1
|
Olivera C, Paira DA, Olmedo A, Olmedo JJ, Tissera AD, Molina RI, Motrich RD, Cuffini CG, Rivero VE. Impact of high-risk and low-risk human papillomavirus infections on the male genital tract: effects on semen inflammation and sperm quality. Front Cell Infect Microbiol 2024; 14:1420307. [PMID: 39258253 PMCID: PMC11385601 DOI: 10.3389/fcimb.2024.1420307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Accepted: 06/25/2024] [Indexed: 09/12/2024] Open
Abstract
Human Papillomavirus (HPV), a prevalent sexually transmitted infection, comprises high-risk (HR-HPV) and low-risk (LR-HPV) viruses, the former posing a high risk for developing malignancies whereas the latter mainly for benign warts. Despite increasing awareness of HPV's impact on men's health, the influence of HR-HPV and LR-HPV urogenital infections on male fertility potential remains uncertain. This study aimed to investigate whether male urogenital infection with HR- or LR-HPV associates with impaired sperm quality, oxidative stress, and inflammation. A total of 205 male patients attending an urology clinic were enrolled. Semen samples were analyzed for HPV using PCR and genotyped by RFLP. Semen quality was evaluated following WHO guidelines. Semen leukocytes, reactive oxygen species (ROS), and sperm viability were analyzed using flow cytometry. HPV was detected in 19% (39/205) of semen samples. HR-HPV infections were more prevalent, with HPV-16 being the most frequent genotype. Neither HR-HPV nor LR-HPV were associated with significant alterations in routine sperm quality parameters. However, HR-HPV+ individuals showed significantly higher levels of sperm necrosis and exhibited increased proportions of ROS+ spermatozoa compared to LR-HPV+ or control individuals. Furthermore, no significant semen inflammation was detected in patients infected with either HR-HPV or LR-HPV, and unexpectedly reduced semen leukocytes and inflammatory cytokines (IL-6 and IL-1β) were observed in HR-HPV+ patients compared to controls. These observations underscore the importance of comprehensive HPV screening, including genotyping, in urology and fertility clinics to understand the progression of the infection, potential adverse effects on reproductive health, and the oncogenic risks involved.
Collapse
Affiliation(s)
- Carolina Olivera
- Federation of Clinical Immunology Societies (FOCIS) Center of Excellence Centro de Inmunología Clínica de Córdoba (CICC), Córdoba, Argentina
- Centro de Investigaciones en Bioquímica Clínica e Inmunología (CIBICI)-CONICET, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina
| | - Daniela A Paira
- Federation of Clinical Immunology Societies (FOCIS) Center of Excellence Centro de Inmunología Clínica de Córdoba (CICC), Córdoba, Argentina
- Centro de Investigaciones en Bioquímica Clínica e Inmunología (CIBICI)-CONICET, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina
| | - Andrés Olmedo
- Dirección de Asistencia Social del Personal Universitario (DASPU), Universidad Nacional de Córdoba, Córdoba, Argentina
| | - José J Olmedo
- Federation of Clinical Immunology Societies (FOCIS) Center of Excellence Centro de Inmunología Clínica de Córdoba (CICC), Córdoba, Argentina
- Fundación Urológica Córdoba para la Docencia e Investigación Médica (FUCDIM), Córdoba, Argentina
| | - Andrea D Tissera
- Federation of Clinical Immunology Societies (FOCIS) Center of Excellence Centro de Inmunología Clínica de Córdoba (CICC), Córdoba, Argentina
- Laboratorio de Andrología y Reproducción (LAR), Córdoba, Argentina
| | - Rosa I Molina
- Federation of Clinical Immunology Societies (FOCIS) Center of Excellence Centro de Inmunología Clínica de Córdoba (CICC), Córdoba, Argentina
- Laboratorio de Andrología y Reproducción (LAR), Córdoba, Argentina
| | - Rubén D Motrich
- Federation of Clinical Immunology Societies (FOCIS) Center of Excellence Centro de Inmunología Clínica de Córdoba (CICC), Córdoba, Argentina
- Centro de Investigaciones en Bioquímica Clínica e Inmunología (CIBICI)-CONICET, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina
| | - Cecilia G Cuffini
- Instituto de Virología Dr. Jose Maria Vanella, Facultad de Ciencias Médicas, Universidad Nacional de Córdoba, Córdoba, Argentina
| | - Virginia E Rivero
- Federation of Clinical Immunology Societies (FOCIS) Center of Excellence Centro de Inmunología Clínica de Córdoba (CICC), Córdoba, Argentina
- Centro de Investigaciones en Bioquímica Clínica e Inmunología (CIBICI)-CONICET, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina
| |
Collapse
|
2
|
Liu Y, Niu M, Luo Y, Pan M, Hong S. DNA damage response and inflammatory response: Two traffic lights for HPVs on the road to transformation. J Med Virol 2024; 96:e29815. [PMID: 39073137 DOI: 10.1002/jmv.29815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 06/17/2024] [Accepted: 07/08/2024] [Indexed: 07/30/2024]
Abstract
Human papillomaviruses (HPVs) are non-enveloped double-stranded DNA viruses. When HPV infection persists, infected tissues can develop many HPV-related diseases such as cervical cancer and head and neck squamous cell carcinoma. To establish their persistent infection, HPVs have evolved mechanisms to manipulate the host cellular processes such as DNA damage response (DDR), which includes homologous recombination, nonhomologous end joining, and microhomology-mediated end joining. Additionally, HPVs utilize host inflammatory processes to facilitate their life cycles. Here, we bridge the concepts of DDR and inflammatory response, and discuss how HPV proteins orchestrate a sophisticated manipulation of DDR and inflammation to promote their viral replication, ultimately fostering the progression of infected cells towards oncogenic transformation to malignancy.
Collapse
Affiliation(s)
- Yanfei Liu
- Institute of Life Sciences, Chongqing Medical University, Chongqing, China
| | - Mengda Niu
- Institute of Life Sciences, Chongqing Medical University, Chongqing, China
| | - Ying Luo
- Institute of Life Sciences, Chongqing Medical University, Chongqing, China
| | - Min Pan
- Department of Otorhinolaryngology, The First Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Shiyuan Hong
- Institute of Life Sciences, Chongqing Medical University, Chongqing, China
| |
Collapse
|
3
|
Khalil MI, Yang C, Vu L, Chadha S, Nabors H, James CD, Morgan IM, Pyeon D. The membrane-associated ubiquitin ligase MARCHF8 stabilizes the human papillomavirus oncoprotein E7 by degrading CUL1 and UBE2L3 in head and neck cancer. J Virol 2024; 98:e0172623. [PMID: 38226814 PMCID: PMC10878100 DOI: 10.1128/jvi.01726-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Accepted: 12/15/2023] [Indexed: 01/17/2024] Open
Abstract
The human papillomavirus (HPV) oncoprotein E7 is a relatively short-lived protein required for HPV-driven cancer development and maintenance. E7 is degraded through ubiquitination mediated by cullin 1 (CUL1) and the ubiquitin-conjugating enzyme E2 L3 (UBE2L3). However, E7 proteins are maintained at high levels in most HPV-positive cancer cells. A previous proteomics study has shown that UBE2L3 and CUL1 protein levels are increased by the knockdown of the E3 ubiquitin ligase membrane-associated ring-CH-type finger 8 (MARCHF8). We have recently demonstrated that HPV16 upregulates MARCHF8 expression in HPV-positive keratinocytes and head and neck cancer (HPV+ HNC) cells. Here, we report that MARCHF8 stabilizes the HPV16 E7 protein by degrading the components of the S-phase kinase-associated protein 1-CUL1-F-box ubiquitin ligase complex in HPV+ HNC cells. We found that MARCHF8 knockdown in HPV+ HNC cells drastically decreases the HPV16 E7 protein level while increasing the CUL1 and UBE2L3 protein levels. We further revealed that the MARCHF8 protein binds to and ubiquitinates CUL1 and UBE2L3 proteins and that MARCHF8 knockdown enhances the ubiquitination of the HPV16 E7 protein. Conversely, the overexpression of CUL1 and UBE2L3 in HPV+ HNC cells decreases HPV16 E7 protein levels and suppresses tumor growth in vivo. Our findings suggest that HPV-induced MARCHF8 prevents the degradation of the HPV16 E7 protein in HPV+ HNC cells by ubiquitinating and degrading CUL1 and UBE2L3 proteins.IMPORTANCESince human papillomavirus (HPV) oncoprotein E7 is essential for virus replication; HPV has to maintain high levels of E7 expression in HPV-infected cells. However, HPV E7 can be efficiently ubiquitinated by a ubiquitin ligase and degraded by proteasomes in the host cell. Mechanistically, the E3 ubiquitin ligase complex cullin 1 (CUL1) and ubiquitin-conjugating enzyme E2 L3 (UBE2L3) components play an essential role in E7 ubiquitination and degradation. Here, we show that the membrane ubiquitin ligase membrane-associated ring-CH-type finger 8 (MARCHF8) induced by HPV16 E6 stabilizes the E7 protein by degrading CUL1 and UBE2L3 and blocking E7 degradation through proteasomes. MARCHF8 knockout restores CUL1 and UBE2L3 expression, decreasing E7 protein levels and inhibiting the proliferation of HPV-positive cancer cells. Additionally, overexpression of CUL1 or UBE2L3 decreases E7 protein levels and suppresses in vivo tumor growth. Our results suggest that HPV16 maintains high E7 protein levels in the host cell by inducing MARCHF8, which may be critical for cell proliferation and tumorigenesis.
Collapse
Affiliation(s)
- Mohamed I. Khalil
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, Michigan, USA
- Department of Molecular Biology, National Research Centre, Cairo, Egypt
| | - Canchai Yang
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, Michigan, USA
| | - Lexi Vu
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, Michigan, USA
| | - Smriti Chadha
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, Michigan, USA
| | - Harrison Nabors
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, Michigan, USA
| | - Claire D. James
- Philips Institute for Oral Health Research, School of Dentistry, Virginia Commonwealth University, Richmond, Virginia, USA
| | - Iain M. Morgan
- Philips Institute for Oral Health Research, School of Dentistry, Virginia Commonwealth University, Richmond, Virginia, USA
| | - Dohun Pyeon
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, Michigan, USA
| |
Collapse
|
4
|
Ottinger S, Robertson CM, Branthoover H, Patras KA. The human vaginal microbiota: from clinical medicine to models to mechanisms. Curr Opin Microbiol 2024; 77:102422. [PMID: 38215548 PMCID: PMC11160953 DOI: 10.1016/j.mib.2023.102422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 12/12/2023] [Accepted: 12/19/2023] [Indexed: 01/14/2024]
Abstract
The composition of the vaginal microbiota is linked to numerous reproductive health problems, including increased susceptibility to infection, pregnancy complications, and impaired vaginal tissue repair; however, the mechanisms contributing to these adverse outcomes are not yet fully defined. In this review, we highlight recent clinical advancements associating vaginal microbiome composition and function with health outcomes. Subsequently, we provide a summary of emerging models employed to identify microbe-microbe interactions contributing to vaginal health, including metagenomic sequencing, multi-omics approaches, and advances in vaginal microbiota cultivation. Last, we review new in vitro, ex vivo, and in vivo models, such as organoids and humanized microbiota murine models, used to define and mechanistically explore host-microbe interactions at the vaginal mucosa.
Collapse
Affiliation(s)
- Samantha Ottinger
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Clare M Robertson
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Holly Branthoover
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Kathryn A Patras
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX 77030, USA; Alkek Center for Metagenomics and Microbiome Research, Baylor College of Medicine, Houston, TX 77030, USA.
| |
Collapse
|
5
|
Samare-Najaf M, Samareh A, Savardashtaki A, Khajehyar N, Tajbakhsh A, Vakili S, Moghadam D, Rastegar S, Mohsenizadeh M, Jahromi BN, Vafadar A, Zarei R. Non-apoptotic cell death programs in cervical cancer with an emphasis on ferroptosis. Crit Rev Oncol Hematol 2024; 194:104249. [PMID: 38145831 DOI: 10.1016/j.critrevonc.2023.104249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 12/10/2023] [Accepted: 12/20/2023] [Indexed: 12/27/2023] Open
Abstract
BACKGROUND Cervical cancer, a pernicious gynecological malignancy, causes the mortality of hundreds of thousands of females worldwide. Despite a considerable decline in mortality, the surging incidence rate among younger women has raised serious concerns. Immortality is the most important characteristic of tumor cells, hence the carcinogenesis of cervical cancer cells pivotally requires compromising with cell death mechanisms. METHODS The current study comprehensively reviewed the mechanisms of non-apoptotic cell death programs to provide possible disease management strategies. RESULTS Comprehensive evidence has stated that focusing on necroptosis, pyroptosis, and autophagy for disease management is associated with significant limitations such as insufficient understanding, contradictory functions, dependence on disease stage, and complexity of intracellular pathways. However, ferroptosis represents a predictable role in cervix carcinogenesis, and ferroptosis-related genes demonstrate a remarkable correlation with patient survival and clinical outcomes. CONCLUSION Ferroptosis may be an appropriate option for disease management strategies from predicting prognosis to treatment.
Collapse
Affiliation(s)
- Mohammad Samare-Najaf
- Department of Biochemistry, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran; Blood Transfusion Research Center, High Institute for Research and Education in Transfusion Medicine, Kerman Regional Blood Transfusion Center, Kerman, Iran.
| | - Ali Samareh
- Department of Biochemistry, School of Medicine, Kerman University of Medical Sciences, Kerman, Iran.
| | - Amir Savardashtaki
- Department of Medical Biotechnology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran; Infertility Research Center, Shiraz University of Medical Sciences, Shiraz, Iran.
| | - Nastaran Khajehyar
- Blood Transfusion Research Center, High Institute for Research and Education in Transfusion Medicine, Kerman Regional Blood Transfusion Center, Kerman, Iran
| | - Amir Tajbakhsh
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran; Department of Molecular Medicine, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Sina Vakili
- Infertility Research Center, Shiraz University of Medical Sciences, Shiraz, Iran.
| | - Delaram Moghadam
- Department of Biochemistry, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran; Department of Medicinal Chemistry, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Sanaz Rastegar
- Department of Microbiology and Virology, School of Medicine, Kerman University of Medical Sciences, Kerman, Iran
| | - Majid Mohsenizadeh
- Blood Transfusion Research Center, High Institute for Research and Education in Transfusion Medicine, Kerman Regional Blood Transfusion Center, Kerman, Iran
| | | | - Asma Vafadar
- Department of Medical Biotechnology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Reza Zarei
- Department of Biochemistry, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
6
|
Nittala MR, Yang J, Velazquez AE, Salvemini JD, Vance GR, Grady CC, Hathaway B, Roux JA, Vijayakumar S. Precision Population Cancer Medicine in Cancer of the Uterine Cervix: A Potential Roadmap to Eradicate Cervical Cancer. Cureus 2024; 16:e53733. [PMID: 38455773 PMCID: PMC10919943 DOI: 10.7759/cureus.53733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/06/2024] [Indexed: 03/09/2024] Open
Abstract
With the success of the Human Genome Project, the era of genomic medicine (GM) was born. Later on, as GM made progress, there was a feeling of exhilaration that GM could help resolve many disease processes. It also led to the conviction that personalized medicine was possible, and a relatively synonymous word, precision medicine (PM), was coined. However, the influence of environmental factors and social determinants of diseases was only partially given their due importance in the definition of PM, although more recently, this has been recognized. With the rapid advances in GM, big data, data mining, wearable devices for health monitoring, telemedicine, etc., PM can be more easily extended to population-level health care in disease management, prevention, early screening, and so on.and the term precision population medicine (PPM) more aptly describes it. PPM's potential in cancer care was posited earlier,and the current authors planned a series of cancer disease-specific follow-up articles. These papers are mainly aimed at helping emerging students in health sciences (medicine, pharmacy, nursing, dentistry, public health, population health), healthcare management (health-focused business administration, nonprofit administration, public institutional administration, etc.), and policy-making (e.g., political science), although not exclusively. This first disease-specific report focuses on the cancer of the uterine cervix (CC). It describes how recent breakthroughs can be leveraged as force multipliers to improve outcomes in CC - by improving early detection, better screening for CC, potential GM-based interventions during the stage of persistent Human papillomavirus (HPV) infection and treatment interventions - especially among the disadvantaged and resource-scarce populations. This work is a tiny step in our attempts to improve outcomes in CC and ultimately eradicate CC from the face of the earth.
Collapse
Affiliation(s)
- Mary R Nittala
- Radiation Oncology, University of Mississippi Medical Center, Jackson, USA
| | - Johnny Yang
- Radiation Oncology, University of Mississippi Medical Center, Jackson, USA
| | | | - John D Salvemini
- Radiation Oncology, University of Mississippi Medical Center, Jackson, USA
| | - Gregory R Vance
- Radiation Oncology, University of Mississippi Medical Center, Jackson, USA
| | - Camille C Grady
- Radiation Oncology, University of Mississippi Medical Center, Jackson, USA
| | - Bradley Hathaway
- Radiation Oncology, University of Mississippi Medical Center, Jackson, USA
| | - Jeffrey A Roux
- Radiation Oncology, University of Mississippi Medical Center, Jackson, USA
| | | |
Collapse
|
7
|
Khalil MI, Yang C, Vu L, Chadha S, Nabors H, James CD, Morgan IM, Pyeon D. The membrane-associated ubiquitin ligase MARCHF8 stabilizes the human papillomavirus oncoprotein E7 by degrading CUL1 and UBE2L3 in head and neck cancer. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.11.03.565564. [PMID: 37961092 PMCID: PMC10635129 DOI: 10.1101/2023.11.03.565564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
Abstract
The human papillomavirus (HPV) oncoprotein E7 is a relatively short-lived protein required for HPV-driven cancer development and maintenance. E7 is degraded through ubiquitination mediated by cullin 1 (CUL1) and the ubiquitin-conjugating enzyme E2 L3 (UBE2L3). However, E7 proteins are maintained at high levels in most HPV-positive cancer cells. A previous proteomics study has shown that UBE2L3 and CUL1 protein levels are increased by the knockdown of the E3 ubiquitin ligase membrane-associated ring-CH-type finger 8 (MARCHF8). We have recently demonstrated that HPV upregulates MARCHF8 expression in HPV-positive keratinocytes and head and neck cancer (HPV+ HNC) cells. Here, we report that MARCHF8 stabilizes the E7 protein by degrading the components of the SKP1-CUL1-F-box (SCF) ubiquitin ligase complex in HPV+ HNC cells. We found that MARCHF8 knockdown in HPV+ HNC cells drastically decreases the E7 protein level while increasing the CUL1 and UBE2L3 protein levels. We further revealed that the MARCHF8 protein binds to and ubiquitinates CUL1 and UBE2L3 proteins and that MARCHF8 knockdown enhances the ubiquitination of the E7 protein. Conversely, the overexpression of CUL1 and UBE2L3 in HPV+ HNC cells decreases E7 protein levels and suppresses tumor growth in vivo. Our findings suggest that HPV-induced MARCHF8 prevents the degradation of the E7 protein in HPV+ HNC cells by ubiquitinating and degrading CUL1 and UBE2L3 proteins.
Collapse
Affiliation(s)
- Mohamed I. Khalil
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, Michigan, USA
- Department of Molecular Biology, National Research Centre, El-Buhouth St., Cairo, Egypt
| | - Canchai Yang
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, Michigan, USA
| | - Lexi Vu
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, Michigan, USA
| | - Smriti Chadha
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, Michigan, USA
| | - Harrison Nabors
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, Michigan, USA
| | - Claire D. James
- Philips Institute for Oral Health Research, School of Dentistry, Virginia Commonwealth University, Richmond, Virginia, USA
| | - Iain M. Morgan
- Philips Institute for Oral Health Research, School of Dentistry, Virginia Commonwealth University, Richmond, Virginia, USA
| | - Dohun Pyeon
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, Michigan, USA
| |
Collapse
|
8
|
Fernandes FP, Cambui RAG, Soares JLDS, Reis ECD, Leal VNC, Pontillo A. Cervical carcinoma induces NLRP3 inflammasome activation and IL-1ß release in human peripheral blood monocytes affecting patients' overall survival. Clin Transl Oncol 2023; 25:3277-3286. [PMID: 37328588 DOI: 10.1007/s12094-023-03241-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Accepted: 05/24/2023] [Indexed: 06/18/2023]
Abstract
PURPOSE Our group previously demonstrated that genetic variants in inflammasome genes contribute to protection against the establishment of human papilloma virus (HPV)-associated cervical carcinoma (CC). The objective of this study was to better understand the contribution of inflammasome and its cytokines in the CC microenvironment. METHODS The inflammasome activation was analyzed in CC tumoral cell lines and healthy donors (HD)' monocytes in co-culture. In vitro results were then compared to CC patients' public databases. RESULTS CC cells did not produce IL-1ß or IL-18 themselves, however, when in co-culture with HD monocytes, induced IL-1ß release in those leucocytes. Inflammasome activation appears to be partially dependent on the NLRP3 receptor. Public data analysis revealed that IL1B expression is increased in the CC compared to normal uterine cervix, and that patients with high IL1B expression had a shorter overall survival. CONCLUSION CC microenvironment can activate the inflammasome and IL-1ß release in surrounding monocytes, which could be detrimental for CC prognosis.
Collapse
Affiliation(s)
- Fernanda Pereira Fernandes
- Laboratório de Imunogenética, Departamento de Imunologia, Instituto de Ciências Biomédicas (ICB), Universidade de São Paulo (USP), Av. Prof. Lineu Prestes 1730, Cidade Universitária, São Paulo, SP, Brazil
| | - Raylane Adrielle Gonçalves Cambui
- Laboratório de Imunogenética, Departamento de Imunologia, Instituto de Ciências Biomédicas (ICB), Universidade de São Paulo (USP), Av. Prof. Lineu Prestes 1730, Cidade Universitária, São Paulo, SP, Brazil.
| | - Jaíne Lima da Silva Soares
- Laboratório de Imunogenética, Departamento de Imunologia, Instituto de Ciências Biomédicas (ICB), Universidade de São Paulo (USP), Av. Prof. Lineu Prestes 1730, Cidade Universitária, São Paulo, SP, Brazil
| | - Edione Cristina Dos Reis
- Laboratório de Imunogenética, Departamento de Imunologia, Instituto de Ciências Biomédicas (ICB), Universidade de São Paulo (USP), Av. Prof. Lineu Prestes 1730, Cidade Universitária, São Paulo, SP, Brazil
| | - Vinícius Nunes Cordeiro Leal
- Laboratório de Imunogenética, Departamento de Imunologia, Instituto de Ciências Biomédicas (ICB), Universidade de São Paulo (USP), Av. Prof. Lineu Prestes 1730, Cidade Universitária, São Paulo, SP, Brazil
| | - Alessandra Pontillo
- Laboratório de Imunogenética, Departamento de Imunologia, Instituto de Ciências Biomédicas (ICB), Universidade de São Paulo (USP), Av. Prof. Lineu Prestes 1730, Cidade Universitária, São Paulo, SP, Brazil
| |
Collapse
|
9
|
Margul D, Yu C, AlHilli MM. Tumor Immune Microenvironment in Gynecologic Cancers. Cancers (Basel) 2023; 15:3849. [PMID: 37568665 PMCID: PMC10417375 DOI: 10.3390/cancers15153849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 07/23/2023] [Accepted: 07/24/2023] [Indexed: 08/13/2023] Open
Abstract
Gynecologic cancers have varying response rates to immunotherapy due to the heterogeneity of each cancer's molecular biology and features of the tumor immune microenvironment (TIME). This article reviews key features of the TIME and its role in the pathophysiology and treatment of ovarian, endometrial, cervical, vulvar, and vaginal cancer. Knowledge of the role of the TIME in gynecologic cancers has been rapidly developing with a large body of preclinical studies demonstrating an intricate yet dichotomous role that the immune system plays in either supporting the growth of cancer or opposing it and facilitating effective treatment. Many targets and therapeutics have been identified including cytokines, antibodies, small molecules, vaccines, adoptive cell therapy, and bacterial-based therapies but most efforts in gynecologic cancers to utilize them have not been effective. However, with the development of immune checkpoint inhibitors, we have started to see the rapid and successful employment of therapeutics in cervical and endometrial cancer. There remain many challenges in utilizing the TIME, particularly in ovarian cancer, and further studies are needed to identify and validate efficacious therapeutics.
Collapse
Affiliation(s)
| | | | - Mariam M. AlHilli
- Department of Obstetrics and Gynecology, Division of Gynecologic Oncology, Cleveland Clinic, Cleveland, OH 44195, USA; (D.M.); (C.Y.)
| |
Collapse
|
10
|
Ding M, Yu Y, Zhu Z, Tian H, Guo Y, Zan R, Tian Y, Jiang R, Li K, Sun G, Han R, Li D, Kang X, Yan F. Regulation of the MyD88 gene in chicken spleen inflammation induced by stress. J Anim Sci 2023; 101:skad060. [PMID: 36805927 PMCID: PMC10022378 DOI: 10.1093/jas/skad060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Accepted: 02/17/2023] [Indexed: 02/22/2023] Open
Abstract
In order to investigate the regulatory role of the myeloid differentiation factor 88 (MyD88) gene in the stress inflammatory response to chicken spleen, the chicken stress model and macrophage (HD11) inflammation model were constructed in this study. Enzyme-linked immunosorbent assay and quantitative real-time PCR were used to investigate the effects of MyD88 on immune and inflammatory indicators. The results demonstrated that the levels of IgG, CD3+ and CD4+ in the serum of chickens in the beak trimming stress and heat stress groups decreased significantly compared to the control group without stress (P < 0.05), and the inflammation-related indices IL-1β, TNF-α, IL-6 and NF-κB increased significantly (P < 0.05). Stress up-regulated the expression levels of MyD88, IL-1β, NF-κB and TLR4 in the spleen, stimulated the release of inflammatory factors. Overexpression of MyD88 significantly up-regulated the expression levels of the inflammatory factors IL-1β, TNF-α, IL-8, NF-κB and TLR4 in HD11 cells (P < 0.05). Co-treatment with lipopolysaccharide (LPS) further promoted the expression levels of the inflammatory cytokines in HD11 cells. Interference with the expression of MyD88 significantly reduced the expression level of inflammatory factors in HD11 cells (P < 0.05) and had an antagonistic effect with LPS to alleviate the inflammatory reaction. In conclusion, the MyD88 gene has a pro-inflammatory effect and is highly expressed in the beak trimming and heat stress models in chicks, regulating the inflammatory response in poultry. It was involved in regulating the expression of immune-related genes in HD11 cells and had a synergistic effect with LPS.
Collapse
Affiliation(s)
- Mengxia Ding
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450046, China
- Henan Key Laboratory for Innovation and Utilization of Chicken Germplasm Resources, Zhengzhou 450046, China
| | - Yange Yu
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450046, China
- Henan Key Laboratory for Innovation and Utilization of Chicken Germplasm Resources, Zhengzhou 450046, China
| | - Zhaoyan Zhu
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450046, China
- Henan Key Laboratory for Innovation and Utilization of Chicken Germplasm Resources, Zhengzhou 450046, China
| | - Huihui Tian
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China
- Henan Key Laboratory for Innovation and Utilization of Chicken Germplasm Resources, Zhengzhou 450046, China
| | - Yujie Guo
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China
- Henan Key Laboratory for Innovation and Utilization of Chicken Germplasm Resources, Zhengzhou 450046, China
| | - Ruilong Zan
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450046, China
| | - Yadong Tian
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China
- Henan Key Laboratory for Innovation and Utilization of Chicken Germplasm Resources, Zhengzhou 450046, China
| | - Ruirui Jiang
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China
- Henan Key Laboratory for Innovation and Utilization of Chicken Germplasm Resources, Zhengzhou 450046, China
| | - Kui Li
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450046, China
| | - Guirong Sun
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China
- Henan Key Laboratory for Innovation and Utilization of Chicken Germplasm Resources, Zhengzhou 450046, China
| | - Ruili Han
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China
- Henan Key Laboratory for Innovation and Utilization of Chicken Germplasm Resources, Zhengzhou 450046, China
| | - Donghua Li
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China
- Henan Key Laboratory for Innovation and Utilization of Chicken Germplasm Resources, Zhengzhou 450046, China
| | - Xiangtao Kang
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China
- Henan Key Laboratory for Innovation and Utilization of Chicken Germplasm Resources, Zhengzhou 450046, China
| | - Fengbin Yan
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450046, China
- Henan Key Laboratory for Innovation and Utilization of Chicken Germplasm Resources, Zhengzhou 450046, China
| |
Collapse
|
11
|
Pyroptosis and Its Role in Cervical Cancer. Cancers (Basel) 2022; 14:cancers14235764. [PMID: 36497244 PMCID: PMC9739612 DOI: 10.3390/cancers14235764] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 11/21/2022] [Accepted: 11/21/2022] [Indexed: 11/25/2022] Open
Abstract
Pyroptosis, an inflammatory programmed cell death, is characterized by the caspase-mediated pore formation of plasma membranes and the release of large quantities of inflammatory mediators. In recent years, the morphological characteristics, induction mechanism and action process of pyroptosis have been gradually unraveled. As a malignant tumor with high morbidity and mortality, cervical cancer is seriously harmful to women's health. It has been found that pyroptosis is closely related to the initiation and development of cervical cancer. In this review the mechanisms of pyroptosis and its role in the initiation, progression and treatment application of cervical cancer are summarized and discussed.
Collapse
|
12
|
Abstract
The human papillomavirus (HPV) E6 and E7 oncogenes are expressed at all stages of HPV-mediated carcinogenesis and are essential drivers of cancers caused by high-risk HPV. Some of the activities of HPV E6 and E7, such as their interactions with host cellular tumor suppressors, have been characterized extensively. There is less information about how high-risk HPV E6 and E7 alter cellular responses to cytokines that are present in HPV-infected tissues and are an important component of the tumor microenvironment. We used several models of HPV oncoprotein activity to assess how HPV16 E6 and E7 alter the cellular response to the proinflammatory cytokine IL-1β. Models of early stage HPV infection and of established HPV-positive head and neck cancers exhibited similar dysregulation of IL-1 pathway genes and suppressed transcriptional responses to IL-1β treatment. Such overlap in cell responses supports that changes induced by HPV16 E6 and E7 early in infection could persist and contribute to a dysregulated immune environment throughout carcinogenesis. HPV16 E6 and E7 also drove the upregulation of several suppressors of IL-1 cytokine signaling, including SIGIRR, both in primary keratinocytes and in cancer cells. SIGIRR knockout was insufficient to increase IL-1β-dependent gene expression in the presence of HPV16 E6 and E7, suggesting that multiple suppressors of IL-1 signaling contribute to dampened IL-1 responses in HPV16-positive cells. IMPORTANCE Human papillomavirus (HPV) infection is responsible for nearly 5% of the worldwide cancer burden. HPV-positive tumors develop over years to decades in tissues that are subject to frequent stimulation by proinflammatory cytokines. However, the effects of HPV oncoproteins on the cellular response to cytokine stimulation are not well defined. We analyzed IL-1 cytokine signaling in several models of HPV biology and disease. We found that HPV16 E6 and E7 oncoproteins mediate a broad and potent suppression of cellular responses to IL-1β in models of both early and late stages of carcinogenesis. Our data provide a resource for future investigation of IL-1 signaling in HPV-positive cells and cancers.
Collapse
|
13
|
Douzandeh-Mobarrez B, Kariminik A, Kazemi Arababadi M, Kheirkhah B. TLR9 in the Human Papilloma Virus Infections: Friend or Foe? Viral Immunol 2022; 35:457-464. [PMID: 35588473 DOI: 10.1089/vim.2021.0223] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Immune system plays dual roles during human papilloma virus (HPV) infections, from defense against the virus to induction or stimulation of the HPV-related cancers. It appears that various differences within the immune-related genes and the functions of the immunological parameters of the patients are the main factors responsible for the roles played by immune system during HPV infections. Toll-like receptors (TLRs) play key roles in the recognition of viruses and activation of immune responses. The molecules also can alter the target cell intracellular signaling and may participate in the transformation of the infected cells. TLR9 is the unique intracellular member of TLRs that recognize foreign DNA, including viral DNA. Thus, TLR9 may play significant roles in the defense against HPV and its related cancers. This review article discusses TLR9 antiviral and pathological roles during HPV infection.
Collapse
Affiliation(s)
| | - Ashraf Kariminik
- Department of Microbiology, Kerman Branch, Islamic Azad University, Kerman, Iran
| | - Mohammad Kazemi Arababadi
- Immunology of Infectious Diseases Research Center, Research Institute of Basic Medical Sciences, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
- Department of Laboratory Sciences, Faculty of Paramedicine, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
| | - Babak Kheirkhah
- Department of Veterinary Medicine, Baft Branch, Islamic Azad University, Baft, Iran
| |
Collapse
|
14
|
Tian H, Ding M, Guo Y, Zhu Z, Yu Y, Tian Y, Li K, Sun G, Jiang R, Han R, Yan F, Kang X. WITHDRAWN: Effect of HSPA8 on the proliferation, apoptosis and immune function of chicken macrophages. Int J Biochem Cell Biol 2022:106186. [PMID: 35217190 DOI: 10.1016/j.biocel.2022.106186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Accepted: 02/21/2022] [Indexed: 11/19/2022]
Abstract
This article has been withdrawn at the request of the author(s) and/or editor. The Publisher apologizes for any inconvenience this may cause. The full Elsevier Policy on Article Withdrawal can be found at https://www.elsevier.com/about/our-business/policies/article-withdrawal
Collapse
Affiliation(s)
- Huihui Tian
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China
| | - Mengxia Ding
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450046, China
| | - Yujie Guo
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China
| | - Zhaoyan Zhu
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450046, China
| | - Yange Yu
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450046, China
| | - Yadong Tian
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China; Henan Key Laboratory for Innovation and Utilization of Chicken Germplasm Resources, Zhengzhou 450046, China
| | - Kui Li
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450046, China
| | - Guirong Sun
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China; Henan Key Laboratory for Innovation and Utilization of Chicken Germplasm Resources, Zhengzhou 450046, China
| | - Ruirui Jiang
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China; Henan Key Laboratory for Innovation and Utilization of Chicken Germplasm Resources, Zhengzhou 450046, China
| | - Ruili Han
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China; Henan Key Laboratory for Innovation and Utilization of Chicken Germplasm Resources, Zhengzhou 450046, China
| | - Fengbin Yan
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450046, China; Henan Key Laboratory for Innovation and Utilization of Chicken Germplasm Resources, Zhengzhou 450046, China.
| | - Xiangtao Kang
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China; Henan Key Laboratory for Innovation and Utilization of Chicken Germplasm Resources, Zhengzhou 450046, China.
| |
Collapse
|
15
|
Blanco R, Carrillo-Beltrán D, Corvalán AH, Aguayo F. High-Risk Human Papillomavirus and Epstein-Barr Virus Coinfection: A Potential Role in Head and Neck Carcinogenesis. BIOLOGY 2021; 10:biology10121232. [PMID: 34943147 PMCID: PMC8698839 DOI: 10.3390/biology10121232] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/06/2021] [Revised: 11/15/2021] [Accepted: 11/18/2021] [Indexed: 12/12/2022]
Abstract
Simple Summary A subset of carcinomas that arise in the head and neck region show a viral etiology. In fact, a subgroup of oropharyngeal cancers are caused by some types of human papillomavirus (HPV), so-called high-risk (HR)-HPVs, whereas undifferentiated nasopharyngeal carcinomas are etiologically related to Epstein–Barr virus (EBV). However, studies have reported the presence of both HR-HPV and EBV in some types of head and neck cancers. In this review, we discuss the potential contribution and role of HR-HPV/EBV coinfection in head and neck carcinogenesis, as well as the mechanisms that are potentially involved. In addition, HR-HPV/EBV interaction models are proposed. Abstract High-risk human papillomaviruses (HR-HPVs) and Epstein–Barr virus (EBV) are recognized oncogenic viruses involved in the development of a subset of head and neck cancers (HNCs). HR-HPVs are etiologically associated with a subset of oropharyngeal carcinomas (OPCs), whereas EBV is a recognized etiological agent of undifferentiated nasopharyngeal carcinomas (NPCs). In this review, we address epidemiological and mechanistic evidence regarding a potential cooperation between HR-HPV and EBV for HNC development. Considering that: (1) both HR-HPV and EBV infections require cofactors for carcinogenesis; and (2) both oropharyngeal and oral epithelium can be directly exposed to carcinogens, such as alcohol or tobacco smoke, we hypothesize possible interaction mechanisms. The epidemiological and experimental evidence suggests that HR-HPV/EBV cooperation for developing a subset of HNCs is plausible and warrants further investigation.
Collapse
Affiliation(s)
- Rancés Blanco
- Programa de Virología, Instituto de Ciencias Biomédicas (ICBM), Facultad de Medicina, Universidad de Chile, Santiago 8380000, Chile; (R.B.); (D.C.-B.)
| | - Diego Carrillo-Beltrán
- Programa de Virología, Instituto de Ciencias Biomédicas (ICBM), Facultad de Medicina, Universidad de Chile, Santiago 8380000, Chile; (R.B.); (D.C.-B.)
| | - Alejandro H. Corvalán
- Advanced Center for Chronic Diseases (ACCDiS), Pontificia Universidad Católica de Chile, Santiago 8320000, Chile;
| | | |
Collapse
|
16
|
Wang J, Liu G, Liu M, Cai Q, Yao C, Chen H, Song N, Yuan C, Tan D, Hu Y, Xiang Y, Xiang T. High-Risk HPV16 E6 Activates the cGMP/PKG Pathway Through Glycosyltransferase ST6GAL1 in Cervical Cancer Cells. Front Oncol 2021; 11:716246. [PMID: 34745942 PMCID: PMC8564291 DOI: 10.3389/fonc.2021.716246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Accepted: 09/30/2021] [Indexed: 11/13/2022] Open
Abstract
Alterations in glycosylation regulate fundamental molecular and cellular processes of cancer, serving as important biomarkers and therapeutic targets. However, the potential association and regulatory mechanisms of E6 oncoprotein on glycosylation of cervical cancer cells are still unclear. Here, we evaluated the glycomic changes via using Lectin microarray and determined the corresponding enzymes associated with endogenous high-risk HPV16 E6 expression in cervical cancer cells. α-2,6 sialic acids and the corresponding glycosyltransferase ST6GAL1 were significantly increased in E6 stable-expressing HPV- cervical cancer C33A cells. Clinical validation further showed that the expression of ST6GAL1 was significantly increased in patients infected with high-risk HPV subtypes and showed a positive association with E6 in cervical scraping samples. Interfering ST6GAL1 expression markedly blocked the oncogenic effects of E6 on colony formulation, proliferation, and metastasis. Importantly, ST6GAL1 overexpression enhanced tumorigenic activities of both E6-positive and E6-negative cells. Mechanistical investigations revealed that E6 depended on activating YAP1 to stimulate ST6GAL1 expression, as verteporfin (inhibitor of YAP1) significantly suppressed the E6-induced ST6GAL1 upregulation. E6/ST6GAL1 triggered the activation of downstream cGMP/PKG signaling pathway and ODQ (inhibitor of GMP production) simultaneously suppressed the oncogenic activities of both E6 and ST6GAL1 in cervical cancer cells. Taken together, these findings indicate that ST6GAL1 is an important mediator for oncogenic E6 protein to activate the downstream cGMP/PKG signaling pathway, which represents a novel molecular mechanism and potential therapeutic targets for cervical cancer.
Collapse
Affiliation(s)
- Jun Wang
- Department of Laboratory Medicine, Wuhan Children’s Hospital (Wuhan Maternal and Child Healthcare Hospital), Tongji Medical College, Huazhong University of Science & Technology, Wuhan, China
| | - Gao Liu
- Department of Gastrointestinal Surgery, Central Hospital of Enshi Tujia and Miao Autonomous Prefecture, Enshi Clinical College, Medical School of Hubei Minzu University, Enshi, China
| | - Mei Liu
- Department of Laboratory Medicine, Wuhan Hankou Hospital, Wuhan, China
| | - Qinzhen Cai
- Department of Laboratory Medicine, Wuhan Children’s Hospital (Wuhan Maternal and Child Healthcare Hospital), Tongji Medical College, Huazhong University of Science & Technology, Wuhan, China
| | - Cong Yao
- Health Care Department, Wuhan Children’s Hospital (Wuhan Maternal and Child Healthcare Hospital), Tongji Medical College, Huazhong University of Science & Technology, Wuhan, China
| | - Hao Chen
- Department of Pathology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Neng Song
- Department of Laboratory Medicine, Hubei Provincial Hospital of Integrated Chinese & Western Medicine, Wuhan, China
| | - Chunhui Yuan
- Department of Laboratory Medicine, Wuhan Children’s Hospital (Wuhan Maternal and Child Healthcare Hospital), Tongji Medical College, Huazhong University of Science & Technology, Wuhan, China
| | - Decai Tan
- Department of Science and Education, Central Hospital of Enshi Tujia and Miao Autonomous Prefecture, Enshi Clinical College, Medical School of Hubei Minzu University, Enshi, China
| | - Yuhai Hu
- Department of Laboratory Medicine, Wuhan Hankou Hospital, Wuhan, China
| | - Yun Xiang
- Department of Laboratory Medicine, Wuhan Children’s Hospital (Wuhan Maternal and Child Healthcare Hospital), Tongji Medical College, Huazhong University of Science & Technology, Wuhan, China
| | - Tian Xiang
- Department of Laboratory Medicine, Central Hospital of Enshi Tujia and Miao Autonomous Prefecture, Enshi Clinical College, Medical School of Hubei Minzu University, Enshi, China
| |
Collapse
|
17
|
Characterization of Long Non-coding RNA Signatures of Intracranial Aneurysm in Circulating Whole Blood. Mol Diagn Ther 2021; 24:723-736. [PMID: 32939739 DOI: 10.1007/s40291-020-00494-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
BACKGROUND AND OBJECTIVE Long non-coding RNAs (lncRNAs) may serve as biomarkers for complex disease states, such as intracranial aneurysms. In this study, we investigated lncRNA expression differences in the whole blood of patients with unruptured aneurysms. METHODS Whole blood RNA from 67 subjects (34 with aneurysm, 33 without) was used for next-generation RNA sequencing. Differential expression analysis was used to define a signature of intracranial aneurysm-associated lncRNAs. To estimate the signature's ability to classify aneurysms and to identify the most predictive lncRNAs, we implemented a nested cross-validation pipeline to train classifiers using linear discriminant analysis. Ingenuity pathway analysis was used to study potential biological roles of differentially expressed lncRNAs, and lncRNA ontology was used to investigate ontologies enriched in signature lncRNAs. Co-expression correlation analysis was performed to investigate associated differential protein-coding messenger RNA expression. RESULTS Of 4639 detected lncRNAs, 263 were significantly different (p < 0.05) between the two groups, and 84 of those had an absolute fold-change ≥ 1.5. An eight-lncRNA signature (q < 0.35, fold-change ≥ 1.5) was able to separate patients with and without aneurysms on principal component analysis, and had an estimated accuracy of 70.9% in nested cross-validation. Bioinformatics analyses showed that networks of differentially expressed lncRNAs (p < 0.05) were enriched for cell death and survival, connective tissue disorders, carbohydrate metabolism, and cardiovascular disease. Signature lncRNAs shared ontologies that reflected regulation of gene expression, signaling, ubiquitin processing, and p53 signaling. Co-expression analysis showed correlations with messenger RNAs related to inflammatory responses. CONCLUSIONS Differential expression in whole blood lncRNAs is detectable in patients harboring aneurysms, and reflects expression/signaling regulation, and ubiquitin and p53 pathways. Following validation in larger cohorts, these lncRNAs may be potential diagnostic targets for aneurysm detection by blood testing.
Collapse
|
18
|
|
19
|
Human Papillomavirus in Breast Carcinogenesis: A Passenger, a Cofactor, or a Causal Agent? BIOLOGY 2021; 10:biology10080804. [PMID: 34440036 PMCID: PMC8389583 DOI: 10.3390/biology10080804] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/12/2021] [Revised: 08/05/2021] [Accepted: 08/06/2021] [Indexed: 12/16/2022]
Abstract
Simple Summary Breast cancer (BC) is the most frequent tumor in women worldwide. A minority of BC patients have a family history of the disease, suggesting the importance of environmental and lifestyle factors. Human papillomavirus (HPV) infection has been detected in a subset of tumors, suggesting a potential role in BC. In this review, we summarized relevant information in respect to this topic and we propose a model of HPV-mediated breast carcinogenesis. Evidence suggests that breast tissue is accessible to HPV, which may be a causal agent of BC in a subset of cases. Abstract Breast cancer (BC) is the most commonly diagnosed malignancy in women worldwide as well as the leading cause of cancer-related death in this gender. Studies have identified that human papillomavirus (HPV) is a potential risk factor for BC development. While vaccines that protect against oncogenic HPVs infection have been commercially available, global disparities persist due to their high cost. Interestingly, numerous authors have detected an increased high risk (HR)-HPV infection in BC specimens when compared with non-tumor tissues. Therefore, it was suggested that HR-HPV infection could play a role in breast carcinogenesis in a subset of cases. Additional epidemiological and experimental evidence is still needed regarding the role of HR-HPV infection in the development and progression of BC.
Collapse
|
20
|
Li L, Jiang M, Qi L, Wu Y, Song D, Gan J, Li Y, Bai Y. Pyroptosis, a new bridge to tumor immunity. Cancer Sci 2021; 112:3979-3994. [PMID: 34252266 PMCID: PMC8486185 DOI: 10.1111/cas.15059] [Citation(s) in RCA: 115] [Impact Index Per Article: 38.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Revised: 07/01/2021] [Accepted: 07/04/2021] [Indexed: 12/24/2022] Open
Abstract
Pyroptosis refers to the process of gasdermin (GSDM)‐mediated programmed cell death (PCD). Our understanding of pyroptosis has expanded beyond cells and is known to involve extracellular responses. Recently, there has been an increasing interest in pyroptosis due to its emerging role in activating the immune system. In the meantime, pyroptosis‐mediated therapies, which use the immune response to kill cancer cells, have also achieved notable success in a clinical setting. In this review, we discuss that the immune response induced by pyroptosis activation is a double‐edged sword that affects all stages of tumorigenesis. On the one hand, the activation of inflammasome‐mediated pyroptosis and the release of pyroptosis‐produced cytokines alter the immune microenvironment and promote the development of tumors by evading immune surveillance. On the other hand, pyroptosis‐produced cytokines can also collect immune cells and ignite the immune system to improve the efficiency of tumor immunotherapies. Pyroptosis is also related to some immune checkpoints, especially programmed death‐1 (PD‐1) or programmed death‐ ligand 1 (PD‐L1). In this review, we mainly focus on our current understanding of the interplay between the immune system and tumors that process through pyroptosis, and debate their use as potential therapeutic targets.
Collapse
Affiliation(s)
- Lisha Li
- Department of Gastrointestinal Oncology, Harbin Medical University Cancer Hospital, Harbin, China
| | - Mingxia Jiang
- Department of Gastrointestinal Oncology, Harbin Medical University Cancer Hospital, Harbin, China
| | - Ling Qi
- Department of Gastrointestinal Oncology, Harbin Medical University Cancer Hospital, Harbin, China
| | - Yiming Wu
- Department of Gastrointestinal Oncology, Harbin Medical University Cancer Hospital, Harbin, China
| | - Dongfeng Song
- Department of Gastrointestinal Oncology, Harbin Medical University Cancer Hospital, Harbin, China
| | - Junqing Gan
- Department of Gastrointestinal Oncology, Harbin Medical University Cancer Hospital, Harbin, China
| | - Yanjing Li
- Department of Gastrointestinal Oncology, Harbin Medical University Cancer Hospital, Harbin, China
| | - Yuxian Bai
- Department of Gastrointestinal Oncology, Harbin Medical University Cancer Hospital, Harbin, China
| |
Collapse
|
21
|
Looi CK, Hii LW, Chung FFL, Mai CW, Lim WM, Leong CO. Roles of Inflammasomes in Epstein-Barr Virus-Associated Nasopharyngeal Cancer. Cancers (Basel) 2021; 13:1786. [PMID: 33918087 PMCID: PMC8069343 DOI: 10.3390/cancers13081786] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 03/08/2021] [Accepted: 03/08/2021] [Indexed: 02/05/2023] Open
Abstract
Epstein-Barr virus (EBV) infection is recognised as one of the causative agents in most nasopharyngeal carcinoma (NPC) cases. Expression of EBV viral antigens can induce host's antiviral immune response by activating the inflammasomes to produce pro-inflammatory cytokines, such as interleukin-1β (IL-1β) and IL-18. These cytokines are known to be detrimental to a wide range of virus-infected cells, in which they can activate an inflammatory cell death program, called pyroptosis. However, aberrant inflammasome activation and production of its downstream cytokines lead to chronic inflammation that may contribute to various diseases, including NPC. In this review, we summarise the roles of inflammasomes during viral infection, how EBV evades inflammasome-mediated immune response, and progress into tumourigenesis. The contrasting roles of inflammasomes in cancer, as well as the current therapeutic approaches used in targeting inflammasomes, are also discussed in this review. While the inflammasomes appear to have dual roles in carcinogenesis, there are still many questions that remain unanswered. In particular, the exact molecular mechanism responsible for the regulation of the inflammasomes during carcinogenesis of EBV-associated NPC has not been explored thoroughly. Furthermore, the current practical application of inflammasome inhibitors is limited to specific tumour types, hence, further studies are warranted to discover the potential of targeting the inflammasomes for the treatment of NPC.
Collapse
Affiliation(s)
- Chin King Looi
- School of Postgraduate Studies, International Medical University, Kuala Lumpur 57000, Malaysia; (C.K.L.); (L.-W.H.)
- Center for Cancer and Stem Cell Research, Institute for Research, Development and Innovation (IRDI), International Medical University, Kuala Lumpur 57000, Malaysia; (C.-W.M.); (W.-M.L.)
| | - Ling-Wei Hii
- School of Postgraduate Studies, International Medical University, Kuala Lumpur 57000, Malaysia; (C.K.L.); (L.-W.H.)
- Center for Cancer and Stem Cell Research, Institute for Research, Development and Innovation (IRDI), International Medical University, Kuala Lumpur 57000, Malaysia; (C.-W.M.); (W.-M.L.)
- School of Pharmacy, International Medical University, Kuala Lumpur 57000, Malaysia
| | - Felicia Fei-Lei Chung
- Mechanisms of Carcinogenesis Section (MCA), Epigenetics Group (EGE), International Agency for Research on Cancer World Health Organisation, CEDEX 08 Lyon, France;
| | - Chun-Wai Mai
- Center for Cancer and Stem Cell Research, Institute for Research, Development and Innovation (IRDI), International Medical University, Kuala Lumpur 57000, Malaysia; (C.-W.M.); (W.-M.L.)
- State Key Laboratory of Oncogenes and Related Genes, Renji-Med X Clinical Stem Cell Research Center, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Wei-Meng Lim
- Center for Cancer and Stem Cell Research, Institute for Research, Development and Innovation (IRDI), International Medical University, Kuala Lumpur 57000, Malaysia; (C.-W.M.); (W.-M.L.)
- School of Pharmacy, International Medical University, Kuala Lumpur 57000, Malaysia
| | - Chee-Onn Leong
- Center for Cancer and Stem Cell Research, Institute for Research, Development and Innovation (IRDI), International Medical University, Kuala Lumpur 57000, Malaysia; (C.-W.M.); (W.-M.L.)
- School of Pharmacy, International Medical University, Kuala Lumpur 57000, Malaysia
| |
Collapse
|
22
|
Kim NE, Kim DK, Song YJ. SARS-CoV-2 Nonstructural Proteins 1 and 13 Suppress Caspase-1 and the NLRP3 Inflammasome Activation. Microorganisms 2021; 9:microorganisms9030494. [PMID: 33652815 PMCID: PMC7996899 DOI: 10.3390/microorganisms9030494] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 02/21/2021] [Accepted: 02/22/2021] [Indexed: 02/07/2023] Open
Abstract
Viral infection-induced activation of inflammasome complexes has both positive and negative effects on the host. Proper activation of inflammasome complexes induces down-stream effector mechanisms that inhibit viral replication and promote viral clearance, whereas dysregulated activation has detrimental effects on the host. Coronaviruses, including SARS-CoV and MERS-CoV, encode viroporins that activate the NLRP3 inflammasome, and the severity of coronavirus disease is associated with the inflammasome activation. Although the NLRP3 inflammasome activation is implicated in the pathogenesis of coronaviruses, these viruses must evade inflammasome-mediated antiviral immune responses to establish primary replication. Screening of a complementary DNA (cDNA) library encoding 28 SARS-CoV-2 open reading frames (ORFs) showed that two nonstructural proteins (NSPs), NSP1 and NSP13, inhibited caspase-1-mediated IL-1β activation. NSP1 amino acid residues involved in host translation shutoff and NSP13 domains responsible for helicase activity were associated with caspase-1 inhibition. In THP-1 cells, both NSP1 and NSP13 significantly reduced NLRP3-inflammasome-induced caspase-1 activity and IL-1β secretion. These findings indicate that SARS-CoV-2 NSP1 and NSP13 are potent antagonists of the NLRP3 inflammasome.
Collapse
Affiliation(s)
- Na-Eun Kim
- Department of Life Science, Gachon University, Seongnam-Si, Gyeonggi-do 13120, Korea;
| | - Dae-Kyum Kim
- Donnelly Centre, University of Toronto, Toronto, ON M5S 3E1, Canada;
- Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 3E1, Canada
- Lunenfeld-Tanenbaum Research Institute, Sinai Health System, Toronto, ON M5G 1X5, Canada
- Center for Personalized Medicine, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14203, USA
| | - Yoon-Jae Song
- Department of Life Science, Gachon University, Seongnam-Si, Gyeonggi-do 13120, Korea;
- Correspondence:
| |
Collapse
|
23
|
Al-Sahaf S, Hendawi NB, Ollington B, Bolt R, Ottewell PD, Hunter KD, Murdoch C. Increased Abundance of Tumour-Associated Neutrophils in HPV-Negative Compared to HPV-Positive Oropharyngeal Squamous Cell Carcinoma Is Mediated by IL-1R Signalling. FRONTIERS IN ORAL HEALTH 2021; 2:604565. [PMID: 35047989 PMCID: PMC8757728 DOI: 10.3389/froh.2021.604565] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Accepted: 01/20/2021] [Indexed: 01/04/2023] Open
Abstract
The incidence of human papillomavirus (HPV)-associated cancer is increasing and HPV is now implicated in the aetiology of more than 60% of all oropharyngeal squamous cell carcinomas (OPSCC). In OPSCC, innate immune cells such as neutrophils and macrophages generally correlate with poor prognosis, whilst adaptive immune cells, such as lymphocytes, tend to correlate with improved prognosis. This may, in part, be due to differences in the immune response within the tumour microenvironment leading to the recruitment of specific tumour-associated leukocyte sub-populations. In this study, we aimed to examine if differences exist in the levels of infiltrated leukocyte sub-populations, with particular emphasis on tumour-associated neutrophils (TAN), and to determine the mechanism of chemokine-induced leukocyte recruitment in HPV-positive compared to HPV-negative OPSCC. Immunohistochemical analysis showed that HPV-negative OPSCC contained significantly more neutrophils than HPV-positive tumours, whilst levels of CD68+ macrophages and CD3+ lymphocytes were similar. Using a 3D tissue culture model to represent tumour-stromal interactions, we demonstrated that HPV-negative tumour-stromal co-cultures expressed significantly higher levels of CXCL8, leading to increased neutrophil recruitment compared to their HPV-positive counterparts. HPV-negative OPSCC cells have previously been shown to express higher levels of IL-1 than their HPV-positive counterparts, indicating that this cytokine may be responsible for driving increased chemokine production in the HPV-negative 3D model. Inhibition of IL-1R in the tumour-stromal models using the receptor-specific antagonist, anakinra, dramatically reduced chemokine secretion and significantly impaired neutrophil and monocyte recruitment, suggesting that this tumour-stromal response is mediated by the IL-1/IL-1R axis. Here, we identify a mechanism by which HPV-negative OPSCC may recruit more TAN than HPV-positive OPSCC. Since TAN are associated with poor prognosis in OPSCC, our study identifies potential therapeutic targets aimed at redressing the chemokine imbalance to reduce innate immune cell infiltration with the aim of improving patient outcome.
Collapse
Affiliation(s)
- Sarmad Al-Sahaf
- School of Clinical Dentistry, University of Sheffield, Sheffield, United Kingdom
| | - Naeima B. Hendawi
- School of Clinical Dentistry, University of Sheffield, Sheffield, United Kingdom
| | - Bethany Ollington
- School of Clinical Dentistry, University of Sheffield, Sheffield, United Kingdom
| | - Robert Bolt
- School of Clinical Dentistry, University of Sheffield, Sheffield, United Kingdom
| | - Penelope D. Ottewell
- Department of Oncology and Metabolism, University of Sheffield, Sheffield, United Kingdom
| | - Keith D. Hunter
- School of Clinical Dentistry, University of Sheffield, Sheffield, United Kingdom
| | - Craig Murdoch
- School of Clinical Dentistry, University of Sheffield, Sheffield, United Kingdom
- *Correspondence: Craig Murdoch
| |
Collapse
|
24
|
Hasan U. Human papillomavirus (HPV) deregulation of Toll-like receptor 9. Oncoimmunology 2021; 3:e27257. [PMID: 24605267 PMCID: PMC3935924 DOI: 10.4161/onci.27257] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2013] [Accepted: 11/18/2013] [Indexed: 12/21/2022] Open
Abstract
Persistent infection by high-risk human papillomavirus (HPV) is associated with cervical carcinoma. Blocking innate immune responses in the cervix is critical for the establishment of persistent infections. Here, we discuss how HPV-16-encoded factors suppress the activity of Toll-like receptor 9, which plays a major role in innate antiviral immune responses.
Collapse
Affiliation(s)
- Uzma Hasan
- CIRI, Oncoviruses and Innate Immunity; INSERM U1111; Ecole Normale Supérieure; Université de Lyon; CNRS-UMR5308; Hospices Civils de Lyon; Lyon, France
| |
Collapse
|
25
|
Berggrund M, Gustavsson I, Aarnio R, Lindberg JH, Sanner K, Wikström I, Enroth S, Bunikis I, Olovsson M, Gyllensten U. Temporal changes in the vaginal microbiota in self-samples and its association with persistent HPV16 infection and CIN2. Virol J 2020; 17:147. [PMID: 33028395 PMCID: PMC7541248 DOI: 10.1186/s12985-020-01420-z] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2020] [Accepted: 09/28/2020] [Indexed: 12/12/2022] Open
Abstract
Background The vaginal microbiota has been reported to be associated with HPV infection and cervical cancer. This study was performed to compare the vaginal microbiota at two timepoints in women performing self-sampling and had a persistent or transient HPV16 infection. The women were tested for 12 high-risk HPV (hrHPV) types but only women with single type (HPV16) were included to reduce confounding variables. Methods In total 96 women were included in this study. Of these, 26 were single positive for HPV16 in the baseline test and HPV negative in the follow-up test and 38 were single positive for HPV16 in both tests and diagnosed with CIN2+ in histology. In addition, 32 women that were negative for all 12 HPV tested were included. The samples of vaginal fluid were analyzed with the Ion 16S™ Metagenomics Kit and Ion 16S™ metagenomics module within the Ion Reporter™ software. Results K-means clustering resulted in two Lactobacillus-dominated groups, one with Lactobacillus sp. and the other specifically with Lactobacillus iners. The two remaining clusters were dominated by a mixed non-Lactobacillus microbiota. HPV negative women had lower prevalence (28%) of the non-Lactobacill dominant cluster in the baseline test, as compared to women with HPV16 infection (42%) (p value = 0.0173). Transition between clusters were more frequent in women with persistent HPV16 infection (34%) as compared in women who cleared the HPV16 infection (19%) (p value = 0.036). Conclusions The vaginal microbiota showed a higher rate of transitioning between bacterial profiles in women with persistent HPV16 infection as compared to women with transient infection. This indicate an instability in the microenvironment in women with persistent HPV infection and development of CIN2+.
Collapse
Affiliation(s)
- Malin Berggrund
- Department of Immunology, Genetics, and Pathology, Biomedical Center, Science for Life Laboratory (SciLifeLab) Uppsala, Uppsala University, Box 815, 75108, Uppsala, Sweden
| | - Inger Gustavsson
- Department of Immunology, Genetics, and Pathology, Biomedical Center, Science for Life Laboratory (SciLifeLab) Uppsala, Uppsala University, Box 815, 75108, Uppsala, Sweden
| | - Riina Aarnio
- Department of Women's and Children's Health, Uppsala University, 75185, Uppsala, Sweden
| | - Julia Hedlund Lindberg
- Department of Immunology, Genetics, and Pathology, Biomedical Center, Science for Life Laboratory (SciLifeLab) Uppsala, Uppsala University, Box 815, 75108, Uppsala, Sweden
| | - Karin Sanner
- Department of Women's and Children's Health, Uppsala University, 75185, Uppsala, Sweden
| | - Ingrid Wikström
- Department of Women's and Children's Health, Uppsala University, 75185, Uppsala, Sweden
| | - Stefan Enroth
- Department of Immunology, Genetics, and Pathology, Biomedical Center, Science for Life Laboratory (SciLifeLab) Uppsala, Uppsala University, Box 815, 75108, Uppsala, Sweden
| | - Ignas Bunikis
- Uppsala Genome Center, Science for Life Laboratory, Department of Immunology, Genetics, and Pathology, Uppsala University, BMC, Box 815, 752 37, Uppsala, Sweden
| | - Matts Olovsson
- Department of Women's and Children's Health, Uppsala University, 75185, Uppsala, Sweden
| | - Ulf Gyllensten
- Department of Immunology, Genetics, and Pathology, Biomedical Center, Science for Life Laboratory (SciLifeLab) Uppsala, Uppsala University, Box 815, 75108, Uppsala, Sweden.
| |
Collapse
|
26
|
Morgan EL, Macdonald A. Manipulation of JAK/STAT Signalling by High-Risk HPVs: Potential Therapeutic Targets for HPV-Associated Malignancies. Viruses 2020; 12:E977. [PMID: 32899142 PMCID: PMC7552066 DOI: 10.3390/v12090977] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2020] [Revised: 08/28/2020] [Accepted: 08/30/2020] [Indexed: 12/14/2022] Open
Abstract
Human papillomaviruses (HPVs) are small, DNA viruses that cause around 5% of all cancers in humans, including almost all cervical cancer cases and a significant proportion of anogenital and oral cancers. The HPV oncoproteins E5, E6 and E7 manipulate cellular signalling pathways to evade the immune response and promote virus persistence. The Janus Kinase/Signal Transducer and Activator of Transcription (JAK/STAT) pathway has emerged as a key mediator in a wide range of important biological signalling pathways, including cell proliferation, cell survival and the immune response. While STAT1 and STAT2 primarily drive immune signalling initiated by interferons, STAT3 and STAT5 have widely been linked to the survival and proliferative potential of a number of cancers. As such, the inhibition of STAT3 and STAT5 may offer a therapeutic benefit in HPV-associated cancers. In this review, we will discuss how HPV manipulates JAK/STAT signalling to evade the immune system and promote cell proliferation, enabling viral persistence and driving cancer development. We also discuss approaches to inhibit the JAK/STAT pathway and how these could potentially be used in the treatment of HPV-associated disease.
Collapse
Affiliation(s)
- Ethan L. Morgan
- Tumour Biology Section, Head and Neck Surgery Branch, National Institute on Deafness and Other Communication Disorders, NIH, Bethesda, MD 20892, USA
| | - Andrew Macdonald
- School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, West Yorkshire, UK
- Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds LS2 9JT, West Yorkshire, UK
| |
Collapse
|
27
|
Yadav S, Verma V, Singh Dhanda R, Yadav M. Insights into the toll-like receptors in sexually transmitted infections. Scand J Immunol 2020; 93:e12954. [PMID: 32762084 DOI: 10.1111/sji.12954] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Revised: 07/10/2020] [Accepted: 08/01/2020] [Indexed: 12/12/2022]
Abstract
Toll-like receptors (TLRs) are like soldiers of an innate immune system, which protects vital biological processes against invading pathogens. TLR signalling pathways help in the removal of pathogens and mediate well-established inflammatory processes. However, these processes may also aid in the development or augmentation of an infection or an autoimmune disease. Recent studies have delineated TLR polymorphism's role in the loss of function, making hosts more resistant or vulnerable to the development of an infection. In this review, we have discussed the association of TLRs with sexually transmitted infections (STIs), especially to the pathogen-specific ligands. We have also assessed the impact on TLR downstream signalling and the maintenance of cellular homeostasis during immune responses. Besides, we have discussed the role of TLRs single nucleotide polymorphisms in various STIs. Since TLRs are known to play a part in defence mechanisms and in aiding infections therefore, a thorough understanding of TLRs structure and molecular mechanisms is required to explain how they can influence the outcome of an STI. Such a strategy may lead to the development of novel and useful immunotherapeutic approaches to control pathogen progression and prevent transmission.
Collapse
Affiliation(s)
- Sonal Yadav
- Dr. B. R. Ambedkar Center for Biomedical Research (ACBR), University of Delhi, Delhi, India
| | - Vivek Verma
- Dr. B. R. Ambedkar Center for Biomedical Research (ACBR), University of Delhi, Delhi, India
| | | | - Manisha Yadav
- Dr. B. R. Ambedkar Center for Biomedical Research (ACBR), University of Delhi, Delhi, India.,Department of Clinical Microbiology, Rigshospitalet, Copenhagen, Denmark
| |
Collapse
|
28
|
Wang S, Lu Z, Wang S, Liu W, Gao J, Tian L, Wang L, Zhang X, Zhao X, Wang W, Li C. The inhibitory effects and mechanisms of polymannuroguluronate sulfate against human papillomavirus infection in vitro and in vivo. Carbohydr Polym 2020; 241:116365. [PMID: 32507208 DOI: 10.1016/j.carbpol.2020.116365] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Revised: 04/22/2020] [Accepted: 04/22/2020] [Indexed: 12/23/2022]
Abstract
Human papillomaviruses (HPVs) are non-enveloped DNA viruses that infect epithelia and can cause a wide variety of benign and pre-malignant epithelial tumours. The sulfated polysaccharides such as carrageenans were reported to be able to interfere with the binding process of HPV to the cell surface. In this study, brown seaweed derived polysaccharides polymannuroguluronate sulfate (PMGS) were prepared, and their anti-HPV effects were explored in vitro and in vivo. The results indicated that PMGS effectively inhibited high-risk HPV16 and HPV45 infection with very low toxicity. PMGS may inactivate HPV particles or block the binding and entry process of HPV through direct interaction with viral capsid proteins. PMGS can enter into HeLa cells and down-regulate the expression levels of viral oncogene proteins E6 and E7. In addition, PMGS also dramatically inhibited HPV infection on the skin of BALB/c Nude Mice. Thus, marine derived polysaccharide PMGS possessed anti-HPV activities in vitro and in vivo, and may block HPV infection via targeting viral capsid L1 protein, suggesting that it has great potential to be developed into a novel anti-HPV agent in the future.
Collapse
Affiliation(s)
- Shixin Wang
- Key Laboratory of Marine Drugs, Ministry of Education, Shandong Provincial Key laboratory of Glycoscience and Glycotechnology, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China; The Laboratory of Marine Glycodrug Research and Development, Marine Biomedical Research Institute of Qingdao, Qingdao, China
| | - Zhe Lu
- Key Laboratory of Marine Drugs, Ministry of Education, Shandong Provincial Key laboratory of Glycoscience and Glycotechnology, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China
| | - Shuyao Wang
- Key Laboratory of Marine Drugs, Ministry of Education, Shandong Provincial Key laboratory of Glycoscience and Glycotechnology, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China
| | - Wei Liu
- Key Laboratory of Marine Drugs, Ministry of Education, Shandong Provincial Key laboratory of Glycoscience and Glycotechnology, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China
| | - Jiangming Gao
- The Laboratory of Marine Glycodrug Research and Development, Marine Biomedical Research Institute of Qingdao, Qingdao, China
| | - Linan Tian
- Key Laboratory of Marine Drugs, Ministry of Education, Shandong Provincial Key laboratory of Glycoscience and Glycotechnology, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China
| | - Li Wang
- The Laboratory of Marine Glycodrug Research and Development, Marine Biomedical Research Institute of Qingdao, Qingdao, China
| | - Xiaoshuang Zhang
- Key Laboratory of Marine Drugs, Ministry of Education, Shandong Provincial Key laboratory of Glycoscience and Glycotechnology, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China
| | - Xia Zhao
- Key Laboratory of Marine Drugs, Ministry of Education, Shandong Provincial Key laboratory of Glycoscience and Glycotechnology, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China; Laboratory for Marine Drugs and Bioproducts of Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao 266237, China; The Laboratory of Marine Glycodrug Research and Development, Marine Biomedical Research Institute of Qingdao, Qingdao, China
| | - Wei Wang
- Key Laboratory of Marine Drugs, Ministry of Education, Shandong Provincial Key laboratory of Glycoscience and Glycotechnology, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China; Laboratory for Marine Drugs and Bioproducts of Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao 266237, China; The Laboratory of Marine Glycodrug Research and Development, Marine Biomedical Research Institute of Qingdao, Qingdao, China.
| | - Chunxia Li
- Key Laboratory of Marine Drugs, Ministry of Education, Shandong Provincial Key laboratory of Glycoscience and Glycotechnology, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China; Laboratory for Marine Drugs and Bioproducts of Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao 266237, China; The Laboratory of Marine Glycodrug Research and Development, Marine Biomedical Research Institute of Qingdao, Qingdao, China.
| |
Collapse
|
29
|
Chung C, Seo W, Silwal P, Jo EK. Crosstalks between inflammasome and autophagy in cancer. J Hematol Oncol 2020; 13:100. [PMID: 32703253 PMCID: PMC7376907 DOI: 10.1186/s13045-020-00936-9] [Citation(s) in RCA: 74] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Accepted: 07/13/2020] [Indexed: 02/07/2023] Open
Abstract
Both inflammasomes and autophagy have important roles in the intracellular homeostasis, inflammation, and pathology; the dysregulation of these processes is often associated with the pathogenesis of numerous cancers. In addition, they can crosstalk with each other in multifaceted ways to influence various physiological and pathological responses, including cancer. Multiple molecular mechanisms connect the autophagy pathway to inflammasome activation and, through this, may influence the outcome of pro-tumor or anti-tumor responses depending on the cancer types, microenvironment, and the disease stage. In this review, we highlight the rapidly growing literature on the various mechanisms by which autophagy interacts with the inflammasome pathway, to encourage additional applications in the context of tumors. In addition, we provide insight into the mechanisms by which pathogen modulates the autophagy-inflammasome pathway to favor the infection-induced carcinogenesis. We also explore the challenges and opportunities of using multiple small molecules/agents to target the autophagy/inflammasome axis and their effects upon cancer treatment. Finally, we discuss the emerging clinical efforts assessing the potential usefulness of targeting approaches for either autophagy or inflammasome as anti-cancer strategies, although it remains underexplored in terms of their crosstalks.
Collapse
Affiliation(s)
- Chaeuk Chung
- Division of Pulmonary and Critical Care, Department of Internal Medicine, Chungnam National University School of Medicine, Daejeon, 35015, Korea.,Infection Control Convergence Research Center, Chungnam National University School of Medicine, Daejeon, 35015, Korea
| | - Wonhyoung Seo
- Infection Control Convergence Research Center, Chungnam National University School of Medicine, Daejeon, 35015, Korea.,Department of Microbiology, Chungnam National University School of Medicine, Daejeon, 35015, Korea.,Department of Medical Science, Chungnam National University School of Medicine, Daejeon, 35015, Korea
| | - Prashanta Silwal
- Infection Control Convergence Research Center, Chungnam National University School of Medicine, Daejeon, 35015, Korea.,Department of Microbiology, Chungnam National University School of Medicine, Daejeon, 35015, Korea
| | - Eun-Kyeong Jo
- Infection Control Convergence Research Center, Chungnam National University School of Medicine, Daejeon, 35015, Korea. .,Department of Microbiology, Chungnam National University School of Medicine, Daejeon, 35015, Korea. .,Department of Medical Science, Chungnam National University School of Medicine, Daejeon, 35015, Korea.
| |
Collapse
|
30
|
Simchi L, Panov J, Morsy O, Feuermann Y, Kaphzan H. Novel Insights into the Role of UBE3A in Regulating Apoptosis and Proliferation. J Clin Med 2020; 9:jcm9051573. [PMID: 32455880 PMCID: PMC7290732 DOI: 10.3390/jcm9051573] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Revised: 05/05/2020] [Accepted: 05/17/2020] [Indexed: 12/13/2022] Open
Abstract
The UBE3A gene codes for a protein with two known functions, a ubiquitin E3-ligase which catalyzes ubiquitin binding to substrate proteins and a steroid hormone receptor coactivator. UBE3A is most famous for its critical role in neuronal functioning. Lack of UBE3A protein expression leads to Angelman syndrome (AS), while its overexpression is associated with autism. In spite of extensive research, our understanding of UBE3A roles is still limited. We investigated the cellular and molecular effects of Ube3a deletion in mouse embryonic fibroblasts (MEFs) and Angelman syndrome (AS) mouse model hippocampi. Cell cultures of MEFs exhibited enhanced proliferation together with reduced apoptosis when Ube3a was deleted. These findings were supported by transcriptome and proteome analyses. Furthermore, transcriptome analyses revealed alterations in mitochondria-related genes. Moreover, an analysis of adult AS model mice hippocampi also found alterations in the expression of apoptosis- and proliferation-associated genes. Our findings emphasize the role UBE3A plays in regulating proliferation and apoptosis and sheds light into the possible effects UBE3A has on mitochondrial involvement in governing this balance.
Collapse
|
31
|
Hemmat N, Bannazadeh Baghi H. Association of human papillomavirus infection and inflammation in cervical cancer. Pathog Dis 2020; 77:5558235. [PMID: 31504464 DOI: 10.1093/femspd/ftz048] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Accepted: 09/01/2019] [Indexed: 12/11/2022] Open
Abstract
Human papillomavirus (HPV) associated cancers, and in particular cervical cancer, are considered to be directly stimulated by HPV oncogenes. Alternatively, these types of cancers could also be indirectly stimulated by HPV-induced chronic inflammations, which in turn are also caused by HPV oncogenes activity. Chronic inflammation is associated with repeated tissue injury and development of mutations in the vital tumor suppressor genes. Thus, it is important to understand that the persistent HPV infection and its associated chronic inflammation is responsible for the progression of HPV-induced cancers. HPV E5, E6 and E7 could upregulate the expression of cyclooxygenase (COX)-2 and prostaglandin (PG) E2 followed by the activation of the COX-PG pathway. This pathway is assumed to be the main cause of HPV-induced inflammation. Additionally, HPV oncogenes could have an impact on the upregulation of pro-inflammatory cytokines in HPV-positive patients. The upregulation of such cytokines accelerates the incidence of inflammation following HPV infection. Other factors such as microRNAs, which are involved in the inflammation pathways and aging, give rise to the increased level of pro-inflammatory cytokines and could also be responsible for the acceleration of HPV-induced inflammation and consequent cervical cancer. In this review, the exact roles of HPV oncogenes in the occurrence of inflammation in cervical tissue, and the effects of other factors in this event are evaluated.
Collapse
Affiliation(s)
- Nima Hemmat
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Infectious and Tropical Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Drug Applied Research Centre, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Hossein Bannazadeh Baghi
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Infectious and Tropical Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Virology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
32
|
Ferreira AR, Ramalho AC, Marques M, Ribeiro D. The Interplay between Antiviral Signalling and Carcinogenesis in Human Papillomavirus Infections. Cancers (Basel) 2020; 12:cancers12030646. [PMID: 32164347 PMCID: PMC7139948 DOI: 10.3390/cancers12030646] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Revised: 03/05/2020] [Accepted: 03/06/2020] [Indexed: 12/20/2022] Open
Abstract
Human papillomaviruses (HPV) are the causative agents of the most common sexually transmitted infection worldwide. While infection is generally asymptomatic and can be cleared by the host immune system, when persistence occurs, HPV can become a risk factor for malignant transformation. Progression to cancer is actually an unintended consequence of the complex HPV life cycle. Different antiviral defence mechanisms recognize HPV early in infection, leading to the activation of the innate immune response. However, the virus has evolved several specific strategies to efficiently evade the antiviral immune signalling. Here, we review and discuss the interplay between HPV and the host cell innate immunity. We further highlight the evasion strategies developed by different HPV to escape this cellular response and focus on the correlation with HPV-induced persistence and tumorigenesis.
Collapse
Affiliation(s)
| | | | | | - Daniela Ribeiro
- Correspondence: ; Tel.: +351-234-247 014; Fax: +351-234-372-587
| |
Collapse
|
33
|
Nahand JS, Moghoofei M, Salmaninejad A, Bahmanpour Z, Karimzadeh M, Nasiri M, Mirzaei HR, Pourhanifeh MH, Bokharaei‐Salim F, Mirzaei H, Hamblin MR. Pathogenic role of exosomes and microRNAs in HPV-mediated inflammation and cervical cancer: A review. Int J Cancer 2020; 146:305-320. [PMID: 31566705 PMCID: PMC6999596 DOI: 10.1002/ijc.32688] [Citation(s) in RCA: 158] [Impact Index Per Article: 39.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Revised: 08/02/2019] [Accepted: 09/10/2019] [Indexed: 12/24/2022]
Abstract
Cervical cancer (CC) is the fourth most common cause of cancer death in women. The most important risk factor for the development of CC is cervical infection with human papilloma virus (HPV). Inflammation is a protective strategy that is triggered by the host against pathogens such as viral infections that acts rapidly to activate the innate immune response. Inflammation is beneficial if it is brief and well controlled; however, if the inflammation is excessive or it becomes of chronic duration, it can produce detrimental effects. HPV proteins are involved, both directly and indirectly, in the development of chronic inflammation, which is a causal factor in the development of CC. However, other factors may also have a potential role in stimulating chronic inflammation. MicroRNAs (miRNAs) (a class of noncoding RNAs) are strong regulators of gene expression. They have emerged as key players in several biological processes, including inflammatory pathways. Abnormal expression of miRNAs may be linked to the induction of inflammation that occurs in CC. Exosomes are a subset of extracellular vesicles shed by almost all types of cells, which can function as cargo transfer vehicles. Exosomes contain proteins and genetic material (including miRNAs) derived from their parent cells and can potentially affect recipient cells. Exosomes have recently been recognized to be involved in inflammatory processes and can also affect the immune response. In this review, we discuss the role of HPV proteins, miRNAs and exosomes in the inflammation associated with CC.
Collapse
Affiliation(s)
- Javid Sadri Nahand
- Department of Virology, Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran
- Student Research Committee, Iran University of Medical Sciences, Tehran, Iran
| | - Mohsen Moghoofei
- Department of Microbiology, Faculty of Medicine, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Arash Salmaninejad
- Drug Applied Research Center, Student Research Committee, Tabriz University of Medical Science, Tabriz, Iran
- Department of Medical Genetics, Faculty of Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Zahra Bahmanpour
- Department of Medical Genetics, Faculty of Medicine, Student Research Committee, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mohammad Karimzadeh
- Department of Virology, Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Mitra Nasiri
- Department of Virology, Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Hamid Reza Mirzaei
- Department of Medical Immunology, Faculty of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Hossein Pourhanifeh
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Kashan University of Medical Sciences, Kashan, I.R. Iran
| | - Farah Bokharaei‐Salim
- Department of Virology, Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Hamed Mirzaei
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Kashan University of Medical Sciences, Kashan, I.R. Iran
| | - Michael R. Hamblin
- Wellman Center for Photomedicine, Massachusetts General Hospital, Harvard Medical School, 40 Blossom Street, Boston, MA, 02114, USA
| |
Collapse
|
34
|
Lopez‐Castejon G. Control of the inflammasome by the ubiquitin system. FEBS J 2020; 287:11-26. [PMID: 31679183 PMCID: PMC7138099 DOI: 10.1111/febs.15118] [Citation(s) in RCA: 90] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2019] [Revised: 09/27/2019] [Accepted: 10/31/2019] [Indexed: 12/25/2022]
Abstract
Inflammation is the body's response to danger. One of the first immune cell types to encounter danger is the macrophage. Macrophages sense danger signals such as extracellular ATP or bacterial toxins, derived from tissue damage or infection, and initiate the activation of an intracellular molecular complex called the inflammasome. The inflammasome consists of a cytosolic pattern recognition receptor, an adaptor molecule ASC (apoptosis-associated speck-like protein containing a CARD) and the protease caspase-1. Assembly of the complex leads to the cleavage and activation of caspase-1 that triggers processing and release of the cytokines interleukin (IL)-1β and IL-18, and ultimately cell death via the process of pyroptosis. The ability to sense and respond to danger appropriately is critical for maintaining immune homeostasis. Dysregulation of inflammasomes contributes to the progression of chronic diseases prevalent in the ageing population, such as Alzheimer's disease, COPD and metabolic disease; hence, it is critical that activation of the inflammatory response and inflammasome activation are tightly regulated. Post-translational modifications (PTMs) such as ubiquitination have recently emerged as important regulators of inflammasome assembly. However, the mechanisms by which PTMs regulate the inflammasome are still not understood. This review aims to summarize our knowledge to date on how the ubiquitin system controls inflammasome activation and where this area of research is heading.
Collapse
Affiliation(s)
- Gloria Lopez‐Castejon
- Division of Infection, Immunity and Respiratory MedicineFaculty of Biology, Medicine and HealthLydia Becker Institute of Immunology and InflammationManchester Collaborative Centre for Inflammation ResearchManchester Academic Health Science CentreUniversity of ManchesterUK
| |
Collapse
|
35
|
Wei H, Wang C, Guo R, Takahashi K, Naruse K. Development of a model of ischemic heart disease using cardiomyocytes differentiated from human induced pluripotent stem cells. Biochem Biophys Res Commun 2019; 520:600-605. [PMID: 31623826 DOI: 10.1016/j.bbrc.2019.09.119] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2019] [Accepted: 09/27/2019] [Indexed: 11/19/2022]
Abstract
Ischemic heart disease remains the largest cause of death worldwide. Accordingly, many researchers have sought curative options, often using laboratory animal models such as rodents. However, the physiology of the human heart differs significantly from that of the rodent heart. In this study, we developed a model of ischemic heart disease using cardiomyocytes differentiated from human induced pluripotent stem cells (hiPS-CMs). After optimizing the conditions of ischemia, including the concentration of oxygen and duration of application, we evaluated the consequent damage to hiPS-CMs. Notably, exposure to 2% oxygen, 0 mg/ml glucose, and 0% fetal bovine serum increased the percentage of nuclei stained with propidium iodide, an indicator of membrane damage, and decreased cellular viability. These conditions also decreased the contractility of hiPS-CMs. Furthermore, ischemic conditioning increased the mRNA expression of IL-8, consistent with observed conditions in the in vivo heart. Taken together, these findings suggest that our hiPS-CM-based model can provide a useful platform for human ischemic heart disease research.
Collapse
Affiliation(s)
- Heng Wei
- Department of Cardiovascular Physiology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, 2-5-1 Shikata-cho, Kita-ku, Okayama, 700-8558, Japan; Institute of Laboratory Animals, Graduate School of Medicine, Kyoto University, Kyoto, 606-8501, Japan
| | - Chen Wang
- Department of Cardiovascular Physiology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, 2-5-1 Shikata-cho, Kita-ku, Okayama, 700-8558, Japan
| | - Rui Guo
- Department of Cardiovascular Physiology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, 2-5-1 Shikata-cho, Kita-ku, Okayama, 700-8558, Japan; Department of Cardiac Surgery, Peking University Third Hospital, Beijing, 100191, China
| | - Ken Takahashi
- Department of Cardiovascular Physiology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, 2-5-1 Shikata-cho, Kita-ku, Okayama, 700-8558, Japan.
| | - Keiji Naruse
- Department of Cardiovascular Physiology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, 2-5-1 Shikata-cho, Kita-ku, Okayama, 700-8558, Japan
| |
Collapse
|
36
|
Homozygous NLRP1 gain-of-function mutation in siblings with a syndromic form of recurrent respiratory papillomatosis. Proc Natl Acad Sci U S A 2019; 116:19055-19063. [PMID: 31484767 DOI: 10.1073/pnas.1906184116] [Citation(s) in RCA: 78] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Juvenile-onset recurrent respiratory papillomatosis (JRRP) is a rare and debilitating childhood disease that presents with recurrent growth of papillomas in the upper airway. Two common human papillomaviruses (HPVs), HPV-6 and -11, are implicated in most cases, but it is still not understood why only a small proportion of children develop JRRP following exposure to these common viruses. We report 2 siblings with a syndromic form of JRRP associated with mild dermatologic abnormalities. Whole-exome sequencing of the patients revealed a private homozygous mutation in NLRP1, encoding Nucleotide-Binding Domain Leucine-Rich Repeat Family Pyrin Domain-Containing 1. We find the NLRP1 mutant allele to be gain of function (GOF) for inflammasome activation, as demonstrated by the induction of inflammasome complex oligomerization and IL-1β secretion in an overexpression system. Moreover, patient-derived keratinocytes secrete elevated levels of IL-1β at baseline. Finally, both patients displayed elevated levels of inflammasome-induced cytokines in the serum. Six NLRP1 GOF mutations have previously been described to underlie 3 allelic Mendelian diseases with differing phenotypes and modes of inheritance. Our results demonstrate that an autosomal recessive, syndromic form of JRRP can be associated with an NLRP1 GOF mutation.
Collapse
|
37
|
Hancz D, Westerlund E, Valfridsson C, Aemero GM, Bastiat-Sempe B, Orning P, Lien E, Wessels MR, Persson JJ. Streptolysin O Induces the Ubiquitination and Degradation of Pro-IL-1β. J Innate Immun 2019; 11:457-468. [PMID: 30889575 PMCID: PMC6758947 DOI: 10.1159/000496403] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2018] [Accepted: 11/28/2018] [Indexed: 01/11/2023] Open
Abstract
Group A Streptococcus (GAS) is a common and versatile human pathogen causing a variety of diseases. One of the many virulence factors of GAS is the secreted pore-forming cytotoxin streptolysin O (SLO), which has been ascribed multiple properties, including inflammasome activation leading to release of the potent inflammatory cytokine IL-1β from infected macrophages. IL-1β is synthesized as an inactive pro-form, which is activated intracellularly through proteolytic cleavage. Here, we use a macrophage infection model to show that SLO specifically induces ubiquitination and degradation of pro-IL-1β. Ubiquitination was dependent on SLO being released from the infecting bacterium, and pore formation by SLO was required but not sufficient for the induction of ubiquitination. Our data provide evidence for a novel SLO-mediated mechanism of immune regulation, emphasizing the importance of this pore-forming toxin in bacterial virulence and pathogenesis.
Collapse
Affiliation(s)
- Dóra Hancz
- Immunology Section, Department of Experimental Medical Sciences, Lund University, Lund, Sweden
| | - Elsa Westerlund
- Immunology Section, Department of Experimental Medical Sciences, Lund University, Lund, Sweden
| | - Christine Valfridsson
- Immunology Section, Department of Experimental Medical Sciences, Lund University, Lund, Sweden
| | - Getachew Melkamu Aemero
- Immunology Section, Department of Experimental Medical Sciences, Lund University, Lund, Sweden
| | - Benedicte Bastiat-Sempe
- Division of Infectious Diseases, Boston Children's Hospital and Department of Pediatrics, Harvard Medical School, Boston, Massachusetts, USA
| | - Pontus Orning
- Program in Innate Immunity, Division of Infectious Diseases and Immunology, Department of Medicine, University of Massachusetts Medical School, Worcester, Massachusetts, USA,Centre of Molecular Inflammation Research, Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology, Trondheim, Norway
| | - Egil Lien
- Program in Innate Immunity, Division of Infectious Diseases and Immunology, Department of Medicine, University of Massachusetts Medical School, Worcester, Massachusetts, USA,Centre of Molecular Inflammation Research, Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology, Trondheim, Norway
| | - Michael R. Wessels
- Division of Infectious Diseases, Boston Children's Hospital and Department of Pediatrics, Harvard Medical School, Boston, Massachusetts, USA
| | - Jenny J. Persson
- Immunology Section, Department of Experimental Medical Sciences, Lund University, Lund, Sweden,*Prof. Jenny J. Persson, Immunology Section, Department of Experimental Medical Sciences, Lund University, BMC D14, SE–221 84 Lund (Sweden), E-Mail
| |
Collapse
|
38
|
Matamoros JA, da Silva MIF, de Moura PMMF, Leitão MDCG, Coimbra EC. Reduced Expression of IL-1β and IL-18 Proinflammatory Interleukins Increases the Risk of Developing Cervical Cancer. Asian Pac J Cancer Prev 2019; 20:2715-2721. [PMID: 31554368 PMCID: PMC6976845 DOI: 10.31557/apjcp.2019.20.9.2715] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Indexed: 12/13/2022] Open
Abstract
Background: The objective of this study was to analyze the gene expression profile of the proinflammatory interleukins, (IL-1β and IL-18) in patients with premalignant lesions and cervical cancer. Methods: Total IL-1β and IL-18 mRNA was quantified by qPCR to obtain the expression data in cervical tissues. A total of 74 cervical biopsies were obtained from women undergoing a colposcopy. The samples were divided into: normal (19), low level lesions (LSIL) or NIC I (17), high level lesions (HSIL) or CIN II and CIN III (29) and cancer (9). The normal cervical tissue samples were included as controls. The OR and 95% CI were calculated for the determination of the risk of progression between each type of lesion and cancer using logistic regression. Results: The results showed that an increase in the risk of progression of pre-neoplastic lesions to cancer was between 2.5 and 2.08 times higher in women with lower IL-1β and IL-18 expression, respectively. Conclusions: This study provided evidence that IL-1β and IL-18 are potential biomarkers that can be explored in further studies for monitoring the evolution of pre-neoplastic lesions and avoiding overtreatment or undertreatment of the patients.
Collapse
Affiliation(s)
- Jose Anibal Matamoros
- Laboratory of Molecular Biology of Viruses, Biological Sciences Institute, University of Pernambuco, Brazil.
| | | | | | - Maria da Conceição Gomes Leitão
- Laboratory of Molecular Studies and Experimental Therapy, Department of Genetics, Biological Sciences Center, Federal University of Pernambuco, Recife, Brazil
| | - Eliane Campos Coimbra
- Laboratory of Molecular Biology of Viruses, Biological Sciences Institute, University of Pernambuco, Brazil.
| |
Collapse
|
39
|
Tissue-Specific Gene Expression during Productive Human Papillomavirus 16 Infection of Cervical, Foreskin, and Tonsil Epithelium. J Virol 2019; 93:JVI.00915-19. [PMID: 31189705 DOI: 10.1128/jvi.00915-19] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Accepted: 06/03/2019] [Indexed: 02/06/2023] Open
Abstract
Epidemiological data confirm a much higher incidence of high-risk human papillomavirus 16 (HPV16)-mediated carcinogenesis of the cervical epithelium than for other target sites. In order to elucidate tissue-specific responses to virus infection, we compared gene expression changes induced by productive HPV16 infection of cervical, foreskin, and tonsil organotypic rafts. These rafts closely mimic persistent HPV16 infection, long before carcinogenesis sets in. The total number of gene expression changes varied considerably across the tissue types, with only 32 genes being regulated in common. Among them, we confirmed the Kelch-like family protein KLHL35 and the laminin-5 complex to be upregulated and downregulated, respectively, in all the three tissues. HPV16 infection induces upregulation of genes involved in cell cycle control, cell division, mitosis, DNA replication, and DNA damage repair in all the three tissues, indicative of a hyperproliferative environment. In the cervical and tonsil epithelium, we observe significant downregulation of genes involved in epidermis development, keratinocyte differentiation, and extracellular matrix organization. On the other hand, in HPV16-positive foreskin (HPV16 foreskin) tissue, several genes involved in interferon-mediated innate immunity, cytokine signaling, and cellular defenses were downregulated. Furthermore, pathway analysis and experimental validations identified important cellular pathways like STAT1 and transforming growth factor β (TGF-β) to be differentially regulated among the three tissue types. The differential modulation of important cellular pathways like TGF-β1 and STAT1 can explain the sensitivity of tissues to HPV cancer progression.IMPORTANCE Although the high-risk human papillomavirus 16 infects anogenital and oropharyngeal sites, the cervical epithelium has a unique vulnerability to progression of cancer. Host responses during persistent infection and preneoplastic stages can shape the outcome of cancer progression in a tissue-dependent manner. Our study for the first time reports differential regulation of critical cellular functions and signaling pathways during productive HPV16 infection of cervical, foreskin, and tonsil tissues. While the virus induces hyperproliferation in infected cells, it downregulates epithelial differentiation, epidermal development, and innate immune responses, according to the tissue type. Modulation of these biological functions can determine virus fitness and pathogenesis and illuminate key cellular mechanisms that the virus employs to establish persistence and finally initiate disease progression.
Collapse
|
40
|
RAD18 contributes to the migration and invasion of human cervical cancer cells via the interleukin‑1β pathway. Mol Med Rep 2019; 20:3415-3423. [PMID: 31432163 DOI: 10.3892/mmr.2019.10564] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Accepted: 07/11/2019] [Indexed: 11/05/2022] Open
Abstract
The E3 ubiquitin ligase RAD18 has been identified as an oncoprotein that exhibits prometastatic properties in various types of cancer; however, the role of RAD18 in cervical cancer (CC) remains unclear. In the present study, it was revealed that increased expression of RAD18 was associated with worse prognosis of patients with CC. Knockdown of endogenous RAD18 suppressed the motility and invasiveness of CC cells, as evaluated by Transwell assays. mRNA sequencing revealed that silencing RAD18 altered the expression profile of proinflammatory mediators, such as interleukin‑1β (IL‑1β). Furthermore, exogenous IL‑1β treatment rescued RAD18‑mediated CC cell invasion. These findings indicated an underlying mechanism via which RAD18 promotes CC progression, suggesting that RAD18 may be a potential biomarker and therapeutic target for malignant CC.
Collapse
|
41
|
Zhou C, Tuong ZK, Frazer IH. Papillomavirus Immune Evasion Strategies Target the Infected Cell and the Local Immune System. Front Oncol 2019; 9:682. [PMID: 31428574 PMCID: PMC6688195 DOI: 10.3389/fonc.2019.00682] [Citation(s) in RCA: 120] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Accepted: 07/10/2019] [Indexed: 12/24/2022] Open
Abstract
Persistent infection with human papillomavirus (HPV) initiates ~5% of all human cancers, and particularly cervical and oropharyngeal cancers. HPV vaccines prevent HPV infection, but do not eliminate existing HPV infections. Papillomaviruses induce hyperproliferation of epithelial cells. In this review we discuss how hyperproliferation renders epithelial cells less sensitive to immune attack, and impacts upon the efficiency of the local immune system. These observations have significance for the design of therapeutic HPV cancer immunotherapies.
Collapse
Affiliation(s)
- Chenhao Zhou
- Faculty of Medicine, The University of Queensland Diamantina Institute, Translational Research Institute, The University of Queensland, Brisbane, QLD, Australia
| | - Zewen Kelvin Tuong
- Faculty of Medicine, The University of Queensland Diamantina Institute, Translational Research Institute, The University of Queensland, Brisbane, QLD, Australia.,Molecular Immunity Unit, Department of Medicine, University of Cambridge, Cambridge, United Kingdom
| | - Ian Hector Frazer
- Faculty of Medicine, The University of Queensland Diamantina Institute, Translational Research Institute, The University of Queensland, Brisbane, QLD, Australia
| |
Collapse
|
42
|
Freer G, Maggi F, Pistello M. Virome and Inflammasomes, a Finely Tuned Balance with Important Consequences for the Host Health. Curr Med Chem 2019; 26:1027-1044. [PMID: 28982318 DOI: 10.2174/0929867324666171005112921] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2017] [Revised: 07/06/2017] [Accepted: 07/27/2017] [Indexed: 12/21/2022]
Abstract
BACKGROUND The virome is a network of viruses normally inhabiting humans. It forms a conspicuous portion of the so-called microbiome, once generically referred to as resident flora. Indeed, viruses infecting humans without leading to clinical disease are increasingly recognized as part of the microbiome and have an impact on the development of our immune system. In addition, they activate inflammasomes, multiprotein complexes that assemble in cells and that are responsible for the downstream effects of sensing pathogens. OBJECTIVE This review aims at summarizing the evidence on the role of the virome in modulating inflammation and emphasizes evidence for Anelloviruses as useful molecular markers to monitor inflammatory processes and immune system competence. METHOD We carried out a review of the literature published in the last 5 years and summarized older literature to take into account ground-breaking discoveries concerning inflammasome assembly and virome. RESULTS A massive amount of data recently emerging demonstrate that the microbiome closely reflects what we eat, and many other unexpected variables. Composition, location, and amount of the microbiome have an impact on innate and adaptive immune defences. Viruses making up the virome contribute to shaping the immune system. Anelloviruses, the best known of such viruses, are present in most human beings, persistently without causing apparent disease. Depending on their interplay with such viruses, inflammasomes instruct host defences to tolerate or forfeit a specific microorganism. CONCLUSION The virome plays an important role in shaping human immune defences and contributes to inflammatory processes by quenching or increasing them.
Collapse
Affiliation(s)
- Giulia Freer
- Retrovirus Center and Virology Section, Department of Translational Research, University of Pisa, Pisa, Italy
| | | | - Mauro Pistello
- Retrovirus Center and Virology Section, Department of Translational Research, University of Pisa, Pisa, Italy.,Virology Unit, Pisa University Hospital, Pisa, Italy
| |
Collapse
|
43
|
Siddiqui MA, Badruddeen, Akhtar J, Uddin M.S. S, Irfan Khan M, Khalid M. Molecular mechanism of interactions between chrysin and I-kappa-B kinase epsilon (IKKe)/tank binding kinase-1(TBK1): Cell-based assay and in silico molecular docking studies. J Biomol Struct Dyn 2019; 38:589-596. [PMID: 30767626 DOI: 10.1080/07391102.2019.1581086] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- M. Amir Siddiqui
- Department of Pharmacology, Faculty of Pharmacy, Integral University, Lucknow, Uttar Pradesh, India
| | - Badruddeen
- Department of Pharmacology, Faculty of Pharmacy, Integral University, Lucknow, Uttar Pradesh, India
| | - Juber Akhtar
- Department of Pharmacology, Faculty of Pharmacy, Integral University, Lucknow, Uttar Pradesh, India
| | - Shahab Uddin M.S.
- Centre for Cellular and Molecular Platforms, National Centre for Biological Sciences Campus, Bangalore, Karnataka, India
| | - Mohammad Irfan Khan
- Department of Pharmacology, Faculty of Pharmacy, Integral University, Lucknow, Uttar Pradesh, India
| | - Mohammad Khalid
- Department of Pharmacology, Faculty of Pharmacy, Integral University, Lucknow, Uttar Pradesh, India
| |
Collapse
|
44
|
Walch-Rückheim B, Ströder R, Theobald L, Pahne-Zeppenfeld J, Hegde S, Kim YJ, Bohle RM, Juhasz-Böss I, Solomayer EF, Smola S. Cervical Cancer-Instructed Stromal Fibroblasts Enhance IL23 Expression in Dendritic Cells to Support Expansion of Th17 Cells. Cancer Res 2019; 79:1573-1586. [PMID: 30696656 DOI: 10.1158/0008-5472.can-18-1913] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2018] [Revised: 11/16/2018] [Accepted: 01/23/2019] [Indexed: 11/16/2022]
Abstract
Persistent infection with high-risk human papillomavirus (HPV) is a prerequisite for the development of cervical cancer. HPV-transformed cells actively instruct their microenvironment, promoting chronic inflammation and cancer progression. We previously demonstrated that cervical cancer cells contribute to Th17 cell recruitment, a cell type with protumorigenic properties. In this study, we analyzed the expression of the Th17-promoting cytokine IL23 in the cervical cancer micromilieu and found CD83+ mature dendritic cells (mDC) coexpressing IL23 in the stroma of cervical squamous cell carcinomas in situ. This expression of IL23 correlated with stromal Th17 cells, advanced tumor stage, lymph node metastasis, and cervical cancer recurrence. Cocultures of cervical cancer-instructed mDCs and cervical fibroblasts led to potent protumorigenic expansion of Th17 cells in vitro but failed to induce antitumor Th1 differentiation. Correspondingly, cervical cancer-instructed fibroblasts increased IL23 production in cocultured cervical cancer-instructed mDCs, which mediated subsequent Th17 cell expansion. In contrast, production of the Th1-polarizing cytokine IL12 in the cancer-instructed mDCs was strongly reduced. This differential IL23 and IL12 regulation was the consequence of an increased expression of the IL23 subunits IL23p19 and IL12p40 but decreased expression of the IL12 subunit IL12p35 in cervical cancer-instructed mDCs. Cervical cancer cell-derived IL6 directly suppressed IL12p35 in mDCs but indirectly induced IL23 expression in fibroblast-primed mDCs via CAAT/enhancer-binding protein β (C/EBPβ)-dependent induction of IL1β. In summary, our study defines a mechanism by which the cervical cancer micromilieu supports IL23-mediated Th17 expansion associated with cancer progression. SIGNIFICANCE: Cervical cancer cells differentially regulate IL23 and IL12 in DC fibroblast cocultures in an IL6/C/EBPβ/IL1β-dependent manner, thereby supporting the expansion of Th17 cells during cancer progression.
Collapse
Affiliation(s)
- Barbara Walch-Rückheim
- Institute of Virology and Center of Human and Molecular Biology, Saarland University, Homburg/Saar, Germany.
| | - Russalina Ströder
- Department of Obstetrics and Gynecology, Saarland University, Homburg/Saar, Germany
| | - Laura Theobald
- Institute of Virology and Center of Human and Molecular Biology, Saarland University, Homburg/Saar, Germany
| | - Jennifer Pahne-Zeppenfeld
- Center for Molecular Medicine Cologne and Institute of Virology, University of Cologne, Cologne, Germany
| | - Subramanya Hegde
- Center for Molecular Medicine Cologne and Institute of Virology, University of Cologne, Cologne, Germany
| | - Yoo-Jin Kim
- Institute of Pathology, Saarland University, Homburg/Saar, Germany
| | | | - Ingolf Juhasz-Böss
- Department of Obstetrics and Gynecology, Saarland University, Homburg/Saar, Germany
| | | | - Sigrun Smola
- Institute of Virology and Center of Human and Molecular Biology, Saarland University, Homburg/Saar, Germany
| |
Collapse
|
45
|
Rader JS, Tsaih SW, Fullin D, Murray MW, Iden M, Zimmermann MT, Flister MJ. Genetic variations in human papillomavirus and cervical cancer outcomes. Int J Cancer 2019; 144:2206-2214. [PMID: 30515767 DOI: 10.1002/ijc.32038] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2018] [Accepted: 11/27/2018] [Indexed: 12/12/2022]
Abstract
Cervical cancer is driven by persistent infection of human papillomavirus (HPV), which is influenced by HPV type and intratypic variants, yet the impact of HPV type and intratypic variants on patient outcomes is far less understood. Here, we examined the association of cervical cancer stage and survival with HPV type, clade, lineage, and intratypic variants within the HPV E6 locus. Of 1,028 HPV-positive cases recruited through the CerGE study, 301 were in-situ and 727 were invasive cervical cancer (ICC), with an average post-diagnosis follow-up of 4.8 years. HPV sequencing was performed using tumor-isolated DNA to assign HPV type, HPV 16 lineage, clade, and intratypic variants within the HPV 16 E6 locus, of which nonsynonomous variants were functionally annotated by molecular modeling. HPV 18-related types were more prevalent in ICC compared to in-situ disease and associated with significantly worse recurrence-free survival (RFS) compared to HPV 16-related types. The HPV 16 Asian American lineage D3 and Asian lineage A4 associated more frequently with ICC than with in situ disease and women with an intratypic HPV 16 lineage B exhibited a trend toward worse RFS than those with A, C, or D lineages. Participants with intratypic E6 variants predicted to stabilize the E6-E6AP-p53 complex had worse RFS. Variants within the highly immunogenic HPV 16 E6 region (E14-I34) were enriched in ICC compared to in-situ lesions but were not associated with survival. Collectively, our results suggest that cervical cancer outcome is associated with HPV variants that affect virus-host interactions.
Collapse
Affiliation(s)
- Janet S Rader
- Department of Obstetrics and Gynecology, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Shirng-Wern Tsaih
- Department of Physiology, Medical College of Wisconsin, Milwaukee, WI, USA.,Genomics Sciences and Precision Medicine Center, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Daniel Fullin
- Department of Obstetrics and Gynecology, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Miriam W Murray
- Department of Obstetrics and Gynecology, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Marissa Iden
- Department of Obstetrics and Gynecology, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Michael T Zimmermann
- Genomics Sciences and Precision Medicine Center, Medical College of Wisconsin, Milwaukee, WI, USA.,Medical College of Wisconsin, Clinical and Translational Sciences Institute, Milwaukee, WI, USA
| | - Michael J Flister
- Department of Physiology, Medical College of Wisconsin, Milwaukee, WI, USA.,Genomics Sciences and Precision Medicine Center, Medical College of Wisconsin, Milwaukee, WI, USA
| |
Collapse
|
46
|
Al-Sahaf S, Hunter KD, Bolt R, Ottewell PD, Murdoch C. The IL-1/IL-1R axis induces greater fibroblast-derived chemokine release in human papillomavirus-negative compared to positive oropharyngeal cancer. Int J Cancer 2018; 144:334-344. [PMID: 30191960 PMCID: PMC6491969 DOI: 10.1002/ijc.31852] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2018] [Revised: 08/10/2018] [Accepted: 08/27/2018] [Indexed: 12/13/2022]
Abstract
Human papillomavirus (HPV) is now recognised as a major aetiological agent in the pathogenesis of oropharyngeal carcinoma (OPC). HPV-positive tumours are associated with better outcomes compared to HPV-negative tumours, possibly due to differences in their aetiology and/or the tumour microenvironment. Increased numbers of tumour-associated leukocytes have been observed in many cancers including OPC, with variable influence on prognosis depending on the leukocyte subpopulation investigated. Whether HPV status influences leukocyte recruitment to OPC remains unknown. This in-vitro study examined differences in the chemoattractant capacity of HPV-positive and HPV-negative OPC cell lines. Gene and protein expression analysis demonstrated that whilst both monocultures of HPV-positive and HPV-negative cell lines, along with normal tonsillar fibroblasts (NTF), expressed low chemokine levels, NTF cultured with conditioned medium from HPV-negative OPC cells expressed significantly higher levels of all chemokines tested compared to NTF incubated with the medium from HPV-positive OPC cell lines. HPV-negative OPC lines expressed IL-1β mRNA whereas HPV-positive cells did not, and NTF constitutively expressed IL-1R1. Pre-treatment with the IL-R antagonist, anakinra or siRNA to IL-1R1 significantly reduced chemokine secretion from NTF stimulated with conditioned medium from HPV-negative tumour cells or recombinant IL-1β (p < 0.05). These data suggest that secretion of chemokines is driven by the interaction between HPV-negative OPC cells and stromal fibroblasts through an IL-1/IL-1R-mediated mechanism that is less prominent within the HPV-positive tumour microenvironment. These observations may explain differences in leukocyte sub-populations recruited to HPV-positive versus negative OPC and indicate that HPV status is a key determinant in controlling the inflammatory tumour microenvironment.
Collapse
Affiliation(s)
- Sarmad Al-Sahaf
- School of Clinical Dentistry, Claremont Crescent, University of Sheffield, United Kingdom
| | - Keith D Hunter
- School of Clinical Dentistry, Claremont Crescent, University of Sheffield, United Kingdom
| | - Robert Bolt
- School of Clinical Dentistry, Claremont Crescent, University of Sheffield, United Kingdom
| | - Penelope D Ottewell
- Department of Oncology & Metabolism, Medical School, Beech Hill Road, University of Sheffield, United Kingdom
| | - Craig Murdoch
- School of Clinical Dentistry, Claremont Crescent, University of Sheffield, United Kingdom
| |
Collapse
|
47
|
Zhu L, Tu H, Liang Y, Tang D. MiR-218 produces anti-tumor effects on cervical cancer cells in vitro. World J Surg Oncol 2018; 16:204. [PMID: 30314496 PMCID: PMC6186038 DOI: 10.1186/s12957-018-1506-3] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2018] [Accepted: 09/30/2018] [Indexed: 12/18/2022] Open
Abstract
Background As indoleamine-2,3-dioxygenase 1 (IDO1) is critical in tumor immune escape, we determined to study the regulatory mechanism of miR-218 on IDO1 in cervical cancer. Methods Real-time PCR (RT-qPCR) was carried out to measure the expression of miR-218. RT-qPCR and Western blot were performed to detect the expression of IDO1 in cervical cancer. Dual-luciferase reporter assay was used to determine the binding of miR-218 on the IDO1 3′UTR. Cell viability, apoptosis, and related factors were determined using cell counting kit-8 (CCK-8), Annexin-V/PI (propidium) assay, enzyme-linked immunosorbnent assay (ELISA), RT-qPCR, and Western blot assays after miR-218 mimics has been transfected to HeLa cervical cancer cells. Results MiR-218 was downregulated in cervical cancer. The expression of miR-218 was negatively correlated with IDO1 in cervical cancer tissues and cells. IDO1 is a direct target of miR-218. MiR-218 overexpression was found to inhibit cell viability and promoted apoptosis via activating the expression of Cleaved-Caspase-3 and to inhibit the expression of Survivin, immune factors (TGF-β, VEGF, IL-6, PGE2, COX-2), and JAK2/STAT3 pathway. Conclusion MiR-218 inhibits immune escape of cervical cancer cells by direct downregulating IDO1.
Collapse
Affiliation(s)
- Li Zhu
- Department of Gynecologic Oncology, The People's Hospital of Taojiang County, Taojiang, China
| | - Huaidong Tu
- Department of Gynecologic Oncology, The People's Hospital of Taojiang County, Taojiang, China
| | - Yanmei Liang
- Department of Gynecologic Oncology, The People's Hospital of Taojiang County, Taojiang, China
| | - Dihong Tang
- Department of Gynecologic Oncology, Hunan Cancer Hospital, No.283 Tongzipo Road, Yuelu District, Changsha, 410006, Hunan Province, China.
| |
Collapse
|
48
|
Nunes RAL, Morale MG, Silva GÁF, Villa LL, Termini L. Innate immunity and HPV: friends or foes. Clinics (Sao Paulo) 2018; 73:e549s. [PMID: 30328949 PMCID: PMC6157093 DOI: 10.6061/clinics/2018/e549s] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/18/2018] [Accepted: 06/05/2018] [Indexed: 12/15/2022] Open
Abstract
Most human papillomavirus infections are readily cleared by the host immune response. However, in some individuals, human papillomavirus can establish a persistent infection. The persistence of high-risk human papillomavirus infection is the major risk factor for cervical cancer development. These viruses have developed mechanisms to evade the host immune system, which is an important step in persistence and, ultimately, in tumor development. Several cell types, receptors, transcription factors and inflammatory mediators involved in the antiviral immune response are viral targets and contribute to tumorigenesis. These targets include antigen-presenting cells, macrophages, natural killer cells, Toll-like receptors, nuclear factor kappa B and several cytokines and chemokines, such as interleukins, interferon and tumor necrosis factor. In the present review, we address both the main innate immune response mechanisms involved in HPV infection clearance and the viral strategies that promote viral persistence and may contribute to cancer development. Finally, we discuss the possibility of exploiting this knowledge to develop effective therapeutic strategies.
Collapse
Affiliation(s)
- Rafaella Almeida Lima Nunes
- Centro de Investigacao Translacional em Oncologia, Instituto do Cancer do Estado de Sao Paulo (ICESP), Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, Sao Paulo, BR
- Departamento de Radiologia e Oncologia, Faculdade de Medicina FMUSP, Universidade de Sao Paulo, Sao Paulo, BR
| | - Mirian Galliote Morale
- Centro de Investigacao Translacional em Oncologia, Instituto do Cancer do Estado de Sao Paulo (ICESP), Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, Sao Paulo, BR
- Departamento de Radiologia e Oncologia, Faculdade de Medicina FMUSP, Universidade de Sao Paulo, Sao Paulo, BR
| | - Gabriela Ávila Fernandes Silva
- Centro de Investigacao Translacional em Oncologia, Instituto do Cancer do Estado de Sao Paulo (ICESP), Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, Sao Paulo, BR
- Departamento de Radiologia e Oncologia, Faculdade de Medicina FMUSP, Universidade de Sao Paulo, Sao Paulo, BR
| | - Luisa Lina Villa
- Centro de Investigacao Translacional em Oncologia, Instituto do Cancer do Estado de Sao Paulo (ICESP), Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, Sao Paulo, BR
- Departamento de Radiologia e Oncologia, Faculdade de Medicina FMUSP, Universidade de Sao Paulo, Sao Paulo, BR
| | - Lara Termini
- Centro de Investigacao Translacional em Oncologia, Instituto do Cancer do Estado de Sao Paulo (ICESP), Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, Sao Paulo, BR
- *Corresponding author. E-mail:
| |
Collapse
|
49
|
Ainouze M, Rochefort P, Parroche P, Roblot G, Tout I, Briat F, Zannetti C, Marotel M, Goutagny N, Auron P, Traverse-Glehen A, Lunel-Potencier A, Golfier F, Masson M, Robitaille A, Tommasino M, Carreira C, Walzer T, Henry T, Zanier K, Trave G, Hasan UA. Human papillomavirus type 16 antagonizes IRF6 regulation of IL-1β. PLoS Pathog 2018; 14:e1007158. [PMID: 30089163 PMCID: PMC6124776 DOI: 10.1371/journal.ppat.1007158] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2018] [Revised: 09/05/2018] [Accepted: 06/15/2018] [Indexed: 12/15/2022] Open
Abstract
Human papillomavirus type 16 (HPV16) and other oncoviruses have been shown to block innate immune responses and to persist in the host. However, to avoid viral persistence, the immune response attempts to clear the infection. IL-1β is a powerful cytokine produced when viral motifs are sensed by innate receptors that are members of the inflammasome family. Whether oncoviruses such as HPV16 can activate the inflammasome pathway remains unknown. Here, we show that infection of human keratinocytes with HPV16 induced the secretion of IL-1β. Yet, upon expression of the viral early genes, IL-1β transcription was blocked. We went on to show that expression of the viral oncoprotein E6 in human keratinocytes inhibited IRF6 transcription which we revealed regulated IL-1β promoter activity. Preventing E6 expression using siRNA, or using E6 mutants that prevented degradation of p53, showed that p53 regulated IRF6 transcription. HPV16 abrogation of p53 binding to the IRF6 promoter was shown by ChIP in tissues from patients with cervical cancer. Thus E6 inhibition of IRF6 is an escape strategy used by HPV16 to block the production IL-1β. Our findings reveal a struggle between oncoviral persistence and host immunity; which is centered on IL-1β regulation.
Collapse
Affiliation(s)
- Michelle Ainouze
- Centre International de recherche en Infectiologie, CIRI, Inserm, U1111, Lyon, France
- Université Claude Bernard Lyon 1, Lyon, France
- CNRS, UMR5308, Lyon, France
- École Normale Supérieure de Lyon, Univ Lyon, France
- Hospices Civils de Lyon, France
| | - Pauline Rochefort
- Centre International de recherche en Infectiologie, CIRI, Inserm, U1111, Lyon, France
- Université Claude Bernard Lyon 1, Lyon, France
- CNRS, UMR5308, Lyon, France
- École Normale Supérieure de Lyon, Univ Lyon, France
- Hospices Civils de Lyon, France
| | - Peggy Parroche
- Centre International de recherche en Infectiologie, CIRI, Inserm, U1111, Lyon, France
- Université Claude Bernard Lyon 1, Lyon, France
- CNRS, UMR5308, Lyon, France
- École Normale Supérieure de Lyon, Univ Lyon, France
- Hospices Civils de Lyon, France
| | - Guillaume Roblot
- Centre International de recherche en Infectiologie, CIRI, Inserm, U1111, Lyon, France
- Université Claude Bernard Lyon 1, Lyon, France
- CNRS, UMR5308, Lyon, France
- École Normale Supérieure de Lyon, Univ Lyon, France
- Hospices Civils de Lyon, France
| | - Issam Tout
- Centre International de recherche en Infectiologie, CIRI, Inserm, U1111, Lyon, France
- Université Claude Bernard Lyon 1, Lyon, France
- CNRS, UMR5308, Lyon, France
- École Normale Supérieure de Lyon, Univ Lyon, France
- Hospices Civils de Lyon, France
| | - François Briat
- Centre International de recherche en Infectiologie, CIRI, Inserm, U1111, Lyon, France
- Université Claude Bernard Lyon 1, Lyon, France
- CNRS, UMR5308, Lyon, France
- École Normale Supérieure de Lyon, Univ Lyon, France
- Hospices Civils de Lyon, France
| | - Claudia Zannetti
- Centre International de recherche en Infectiologie, CIRI, Inserm, U1111, Lyon, France
- Université Claude Bernard Lyon 1, Lyon, France
- CNRS, UMR5308, Lyon, France
- École Normale Supérieure de Lyon, Univ Lyon, France
- Hospices Civils de Lyon, France
| | - Marie Marotel
- Centre International de recherche en Infectiologie, CIRI, Inserm, U1111, Lyon, France
- Université Claude Bernard Lyon 1, Lyon, France
- CNRS, UMR5308, Lyon, France
- École Normale Supérieure de Lyon, Univ Lyon, France
- Hospices Civils de Lyon, France
| | - Nadege Goutagny
- Cancer Research Centre of Lyon, INSERM U1052-CNRS UMR5286, Lyon, France
| | - Philip Auron
- Duquesne University, Pittsburgh, Pennsylvania, United States of America
| | - Alexandra Traverse-Glehen
- Hospices Civils de Lyon, France
- Cancer Research Centre of Lyon, INSERM U1052-CNRS UMR5286, Lyon, France
| | | | | | | | | | | | | | - Thierry Walzer
- Centre International de recherche en Infectiologie, CIRI, Inserm, U1111, Lyon, France
- Université Claude Bernard Lyon 1, Lyon, France
- CNRS, UMR5308, Lyon, France
- École Normale Supérieure de Lyon, Univ Lyon, France
- Hospices Civils de Lyon, France
| | - Thomas Henry
- Centre International de recherche en Infectiologie, CIRI, Inserm, U1111, Lyon, France
- Université Claude Bernard Lyon 1, Lyon, France
- CNRS, UMR5308, Lyon, France
- École Normale Supérieure de Lyon, Univ Lyon, France
- Hospices Civils de Lyon, France
| | | | | | - Uzma Ayesha Hasan
- Centre International de recherche en Infectiologie, CIRI, Inserm, U1111, Lyon, France
- Université Claude Bernard Lyon 1, Lyon, France
- CNRS, UMR5308, Lyon, France
- École Normale Supérieure de Lyon, Univ Lyon, France
- Hospices Civils de Lyon, France
| |
Collapse
|
50
|
Perez-Campos Mayoral E, Mayoral-Andrade G, Pérez-Campos Mayoral L, Canseco SP, Cruz RM, Hernández-Huerta MT, Rodriguez AM, Cabrera-Fuentes HA, Pérez-Campos E. Diagnosis of Transient/Latent HPV Infections - A Point of View! Arch Med Res 2018. [DOI: 10.1016/j.arcmed.2018.10.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|