and function. The dysregulation of miRNA expression in T cells may lead to specific immune responses and can provide new therapeutic opportunities against various infectious diseases. Here, we summarize recent studies that focus on the roles of miRNAs in T cell immunity and highlight miRNA functions in prevalent infectious diseases. Additionally, we also provide insights into the functions of extracellular vesicle miRNAs and attempt to delineate the mechanism of miRNA sorting into extracellular vesicles and their immunomodulatory functions. Moreover, methodologies and strategies for miRNA delivery against infectious diseases are summarized. Finally, potential strategies for miRNA-based therapies are proposed.
Collapse
Affiliation(s)
- Bikash R Giri
- Key Laboratory of Animal Parasitology of Ministry of Agriculture, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
| | - Ram I Mahato
- Department of Pharmaceutical Sciences, University of Nebraska Medical Center, Omaha, Nebraska
| | - Guofeng Cheng
- Key Laboratory of Animal Parasitology of Ministry of Agriculture, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
| |
Collapse
|
45
|
Moghoofei M, Bokharaei-Salim F, Esghaei M, Keyvani H, Honardoost M, Mostafaei S, Ghasemi A, Tavakoli A, Javanmard D, Babaei F, Garshasbi S, Monavari SH. microRNAs 29, 150, 155, 223 level and their relation to viral and immunological markers in HIV-1 infected naive patients. Future Virol 2018. [DOI: 10.2217/fvl-2018-0055] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Aim: The aim of this study was to assess the relationship between microRNAs and viral and immunological markers in HIV-1 infection. Materials & methods: The expression level of miRNAs was evaluated in 60 HIV-1 patients and 20 healthy controls using real-time PCR assays. Results: The results showed that among all miRNAs, miR-29 and miR-150 were significantly downregulated in HIV-1 patients compared with healthy controls, while miR-155 and miR-223 were significantly upregulated compared with healthy controls (p < 0.001 for all comparisons). Conclusion: The mentioned miRNAs seem to influence the clinical progression of HIV-1 infection in naive patients. Moreover, determining the profiles of miRNAs involved in the pathogenesis of HIV infection and manipulating these miRNAs could lead to opening a new gate to HIV-1 infection control.
Collapse
Affiliation(s)
- Mohsen Moghoofei
- Department of Virology, Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Farah Bokharaei-Salim
- Department of Virology, Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran
- HIV Laboratory of National Center, Vice Chancellor for Health, Iran University of Medical Sciences, Tehran, Iran
| | - Maryam Esghaei
- Department of Virology, Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Hossein Keyvani
- Department of Virology, Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Maryam Honardoost
- Endocrine Research Center, Institute of Endocrinology & Metabolism, Iran University of Medical Sciences, Tehran, Iran
| | - Shayan Mostafaei
- Department of Community Medicine, Faculty of Medicine, Kermanshah University of Medical Sciences, Kermanshah, Iran
- Rheumatology Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Amir Ghasemi
- Department of Materials Science & Engineering, Sharif University of Technology, Tehran, Iran
| | - Ahmad Tavakoli
- Department of Virology, Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Davod Javanmard
- Department of Virology, Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Farhad Babaei
- Department of Microbiology, Faculty of Medicine, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Saba Garshasbi
- HIV Laboratory of National Center, Vice Chancellor for Health, Iran University of Medical Sciences, Tehran, Iran
| | | |
Collapse
|
46
|
Xu JP, Francis AC, Meuser ME, Mankowski M, Ptak RG, Rashad AA, Melikyan GB, Cocklin S. Exploring Modifications of an HIV-1 Capsid Inhibitor: Design, Synthesis, and Mechanism of Action. JOURNAL OF DRUG DESIGN AND RESEARCH 2018; 5:1070. [PMID: 30393786 PMCID: PMC6214487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Recent efforts by both academic and pharmaceutical researchers have focused on the HIV-1 capsid (CA) protein as a new therapeutic target. An interprotomer pocket within the hexamer configuration of the CA, which is also a binding site for key host dependency factors, is the target of the most widely studied CA inhibitor compound PF-3450074 (PF-74). Despite its popularity, PF-74 suffers from properties that limit its usefulness as a lead, most notably it's extremely poor metabolic stability. To minimize unfavorable qualities, we investigated bioisosteric modification of the PF-74 scaffold as a first step in redeveloping this compound. Using a field-based bioisostere identification method, coupled with biochemical and biological assessment, we have created four new compounds that inhibit HIV-1 infection and that bind to the assembled CA hexamer. Detailed mechanism of action studies indicates that the modifications alter the manner in which these new compounds affect HIV-1 capsid core stability, as compared to the parental compound. Further investigations are underway to redevelop these compounds to optimize potency and drug-like characteristics and to deeply define the mechanism of action.
Collapse
Affiliation(s)
- Jimmy P. Xu
- Department of Biochemistry & Molecular Biology, Drexel University College of Medicine, USA
| | | | - Megan E. Meuser
- Department of Biochemistry & Molecular Biology, Drexel University College of Medicine, USA
| | - Marie Mankowski
- Department of Infectious Disease Research, Southern Research Institute, USA
| | - Roger G. Ptak
- Department of Infectious Disease Research, Southern Research Institute, USA
| | - Adel A. Rashad
- Department of Biochemistry & Molecular Biology, Drexel University College of Medicine, USA
| | | | - Simon Cocklin
- Department of Biochemistry & Molecular Biology, Drexel University College of Medicine, USA
| |
Collapse
|
47
|
Naturally Derived Anti-HIV Polysaccharide Peptide (PSP) Triggers a Toll-Like Receptor 4-Dependent Antiviral Immune Response. J Immunol Res 2018; 2018:8741698. [PMID: 30116757 PMCID: PMC6079438 DOI: 10.1155/2018/8741698] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2018] [Revised: 04/17/2018] [Accepted: 05/27/2018] [Indexed: 12/26/2022] Open
Abstract
Aim Intense interest remains in the identification of compounds to reduce human immunodeficiency virus type 1 (HIV-1) replication. Coriolus versicolor's polysaccharide peptide (PSP) has been demonstrated to possess immunomodulatory properties with the ability to activate an innate immune response through Toll-like receptor 4 (TLR4) showing insignificant toxicity. This study sought to determine the potential use of PSP as an anti-HIV agent and whether its antiviral immune response was TLR4 dependent. Materials and Methods HIV-1 p24 and anti-HIV chemokine release was assessed in HIV-positive (HIV+) THP1 cells and validated in HIV+ peripheral blood mononuclear cells (PBMCs), to determine PSP antiviral activity. The involvement of TLR4 activation in PSP anti-HIV activity was evaluated by inhibition. Results PSP showed a promising potential as an anti-HIV agent, by downregulating viral replication and promoting the upregulation of specific antiviral chemokines (RANTES, MIP-1α/β, and SDF-1α) known to block HIV-1 coreceptors in THP1 cells and human PBMCs. PSP produced a 61% viral inhibition after PSP treatment in HIV-1-infected THP1 cells. Additionally, PSP upregulated the expression of TLR4 and TLR4 inhibition led to countereffects in chemokine expression and HIV-1 replication. Conclusion Taken together, these findings put forward the first evidence that PSP exerts an anti-HIV activity mediated by TLR4 and key antiviral chemokines. Elucidating these new molecular mediators may reveal additional drug targets and open novel therapeutic avenues for HIV-1 infection.
Collapse
|
48
|
Host MicroRNAs-221 and -222 Inhibit HIV-1 Entry in Macrophages by Targeting the CD4 Viral Receptor. Cell Rep 2018; 21:141-153. [PMID: 28978468 DOI: 10.1016/j.celrep.2017.09.030] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2017] [Revised: 07/18/2017] [Accepted: 09/07/2017] [Indexed: 12/19/2022] Open
Abstract
Macrophages are heterogeneous immune cells with distinct origins, phenotypes, functions, and tissue localization. Their susceptibility to HIV-1 is subject to variations from permissiveness to resistance, owing in part to regulatory microRNAs. Here, we used RNA sequencing (RNA-seq) to examine the expression of >400 microRNAs in productively infected and bystander cells of HIV-1-exposed macrophage cultures. Two microRNAs upregulated in bystander macrophages, miR-221 and miR-222, were identified as negative regulators of CD4 expression and CD4-mediated HIV-1 entry. Both microRNAs were enhanced by tumor necrosis factor alpha (TNF-α), an inhibitor of CD4 expression. MiR-221/miR-222 inhibitors recovered HIV-1 entry in TNF-α-treated macrophages by enhancing CD4 expression and increased HIV-1 replication and spread in macrophages by countering TNF-α-enhanced miR-221/miR-222 expression in bystander cells. In line with these findings, HIV-1-resistant intestinal myeloid cells express higher levels of miR-221 than peripheral blood monocytes. Thus, miR-221/miR-222 act as effectors of the antiviral host response activated during macrophage infection that restrict HIV-1 entry.
Collapse
|
49
|
Wang B, Fu M, Liu Y, Wang Y, Li X, Cao H, Zheng SJ. gga-miR-155 Enhances Type I Interferon Expression and Suppresses Infectious Burse Disease Virus Replication via Targeting SOCS1 and TANK. Front Cell Infect Microbiol 2018; 8:55. [PMID: 29564226 PMCID: PMC5845882 DOI: 10.3389/fcimb.2018.00055] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2017] [Accepted: 02/12/2018] [Indexed: 01/08/2023] Open
Abstract
Infectious bursal disease (IBD) is an acute, highly contagious, and immunosuppressive avian disease caused by IBD virus (IBDV). MicroRNAs (miRNAs) are involved in host-pathogen interactions and innate immune response to viral infection. However, the role of miRNAs in host response to IBDV infection is not clear. We report here that gga-miR-155 acts as an anti-virus host factor inhibiting IBDV replication. We found that transfection of DF-1 cells with gga-miR-155 suppressed IBDV replication, while blockage of the endogenous gga-miR-155 by inhibitors enhanced IBDV replication. Furthermore, our data showed that gga-miR-155 enhanced the expression of type I interferon in DF-1 cells post IBDV infection. Importantly, we found that gga-miR-155 enhanced type I interferon expression via targeting SOCS1 and TANK, two negative regulators of type I IFN signaling. These results indicate that gga-miR-155 plays a critical role in cell response to IBDV infection.
Collapse
Affiliation(s)
- Bin Wang
- State Key Laboratory of Agrobiotechnology and College of Veterinary Medicine, China Agricultural University, Beijing, China.,Key Laboratory of Animal Epidemiology of the Ministry of Agriculture, China Agricultural University, Beijing, China.,Department of Preventive Veterinary Medicine, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Mengjiao Fu
- State Key Laboratory of Agrobiotechnology and College of Veterinary Medicine, China Agricultural University, Beijing, China.,Key Laboratory of Animal Epidemiology of the Ministry of Agriculture, China Agricultural University, Beijing, China.,Department of Preventive Veterinary Medicine, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Yanan Liu
- State Key Laboratory of Agrobiotechnology and College of Veterinary Medicine, China Agricultural University, Beijing, China.,Key Laboratory of Animal Epidemiology of the Ministry of Agriculture, China Agricultural University, Beijing, China.,Department of Preventive Veterinary Medicine, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Yongqiang Wang
- State Key Laboratory of Agrobiotechnology and College of Veterinary Medicine, China Agricultural University, Beijing, China.,Key Laboratory of Animal Epidemiology of the Ministry of Agriculture, China Agricultural University, Beijing, China.,Department of Preventive Veterinary Medicine, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Xiaoqi Li
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Hong Cao
- State Key Laboratory of Agrobiotechnology and College of Veterinary Medicine, China Agricultural University, Beijing, China.,Key Laboratory of Animal Epidemiology of the Ministry of Agriculture, China Agricultural University, Beijing, China.,Department of Preventive Veterinary Medicine, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Shijun J Zheng
- State Key Laboratory of Agrobiotechnology and College of Veterinary Medicine, China Agricultural University, Beijing, China.,Key Laboratory of Animal Epidemiology of the Ministry of Agriculture, China Agricultural University, Beijing, China.,Department of Preventive Veterinary Medicine, College of Veterinary Medicine, China Agricultural University, Beijing, China
| |
Collapse
|
50
|
Are microRNAs Important Players in HIV-1 Infection? An Update. Viruses 2018; 10:v10030110. [PMID: 29510515 PMCID: PMC5869503 DOI: 10.3390/v10030110] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2018] [Revised: 02/21/2018] [Accepted: 02/25/2018] [Indexed: 12/15/2022] Open
Abstract
HIV-1 has already claimed over 35 million human lives globally. No curative treatments are currently available, and the only treatment option for over 36 million people currently living with HIV/AIDS are antiretroviral drugs that disrupt the function of virus-encoded proteins. However, such virus-targeted therapeutic strategies are constrained by the ability of the virus to develop drug-resistance. Despite major advances in HIV/AIDS research over the years, substantial knowledge gaps exist in many aspects of HIV-1 replication, especially its interaction with the host. Hence, understanding the mechanistic details of virus–host interactions may lead to novel therapeutic strategies for the prevention and/or management of HIV/AIDS. Notably, unprecedented progress in deciphering host gene silencing processes mediated by several classes of cellular small non-coding RNAs (sncRNA) presents a promising and timely opportunity for developing non-traditional antiviral therapeutic strategies. Cellular microRNAs (miRNA) belong to one such important class of sncRNAs that regulate protein synthesis. Evidence is mounting that cellular miRNAs play important roles in viral replication, either usurped by the virus to promote its replication or employed by the host to control viral infection by directly targeting the viral genome or by targeting cellular proteins required for productive virus replication. In this review, we summarize the findings to date on the role of miRNAs in HIV-1 biology.
Collapse
|