1
|
Panda K, Parashar D, Viswanathan R. An Update on Current Antiviral Strategies to Combat Human Cytomegalovirus Infection. Viruses 2023; 15:1358. [PMID: 37376657 PMCID: PMC10303229 DOI: 10.3390/v15061358] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 05/29/2023] [Accepted: 06/06/2023] [Indexed: 06/29/2023] Open
Abstract
Human cytomegalovirus (HCMV) remains an essential global concern due to its distinct life cycle, mutations and latency. As HCMV is a herpesvirus, it establishes a lifelong persistence in the host through a chronic state of infection. Immunocompromised individuals are at risk of significant morbidity and mortality from the virus. Until now, no effective vaccine has been developed to combat HCMV infection. Only a few antivirals targeting the different stages of the virus lifecycle and viral enzymes are licensed to manage the infection. Therefore, there is an urgent need to find alternate strategies to combat the infection and manage drug resistance. This review will provide an insight into the clinical and preclinical antiviral approaches, including HCMV antiviral drugs and nucleic acid-based therapeutics.
Collapse
Affiliation(s)
- Kingshuk Panda
- Dengue-Chikungunya Group, Indian Council of Medical Research-National Institute of Virology, Pune 411001, India
| | - Deepti Parashar
- Dengue-Chikungunya Group, Indian Council of Medical Research-National Institute of Virology, Pune 411001, India
| | - Rajlakshmi Viswanathan
- Bacteriology Group, Indian Council of Medical Research-National Institute of Virology, Pune 411001, India
| |
Collapse
|
2
|
Deleting UL49.5 in duck plague virus causes attachment, entry and spread defects. Vet Microbiol 2023; 280:109707. [PMID: 36863173 DOI: 10.1016/j.vetmic.2023.109707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 02/20/2023] [Accepted: 02/24/2023] [Indexed: 02/27/2023]
Abstract
Duck plague is a disease with high morbidity and mortality rates, and it causes great losses for the duck breeding industry. Duck plague virus (DPV) is the causative agent of duck plague, and DPV UL49.5 protein (pUL49.5) is homologue of glycoprotein N (gN), which is conserved in herpesviruses. UL49.5 homologues are known to be involved in processes such as immune escape, virus assembly, viral fusion, transporter associated with antigen processing (TAP) inhibition and degradation, and maturation and incorporation of glycoprotein M. However, few studies have focused on the role of gN in the early stage of virus infection cells. In this study, we determined that DPV pUL49.5 was distributed in the cytoplasm and colocalized with the endoplasmic reticulum (ER). Moreover, we found that DPV pUL49.5 was a virion component and nonglycosylated protein. To better explore its function, BAC-DPV-ΔUL49.5 was constructed, and its attachment was only approximately 25 % of the revertant virus. Additionally, the penetration ability of BAC-DPV-ΔUL49.5 has only reached 73 % of the revertant virus. The plaque sizes produced by the UL49.5-deleted virus were approximately 58 % smaller than those produced by the revertant virus. Deleting UL49.5 mainly resulted in attachment and cell-to-cell-spread defects. Taken together, these findings suggest important roles for DPV pUL49.5 in viral attachment, penetration and spread.
Collapse
|
3
|
Nuévalos M, García-Ríos E, Mancebo FJ, Martín-Martín C, Pérez-Romero P. Novel monoclonal antibody-based therapies: implications for the treatment and prevention of HCMV disease. Trends Microbiol 2023; 31:480-497. [PMID: 36624009 DOI: 10.1016/j.tim.2022.12.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 12/07/2022] [Accepted: 12/12/2022] [Indexed: 01/09/2023]
Abstract
Human cytomegalovirus (HCMV) is an important pathogen worldwide. Although HCMV infection is often asymptomatic in immunocompetent individuals, it can cause severe or even life-threatening symptoms in immunocompromised patients. Due to limitations of antiviral treatments, it is necessary to search for new therapeutic alternatives. Recent studies have highlighted the contribution of antibodies in protecting against HCMV disease, including neutralizing and non-neutralizing antibodies. Given the immunocompromised target population, monoclonal antibodies (mAbs) may represent an alternative to the clinical management of HCMV infection. In this context, we provide a synthesis of recent data revising the literature supporting and arguing about the role of the humoral immunity in controlling HCMV infection. Additionally, we review the state of the art in the development of therapies based on mAbs.
Collapse
Affiliation(s)
- Marcos Nuévalos
- National Center for Microbiology, Instituto de Salud Carlos III, Majadahonda, 28220 Madrid, Spain
| | - Estéfani García-Ríos
- National Center for Microbiology, Instituto de Salud Carlos III, Majadahonda, 28220 Madrid, Spain; Department of Science, Universidad Internacional de Valencia-VIU, 46002 Valencia, Spain.
| | - Francisco J Mancebo
- National Center for Microbiology, Instituto de Salud Carlos III, Majadahonda, 28220 Madrid, Spain
| | - Clara Martín-Martín
- National Center for Microbiology, Instituto de Salud Carlos III, Majadahonda, 28220 Madrid, Spain
| | - Pilar Pérez-Romero
- National Center for Microbiology, Instituto de Salud Carlos III, Majadahonda, 28220 Madrid, Spain.
| |
Collapse
|
4
|
He L, Taylor S, Costa C, Görzer I, Kalser J, Fu TM, Freed D, Wang D, Cui X, Hertel L, McVoy MA. Polymorphic Forms of Human Cytomegalovirus Glycoprotein O Protect against Neutralization of Fibroblast Entry by Antibodies Targeting Epitopes Defined by Glycoproteins H and L. Viruses 2022; 14:1508. [PMID: 35891489 PMCID: PMC9323020 DOI: 10.3390/v14071508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Revised: 07/05/2022] [Accepted: 07/06/2022] [Indexed: 11/16/2022] Open
Abstract
Human cytomegalovirus (CMV) utilizes different glycoproteins to enter into fibroblast and epithelial cells. A trimer of glycoproteins H, L, and O (gH/gL/gO) is required for entry into all cells, whereas a pentamer of gH/gL/UL128/UL130/UL131A is selectively required for infection of epithelial, endothelial, and some myeloid-lineage cells, but not of fibroblasts. Both complexes are of considerable interest for vaccine and immunotherapeutic development but present a conundrum: gH/gL-specific antibodies have moderate potency yet neutralize CMV entry into all cell types, whereas pentamer-specific antibodies are more potent but do not block fibroblast infection. Which cell types and neutralizing activities are important for protective efficacy in vivo remain unclear. Here, we present evidence that certain CMV strains have evolved polymorphisms in gO to evade trimer-specific neutralizing antibodies. Using luciferase-tagged variants of strain TB40/E in which the native gO is replaced by gOs from other strains, we tested the effects of gO polymorphisms on neutralization by monoclonal antibodies (mAbs) targeting four independent epitopes in gH/gL that are common to both trimer and pentamer. Neutralization of fibroblast entry by three mAbs displayed a range of potencies that depended on the gO type, a fourth mAb failed to neutralize fibroblast entry regardless of the gO type, while neutralization of epithelial cell entry by all four mAbs was potent and independent of the gO type. Thus, specific polymorphisms in gO protect the virus from mAb neutralization in the context of fibroblast but not epithelial cell entry. No influence of gO type was observed for protection against CMV hyperimmune globulin or CMV-seropositive human sera, suggesting that antibodies targeting protected gH/gL epitopes represent a minority of the polyclonal neutralizing repertoire induced by natural infection.
Collapse
Affiliation(s)
- Li He
- Department of Microbiology & Immunology, Virginia Commonwealth University, Richmond, VA 23298, USA;
| | - Scott Taylor
- School of Medicine, Virginia Commonwealth University, Richmond, VA 23298, USA; (S.T.); (C.C.)
| | - Catherine Costa
- School of Medicine, Virginia Commonwealth University, Richmond, VA 23298, USA; (S.T.); (C.C.)
| | - Irene Görzer
- Center for Virology, Medical University of Vienna, 1090 Vienna, Austria; (I.G.); (J.K.)
| | - Julia Kalser
- Center for Virology, Medical University of Vienna, 1090 Vienna, Austria; (I.G.); (J.K.)
| | - Tong-Ming Fu
- Texas Therapeutic Institute, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA;
| | - Daniel Freed
- Merck & Co., Inc., Rahway, NJ 07065, USA; (D.F.); (D.W.)
| | - Dai Wang
- Merck & Co., Inc., Rahway, NJ 07065, USA; (D.F.); (D.W.)
| | - Xiaohong Cui
- Department of Anatomy, Virginia Commonwealth University, Richmond, VA 23298, USA;
| | - Laura Hertel
- Department of Pediatrics, University of California San Francisco, Oakland, CA 94609, USA;
| | - Michael A. McVoy
- Department of Pediatrics, Virginia Commonwealth University, Richmond, VA 23298, USA
| |
Collapse
|
5
|
Talavera-Barber M, Flint K, Graber B, Dhital R, Kaptsan I, Medoro AK, Sánchez PJ, Shimamura M. Antibody Titers Against Human Cytomegalovirus gM/gN and gB Among Pregnant Women and Their Infants. Front Pediatr 2022; 10:846254. [PMID: 35813379 PMCID: PMC9259787 DOI: 10.3389/fped.2022.846254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Accepted: 05/12/2022] [Indexed: 11/13/2022] Open
Abstract
Congenital CMV (cCMV) infection can affect infants born to mothers with preconceptional seroimmunity. To prevent cCMV due to nonprimary maternal infection, vaccines eliciting responses exceeding natural immunity may be required. Anti-gM/gN antibodies have neutralizing capacity in-vitro and in animal models, but anti-gM/gN antibodies have not been characterized among seroimmune pregnant women. Paired maternal and infant cord sera from 92 CMV seropositive mothers and their full-term or preterm infants were tested for anti-gM/gN antibody titers in comparison with anti-gB titers and neutralizing activity. Anti-gM/gN titers were significantly lower than anti-gB titers for all groups and did not correlate with serum neutralizing capacity. Further study is needed to determine if higher anti-gM/gN antibody titers might enhance serum neutralizing capacity among seropositive adults.
Collapse
Affiliation(s)
- Maria Talavera-Barber
- Avera McKennan Hospital and University Medical Center, Avera Research Institute, Sioux Falls, SD, United States
| | - Kaitlyn Flint
- Center for Vaccines and Immunity, The Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, OH, United States
| | - Brianna Graber
- Center for Vaccines and Immunity, The Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, OH, United States
| | - Ravi Dhital
- Center for Vaccines and Immunity, The Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, OH, United States
| | - Irina Kaptsan
- Center for Vaccines and Immunity, The Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, OH, United States
| | - Alexandra K Medoro
- Division of Neonatology, Department of Pediatrics, Nationwide Children's Hospital, The Ohio State University College of Medicine, Columbus, OH, United States.,Division of Infectious Diseases, Department of Pediatrics, Nationwide Children's Hospital, The Ohio State University College of Medicine, Columbus, OH, United States
| | - Pablo J Sánchez
- Division of Neonatology, Department of Pediatrics, Nationwide Children's Hospital, The Ohio State University College of Medicine, Columbus, OH, United States.,Division of Infectious Diseases, Department of Pediatrics, Nationwide Children's Hospital, The Ohio State University College of Medicine, Columbus, OH, United States.,Center for Perinatal Research, The Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, OH, United States
| | - Masako Shimamura
- Center for Vaccines and Immunity, The Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, OH, United States.,Division of Infectious Diseases, Department of Pediatrics, Nationwide Children's Hospital, The Ohio State University College of Medicine, Columbus, OH, United States
| |
Collapse
|
6
|
Gandhamaneni BS, Krishnamoorthy HR, Veerappapillai S, Mohapatra SR, Karuppasamy R. Envelope Glycoprotein based multi-epitope vaccine against a co-infection of Human Herpesvirus 5 and Human Herpesvirus 6 using in silico strategies. Glycoconj J 2022; 39:711-724. [PMID: 36227524 PMCID: PMC9557995 DOI: 10.1007/s10719-022-10083-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 08/26/2022] [Accepted: 09/27/2022] [Indexed: 12/15/2022]
Abstract
The Human Betaherpesviruses HHV-5 and HHV-6 are quite inimical in immunocompromised hosts individually. A co-infection of both has been surmised to be far more disastrous. This can be attributed to a synergetic effect of their combined pathologies. While there have been attempts to develop a vaccine against each virus, no efforts were made to contrive an effective prophylaxis for the highly detrimental co-infection. In this study, an ensemble of viral envelope glycoproteins from both the viruses was utilized to design a multi-epitope vaccine using immunoinformatics tools. A collection of bacterial protein toll-like receptor agonists (BPTAs) was screened to identify a highly immunogenic adjuvant for the vaccine construct. The constructed vaccine was analysed using an array of methodologies ranging from World population coverage analysis to Immune simulation, whose results indicate high vaccine efficacy and stability. Furthermore, codon optimization and in silico cloning analysis were performed to check for efficient expression in a bacterial system. Collectively, these findings demonstrate the potential of the constructed vaccine to elicit an immune response against HHV-5 and HHV-6, thus supporting the viability of in vitro and in vivo studies.
Collapse
Affiliation(s)
- Bharath Sai Gandhamaneni
- Department of Biotechnology, School of Bio Sciences and Technology, Vellore Institute of Technology, Vellore, 632014, Tamil Nadu, India
| | | | - Shanthi Veerappapillai
- Department of Biotechnology, School of Bio Sciences and Technology, Vellore Institute of Technology, Vellore, 632014, Tamil Nadu, India
| | - Soumya R Mohapatra
- Department of Biochemistry, Kalinga Institute of Medical Sciences, KIIT Deemed to Be University, Bhubaneswar, Odisha, India
- School of Biotechnology, Kalinga Institute of Industrial Technology (KIIT) Deemed to Be University, Bhubaneswar, India
| | - Ramanathan Karuppasamy
- Department of Biotechnology, School of Bio Sciences and Technology, Vellore Institute of Technology, Vellore, 632014, Tamil Nadu, India.
| |
Collapse
|
7
|
Singh K, Hamilton ST, Shand AW, Hannan NJ, Rawlinson WD. Receptors in host pathogen interactions between human cytomegalovirus and the placenta during congenital infection. Rev Med Virol 2021; 31:e2233. [PMID: 33709529 DOI: 10.1002/rmv.2233] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Revised: 02/26/2021] [Accepted: 02/26/2021] [Indexed: 11/09/2022]
Abstract
Cellular receptors in human cytomegalovirus (HCMV) mother to child transmission play an important role in congenital infection. Placental trophoblast cells are a significant cell type in placental development, placental functional processes, and in HCMV transmission. Different cells within the placental floating and chorionic villi present alternate receptors for HCMV cell entry. Syncytiotrophoblasts present neonatal Fc receptors that bind and transport circulating maternal immunoglobulin G across the placental interface which can also be bound to HCMV virions, facilitating viral entry into the placenta and foetal circulation. Cytotrophoblast express HCMV receptors including integrin-α1β1, integrin-αVβ3, epidermal growth factor receptor and platelet-derived growth factor receptor alpha. The latter interacts with HCMV glycoprotein-H, glycoprotein-L and glycoprotein-O (gH/gL/gO) trimers (predominantly in placental fibroblasts) and the gH/gL/pUL128, UL130-UL131A pentameric complex in other placental cell types. The pentameric complex allows viral tropism of placental trophoblasts, endothelial cells, epithelial cells, leukocytes and monocytes. This review outlines HCMV ligands and target receptor proteins in congenital HCMV infection.
Collapse
Affiliation(s)
- Krishneel Singh
- Serology and Virology Division, NSW Health Pathology, Prince of Wales Hospital, Sydney, New South Wales, Australia
| | - Stuart T Hamilton
- Serology and Virology Division, NSW Health Pathology, Prince of Wales Hospital, Sydney, New South Wales, Australia.,School of Women's and Children's Health, Faculty of Medicine, University of New South Wales, Sydney, New South Wales, Australia
| | - Antonia W Shand
- School of Women's and Children's Health, Faculty of Medicine, University of New South Wales, Sydney, New South Wales, Australia.,Children's Hospital at Westmead Clinical School, Faculty of Medicine and Health, The University of Sydney, Sydney, New South Wales, Australia
| | - Natalie J Hannan
- Therapeutics Discovery and Vascular Function in Pregnancy Group, Department of Obstetrics and Gynaecology, University of Melbourne, Victoria, Australia.,Mercy Perinatal, Mercy Hospital for Women Heidelberg, Victoria, Australia
| | - William D Rawlinson
- Serology and Virology Division, NSW Health Pathology, Prince of Wales Hospital, Sydney, New South Wales, Australia.,School of Women's and Children's Health, Faculty of Medicine, University of New South Wales, Sydney, New South Wales, Australia.,School of Medical Sciences, Faculty of Medicine, University of New South Wales, Sydney, New South Wales, Australia.,School of Biotechnology and Biomolecular Sciences, Faculty of Science, University of New South Wales, Sydney, New South Wales, Australia
| |
Collapse
|
8
|
Cell Fusion Induced by a Fusion-Active Form of Human Cytomegalovirus Glycoprotein B (gB) Is Inhibited by Antibodies Directed at Antigenic Domain 5 in the Ectodomain of gB. J Virol 2020; 94:JVI.01276-20. [PMID: 32641474 DOI: 10.1128/jvi.01276-20] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Accepted: 06/29/2020] [Indexed: 01/22/2023] Open
Abstract
Human cytomegalovirus (HCMV) is a ubiquitous pathogen that can cause severe clinical disease in allograft recipients and infants infected in utero Virus-neutralizing antibodies defined in vitro have been proposed to confer protection against HCMV infection, and the virion envelope glycoprotein B (gB) serves as a major target of neutralizing antibodies. The viral fusion protein gB is nonfusogenic on its own and requires glycoproteins H (gH) and L (gL) for membrane fusion, which is in contrast to requirements of related class III fusion proteins, including vesicular stomatitis virus glycoprotein G (VSV-G) or baculovirus gp64. To explore requirements for gB's fusion activity, we generated a set of chimeras composed of gB and VSV-G or gp64, respectively. These gB chimeras were intrinsically fusion active and led to the formation of multinucleated cell syncytia when expressed in the absence of other viral proteins. Utilizing a panel of virus-neutralizing gB-specific monoclonal antibodies (MAbs), we could demonstrate that syncytium formation of the fusogenic gB/VSV-G chimera can be significantly inhibited by only a subset of neutralizing MAbs which target antigenic domain 5 (AD-5) of gB. This observation argues for differential modes of action of neutralizing anti-gB MAbs and suggests that blocking the membrane fusion function of gB could be one mechanism of antibody-mediated virus neutralization. In addition, our data have important implications for the further understanding of the conformation of gB that promotes membrane fusion as well as the identification of structures in AD-5 that could be targeted by antibodies to block this early step in HCMV infection.IMPORTANCE HCMV is a major global health concern, and antiviral chemotherapy remains problematic due to toxicity of available compounds and the emergence of drug-resistant viruses. Thus, an HCMV vaccine represents a priority for both governmental and pharmaceutical research programs. A major obstacle for the development of a vaccine is a lack of knowledge of the nature and specificities of protective immune responses that should be induced by such a vaccine. Glycoprotein B of HCMV is an important target for neutralizing antibodies and, hence, is often included as a component of intervention strategies. By generation of fusion-active gB chimeras, we were able to identify target structures of neutralizing antibodies that potently block gB-induced membrane fusion. This experimental system provides an approach to screen for antibodies that interfere with gB's fusogenic activity. In summary, our data will likely contribute to both rational vaccine design and the development of antibody-based therapies against HCMV.
Collapse
|
9
|
Shibamura M, Yoshikawa T, Yamada S, Inagaki T, Nguyen PHA, Fujii H, Harada S, Fukushi S, Oka A, Mizuguchi M, Saijo M. Association of human cytomegalovirus (HCMV) neutralizing antibodies with antibodies to the HCMV glycoprotein complexes. Virol J 2020; 17:120. [PMID: 32746933 PMCID: PMC7397426 DOI: 10.1186/s12985-020-01390-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Accepted: 07/28/2020] [Indexed: 12/18/2022] Open
Abstract
Background Human cytomegalovirus (HCMV) causes asymptomatic infections, but also causes congenital infections when women were infected with HCMV during pregnancy, and life-threatening diseases in immunocompromised patients. To better understand the mechanism of the neutralization activity against HCMV, the association of HCMV NT antibody titers was assessed with the antibody titers against each glycoprotein complex (gc) of HCMV. Methods Sera collected from 78 healthy adult volunteers were used. HCMV Merlin strain and HCMV clinical isolate strain 1612 were used in the NT assay with the plaque reduction assay, in which both the MRC-5 fibroblasts cells and the RPE-1 epithelial cells were used. Glycoprotein complex of gB, gH/gL complexes (gH/gL/gO and gH/gL/UL128–131A [PC]) and gM/gN were selected as target glycoproteins. 293FT cells expressed with gB, gM/gN, gH/gL/gO, or PC, were prepared and used for the measurement of the antibody titers against each gc in an indirect immunofluorescence assay (IIFA). The correlation between the IIFA titers to each gc and the HCMV-NT titers was evaluated. Results There were no significant correlations between gB-specific IIFA titers and the HCMV-NT titers in epithelial cells or between gM/gN complex-specific IIFA titers and the HCMV-NT titers. On the other hand, there was a statistically significant positive correlation between the IIFA titers to gH/gL complexes and HCMV-NT titers. Conclusions The data suggest that the gH/gL complexes might be the major target to induce NT activity against HCMV.
Collapse
Affiliation(s)
- Miho Shibamura
- Department of Virology 1, National Institute of Infectious Diseases, 1-23-1 Toyama, Shinjuku-ku, Tokyo, 162-8640, Japan.,Department of Pediatrics, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, Japan
| | - Tomoki Yoshikawa
- Department of Virology 1, National Institute of Infectious Diseases, 1-23-1 Toyama, Shinjuku-ku, Tokyo, 162-8640, Japan
| | - Souichi Yamada
- Department of Virology 1, National Institute of Infectious Diseases, 1-23-1 Toyama, Shinjuku-ku, Tokyo, 162-8640, Japan
| | - Takuya Inagaki
- Department of Virology 1, National Institute of Infectious Diseases, 1-23-1 Toyama, Shinjuku-ku, Tokyo, 162-8640, Japan.,Department of Life Science and Medical Bioscience, Waseda University, 2-2 Wakamatsu-cho, Shinjuku-ku, Tokyo, Japan
| | - Phu Hoang Anh Nguyen
- Department of Virology 1, National Institute of Infectious Diseases, 1-23-1 Toyama, Shinjuku-ku, Tokyo, 162-8640, Japan.,Department of Developmental Medical Sciences, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, Japan
| | - Hikaru Fujii
- Department of Virology 1, National Institute of Infectious Diseases, 1-23-1 Toyama, Shinjuku-ku, Tokyo, 162-8640, Japan.,The Faculty of Veterinary Medicine, Okayama University of Science, Imabari, Ehime, Japan
| | - Shizuko Harada
- Department of Virology 1, National Institute of Infectious Diseases, 1-23-1 Toyama, Shinjuku-ku, Tokyo, 162-8640, Japan
| | - Shuetsu Fukushi
- Department of Virology 1, National Institute of Infectious Diseases, 1-23-1 Toyama, Shinjuku-ku, Tokyo, 162-8640, Japan
| | - Akira Oka
- Department of Pediatrics, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, Japan
| | - Masashi Mizuguchi
- Department of Developmental Medical Sciences, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, Japan
| | - Masayuki Saijo
- Department of Virology 1, National Institute of Infectious Diseases, 1-23-1 Toyama, Shinjuku-ku, Tokyo, 162-8640, Japan. .,Department of Developmental Medical Sciences, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, Japan.
| |
Collapse
|
10
|
Sandonís V, García-Ríos E, McConnell MJ, Pérez-Romero P. Role of Neutralizing Antibodies in CMV Infection: Implications for New Therapeutic Approaches. Trends Microbiol 2020; 28:900-912. [PMID: 32448762 DOI: 10.1016/j.tim.2020.04.003] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2019] [Revised: 03/31/2020] [Accepted: 04/01/2020] [Indexed: 02/06/2023]
Abstract
Cytomegalovirus (CMV) infection elicits a potent immune response that includes the stimulation of antibodies with neutralizing activity. Recent studies have focused on elucidating the role of neutralizing antibodies in protecting against CMV infection and disease and characterizing viral antigens against which neutralizing antibodies are directed. Here, we provide a synthesis of recent data regarding the role of neutralizing antibodies in protection against CMV infection/disease. We consider the role of humoral immunity in the context of the global CMV-specific immune response, and the implications that recent findings have for vaccine and antibody-based therapy design.
Collapse
Affiliation(s)
- Virginia Sandonís
- Unit of Infectious Diseases, Hospital Universitario '12 de Octubre', Instituto de Investigación Hospital '12 de Octubre' (i+12), Madrid, Spain
| | - Estéfani García-Ríos
- National Center for Microbiology, Instituto de Salud Carlos III, Majadahonda, Madrid, Spain
| | - Michael J McConnell
- National Center for Microbiology, Instituto de Salud Carlos III, Majadahonda, Madrid, Spain
| | - Pilar Pérez-Romero
- National Center for Microbiology, Instituto de Salud Carlos III, Majadahonda, Madrid, Spain.
| |
Collapse
|
11
|
Polymorphisms in Human Cytomegalovirus Glycoprotein O (gO) Exert Epistatic Influences on Cell-Free and Cell-to-Cell Spread and Antibody Neutralization on gH Epitopes. J Virol 2020; 94:JVI.02051-19. [PMID: 31996433 DOI: 10.1128/jvi.02051-19] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Accepted: 01/24/2020] [Indexed: 02/06/2023] Open
Abstract
Human cytomegalovirus (HCMV) glycoproteins H and L (gH/gL) can be bound by either gO or the UL128 to UL131 proteins (referred to here as UL128-131) to form complexes that facilitate entry and spread, and the complexes formed are important targets of neutralizing antibodies. Strains of HCMV vary considerably in the levels of gH/gL/gO and gH/gL/UL128-131, and this can impact infectivity and cell tropism. In this study, we investigated how natural interstrain variation in the amino acid sequence of gO influences the biology of HCMV. Heterologous gO recombinants were constructed in which 6 of the 8 alleles or genotypes (GT) of gO were analyzed in the backgrounds of strains TR and Merlin (ME). The levels of gH/gL complexes were not affected, but there were impacts on entry, spread, and neutralization by anti-gH antibodies. AD169 (AD) gO (GT1a) [referred to here as ADgO(GT1a)] drastically reduced cell-free infectivity of both strains on fibroblasts and epithelial cells. PHgO(GT2a) increased cell-free infectivity of TR in both cell types, but spread in fibroblasts was impaired. In contrast, spread of ME in both cell types was enhanced by Towne (TN) gO (GT4), despite similar cell-free infectivity. TR expressing TNgO(GT4) was resistant to neutralization by anti-gH antibodies AP86 and 14-4b, whereas ADgO(GT1a) conferred resistance to 14-4b but enhanced neutralization by AP86. Conversely, ME expressing ADgO(GT1a) was more resistant to 14-4b. These results suggest that (i) there are mechanistically distinct roles for gH/gL/gO in cell-free and cell-to-cell spread, (ii) gO isoforms can differentially shield the virus from neutralizing antibodies, and (iii) effects of gO polymorphisms are epistatically dependent on other variable loci.IMPORTANCE Advances in HCMV population genetics have greatly outpaced understanding of the links between genetic diversity and phenotypic variation. Moreover, recombination between genotypes may shuffle variable loci into various combinations with unknown outcomes. UL74(gO) is an important determinant of HCMV infectivity and one of the most diverse loci in the viral genome. By analyzing interstrain heterologous UL74(gO) recombinants, we showed that gO diversity can have dramatic impacts on cell-free and cell-to-cell spread as well as on antibody neutralization and that the manifestation of these impacts can be subject to epistatic influences of the global genetic background. These results highlight the potential limitations of laboratory studies of HCMV biology that use single, isolated genotypes or strains.
Collapse
|
12
|
Britt WJ. Human Cytomegalovirus Infection in Women With Preexisting Immunity: Sources of Infection and Mechanisms of Infection in the Presence of Antiviral Immunity. J Infect Dis 2020; 221:S1-S8. [PMID: 32134479 PMCID: PMC7057782 DOI: 10.1093/infdis/jiz464] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Human cytomegalovirus (HCMV) infection remains an important cause of neurodevelopmental sequelae in infants infected in utero. Unique to the natural history of perinatal HCMV infections is the occurrence of congenital HCMV infections (cCMV) in women with existing immunity to HCMV, infections that have been designated as nonprimary maternal infection. In maternal populations with a high HCMV seroprevalence, cCMV that follows nonprimary maternal infections accounts for 75%-90% of all cases of cCMV infections as well as a large proportion of infected infants with neurodevelopmental sequelae. Although considerable effort has been directed toward understanding immune correlates that can modify maternal infections and intrauterine transmission, the source of virus leading to nonprimary maternal infections and intrauterine transmission is not well defined. Previous paradigms that included reactivation of latent virus as the source of infection in immune women have been challenged by studies demonstrating acquisition and transmission of antigenically distinct viruses, a finding suggesting that reinfection through exposure to an exogenous virus is responsible for some cases of nonprimary maternal infection. Additional understanding of the source(s) of virus that leads to nonprimary maternal infection will be of considerable value in the development and testing of interventions such as vaccines designed to limit the incidence of cCMV in populations with high HCMV seroprevalence.
Collapse
Affiliation(s)
- William J Britt
- Departments of Pediatrics, Microbiology, Neurobiology, University of Alabama School of Medicine, Birmingham, Alabama
| |
Collapse
|
13
|
Krmpotić A, Podlech J, Reddehase MJ, Britt WJ, Jonjić S. Role of antibodies in confining cytomegalovirus after reactivation from latency: three decades' résumé. Med Microbiol Immunol 2019; 208:415-429. [PMID: 30923898 PMCID: PMC6705608 DOI: 10.1007/s00430-019-00600-1] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Accepted: 03/18/2019] [Indexed: 12/16/2022]
Abstract
Cytomegaloviruses (CMVs) are highly prevalent herpesviruses, characterized by strict species specificity and the ability to establish non-productive latent infection from which reactivation can occur. Reactivation of latent human CMV (HCMV) represents one of the most important clinical challenges in transplant recipients secondary to the strong immunosuppression. In addition, HCMV is the major viral cause of congenital infection with severe sequelae including brain damage. The accumulated evidence clearly shows that cellular immunity plays a major role in the control of primary CMV infection as well as establishment and maintenance of latency. However, the efficiency of antiviral antibodies in virus control, particularly in prevention of congenital infection and virus reactivation from latency in immunosuppressed hosts, is much less understood. Because of a strict species specificity of HCMV, the role of antibodies in controlling CMV disease has been addressed using murine CMV (MCMV) as a model. Here, we review and discuss the role played by the antiviral antibody response during CMV infections with emphasis on latency and reactivation not only in the MCMV model, but also in relevant clinical settings. We provide evidence to conclude that antiviral antibodies do not prevent the initiating molecular event of virus reactivation from latency but operate by preventing intra-organ spread and inter-organ dissemination of recurrent virus.
Collapse
Affiliation(s)
- Astrid Krmpotić
- Department of Histology and Embryology and Center for Proteomics, University of Rijeka, Faculty of Medicine, Braće Branchetta 20, 51000 Rijeka, Croatia
| | - Jürgen Podlech
- Institute for Virology and Research Center for Immunotherapy, University Medical Center of the Johannes Gutenberg-University Mainz, Obere Zahlbacher Strasse 67, 55131, Mainz, Germany
| | - Matthias J. Reddehase
- Institute for Virology and Research Center for Immunotherapy, University Medical Center of the Johannes Gutenberg-University Mainz, Obere Zahlbacher Strasse 67, 55131, Mainz, Germany
| | - William J. Britt
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, AL, USA and Department of Pediatrics Infectious Disease, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Stipan Jonjić
- Department of Histology and Embryology and Center for Proteomics, University of Rijeka, Faculty of Medicine, Braće Branchetta 20, 51000 Rijeka, Croatia
| |
Collapse
|
14
|
Suárez NM, Musonda KG, Escriva E, Njenga M, Agbueze A, Camiolo S, Davison AJ, Gompels UA. Multiple-Strain Infections of Human Cytomegalovirus With High Genomic Diversity Are Common in Breast Milk From Human Immunodeficiency Virus-Infected Women in Zambia. J Infect Dis 2019; 220:792-801. [PMID: 31050737 PMCID: PMC6667993 DOI: 10.1093/infdis/jiz209] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2019] [Accepted: 05/01/2019] [Indexed: 01/30/2023] Open
Abstract
BACKGROUND In developed countries, human cytomegalovirus (HCMV) is a major pathogen in congenitally infected and immunocompromised individuals, where multiple-strain infection appears linked to disease severity. The situation is less documented in developing countries. In Zambia, breast milk is a key route for transmitting HCMV and carries higher viral loads in human immunodeficiency virus (HIV)-infected women. We investigated HCMV strain diversity. METHODS High-throughput sequence datasets were generated from 28 HCMV-positive breast milk samples donated by 22 mothers (15 HIV-infected and 7 HIV-negative) at 4-16 weeks postpartum, then analyzed by genome assembly and novel motif-based genotyping in 12 hypervariable HCMV genes. RESULTS Among the 20 samples from 14 donors (13 HIV-infected and one HIV-negative) who yielded data meeting quality thresholds, 89 of the possible 109 genotypes were detected, and multiple-strain infections involving up to 5 strains per person were apparent in 9 HIV-infected women. Strain diversity was extensive among individuals but conserved compartmentally and longitudinally within them. Genotypic linkage was maintained within hypervariable UL73/UL74 and RL12/RL13/UL1 loci for virus entry and immunomodulation, but not between genes more distant from each other. CONCLUSIONS Breast milk from HIV-infected women contains multiple HCMV strains of high genotypic complexity and thus constitutes a major source for transmitting viral diversity.
Collapse
Affiliation(s)
- Nicolás M Suárez
- Medical Research Council–University of Glasgow Centre for Virus Research, United Kingdom
| | - Kunda G Musonda
- Pathogen Molecular Biology Department, London School of Hygiene and Tropical Medicine, United Kingdom
- Virology Laboratory, University Teaching Hospital, Lusaka, Zambia
| | - Eric Escriva
- Pathogen Molecular Biology Department, London School of Hygiene and Tropical Medicine, United Kingdom
- Birkbeck College, University of London, United Kingdom
| | - Margaret Njenga
- Pathogen Molecular Biology Department, London School of Hygiene and Tropical Medicine, United Kingdom
| | - Anthony Agbueze
- Pathogen Molecular Biology Department, London School of Hygiene and Tropical Medicine, United Kingdom
- Birkbeck College, University of London, United Kingdom
| | - Salvatore Camiolo
- Medical Research Council–University of Glasgow Centre for Virus Research, United Kingdom
| | - Andrew J Davison
- Medical Research Council–University of Glasgow Centre for Virus Research, United Kingdom
| | - Ursula A Gompels
- Pathogen Molecular Biology Department, London School of Hygiene and Tropical Medicine, United Kingdom
| |
Collapse
|
15
|
Human cytomegalovirus evades antibody-mediated immunity through endoplasmic reticulum-associated degradation of the FcRn receptor. Nat Commun 2019; 10:3020. [PMID: 31289263 PMCID: PMC6617459 DOI: 10.1038/s41467-019-10865-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2018] [Accepted: 06/05/2019] [Indexed: 01/09/2023] Open
Abstract
Human cytomegalovirus (HCMV) can persistently infect humans, but how HCMV avoids humoral immunity is not clear. The neonatal Fc receptor (FcRn) controls IgG transport from the mother to the fetus and prolongs IgG half-life. Here we show that US11 inhibits the assembly of FcRn with β2m and retains FcRn in the endoplasmic reticulum (ER), consequently blocking FcRn trafficking to the endosome. Furthermore, US11 recruits the ubiquitin enzymes Derlin-1, TMEM129 and UbE2J2 to engage FcRn, consequently initiating the dislocation of FcRn from the ER to the cytosol and facilitating its degradation. Importantly, US11 inhibits IgG-FcRn binding, resulting in a reduction of IgG transcytosis across intestinal or placental epithelial cells and IgG degradation in endothelial cells. Hence, these results identify the mechanism by which HCMV infection exploits an ER-associated degradation pathway through US11 to disable FcRn functions. These results have implications for vaccine development and immune surveillance. Human cytomegalovirus (HCMV) can persist for the life of a host in the face of robust immune responses owing to a wide range of immune evasion strategies. Here Liu and colleagues show that HCMV evades the IgG-mediated response by the endoplasmic reticulum-associated degradation of the neonatal Fc receptor for IgG.
Collapse
|
16
|
Pathogen at the Gates: Human Cytomegalovirus Entry and Cell Tropism. Viruses 2018; 10:v10120704. [PMID: 30544948 PMCID: PMC6316194 DOI: 10.3390/v10120704] [Citation(s) in RCA: 91] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2018] [Revised: 12/04/2018] [Accepted: 12/05/2018] [Indexed: 12/24/2022] Open
Abstract
The past few years have brought substantial progress toward understanding how human cytomegalovirus (HCMV) enters the remarkably wide spectrum of cell types and tissues that it infects. Neuropilin-2 and platelet-derived growth factor receptor alpha (PDGFRα) were identified as receptors, respectively, for the trimeric and pentameric glycoprotein H/glycoprotein L (gH/gL) complexes that in large part govern HCMV cell tropism, while CD90 and CD147 were also found to play roles during entry. X-ray crystal structures for the proximal viral fusogen, glycoprotein B (gB), and for the pentameric gH/gL complex (pentamer) have been solved. A novel virion gH complex consisting of gH bound to UL116 instead of gL was described, and findings supporting the existence of a stable complex between gH/gL and gB were reported. Additional work indicates that the pentamer promotes a mode of cell-associated spread that resists antibody neutralization, as opposed to the trimeric gH/gL complex (trimer), which appears to be broadly required for the infectivity of cell-free virions. Finally, viral factors such as UL148 and US16 were identified that can influence the incorporation of the alternative gH/gL complexes into virions. We will review these advances and their implications for understanding HCMV entry and cell tropism.
Collapse
|
17
|
Nelson CS, Herold BC, Permar SR. A new era in cytomegalovirus vaccinology: considerations for rational design of next-generation vaccines to prevent congenital cytomegalovirus infection. NPJ Vaccines 2018; 3:38. [PMID: 30275984 PMCID: PMC6148244 DOI: 10.1038/s41541-018-0074-4] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2018] [Revised: 07/07/2018] [Accepted: 07/11/2018] [Indexed: 02/07/2023] Open
Abstract
Human cytomegalovirus (HCMV), a member of the beta-herpesvirus family, is the most common cause of congenital infection worldwide as well as an important cause of morbidity in transplant recipients and immunosuppressed individuals. An estimated 1 in 150 infants are infected with HCMV at birth, which can result in lifelong, debilitating neurologic sequelae including microcephaly, sensorineural hearing loss, and cognitive impairment. Natural maternal immunity to HCMV decreases the frequency of reinfection and reduces risk of congenital transmission but does not completely protect against neonatal disease. Thus, a vaccine to reduce the incidence and severity of infant infection is a public health priority. A variety of candidate HCMV vaccine approaches have been tried previously, including live-attenuated viruses, glycoprotein subunit formulations, viral vectors, and single/bivalent DNA plasmids, but all have failed to reach target endpoints in clinical trials. Nevertheless, there is a great deal to be learned from the successes and failures of the HCMV vaccine field (both congenital and transplant-associated), as well as from vaccine development efforts for other herpesvirus pathogens including herpes simplex virus 1 and 2, varicella zoster virus, and Epstein-Barr virus. Here, we review those successes and failures, evaluating recent cutting-edge discoveries that have shaped the HCMV vaccine field and identifying topics of critical importance for future investigation. These considerations will inform rational design and evaluation of next-generation vaccines to prevent HCMV-associated congenital infection and disease.
Collapse
Affiliation(s)
- Cody S. Nelson
- Human Vaccine Institute, Duke University Medical Center, Durham, NC USA
| | - Betsy C. Herold
- Department of Pediatrics, Albert Einstein College of Medicine, Bronx, NY USA
| | - Sallie R. Permar
- Human Vaccine Institute, Duke University Medical Center, Durham, NC USA
| |
Collapse
|
18
|
Bagdonaite I, Wandall HH. Global aspects of viral glycosylation. Glycobiology 2018; 28:443-467. [PMID: 29579213 PMCID: PMC7108637 DOI: 10.1093/glycob/cwy021] [Citation(s) in RCA: 169] [Impact Index Per Article: 28.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2017] [Revised: 02/10/2018] [Accepted: 03/21/2018] [Indexed: 12/15/2022] Open
Abstract
Enveloped viruses encompass some of the most common human pathogens causing infections of different severity, ranging from no or very few symptoms to lethal disease as seen with the viral hemorrhagic fevers. All enveloped viruses possess an envelope membrane derived from the host cell, modified with often heavily glycosylated virally encoded glycoproteins important for infectivity, viral particle formation and immune evasion. While N-linked glycosylation of viral envelope proteins is well characterized with respect to location, structure and site occupancy, information on mucin-type O-glycosylation of these proteins is less comprehensive. Studies on viral glycosylation are often limited to analysis of recombinant proteins that in most cases are produced in cell lines with a glycosylation capacity different from the capacity of the host cells. The glycosylation pattern of the produced recombinant glycoproteins might therefore be different from the pattern on native viral proteins. In this review, we provide a historical perspective on analysis of viral glycosylation, and summarize known roles of glycans in the biology of enveloped human viruses. In addition, we describe how to overcome the analytical limitations by using a global approach based on mass spectrometry to identify viral O-glycosylation in virus-infected cell lysates using the complex enveloped virus herpes simplex virus type 1 as a model. We underscore that glycans often pay important contributions to overall protein structure, function and immune recognition, and that glycans represent a crucial determinant for vaccine design. High throughput analysis of glycosylation on relevant glycoprotein formulations, as well as data compilation and sharing is therefore important to identify consensus glycosylation patterns for translational applications.
Collapse
Affiliation(s)
- Ieva Bagdonaite
- Copenhagen Center for Glycomics, Department of Cellular and Molecular Medicine, University of Copenhagen, Blegdamsvej 3B, Copenhagen N, Denmark
| | - Hans H Wandall
- Copenhagen Center for Glycomics, Department of Cellular and Molecular Medicine, University of Copenhagen, Blegdamsvej 3B, Copenhagen N, Denmark
| |
Collapse
|
19
|
Sackman AM, Pfeifer SP, Kowalik TF, Jensen JD. On the Demographic and Selective Forces Shaping Patterns of Human Cytomegalovirus Variation within Hosts. Pathogens 2018; 7:pathogens7010016. [PMID: 29382090 PMCID: PMC5874742 DOI: 10.3390/pathogens7010016] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2018] [Revised: 01/23/2018] [Accepted: 01/25/2018] [Indexed: 02/08/2023] Open
Abstract
Human cytomegalovirus (HCMV) is a member of the β -herpesvirus subfamily within Herpesviridae that is nearly ubiquitous in human populations, and infection generally results only in mild symptoms. However, symptoms can be severe in immunonaive individuals, and transplacental congenital infection of HCMV can result in serious neurological sequelae. Recent work has revealed much about the demographic and selective forces shaping the evolution of congenitally transmitted HCMV both on the level of hosts and within host compartments, providing insight into the dynamics of congenital infection, reinfection, and evolution of HCMV with important implications for the development of effective treatments and vaccines.
Collapse
Affiliation(s)
- Andrew M Sackman
- School of Life Sciences, Arizona State University, Tempe, AZ 85281, USA.
| | - Susanne P Pfeifer
- School of Life Sciences, Arizona State University, Tempe, AZ 85281, USA.
| | - Timothy F Kowalik
- Department of Microbiology and Physiological Systems, University of Massachusetts Medical School, Worcester, MA 01655, USA.
| | - Jeffrey D Jensen
- School of Life Sciences, Arizona State University, Tempe, AZ 85281, USA.
| |
Collapse
|
20
|
Hage E, Wilkie GS, Linnenweber-Held S, Dhingra A, Suárez NM, Schmidt JJ, Kay-Fedorov PC, Mischak-Weissinger E, Heim A, Schwarz A, Schulz TF, Davison AJ, Ganzenmueller T. Characterization of Human Cytomegalovirus Genome Diversity in Immunocompromised Hosts by Whole-Genome Sequencing Directly From Clinical Specimens. J Infect Dis 2017; 215:1673-1683. [PMID: 28368496 DOI: 10.1093/infdis/jix157] [Citation(s) in RCA: 69] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2016] [Accepted: 03/22/2017] [Indexed: 01/19/2023] Open
Abstract
Background Advances in next-generation sequencing (NGS) technologies allow comprehensive studies of genetic diversity over the entire genome of human cytomegalovirus (HCMV), a significant pathogen for immunocompromised individuals. Methods Next-generation sequencing was performed on target enriched sequence libraries prepared directly from a variety of clinical specimens (blood, urine, breast milk, respiratory samples, biopsies, and vitreous humor) obtained longitudinally or from different anatomical compartments from 20 HCMV-infected patients (renal transplant recipients, stem cell transplant recipients, and congenitally infected children). Results De novo-assembled HCMV genome sequences were obtained for 57 of 68 sequenced samples. Analysis of longitudinal or compartmental HCMV diversity revealed various patterns: no major differences were detected among longitudinal, intraindividual blood samples from 9 of 15 patients and in most of the patients with compartmental samples, whereas a switch of the major HCMV population was observed in 6 individuals with sequential blood samples and upon compartmental analysis of 1 patient with HCMV retinitis. Variant analysis revealed additional aspects of minor virus population dynamics and antiviral-resistance mutations. Conclusions In immunosuppressed patients, HCMV can remain relatively stable or undergo drastic genomic changes that are suggestive of the emergence of minor resident strains or de novo infection.
Collapse
Affiliation(s)
- Elias Hage
- Institute of Virology
- German Centre for Infection Research, Hannover-Braunschweig, Germany
| | - Gavin S Wilkie
- MRC-University of Glasgow Centre for Virus Research, United Kingdom
| | | | - Akshay Dhingra
- Institute of Virology
- German Centre for Infection Research, Hannover-Braunschweig, Germany
| | - Nicolás M Suárez
- MRC-University of Glasgow Centre for Virus Research, United Kingdom
| | | | - Penelope C Kay-Fedorov
- Institute of Virology
- German Centre for Infection Research, Hannover-Braunschweig, Germany
| | - Eva Mischak-Weissinger
- Department of Haematology, Haemostasis and Oncology, Hannover Medical School
- German Centre for Infection Research, Hannover-Braunschweig, Germany
| | - Albert Heim
- Institute of Virology
- German Centre for Infection Research, Hannover-Braunschweig, Germany
| | | | - Thomas F Schulz
- Institute of Virology
- German Centre for Infection Research, Hannover-Braunschweig, Germany
| | - Andrew J Davison
- MRC-University of Glasgow Centre for Virus Research, United Kingdom
| | - Tina Ganzenmueller
- Institute of Virology
- German Centre for Infection Research, Hannover-Braunschweig, Germany
| |
Collapse
|
21
|
Microbial Cryptotopes are Prominent Targets of B-cell Immunity. Sci Rep 2016; 6:31657. [PMID: 27539094 PMCID: PMC4990913 DOI: 10.1038/srep31657] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2016] [Accepted: 07/22/2016] [Indexed: 12/20/2022] Open
Abstract
B-cell recognition of microbial antigens may be limited by masking of epitopes within three-dimensional structures (cryptotopes). Here we report that unmasking of cryptotopes by unfolding whole cytomegalovirus (CMV) antigen preparations with the chaotropic reagent Urea and probing with immune sera from healthy individuals (n = 109) increased ELISA signals by 36% in comparison to folded CMV antigens (P < 0.001). ELISA signals increased also significantly upon unfolding of S. aureus or E. coli antigens, whereas unfolded influenza H1N1 or respiratory syncitial virus antigens yielded reduced or unchanged reactivity in comparison to folded ones, respectively. Blocking of CMV cryptotope-specific Abs by incubation of an immunoglobuline preparation and three sera with unfolded CMV antigens enhanced clearly the neutralizing capacity of this immunoglobuline preparation against CMV infection. Thus, B-cell immunity frequently targets cryptotopes on CMV but these Abs are non-neutralizing, may reduce the neutralizing effectiveness of pathogen-specific Abs, and increase during immune maturation following primary CMV infection. The observation of functional consequences of Abs specific for cryptotopes may open whole new avenues to a better understanding of the humoral immune response to CMV and development of more effective vaccines and immunoglobuline preparations.
Collapse
|
22
|
Virion Glycoprotein-Mediated Immune Evasion by Human Cytomegalovirus: a Sticky Virus Makes a Slick Getaway. Microbiol Mol Biol Rev 2016; 80:663-77. [PMID: 27307580 DOI: 10.1128/mmbr.00018-16] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
The prototypic herpesvirus human cytomegalovirus (CMV) exhibits the extraordinary ability to establish latency and maintain a chronic infection throughout the life of its human host. This is even more remarkable considering the robust adaptive immune response elicited by infection and reactivation from latency. In addition to the ability of CMV to exist in a quiescent latent state, its persistence is enabled by a large repertoire of viral proteins that subvert immune defense mechanisms, such as NK cell activation and major histocompatibility complex antigen presentation, within the cell. However, dissemination outside the cell presents a unique existential challenge to the CMV virion, which is studded with antigenic glycoprotein complexes targeted by a potent neutralizing antibody response. The CMV virion envelope proteins, which are critical mediators of cell attachment and entry, possess various characteristics that can mitigate the humoral immune response and prevent viral clearance. Here we review the CMV glycoprotein complexes crucial for cell attachment and entry and propose inherent properties of these proteins involved in evading the CMV humoral immune response. These include viral glycoprotein polymorphism, epitope competition, Fc receptor-mediated endocytosis, glycan shielding, and cell-to-cell spread. The consequences of CMV virion glycoprotein-mediated immune evasion have a major impact on persistence of the virus in the population, and a comprehensive understanding of these evasion strategies will assist in designing effective CMV biologics and vaccines to limit CMV-associated disease.
Collapse
|
23
|
Bagdonaite I, Nordén R, Joshi HJ, King SL, Vakhrushev SY, Olofsson S, Wandall HH. Global Mapping of O-Glycosylation of Varicella Zoster Virus, Human Cytomegalovirus, and Epstein-Barr Virus. J Biol Chem 2016; 291:12014-28. [PMID: 27129252 DOI: 10.1074/jbc.m116.721746] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2016] [Indexed: 12/27/2022] Open
Abstract
Herpesviruses are among the most complex and widespread viruses, infection and propagation of which depend on envelope proteins. These proteins serve as mediators of cell entry as well as modulators of the immune response and are attractive vaccine targets. Although envelope proteins are known to carry glycans, little is known about the distribution, nature, and functions of these modifications. This is particularly true for O-glycans; thus we have recently developed a "bottom up" mass spectrometry-based technique for mapping O-glycosylation sites on herpes simplex virus type 1. We found wide distribution of O-glycans on herpes simplex virus type 1 glycoproteins and demonstrated that elongated O-glycans were essential for the propagation of the virus. Here, we applied our proteome-wide discovery platform for mapping O-glycosites on representative and clinically significant members of the herpesvirus family: varicella zoster virus, human cytomegalovirus, and Epstein-Barr virus. We identified a large number of O-glycosites distributed on most envelope proteins in all viruses and further demonstrated conserved patterns of O-glycans on distinct homologous proteins. Because glycosylation is highly dependent on the host cell, we tested varicella zoster virus-infected cell lysates and clinically isolated virus and found evidence of consistent O-glycosites. These results present a comprehensive view of herpesvirus O-glycosylation and point to the widespread occurrence of O-glycans in regions of envelope proteins important for virus entry, formation, and recognition by the host immune system. This knowledge enables dissection of specific functional roles of individual glycosites and, moreover, provides a framework for design of glycoprotein vaccines with representative glycosylation.
Collapse
Affiliation(s)
- Ieva Bagdonaite
- From the Copenhagen Center for Glycomics, Department of Cellular and Molecular Medicine, University of Copenhagen, 2200 Copenhagen, Denmark and
| | - Rickard Nordén
- the Department of Infectious Diseases, Institute of Biomedicine, University of Gothenburg, 413 45 Gothenburg, Sweden
| | - Hiren J Joshi
- From the Copenhagen Center for Glycomics, Department of Cellular and Molecular Medicine, University of Copenhagen, 2200 Copenhagen, Denmark and
| | - Sarah L King
- From the Copenhagen Center for Glycomics, Department of Cellular and Molecular Medicine, University of Copenhagen, 2200 Copenhagen, Denmark and
| | - Sergey Y Vakhrushev
- From the Copenhagen Center for Glycomics, Department of Cellular and Molecular Medicine, University of Copenhagen, 2200 Copenhagen, Denmark and
| | - Sigvard Olofsson
- the Department of Infectious Diseases, Institute of Biomedicine, University of Gothenburg, 413 45 Gothenburg, Sweden
| | - Hans H Wandall
- From the Copenhagen Center for Glycomics, Department of Cellular and Molecular Medicine, University of Copenhagen, 2200 Copenhagen, Denmark and
| |
Collapse
|
24
|
Gram AM, Oosenbrug T, Lindenbergh MFS, Büll C, Comvalius A, Dickson KJI, Wiegant J, Vrolijk H, Lebbink RJ, Wolterbeek R, Adema GJ, Griffioen M, Heemskerk MHM, Tscharke DC, Hutt-Fletcher LM, Wiertz EJHJ, Hoeben RC, Ressing ME. The Epstein-Barr Virus Glycoprotein gp150 Forms an Immune-Evasive Glycan Shield at the Surface of Infected Cells. PLoS Pathog 2016; 12:e1005550. [PMID: 27077376 PMCID: PMC4831753 DOI: 10.1371/journal.ppat.1005550] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2015] [Accepted: 03/14/2016] [Indexed: 12/15/2022] Open
Abstract
Cell-mediated immunity plays a key role in host control of viral infection. This is exemplified by life-threatening reactivations of e.g. herpesviruses in individuals with impaired T-cell and/or iNKT cell responses. To allow lifelong persistence and virus production in the face of primed immunity, herpesviruses exploit immune evasion strategies. These include a reduction in viral antigen expression during latency and a number of escape mechanisms that target antigen presentation pathways. Given the plethora of foreign antigens expressed in virus-producing cells, herpesviruses are conceivably most vulnerable to elimination by cell-mediated immunity during the replicative phase of infection. Here, we show that a prototypic herpesvirus, Epstein-Barr virus (EBV), encodes a novel, broadly acting immunoevasin, gp150, that is expressed during the late phase of viral replication. In particular, EBV gp150 inhibits antigen presentation by HLA class I, HLA class II, and the non-classical, lipid-presenting CD1d molecules. The mechanism of gp150-mediated T-cell escape does not depend on degradation of the antigen-presenting molecules nor does it require gp150’s cytoplasmic tail. Through its abundant glycosylation, gp150 creates a shield that impedes surface presentation of antigen. This is an unprecedented immune evasion mechanism for herpesviruses. In view of its likely broader target range, gp150 could additionally have an impact beyond escape of T cell activation. Importantly, B cells infected with a gp150-null mutant EBV displayed rescued levels of surface antigen presentation by HLA class I, HLA class II, and CD1d, supporting an important role for iNKT cells next to classical T cells in fighting EBV infection. At the same time, our results indicate that EBV gp150 prolongs the timespan for producing viral offspring at the most vulnerable stage of the viral life cycle. The human herpesvirus Epstein-Barr virus (EBV) is an important human pathogen involved in infectious mononucleosis and several malignant tumors, including lymphomas in the immunosuppressed. Upon primary infection, a balance between virus and host is established, to which EBV’s capacity to dodge T cell-mediated attack contributes. Here we identify the late protein EBV gp150 as a novel immunoevasin, frustrating antigen presentation by HLA class I, class II, and CD1d molecules. EBV gp150’s many sialoglycans create a shield impeding surface detection of presented antigen. Interestingly, exploiting glycan shielding as a mechanism to mask surface exposed proteins on infected cells could permit EBV to additionally modulate other aspects of host antiviral defense. B cells producing wild-type EBV escaped immune recognition more efficiently than those infected with a gp150-null virus, pointing towards a role for gp150 in natural infection. Our results reveal a novel, broadly active strategy by which a herpesvirus glycoprotein, EBV gp150, blocks antigen presentation to T cells through glycan shielding, a new paradigm in herpesvirus immune evasion.
Collapse
Affiliation(s)
- Anna M. Gram
- Department of Molecular Cell Biology, Leiden University Medical Center, Leiden, The Netherlands
- Department of Medical Microbiology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Timo Oosenbrug
- Department of Molecular Cell Biology, Leiden University Medical Center, Leiden, The Netherlands
| | | | - Christian Büll
- Department of Tumor Immunology, Radboud Institute for Molecular Life Sciences, Nijmegen, The Netherlands
| | - Anouskha Comvalius
- Department of Molecular Cell Biology, Leiden University Medical Center, Leiden, The Netherlands
| | - Kathryn J. I. Dickson
- John Curtin School of Medical Research, Australian National University, Canberra, Australia
| | - Joop Wiegant
- Department of Molecular Cell Biology, Leiden University Medical Center, Leiden, The Netherlands
| | - Hans Vrolijk
- Department of Molecular Cell Biology, Leiden University Medical Center, Leiden, The Netherlands
| | - Robert Jan Lebbink
- Department of Medical Microbiology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Ron Wolterbeek
- Department of Medical Statistics & Bioinformatics, Leiden University Medical Center, Leiden, The Netherlands
| | - Gosse J. Adema
- Department of Tumor Immunology, Radboud Institute for Molecular Life Sciences, Nijmegen, The Netherlands
| | - Marieke Griffioen
- Department of Hematology, Leiden University Medical Center, Leiden, The Netherlands
| | | | - David C. Tscharke
- John Curtin School of Medical Research, Australian National University, Canberra, Australia
| | - Lindsey M. Hutt-Fletcher
- Department of Microbiology and Immunology, Louisiana State University Health Sciences Center, Shreveport, Louisiana, United States of America
| | | | - Rob C. Hoeben
- Department of Molecular Cell Biology, Leiden University Medical Center, Leiden, The Netherlands
| | - Maaike E. Ressing
- Department of Molecular Cell Biology, Leiden University Medical Center, Leiden, The Netherlands
- * E-mail:
| |
Collapse
|
25
|
Abstract
Human cytomegalovirus (CMV) is the major cause of congenital neurological defects in the United States and also causes significant morbidity and mortality for hematopoietic and solid organ transplant patients. Primary infection in immunocompetent individuals rarely causes disease but resolves as a life-long latent infection, characterized by sustained antibody and cellular responses. Despite considerable efforts over the last 40 years to develop live attenuated and subunit vaccines, none is close to receiving regulatory approval. However, there is evidence that antibodies can prevent primary infection and cytotoxic T cells can suppress secondary infection. Prior maternal infection decreases the risk a fetus will contract CMV, while adoptive transfer of virus-specific CD8+ T cells is highly protective against CMV disease in hematopoietic stem cell transplant recipients. As a result, three polyclonal immunoglobulin preparations are approved for clinical use and one monoclonal antibody has reached phase III trials. Enhanced understanding of the viral life cycle from a biochemical perspective has revealed additional targets for neutralizing antibodies in the gH/gL/UL128-131 pentamer. Until an effective vaccine is licensed, passive immunotherapeutics may present an alternative to maintain viral loads and prevent CMV disease in susceptible populations. This review summarizes the progress and potential of immunotherapeutics to treat CMV infection.
Collapse
|
26
|
Arcangeletti MC, Vasile Simone R, Rodighiero I, De Conto F, Medici MC, Martorana D, Chezzi C, Calderaro A. Combined genetic variants of human cytomegalovirus envelope glycoproteins as congenital infection markers. Virol J 2015; 12:202. [PMID: 26611326 PMCID: PMC4662005 DOI: 10.1186/s12985-015-0428-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2015] [Accepted: 11/16/2015] [Indexed: 11/22/2022] Open
Abstract
Background Human cytomegalovirus (HCMV) is still considered to be the main viral cause of birth defects and long-term neurological and sensory sequelae following congenital infection. Several Authors sustain a key role of HCMV envelope glycoproteins, such as gB, gN and gO - mainly involved in cell targeting, viral penetration and spread - as putative virulence factors. The genes coding for these glycoproteins possess hypervariable regions, resulting in a number of genetic variants in circulating clinical strains. Considering that the genetic polymorphisms underlying the specific differences between gB, gN and gO genotypes can influence the ability of HCMV to preferentially target specific host cells, it is very likely that they play an important role in defining HCMV infection outcome. In the present study, we analysed HCMV gB, gN and gO gene polymorphisms in viral strains isolated from paediatric patients with congenital or post-natal infection, to investigate whether specific genetic variants may be associated with congenital infection. Methods The restriction fragment polymorphisms of genes coding for HCMV gB (UL55), gN (UL73) and gO (UL74) were investigated by analysing viral DNA extracted from 40 urine samples of as many paediatric patients with congenital or post-natal HCMV infection. Randomly selected samples were subjected to DNA sequencing and phylogenetic analysis. Statistical analysis was performed using Fisher’s exact test to assess the significance of single and combined glycoprotein genotypes frequency distribution. Statistical significance was considered at a P <0.05. Results While gB genomic variants were quite homogeneously represented in both paediatric groups, the gN4 genotype significantly prevailed in congenitally infected children (89.5 %) vs post-natally infected children (47.6 %), with a predominance of the gN4c variant (47.4 %). A similar trend was observed for gO3 (52.6 % vs 19 %). Concerning genotypes association, a statistically significant (P = 0.037) gN4-gO3 combination was found specifically in the congenitally infected group. Conclusions The results indicate that the gN4 (mostly the gN4c variant) and gO3 combined genotypes could provide useful markers of congenital infection and represent suitable candidate molecules for prophylactic vaccine preparations.
Collapse
Affiliation(s)
- Maria-Cristina Arcangeletti
- Unit of Microbiology and Virology - Department of Clinical and Experimental Medicine, University of Parma, Viale A. Gramsci, 14, 43126, Parma, Italy.
| | - Rosita Vasile Simone
- Unit of Microbiology and Virology - Department of Clinical and Experimental Medicine, University of Parma, Viale A. Gramsci, 14, 43126, Parma, Italy.
| | - Isabella Rodighiero
- Unit of Microbiology and Virology - Department of Clinical and Experimental Medicine, University of Parma, Viale A. Gramsci, 14, 43126, Parma, Italy.
| | - Flora De Conto
- Unit of Microbiology and Virology - Department of Clinical and Experimental Medicine, University of Parma, Viale A. Gramsci, 14, 43126, Parma, Italy.
| | - Maria-Cristina Medici
- Unit of Microbiology and Virology - Department of Clinical and Experimental Medicine, University of Parma, Viale A. Gramsci, 14, 43126, Parma, Italy.
| | - Davide Martorana
- Unit of Molecular Genetics, University-Hospital of Parma, Parma, Italy.
| | - Carlo Chezzi
- Unit of Microbiology and Virology - Department of Clinical and Experimental Medicine, University of Parma, Viale A. Gramsci, 14, 43126, Parma, Italy.
| | - Adriana Calderaro
- Unit of Microbiology and Virology - Department of Clinical and Experimental Medicine, University of Parma, Viale A. Gramsci, 14, 43126, Parma, Italy.
| |
Collapse
|
27
|
Ohlin M, Söderberg-Nauclér C. Human antibody technology and the development of antibodies against cytomegalovirus. Mol Immunol 2015; 67:153-70. [DOI: 10.1016/j.molimm.2015.02.026] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2014] [Revised: 02/13/2015] [Accepted: 02/15/2015] [Indexed: 02/08/2023]
|
28
|
Coleman S, Hornig J, Maddux S, Choi KY, McGregor A. Viral Glycoprotein Complex Formation, Essential Function and Immunogenicity in the Guinea Pig Model for Cytomegalovirus. PLoS One 2015; 10:e0135567. [PMID: 26267274 PMCID: PMC4534421 DOI: 10.1371/journal.pone.0135567] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2014] [Accepted: 07/24/2015] [Indexed: 11/19/2022] Open
Abstract
Development of a cytomegalovirus (CMV) vaccine is a major public health priority due to the risk of congenital infection. A key component of a vaccine is thought to be an effective neutralizing antibody response against the viral glycoproteins necessary for cell entry. Species specificity of human CMV (HCMV) precludes direct studies in an animal model. The guinea pig is the only small animal model for congenital cytomegalovirus infection. Analysis of the guinea pig CMV (GPCMV) genome indicates that it potentially encodes homologs to the HCMV glycoproteins (including gB, gH, gL, gM, gN and gO) that form various cell entry complexes on the outside of the virus: gCI (gB); gCII (gH/gL/gO); gCIII (gM/gN). The gB homolog (GP55) has been investigated as a candidate subunit vaccine but little is known about the other homolog proteins. GPCMV glycoproteins were investigated by transient expression studies which indicated that homolog glycoproteins to gN and gM, or gH, gL and gO were able to co-localize in cells and generate respective homolog complexes which could be verified by immunoprecipitation assays. ELISA studies demonstrated that the individual complexes were highly immunogenic in guinea pigs. The gO (GP74) homolog protein has 13 conserved N-glycosylation sites found in HCMV gO. In transient expression studies, only the glycosylated protein is detected but in virus infected cells both N-glycosylated and non-glycosylated gO protein were detected. In protein interaction studies, a mutant gO that lacked N-glycosylation sites had no impact on the ability of the protein to interact with gH/gL which indicated a potential alternative function associated with these sites. Knockout GPCMV BAC mutagenesis of the respective glycoprotein genes (GP55 for gB, GP75 for gH, GP115 for gL, GP100 for gM, GP73 for gN and GP74 for gO) in separate reactions was lethal for virus regeneration on fibroblast cells which demonstrated the essential nature of the GPCMV glycoproteins. The gene knockout results were similar to HCMV, except in the case of the gO homolog, which was non-essential in epithelial tropic virus but essential in lab adapted GPCMV. Overall, the findings demonstrate the similarity between HCMV and GPCMV glycoproteins and strengthen the relevance of this model for development of CMV intervention strategies.
Collapse
Affiliation(s)
- Stewart Coleman
- Department of Microbial Pathogenesis & Immunology, Texas A&M University, Health Science Center, College of Medicine, College Station, TX, United States of America
| | - Julia Hornig
- Department of Microbial Pathogenesis & Immunology, Texas A&M University, Health Science Center, College of Medicine, College Station, TX, United States of America
| | - Sarah Maddux
- Department of Microbial Pathogenesis & Immunology, Texas A&M University, Health Science Center, College of Medicine, College Station, TX, United States of America
| | - K. Yeon Choi
- Department of Microbial Pathogenesis & Immunology, Texas A&M University, Health Science Center, College of Medicine, College Station, TX, United States of America
| | - Alistair McGregor
- Department of Microbial Pathogenesis & Immunology, Texas A&M University, Health Science Center, College of Medicine, College Station, TX, United States of America
- * E-mail:
| |
Collapse
|
29
|
Novel Functions of Hendra Virus G N-Glycans and Comparisons to Nipah Virus. J Virol 2015; 89:7235-47. [PMID: 25948743 DOI: 10.1128/jvi.00773-15] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2015] [Accepted: 04/27/2015] [Indexed: 12/21/2022] Open
Abstract
UNLABELLED Hendra virus (HeV) and Nipah virus (NiV) are reportedly the most deadly pathogens within the Paramyxoviridae family. These two viruses bind the cellular entry receptors ephrin B2 and/or ephrin B3 via the viral attachment glycoprotein G, and the concerted efforts of G and the viral fusion glycoprotein F result in membrane fusion. Membrane fusion is essential for viral entry into host cells and for cell-cell fusion, a hallmark of the disease pathobiology. HeV G is heavily N-glycosylated, but the functions of the N-glycans remain unknown. We disrupted eight predicted N-glycosylation sites in HeV G by conservative mutations (Asn to Gln) and found that six out of eight sites were actually glycosylated (G2 to G7); one in the stalk (G2) and five in the globular head domain (G3 to G7). We then tested the roles of individual and combined HeV G N-glycan mutants and found functions in the modulation of shielding against neutralizing antibodies, intracellular transport, G-F interactions, cell-cell fusion, and viral entry. Between the highly conserved HeV and NiV G glycoproteins, similar trends in the effects of N-glycans on protein functions were observed, with differences in the levels at which some N-glycan mutants affected such functions. While the N-glycan in the stalk domain (G2) had roles that were highly conserved between HeV and NiV G, individual N-glycans in the head affected the levels of several protein functions differently. Our findings are discussed in the context of their contributions to our understanding of HeV and NiV pathogenesis and immune responses. IMPORTANCE Viral envelope glycoproteins are important for viral pathogenicity and immune evasion. N-glycan shielding is one mechanism by which immune evasion can be achieved. In paramyxoviruses, viral attachment and membrane fusion are governed by the close interaction of the attachment proteins H/HN/G and the fusion protein F. In this study, we show that the attachment glycoprotein G of Hendra virus (HeV), a deadly paramyxovirus, is N-glycosylated at six sites (G2 to G7) and that most of these sites have important roles in viral entry, cell-cell fusion, G-F interactions, G oligomerization, and immune evasion. Overall, we found that the N-glycan in the stalk domain (G2) had roles that were very conserved between HeV G and the closely related Nipah virus G, whereas individual N-glycans in the head quantitatively modulated several protein functions differently between the two viruses.
Collapse
|
30
|
Britt W. Controversies in the natural history of congenital human cytomegalovirus infection: the paradox of infection and disease in offspring of women with immunity prior to pregnancy. Med Microbiol Immunol 2015; 204:263-71. [DOI: 10.1007/s00430-015-0399-9] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2015] [Accepted: 02/24/2015] [Indexed: 12/31/2022]
|
31
|
Mohamed HT, El-Shinawi M, Nouh MA, Bashtar AR, Elsayed ET, Schneider RJ, Mohamed MM. Inflammatory breast cancer: high incidence of detection of mixed human cytomegalovirus genotypes associated with disease pathogenesis. Front Oncol 2014; 4:246. [PMID: 25309872 PMCID: PMC4160966 DOI: 10.3389/fonc.2014.00246] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2014] [Accepted: 08/27/2014] [Indexed: 12/11/2022] Open
Abstract
Inflammatory breast cancer (IBC) is a highly metastatic, aggressive, and fatal form of breast cancer. Patients presenting with IBC are characterized by a high number of axillary lymph node metastases. Recently, we found that IBC carcinoma tissues contain significantly higher levels of human cytomegalovirus (HCMV) DNA compared to other breast cancer tissues that may regulate cell signaling pathways. In fact, HCMV pathogenesis and clinical outcome can be statistically associated with multiple HCMV genotypes within IBC. Thus, in the present study, we established the incidence and types of HCMV genotypes present in carcinoma tissues of infected non-IBC versus IBC patients. We also assessed the correlation between detection of mixed genotypes of HCMV and disease progression. Genotyping of HCMV in carcinoma tissues revealed that glycoprotein B (gB)-1 and glycoprotein N (gN)-1 were the most prevalent HCMV genotypes in both non-IBC and IBC patients with no significant difference between patients groups. IBC carcinoma tissues, however, showed statistically significant higher incidence of detection of the gN-3b genotype compared to non-IBC patients. The incidence of detection of mixed genotypes of gB showed that gB-1 + gB-3 was statistically significantly higher in IBC than non-IBC patients. Similarly, the incidence of detection of mixed genotypes of gN showed that gN-1 + gN-3b and gN-3 + gN-4b/c were statistically significant higher in the carcinoma tissues of IBC than non-IBC. Mixed presence of different HCMV genotypes was found to be significantly correlated with the number of metastatic lymph nodes in non-IBC but not in IBC patients. In IBC, detection of mixed HCMV different genotypes significantly correlates with lymphovascular invasion and formation of dermal lymphatic emboli, which was not found in non-IBC patients.
Collapse
Affiliation(s)
| | - Mohamed El-Shinawi
- Department of General Surgery, Faculty of Medicine, Ain Shams University , Cairo , Egypt
| | - M Akram Nouh
- Department of Pathology, National Cancer Institute, Cairo University , Giza , Egypt
| | | | | | - Robert J Schneider
- Department of Microbiology, School of Medicine, New York University , New York, NY , USA
| | | |
Collapse
|
32
|
Lin M, Jia R, Wang M, Gao X, Zhu D, Chen S, Liu M, Yin Z, Wang Y, Chen X, Cheng A. Molecular characterization of duck enteritis virus CHv strain UL49.5 protein and its colocalization with glycoprotein M. J Vet Sci 2014; 15:389-98. [PMID: 24690604 PMCID: PMC4178140 DOI: 10.4142/jvs.2014.15.3.389] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2013] [Accepted: 03/13/2014] [Indexed: 01/15/2023] Open
Abstract
The UL49.5 gene of most herpesviruses is conserved and encodes glycoprotein N. However, the UL49.5 protein of duck enteritis virus (DEV) (pUL49.5) has not been reported. In the current study, the DEV pUL49.5 gene was first subjected to molecular characterization. To verify the predicted intracellular localization of gene expression, the recombinant plasmid pEGFP-C1/pUL49.5 was constructed and used to transfect duck embryo fibroblasts. Next, the recombinant plasmid pDsRed1-N1/glycoprotein M (gM) was produced and used for co-transfection with the pEGFP-C1/pUL49.5 plasmid to determine whether DEV pUL49.5 and gM (a conserved protein in herpesviruses) colocalize. DEV pUL49.5 was thought to be an envelope glycoprotein with a signal peptide and two transmembrane domains. This protein was also predicted to localize in the cytoplasm and endoplasmic reticulum with a probability of 66.7%. Images taken by a fluorescence microscope at different time points revealed that the DEV pUL49.5 and gM proteins were both expressed in the cytoplasm. Overlap of the two different fluorescence signals appeared 12 h after transfection and continued to persist until the end of the experiment. These data indicate a possible interaction between DEV pUL49.5 and gM.
Collapse
Affiliation(s)
- Meng Lin
- Avian Disease Research Center, Sichuan Agricultural University, Chengdu 611130, China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Molecular and biological characterization of a new isolate of guinea pig cytomegalovirus. Viruses 2014; 6:448-75. [PMID: 24473341 PMCID: PMC3939465 DOI: 10.3390/v6020448] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2013] [Revised: 01/09/2014] [Accepted: 01/09/2014] [Indexed: 12/28/2022] Open
Abstract
Development of a vaccine against congenital infection with human cytomegalovirus is complicated by the issue of re-infection, with subsequent vertical transmission, in women with pre-conception immunity to the virus. The study of experimental therapeutic prevention of re-infection would ideally be undertaken in a small animal model, such as the guinea pig cytomegalovirus (GPCMV) model, prior to human clinical trials. However, the ability to model re-infection in the GPCMV model has been limited by availability of only one strain of virus, the 22122 strain, isolated in 1957. In this report, we describe the isolation of a new GPCMV strain, the CIDMTR strain. This strain demonstrated morphological characteristics of a typical Herpesvirinae by electron microscopy. Illumina and PacBio sequencing demonstrated a genome of 232,778 nt. Novel open reading frames ORFs not found in reference strain 22122 included an additional MHC Class I homolog near the right genome terminus. The CIDMTR strain was capable of dissemination in immune compromised guinea pigs, and was found to be capable of congenital transmission in GPCMV-immune dams previously infected with salivary gland‑adapted strain 22122 virus. The availability of a new GPCMV strain should facilitate study of re-infection in this small animal model.
Collapse
|
34
|
Cytomegalovirus vaccine strain towne-derived dense bodies induce broad cellular immune responses and neutralizing antibodies that prevent infection of fibroblasts and epithelial cells. J Virol 2013; 87:11107-20. [PMID: 23926341 DOI: 10.1128/jvi.01554-13] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Human cytomegalovirus (HCMV), a betaherpesvirus, can cause severe disease in immunosuppressed patients and following congenital infection. A vaccine that induces both humoral and cellular immunity may be required to prevent congenital infection. Dense bodies (DBs) are complex, noninfectious particles produced by HCMV-infected cells and may represent a vaccine option. As knowledge of the antigenicity and immunogenicity of DB is incomplete, we explored characterization methods and defined DB production methods, followed by systematic evaluation of neutralization and cell-mediated immune responses to the DB material in BALB/c mice. DBs purified from Towne-infected cultures treated with the viral terminase inhibitor 2-bromo-5,6-dichloro-1-beta-d-ribofuranosyl benzimidazole riboside (BDCRB) were characterized by nanoparticle tracking analysis (NTA), two-dimensional fluorescence difference gel electrophoresis (2D-DIGE), immunoblotting, quantitative enzyme-linked immunosorbent assay, and other methods. The humoral and cellular immune responses to DBs were compared to the immunogenicity of glycoprotein B (gB) administered with the adjuvant AddaVax (gB/AddaVax). DBs induced neutralizing antibodies that prevented viral infection of cultured fibroblasts and epithelial cells and robust cell-mediated immune responses to multiple viral proteins, including pp65, gB, and UL48. In contrast, gB/AddaVax failed to induce neutralizing antibodies that prevented infection of epithelial cells, highlighting a critical difference in the humoral responses induced by these vaccine candidates. Our data advance the potential for the DB vaccine approach, demonstrate important immunogenicity properties, and strongly support the further evaluation of DBs as a CMV vaccine candidate.
Collapse
|