1
|
Prajapati KP, Ansari M, Mittal S, Mishra N, Bhatia A, Mahato OP, Anand BG, Kar K. Rapid Coaggregation of Proteins Without Sequence Similarity: Possible Role of Conformational Complementarity. Biochemistry 2024. [PMID: 39392802 DOI: 10.1021/acs.biochem.4c00282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/13/2024]
Abstract
Despite extensive research on the sequence-determined self-assembly of both pathogenic and nonpathogenic proteins, the question of how the sequence identity would influence the coassembly or cross-seeding of diverse proteins without distinct sequence similarity remains largely unanswered. Here, we demonstrate that the rapid coaggregation of proteins with negligible sequence similarity is fundamentally governed by preferred heteromeric interactions between their partially unfolded states via the gain of additional charge complementarity and hydrophobic interactions. The partial loss of intramolecular interactions and concurrent gain of non-native intrinsically disordered regions with sticky groups become crucial for both aggressive heteromeric primary nucleation and secondary nucleation events. The results signify the direct relevance of sequence-independent conformational cross-talk between diverse proteins to the foundational events required for the growth of biological multiprotein amyloid deposits.
Collapse
Affiliation(s)
- Kailash Prasad Prajapati
- Biophysical and Biomaterials Research Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi 110067, India
| | - Masihuzzaman Ansari
- Biophysical and Biomaterials Research Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi 110067, India
| | - Shikha Mittal
- Biophysical and Biomaterials Research Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi 110067, India
| | - Nishant Mishra
- Biomolecular Self-Assembly Lab, Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur, Tamil Nadu 603203, India
| | - Anubhuti Bhatia
- Biomolecular Self-Assembly Lab, Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur, Tamil Nadu 603203, India
| | - Om Prakash Mahato
- Biophysical and Biomaterials Research Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi 110067, India
| | - Bibin Gnanadhason Anand
- Biomolecular Self-Assembly Lab, Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur, Tamil Nadu 603203, India
| | - Karunakar Kar
- Biophysical and Biomaterials Research Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi 110067, India
| |
Collapse
|
2
|
Kell DB, Pretorius E. Proteomic Evidence for Amyloidogenic Cross-Seeding in Fibrinaloid Microclots. Int J Mol Sci 2024; 25:10809. [PMID: 39409138 PMCID: PMC11476703 DOI: 10.3390/ijms251910809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Revised: 10/01/2024] [Accepted: 10/03/2024] [Indexed: 10/20/2024] Open
Abstract
In classical amyloidoses, amyloid fibres form through the nucleation and accretion of protein monomers, with protofibrils and fibrils exhibiting a cross-β motif of parallel or antiparallel β-sheets oriented perpendicular to the fibre direction. These protofibrils and fibrils can intertwine to form mature amyloid fibres. Similar phenomena can occur in blood from individuals with circulating inflammatory molecules (and also some originating from viruses and bacteria). Such pathological clotting can result in an anomalous amyloid form termed fibrinaloid microclots. Previous proteomic analyses of these microclots have shown the presence of non-fibrin(ogen) proteins, suggesting a more complex mechanism than simple entrapment. We thus provide evidence against such a simple entrapment model, noting that clot pores are too large and centrifugation would have removed weakly bound proteins. Instead, we explore whether co-aggregation into amyloid fibres may involve axial (multiple proteins within the same fibril), lateral (single-protein fibrils contributing to a fibre), or both types of integration. Our analysis of proteomic data from fibrinaloid microclots in different diseases shows no significant quantitative overlap with the normal plasma proteome and no correlation between plasma protein abundance and their presence in fibrinaloid microclots. Notably, abundant plasma proteins like α-2-macroglobulin, fibronectin, and transthyretin are absent from microclots, while less abundant proteins such as adiponectin, periostin, and von Willebrand factor are well represented. Using bioinformatic tools, including AmyloGram and AnuPP, we found that proteins entrapped in fibrinaloid microclots exhibit high amyloidogenic tendencies, suggesting their integration as cross-β elements into amyloid structures. This integration likely contributes to the microclots' resistance to proteolysis. Our findings underscore the role of cross-seeding in fibrinaloid microclot formation and highlight the need for further investigation into their structural properties and implications in thrombotic and amyloid diseases. These insights provide a foundation for developing novel diagnostic and therapeutic strategies targeting amyloidogenic cross-seeding in blood clotting disorders.
Collapse
Affiliation(s)
- Douglas B. Kell
- Department of Biochemistry, Cell and Systems Biology, Institute of Systems, Molecular and Integrative Biology, Faculty of Health and Life Sciences, University of Liverpool, Crown St., Liverpool L69 7ZB, UK
- The Novo Nordisk Foundation Centre for Biosustainability, Building 220, Søltofts Plads 200, Technical University of Denmark, 2800 Kongens Lyngby, Denmark
- Department of Physiological Sciences, Faculty of Science, Stellenbosch University, Private Bag X1 Matieland, Stellenbosch 7602, South Africa
| | - Etheresia Pretorius
- Department of Biochemistry, Cell and Systems Biology, Institute of Systems, Molecular and Integrative Biology, Faculty of Health and Life Sciences, University of Liverpool, Crown St., Liverpool L69 7ZB, UK
- Department of Physiological Sciences, Faculty of Science, Stellenbosch University, Private Bag X1 Matieland, Stellenbosch 7602, South Africa
| |
Collapse
|
3
|
Bondarev SA, Uspenskaya MV, Leclercq J, Falgarone T, Zhouravleva GA, Kajava AV. AmyloComp: A Bioinformatic Tool for Prediction of Amyloid Co-aggregation. J Mol Biol 2024; 436:168437. [PMID: 38185324 DOI: 10.1016/j.jmb.2024.168437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 12/13/2023] [Accepted: 01/03/2024] [Indexed: 01/09/2024]
Abstract
Typically, amyloid fibrils consist of multiple copies of the same protein. In these fibrils, each polypeptide chain adopts the same β-arc-containing conformation and these chains are stacked in a parallel and in-register manner. In the last few years, however, a considerable body of data has been accumulated about co-aggregation of different amyloid-forming proteins. Among known examples of the co-aggregation are heteroaggregates of different yeast prions and human proteins Rip1 and Rip3. Since the co-aggregation is linked to such important phenomena as infectivity of amyloids and molecular mechanisms of functional amyloids, we analyzed its structural aspects in more details. An axial stacking of different proteins within the same amyloid fibril is one of the most common type of co-aggregation. By using an approach based on structural similarity of the growing tips of amyloids, we developed a computational method to predict amyloidogenic β-arch structures that are able to interact with each other by the axial stacking. Furthermore, we compiled a dataset consisting of 26 experimentally known pairs of proteins capable or incapable to co-aggregate. We utilized this dataset to test and refine our algorithm. The developed method opens a way for a number of applications, including the identification of microbial proteins capable triggering amyloidosis in humans. AmyloComp is available on the website: https://bioinfo.crbm.cnrs.fr/index.php?route=tools&tool=30.
Collapse
Affiliation(s)
- Stanislav A Bondarev
- Department of Genetics and Biotechnology and Laboratory of Amyloid Biology, St. Petersburg State University, Saint Petersburg 199034, Russian Federation.
| | - Mayya V Uspenskaya
- Institute of Bioengineering, ITMO University, St. Petersburg 197101, Russian Federation
| | - Jérémy Leclercq
- Centre de Recherche en Biologie Cellulaire de Montpellier, CNRS, Université Montpellier, Montpellier 34293, France
| | - Théo Falgarone
- Centre de Recherche en Biologie Cellulaire de Montpellier, CNRS, Université Montpellier, Montpellier 34293, France
| | - Galina A Zhouravleva
- Department of Genetics and Biotechnology and Laboratory of Amyloid Biology, St. Petersburg State University, Saint Petersburg 199034, Russian Federation
| | - Andrey V Kajava
- Centre de Recherche en Biologie Cellulaire de Montpellier, CNRS, Université Montpellier, Montpellier 34293, France.
| |
Collapse
|
4
|
Roy S, Srinivasan VR, Arunagiri S, Mishra N, Bhatia A, Shejale KP, Prajapati KP, Kar K, Anand BG. Molecular insights into the phase transition of lysozyme into amyloid nanostructures: Implications of therapeutic strategies in diverse pathological conditions. Adv Colloid Interface Sci 2024; 331:103205. [PMID: 38875805 DOI: 10.1016/j.cis.2024.103205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Revised: 05/13/2024] [Accepted: 05/21/2024] [Indexed: 06/16/2024]
Abstract
Lysozyme, a well-known bacteriolytic enzyme, exhibits a fascinating yet complex behavior when it comes to protein aggregation. Under certain conditions, this enzyme undergoes flexible transformation, transitioning from partially unfolded intermediate units of native conformers into complex cross-β-rich nano fibrillar amyloid architectures. Formation of such lysozyme amyloids has been implicated in a multitude of pathological and medical severities, like hepatic dysfunction, hepatomegaly, splenic rupture as well as spleen dysfunction, nephropathy, sicca syndrome, renal dysfunction, renal amyloidosis, and systemic amyloidosis. In this comprehensive review, we have attempted to provide in-depth insights into the aggregating behavior of lysozyme across a spectrum of variables, including concentrations, temperatures, pH levels, and mutations. Our objective is to elucidate the underlying mechanisms that govern lysozyme's aggregation process and to unravel the complex interplay between its structural attributes. Moreover, this work has critically examined the latest advancements in the field, focusing specifically on novel strategies and systems, that have been implemented to delay or inhibit the lysozyme amyloidogenesis. Apart from this, we have tried to explore and advance our fundamental understanding of the complex processes involved in lysozyme aggregation. This will help the research community to lay a robust foundation for screening, designing, and formulating targeted anti-amyloid therapeutics offering improved treatment modalities and interventions not only for lysozyme-linked amyloidopathy but for a wide range of amyloid-related disorders.
Collapse
Affiliation(s)
- Sindhujit Roy
- Biomolecular Self-Assembly Lab, Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur, Tamil Nadu 603203, India
| | - Venkat Ramanan Srinivasan
- Biomolecular Self-Assembly Lab, Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur, Tamil Nadu 603203, India
| | - Subash Arunagiri
- Biomolecular Self-Assembly Lab, Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur, Tamil Nadu 603203, India
| | - Nishant Mishra
- Biomolecular Self-Assembly Lab, Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur, Tamil Nadu 603203, India
| | - Anubhuti Bhatia
- Biomolecular Self-Assembly Lab, Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur, Tamil Nadu 603203, India
| | - Kiran P Shejale
- Dept. of Chemical Engineering, Pohang University of Science and Technology (POSTECH), Pohang, Gyeongbuk 37673, South Korea
| | - Kailash Prasad Prajapati
- Biophysical and Biomaterials Research Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi 110067, India
| | - Karunakar Kar
- Biophysical and Biomaterials Research Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi 110067, India..
| | - Bibin Gnanadhason Anand
- Biomolecular Self-Assembly Lab, Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur, Tamil Nadu 603203, India..
| |
Collapse
|
5
|
Tiroli-Cepeda AO, Linhares LA, Aragão AZB, de Jesus JR, Wasilewska-Sampaio AP, De Felice FG, Ferreira ST, Borges JC, Cyr DM, Ramos CHI. Type I Hsp40s/DnaJs aggregates exhibit features reminiscent of amyloidogenic structures. FEBS J 2024; 291:3904-3923. [PMID: 38975859 PMCID: PMC11468011 DOI: 10.1111/febs.17215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 03/14/2024] [Accepted: 06/20/2024] [Indexed: 07/09/2024]
Abstract
A rise in temperature triggers a structural change in the human Type I 40 kDa heat shock protein (Hsp40/DnaJ), known as DNAJA1. This change leads to a less compact structure, characterized by an increased presence of solvent-exposed hydrophobic patches and β-sheet-rich regions. This transformation is validated by circular dichroism, thioflavin T binding, and Bis-ANS assays. The formation of this β-sheet-rich conformation, which is amplified in the absence of zinc, leads to protein aggregation. This aggregation is induced not only by high temperatures but also by low ionic strength and high protein concentration. The aggregated conformation exhibits characteristics of an amyloidogenic structure, including a distinctive X-ray diffraction pattern, seeding competence (which stimulates the formation of amyloid-like aggregates), cytotoxicity, resistance to SDS, and fibril formation. Interestingly, the yeast Type I Ydj1 also tends to adopt a similar β-sheet-rich structure under comparable conditions, whereas Type II Hsp40s, whether human or from yeast, do not. Moreover, Ydj1 aggregates were found to be cytotoxic. Studies using DNAJA1- and Ydj1-deleted mutants suggest that the zinc-finger region plays a crucial role in amyloid formation. Our discovery of amyloid aggregation in a C-terminal deletion mutant of DNAJA1, which resembles a spliced homolog expressed in the testis, implies that Type I Hsp40 co-chaperones may generate amyloidogenic species in vivo.
Collapse
Affiliation(s)
- Ana O Tiroli-Cepeda
- Institute of Chemistry, Universidade Estadual de Campinas-UNICAMP, Campinas, Brazil
| | - Leonardo A Linhares
- Institute of Chemistry, Universidade Estadual de Campinas-UNICAMP, Campinas, Brazil
| | - Annelize Z B Aragão
- Institute of Chemistry, Universidade Estadual de Campinas-UNICAMP, Campinas, Brazil
| | - Jemmyson R de Jesus
- Institute of Chemistry, Universidade Estadual de Campinas-UNICAMP, Campinas, Brazil
| | | | - Fernanda G De Felice
- Institute of Medical Biochemistry Leopoldo de Meis, Rio de Janeiro, Brazil
- Institute of Biophysics Carlos Chagas Filho, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Sérgio T Ferreira
- Institute of Medical Biochemistry Leopoldo de Meis, Rio de Janeiro, Brazil
- Institute of Biophysics Carlos Chagas Filho, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Júlio C Borges
- São Carlos Institute of Chemistry, University of São Paulo, São Carlos, Brazil
| | | | - Carlos H I Ramos
- Institute of Chemistry, Universidade Estadual de Campinas-UNICAMP, Campinas, Brazil
| |
Collapse
|
6
|
Shoemaker RL, Larsen RJ, Larsen PA. Single-domain antibodies and aptamers drive new opportunities for neurodegenerative disease research. Front Immunol 2024; 15:1426656. [PMID: 39238639 PMCID: PMC11374656 DOI: 10.3389/fimmu.2024.1426656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Accepted: 07/22/2024] [Indexed: 09/07/2024] Open
Abstract
Neurodegenerative diseases (NDs) in mammals, such as Alzheimer's disease (AD), Parkinson's disease (PD), and transmissible spongiform encephalopathies (TSEs), are characterized by the accumulation of misfolded proteins in the central nervous system (CNS). Despite the presence of these pathogenic proteins, the immune response in affected individuals remains notably muted. Traditional immunological strategies, particularly those reliant on monoclonal antibodies (mAbs), face challenges related to tissue penetration, blood-brain barrier (BBB) crossing, and maintaining protein stability. This has led to a burgeoning interest in alternative immunotherapeutic avenues. Notably, single-domain antibodies (or nanobodies) and aptamers have emerged as promising candidates, as their reduced size facilitates high affinity antigen binding and they exhibit superior biophysical stability compared to mAbs. Aptamers, synthetic molecules generated from DNA or RNA ligands, present both rapid production times and cost-effective solutions. Both nanobodies and aptamers exhibit inherent qualities suitable for ND research and therapeutic development. Cross-seeding events must be considered in both traditional and small-molecule-based immunodiagnostic and therapeutic approaches, as well as subsequent neurotoxic impacts and complications beyond protein aggregates. This review delineates the challenges traditional immunological methods pose in ND research and underscores the potential of nanobodies and aptamers in advancing next-generation ND diagnostics and therapeutics.
Collapse
Affiliation(s)
- Rachel L Shoemaker
- Minnesota Center for Prion Research and Outreach (MNPRO), University of Minnesota, St. Paul, MN, United States
- Department of Biomedical and Veterinary Sciences, University of Minnesota College of Veterinary Medicine, St. Paul, MN, United States
| | - Roxanne J Larsen
- Department of Biomedical and Veterinary Sciences, University of Minnesota College of Veterinary Medicine, St. Paul, MN, United States
- Priogen Corp., St. Paul, MN, United States
| | - Peter A Larsen
- Minnesota Center for Prion Research and Outreach (MNPRO), University of Minnesota, St. Paul, MN, United States
- Department of Biomedical and Veterinary Sciences, University of Minnesota College of Veterinary Medicine, St. Paul, MN, United States
| |
Collapse
|
7
|
Prasad AK, Samajdar R, Panwar AS, Martin LL. Origin of Secondary Structure Transitions and Peptide Self-Assembly Propensity in Trifluoroethanol-Water Mixtures. J Phys Chem B 2024; 128:7736-7749. [PMID: 39088441 DOI: 10.1021/acs.jpcb.4c02594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/03/2024]
Abstract
Membrane-peptide interactions are key to the formation of helical intermediates in the early stages of amyloidogenesis. Aqueous solutions of 2,2,2-trifluoroethanol (TFE) provide a membrane-mimetic environment capable of promoting and stabilizing local peptide interactions. Uperin 3.5 (U3.5), a 17-residue and amidated antimicrobial peptide, is unstructured in water but self-assembles into fibrils in the presence of salt. Secondary structure transitions linked to U3.5 self-assembly were investigated in TFE/water mixtures, in both the absence and presence of salt, to assess the role of membrane-peptide interactions on peptide self-assembly and amyloid formation. A 5-to-7-fold increase in fibril yield of U3.5 was observed at low TFE concentrations (10% TFE/water v/v) compared with physiological buffer but only in the presence of salt. No aggregation was observed in salt-free TFE/water mixtures. Circular dichroism spectra showed that partial helical structures, initially stabilized by TFE, transitioned to β-sheet-rich aggregates in a saline buffer. Molecular dynamics simulations confirmed that TFE and salt act synergistically to enhance peptide-peptide interactions, resulting in β-sheet-rich U3.5 oligomers at low TFE concentrations. Specifically, TFE stabilized amphipathic, helical intermediates, leading to increased peptide-peptide attraction through hydrophobic interactions. The presence of salt further enhanced the peptide-peptide interactions by screening positively charged residues. Thus, the study revealed the role of a membrane mimic in stabilizing helical intermediates on the pathway to amyloid formation in the antimicrobial U3.5 peptide.
Collapse
Affiliation(s)
- Anup Kumar Prasad
- IITB-Monash Research Academy, Indian Institute of Technology Bombay, Mumbai 400076, India
- Department of Metallurgical Engineering & Materials Science, Indian Institute of Technology Bombay, Mumbai 400076, India
- School of Chemistry, Monash University, Clayton 3800, VIC, Australia
| | - Rajarshi Samajdar
- Department of Chemical Engineering, Institute of Chemical Technology, Mumbai 400019, India
| | - Ajay Singh Panwar
- Department of Metallurgical Engineering & Materials Science, Indian Institute of Technology Bombay, Mumbai 400076, India
| | - Lisandra L Martin
- School of Chemistry, Monash University, Clayton 3800, VIC, Australia
| |
Collapse
|
8
|
Zampar S, Di Gregorio SE, Grimmer G, Watts JC, Ingelsson M. "Prion-like" seeding and propagation of oligomeric protein assemblies in neurodegenerative disorders. Front Neurosci 2024; 18:1436262. [PMID: 39161653 PMCID: PMC11330897 DOI: 10.3389/fnins.2024.1436262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Accepted: 07/17/2024] [Indexed: 08/21/2024] Open
Abstract
Intra- or extracellular aggregates of proteins are central pathogenic features in most neurodegenerative disorders. The accumulation of such proteins in diseased brains is believed to be the end-stage of a stepwise aggregation of misfolded monomers to insoluble cross-β fibrils via a series of differently sized soluble oligomers/protofibrils. Several studies have shown how α-synuclein, amyloid-β, tau and other amyloidogenic proteins can act as nucleating particles and thereby share properties with misfolded forms, or strains, of the prion protein. Although the roles of different protein assemblies in the respective aggregation cascades remain unclear, oligomers/protofibrils are considered key pathogenic species. Numerous observations have demonstrated their neurotoxic effects and a growing number of studies have indicated that they also possess seeding properties, enabling their propagation within cellular networks in the nervous system. The seeding behavior of oligomers differs between the proteins and is also affected by various factors, such as size, shape and epitope presentation. Here, we are providing an overview of the current state of knowledge with respect to the "prion-like" behavior of soluble oligomers for several of the amyloidogenic proteins involved in neurodegenerative diseases. In addition to providing new insight into pathogenic mechanisms, research in this field is leading to novel diagnostic and therapeutic opportunities for neurodegenerative diseases.
Collapse
Affiliation(s)
- Silvia Zampar
- Krembil Brain Institute, University Health Network, Toronto, ON, Canada
- Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, Toronto, ON, Canada
| | - Sonja E. Di Gregorio
- Krembil Brain Institute, University Health Network, Toronto, ON, Canada
- Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, Toronto, ON, Canada
| | - Gustavo Grimmer
- Krembil Brain Institute, University Health Network, Toronto, ON, Canada
- Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, Toronto, ON, Canada
| | - Joel C. Watts
- Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, Toronto, ON, Canada
- Department of Biochemistry, University of Toronto, Toronto, ON, Canada
| | - Martin Ingelsson
- Krembil Brain Institute, University Health Network, Toronto, ON, Canada
- Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, Toronto, ON, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada
- Department of Medicine, University of Toronto, Toronto, ON, Canada
- Department of Public Health/Geriatrics, Rudbeck Laboratory, Uppsala University, Uppsala, Sweden
| |
Collapse
|
9
|
Polańska O, Szulc N, Stottko R, Olek M, Nadwodna J, Gąsior-Głogowska M, Szefczyk M. Challenges in Peptide Solubilization - Amyloids Case Study. CHEM REC 2024; 24:e202400053. [PMID: 39023378 DOI: 10.1002/tcr.202400053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 05/23/2024] [Indexed: 07/20/2024]
Abstract
Peptide science has been a rapidly growing research field because of the enormous potential application of these biocompatible and bioactive molecules. However, many factors limit the widespread use of peptides in medicine, and low solubility is among the most common problems that hamper drug development in the early stages of research. Solubility is a crucial, albeit poorly understood, feature that determines peptide behavior. Several different solubility predictors have been proposed, and many strategies and protocols have been reported to dissolve peptides, but none of them is a one-size-fits-all method for solubilization of even the same peptide. In this review, we look for the reasons behind the difficulties in dissolving peptides, analyze the factors influencing peptide aggregation, conduct a critical analysis of solubilization strategies and protocols available in the literature, and give some tips on how to deal with the so-called difficult sequences. We focus on amyloids, which are particularly difficult to dissolve and handle such as amyloid beta (Aβ), insulin, and phenol-soluble modulins (PSMs).
Collapse
Affiliation(s)
- Oliwia Polańska
- Department of Biomedical Engineering, Faculty of Fundamental Problems of Technology, Wroclaw University of Science and Technology, Wybrzeze Wyspianskiego 27, 50-370, Wroclaw, Poland
| | - Natalia Szulc
- Department of Physics and Biophysics, Wroclaw University of Environmental and Life Sciences, Norwida 25, 50-375, Wrocław, Poland
| | - Rafał Stottko
- Faculty of Chemistry, Wrocław University of Science and Technology, Gdanska 7/9, 50-344, Wrocław, Poland
| | - Mateusz Olek
- Faculty of Medical Sciences in Zabrze, Medical University of Silesia in Katowice, Traugutta 2, 41-800 Zabrze, Poland
| | - Julita Nadwodna
- Department of Biomedical Engineering, Faculty of Fundamental Problems of Technology, Wroclaw University of Science and Technology, Wybrzeze Wyspianskiego 27, 50-370, Wroclaw, Poland
| | - Marlena Gąsior-Głogowska
- Department of Biomedical Engineering, Faculty of Fundamental Problems of Technology, Wroclaw University of Science and Technology, Wybrzeze Wyspianskiego 27, 50-370, Wroclaw, Poland
| | - Monika Szefczyk
- Department of Bioorganic Chemistry, Faculty of Chemistry, Wroclaw University of Science and Technology, Wybrzeze Wyspianskiego 27, 50-370, Wroclaw, Poland
| |
Collapse
|
10
|
Nanni AG, Urso D, Caccamo M, Gnoni V, Giugno A, Zecca C, Dell’Abate MT, Vilella D, De Blasi R, Logroscino G. An Atypical Case of Creutzfeldt-Jakob Syndrome Presenting with Cacosmia and Amyloid Positivity. J Alzheimers Dis Rep 2024; 8:1105-1110. [PMID: 39434818 PMCID: PMC11491933 DOI: 10.3233/adr-230173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Accepted: 06/14/2024] [Indexed: 10/23/2024] Open
Abstract
This report presents a challenging case of Creutzfeldt-Jakob Disease (CJD), a rare and rapidly progressing neurological disorder. The patient exhibited diverse and progressive neuro-psychiatric symptoms, including memory impairment, behavioral changes, and hallucinations associated with cacosmia. The diagnosis of CJD is complicated due to its variable clinical presentation, limited awareness, and the need for tissue pathology confirmation. Diagnostic tests, particularly brain magnetic resonance imaging (MRI) and cerebrospinal fluid (CSF) analysis, played crucial roles in the evaluation. The MRI revealed characteristic cortical ribboning patterns. CSF analysis initially suggested Alzheimer's disease pathology continuum. Repeated Real-time-quaking-induced assay testing (RT-QuIC) confirmed the diagnosis despite an initial negative result. This case underscores the significance of contemplating CJD in individuals exhibiting rapidly progressive dementia, even in the presence of atypical clinical features. Furthermore, it emphasizes the importance of recognizing that an initial negative result from the RT-QuIC test should not preclude consideration of CJD, particularly when characteristic MRI findings are present.
Collapse
Affiliation(s)
- Alfredo Gabriele Nanni
- Department of Clinical Research in Neurology, Center for Neurodegenerative Diseases and the Aging Brain, “Pia Fondazione Cardinale G. Panico”, University of Bari ‘Aldo Moro’, Tricase, Italy
- Department of Translational Biomedicine and Neurosciences (DiBraiN), Neurology Unit, University of Bari, Italy
| | - Daniele Urso
- Department of Clinical Research in Neurology, Center for Neurodegenerative Diseases and the Aging Brain, “Pia Fondazione Cardinale G. Panico”, University of Bari ‘Aldo Moro’, Tricase, Italy
- Department of Neurosciences, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, London, UK
| | - Martina Caccamo
- Department of Clinical Research in Neurology, Center for Neurodegenerative Diseases and the Aging Brain, “Pia Fondazione Cardinale G. Panico”, University of Bari ‘Aldo Moro’, Tricase, Italy
- Department of Translational Biomedicine and Neurosciences (DiBraiN), Neurology Unit, University of Bari, Italy
| | - Valentina Gnoni
- Department of Clinical Research in Neurology, Center for Neurodegenerative Diseases and the Aging Brain, “Pia Fondazione Cardinale G. Panico”, University of Bari ‘Aldo Moro’, Tricase, Italy
- Department of Neurosciences, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, London, UK
| | - Alessia Giugno
- Department of Clinical Research in Neurology, Center for Neurodegenerative Diseases and the Aging Brain, “Pia Fondazione Cardinale G. Panico”, University of Bari ‘Aldo Moro’, Tricase, Italy
| | - Chiara Zecca
- Department of Clinical Research in Neurology, Center for Neurodegenerative Diseases and the Aging Brain, “Pia Fondazione Cardinale G. Panico”, University of Bari ‘Aldo Moro’, Tricase, Italy
| | - Maria Teresa Dell’Abate
- Department of Clinical Research in Neurology, Center for Neurodegenerative Diseases and the Aging Brain, “Pia Fondazione Cardinale G. Panico”, University of Bari ‘Aldo Moro’, Tricase, Italy
| | - Davide Vilella
- Department of Clinical Research in Neurology, Center for Neurodegenerative Diseases and the Aging Brain, “Pia Fondazione Cardinale G. Panico”, University of Bari ‘Aldo Moro’, Tricase, Italy
| | - Roberto De Blasi
- Department of Clinical Research in Neurology, Center for Neurodegenerative Diseases and the Aging Brain, “Pia Fondazione Cardinale G. Panico”, University of Bari ‘Aldo Moro’, Tricase, Italy
| | - Giancarlo Logroscino
- Department of Clinical Research in Neurology, Center for Neurodegenerative Diseases and the Aging Brain, “Pia Fondazione Cardinale G. Panico”, University of Bari ‘Aldo Moro’, Tricase, Italy
- Department of Translational Biomedicine and Neurosciences (DiBraiN), Neurology Unit, University of Bari, Italy
| |
Collapse
|
11
|
Schneider TR, Stöckli L, Felbecker A, Nirmalraj PN. Protein fibril aggregation on red blood cells: a potential biomarker to distinguish neurodegenerative diseases from healthy aging. Brain Commun 2024; 6:fcae180. [PMID: 38873003 PMCID: PMC11170662 DOI: 10.1093/braincomms/fcae180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 04/19/2024] [Accepted: 06/05/2024] [Indexed: 06/15/2024] Open
Abstract
Neurodegenerative diseases like Alzheimer's disease are characterized by the accumulation of misfolded proteins into fibrils in the brain. Atomic force microscopy is a nanoscale imaging technique that can be used to resolve and quantify protein aggregates from oligomers to fibrils. Recently, we characterized protein fibrillar aggregates adsorbed on the surface of red blood cells with atomic force microscopy from patients with neurocognitive disorders, suggesting a novel Alzheimer's disease biomarker. However, the age association of fibril deposits on red blood cells has not yet been studied in detail in healthy adults. Here, we used atomic force microscopy to visualize and quantify fibril coverage on red blood cells in 50 healthy adults and 37 memory clinic patients. Fibrillar protein deposits sporadically appeared in healthy individuals but were much more prevalent in patients with neurodegenerative disease, especially those with Alzheimer's disease as confirmed by positive CSF amyloid beta 1-42/1-40 ratios. The prevalence of fibrils on the red blood cell surface did not significantly correlate with age in either healthy individuals or Alzheimer's disease patients. The overlap in fibril prevalence on red blood cells between Alzheimer's disease and amyloid-negative patients suggests that fibril deposition on red blood cells could occur in various neurodegenerative diseases. Quantifying red blood cell protein fibril morphology and prevalence on red blood cells could serve as a sensitive biomarker for neurodegeneration, distinguishing between healthy individuals and those with neurodegenerative diseases. Future studies that combine atomic force microscopy with immunofluorescence techniques in larger-scale studies could further identify the chemical nature of these fibrils, paving the way for a comprehensive, non-invasive biomarker platform for neurodegenerative diseases.
Collapse
Affiliation(s)
| | - Luisa Stöckli
- Department of Neurology, Cantonal Hospital St. Gallen, St. Gallen CH-9007, Switzerland
| | - Ansgar Felbecker
- Department of Neurology, Cantonal Hospital St. Gallen, St. Gallen CH-9007, Switzerland
| | - Peter Niraj Nirmalraj
- Transport at Nanoscale Interfaces Laboratory, Swiss Federal Laboratories for Materials Science and Technology, Dübendorf CH-8600, Switzerland
| |
Collapse
|
12
|
Fabi JP. The connection between gut microbiota and its metabolites with neurodegenerative diseases in humans. Metab Brain Dis 2024; 39:967-984. [PMID: 38848023 DOI: 10.1007/s11011-024-01369-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Accepted: 06/03/2024] [Indexed: 07/10/2024]
Abstract
The aging of populations is a global phenomenon that follows a possible increase in the incidence of neurodegenerative diseases. Alzheimer's, Parkinson's, Multiple Sclerosis, Amyotrophic Lateral Sclerosis, and Huntington's diseases are some neurodegenerative disorders that aging could initiate or aggravate. Recent research has indicated that intestinal microbiota dysbiosis can trigger metabolism and brain functioning, contributing to the etiopathogenesis of those neurodegenerative diseases. The intestinal microbiota and its metabolites show significant functions in various aspects, such as the immune system modulation (development and maturation), the maintenance of the intestinal barrier integrity, the modulation of neuromuscular functions in the intestine, and the facilitation of essential metabolic processes for both the microbiota and humans. The primary evidence supporting the connection between intestinal microbiota and its metabolites with neurodegenerative diseases are epidemiological observations and animal models experimentation. This paper reviews up-to-date evidence on the correlation between the microbiota-gut-brain axis and neurodegenerative diseases, with a specially focus on gut metabolites. Dysbiosis can increase inflammatory cytokines and bacterial metabolites, altering intestinal and blood-brain barrier permeability and causing neuroinflammation, thus facilitating the pathogenesis of neurodegenerative diseases. Clinical data supporting this evidence still needs to be improved. Most of the works found are descriptive and associated with the presence of phyla or species of bacteria with neurodegenerative diseases. Despite the limitations of recent research, the potential for elucidating clinical questions that have thus far eluded clarification within prevailing pathophysiological frameworks of health and disease is promising through investigation of the interplay between the host and microbiota.
Collapse
Affiliation(s)
- João Paulo Fabi
- Department of Food Science and Experimental Nutrition, School of Pharmaceutical Sciences, University of São Paulo, São Paulo, 05508000, SP, Brazil.
- Food and Nutrition Research Center (NAPAN), University of São Paulo, São Paulo, 05508080, SP, Brazil.
- Food Research Center (FoRC), CEPID-FAPESP (Research, Innovation and Dissemination Centers, São Paulo Research Foundation), São Paulo, 05508080, SP, Brazil.
| |
Collapse
|
13
|
Iqbal A, Alam MT, Khan A, Siddiqui T, Ali A. Inhibition of protein misfolding and aggregation by steroidal quinoxalin-2(1H)-one and their molecular docking studies. Int J Biol Macromol 2024; 269:132020. [PMID: 38704061 DOI: 10.1016/j.ijbiomac.2024.132020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 04/27/2024] [Accepted: 04/29/2024] [Indexed: 05/06/2024]
Abstract
A series of D-ring fused 16-substituted steroidal quinoxalin-2(1H)-one attached to an electron-releasing (ER) or electron-withdrawing (EW) groups via steroidal oxoacetate intermediate were synthesized to investigate their protein aggregation inhibition potential using human lysozyme (HLZ). The influence of the type of substituent at the C-6 positions of the quinoxalin-2(1H)-one ring on the protein aggregation inhibition potential was observed, showing that the EW moiety improved the protein aggregation inhibition potency. Of all the evaluated compounds, NO2-substituted quinoxalin-2(1H)-one derivative 13 was the most active compound and had a maximum protein aggregation inhibition effect. Significant stabilization effects strongly support the binding of the most biologically active steroidal quinoxalin-2(1H)-one with docking studies. The predicted physicochemical and ADME properties lie within a drug-like space which shows no violation of Lipinski's rule of five except compounds 12 and 13. Combined, our results suggest that D-ring fused 16-substituted steroidal quinoxalin-2(1H)-one has the potential to modulate the protein aggregation inhibition effect.
Collapse
Affiliation(s)
- Arfeen Iqbal
- Department of Chemistry, Aligarh Muslim University, Aligarh 202 002, UP, India
| | - Md Tauqir Alam
- Department of Biochemistry, Faculty of Life Sciences, Aligarh Muslim University, Aligarh 202 002, UP, India
| | - Asna Khan
- Department of Chemistry, Aligarh Muslim University, Aligarh 202 002, UP, India
| | - Tabassum Siddiqui
- Department of Chemistry, Aligarh Muslim University, Aligarh 202 002, UP, India
| | - Abad Ali
- Department of Chemistry, Aligarh Muslim University, Aligarh 202 002, UP, India.
| |
Collapse
|
14
|
Pretorius E, Kell DB. A Perspective on How Fibrinaloid Microclots and Platelet Pathology May be Applied in Clinical Investigations. Semin Thromb Hemost 2024; 50:537-551. [PMID: 37748515 PMCID: PMC11105946 DOI: 10.1055/s-0043-1774796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/27/2023]
Abstract
Microscopy imaging has enabled us to establish the presence of fibrin(ogen) amyloid (fibrinaloid) microclots in a range of chronic, inflammatory diseases. Microclots may also be induced by a variety of purified substances, often at very low concentrations. These molecules include bacterial inflammagens, serum amyloid A, and the S1 spike protein of severe acute respiratory syndrome coronavirus 2. Here, we explore which of the properties of these microclots might be used to contribute to differential clinical diagnoses and prognoses of the various diseases with which they may be associated. Such properties include distributions in their size and number before and after the addition of exogenous thrombin, their spectral properties, the diameter of the fibers of which they are made, their resistance to proteolysis by various proteases, their cross-seeding ability, and the concentration dependence of their ability to bind small molecules including fluorogenic amyloid stains. Measuring these microclot parameters, together with microscopy imaging itself, along with methodologies like proteomics and imaging flow cytometry, as well as more conventional assays such as those for cytokines, might open up the possibility of a much finer use of these microclot properties in generative methods for a future where personalized medicine will be standard procedures in all clotting pathology disease diagnoses.
Collapse
Affiliation(s)
- Etheresia Pretorius
- Department of Physiological Sciences, Faculty of Science, Stellenbosch University, Stellenbosch, Matieland, South Africa
- Department of Biochemistry and Systems Biology, Institute of Systems, Molecular and Integrative Biology, Faculty of Health and Life Sciences, University of Liverpool, Liverpool, United Kingdom
| | - Douglas B. Kell
- Department of Physiological Sciences, Faculty of Science, Stellenbosch University, Stellenbosch, Matieland, South Africa
- Department of Biochemistry and Systems Biology, Institute of Systems, Molecular and Integrative Biology, Faculty of Health and Life Sciences, University of Liverpool, Liverpool, United Kingdom
- The Novo Nordisk Foundation Centre for Biosustainability, Technical University of Denmark, Lyngby, Denmark
| |
Collapse
|
15
|
Lee WJ, Kim SJ, Ahn Y, Park J, Jin S, Jang J, Jeong J, Park M, Lee YS, Lee J, Seo D. From Homogeneity to Turing Pattern: Kinetically Controlled Self-Organization of Transmembrane Protein. NANO LETTERS 2024; 24:1882-1890. [PMID: 38198287 DOI: 10.1021/acs.nanolett.3c03637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/12/2024]
Abstract
Understanding the spatial organization of membrane proteins is crucial for unraveling key principles in cell biology. The reaction-diffusion model is commonly used to understand biochemical patterning; however, applying reaction-diffusion models to subcellular phenomena is challenging because of the difficulty in measuring protein diffusivity and interaction kinetics in the living cell. In this work, we investigated the self-organization of the plasmalemma vesicle-associated protein (PLVAP), which creates regular arrangements of fenestrated ultrastructures, using single-molecule tracking. We demonstrated that the spatial organization of the ultrastructures is associated with a decrease in the association rate by actin destabilization. We also constructed a reaction-diffusion model that accurately generates a hexagonal array with the same 130 nm spacing as the actual scale and informs the stoichiometry of the ultrastructure, which can be discerned only through electron microscopy. Through this study, we integrated single-molecule experiments and reaction-diffusion modeling to surpass the limitations of static imaging tools and proposed emergent properties of the PLVAP ultrastructure.
Collapse
Affiliation(s)
- Wonhee John Lee
- Department of Physics and Chemistry, DGIST, Daegu 42988, Republic of Korea
| | - Soo Jin Kim
- Department of Medical Science, AMIST, Asan Medical Center, University of Ulsan College of Medicine, Seoul 05505, Republic of Korea
- Department of Ophthalmology, Asan Medical Center, University of Ulsan College of Medicine, Seoul 05505, Republic of Korea
| | - Yongdeok Ahn
- Department of Physics and Chemistry, DGIST, Daegu 42988, Republic of Korea
| | - Jiseong Park
- Department of Physics and Chemistry, DGIST, Daegu 42988, Republic of Korea
| | - Siwoo Jin
- Department of Physics and Chemistry, DGIST, Daegu 42988, Republic of Korea
| | - Juhee Jang
- Department of Physics and Chemistry, DGIST, Daegu 42988, Republic of Korea
| | - Jinju Jeong
- Department of New Biology, DGIST, Daegu 42988, Republic of Korea
| | - Minsoo Park
- Department of Physics and Chemistry, DGIST, Daegu 42988, Republic of Korea
| | - Young-Sam Lee
- Department of New Biology, DGIST, Daegu 42988, Republic of Korea
| | - Junyeop Lee
- Department of Ophthalmology, Asan Medical Center, University of Ulsan College of Medicine, Seoul 05505, Republic of Korea
- Translational Biomedical Research Group, Asan Institute for Life Science, Asan Medical Center, University of Ulsan College of Medicine, Seoul 05505, Republic of Korea
| | - Daeha Seo
- Department of Physics and Chemistry, DGIST, Daegu 42988, Republic of Korea
| |
Collapse
|
16
|
Stepanenko OV, Sulatskaya AI, Sulatsky MI, Mikhailova EV, Kuznetsova IM, Turoverov KK, Stepanenko OV. Mammalian odorant-binding proteins are prone to form amorphous aggregates and amyloid fibrils. Int J Biol Macromol 2023; 253:126872. [PMID: 37722633 DOI: 10.1016/j.ijbiomac.2023.126872] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 09/06/2023] [Accepted: 09/10/2023] [Indexed: 09/20/2023]
Abstract
Odorant-binding proteins are involved in perceiving smell by capturing odorants within the protein's β-barrel. On the example of bovine odorant-binding protein (bOBP), the structural organization of such proteins and their ability to bind ligands under various conditions in vitro were examined. We found a tendency of bOBP to form oligomers and small amorphous aggregates without disturbing the integrity of protein monomers at physiological conditions. Changes in environmental parameters (increased temperature and pH) favored the formation of larger and dense supramolecular complexes that significantly reduce the binding of ligands by bOBP. The ability of bOBP to form fibrillar aggregates with the properties of amyloids, including high cytotoxicity, was revealed at sample stirring (even at physiological temperature and pH), at medium acidification or pre-solubilization with hexafluoroisopropanol. Fibrillogenesis of bOBP was initiated by the dissociation of the protein's supramolecular complexes into monomers and the destabilization of the protein's β-barrels without a significant destruction of its native β-strands.
Collapse
Affiliation(s)
- Olga V Stepanenko
- Laboratory of Structural Dynamics, Stability and folding of Proteins, Institute of Cytology of the Russian Academy of Sciences, 4 Tikhoretsky ave, 194064 St. Petersburg, Russia.
| | - Anna I Sulatskaya
- Laboratory of Structural Dynamics, Stability and folding of Proteins, Institute of Cytology of the Russian Academy of Sciences, 4 Tikhoretsky ave, 194064 St. Petersburg, Russia.
| | - Maksim I Sulatsky
- Laboratory of Cell Morphology, Institute of Cytology of the Russian Academy of Sciences, 4 Tikhoretsky ave., 194064 St. Petersburg, Russia.
| | - Ekaterina V Mikhailova
- Laboratory of Structural Dynamics, Stability and folding of Proteins, Institute of Cytology of the Russian Academy of Sciences, 4 Tikhoretsky ave, 194064 St. Petersburg, Russia.
| | - Irina M Kuznetsova
- Laboratory of Structural Dynamics, Stability and folding of Proteins, Institute of Cytology of the Russian Academy of Sciences, 4 Tikhoretsky ave, 194064 St. Petersburg, Russia.
| | - Konstantin K Turoverov
- Laboratory of Structural Dynamics, Stability and folding of Proteins, Institute of Cytology of the Russian Academy of Sciences, 4 Tikhoretsky ave, 194064 St. Petersburg, Russia.
| | - Olesya V Stepanenko
- Laboratory of Structural Dynamics, Stability and folding of Proteins, Institute of Cytology of the Russian Academy of Sciences, 4 Tikhoretsky ave, 194064 St. Petersburg, Russia.
| |
Collapse
|
17
|
Sampson T. Microbial amyloids in neurodegenerative amyloid diseases. FEBS J 2023:10.1111/febs.17023. [PMID: 38041542 PMCID: PMC11144261 DOI: 10.1111/febs.17023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 11/13/2023] [Accepted: 11/30/2023] [Indexed: 12/03/2023]
Abstract
Human-disease associated amyloidogenic proteins are not unique in their ability to form amyloid fibrillar structures. Numerous microbes produce amyloidogenic proteins that have distinct functions for their physiology in their amyloid form, rather than solely detrimental. Emerging data indicate associations between various microbial organisms, including those which produce functional amyloids, with neurodegenerative diseases. Here, we review some of the evidence suggesting that microbial amyloids impact amyloid disease in host organisms. Experimental data are building a foundation for continued lines of enquiry and suggest that that direct or indirect interactions between microbial and host amyloids may be a contributor to amyloid pathologies. Inhibiting microbial amyloids or their interactions with the host may therefore represent a tangible target to limit various amyloid pathologies.
Collapse
Affiliation(s)
- Timothy Sampson
- Department of Cell Biology, Emory University School of Medicine, Atlanta, GA, USA
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, USA
| |
Collapse
|
18
|
Kell DB, Pretorius E. Are fibrinaloid microclots a cause of autoimmunity in Long Covid and other post-infection diseases? Biochem J 2023; 480:1217-1240. [PMID: 37584410 DOI: 10.1042/bcj20230241] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 08/03/2023] [Accepted: 08/07/2023] [Indexed: 08/17/2023]
Abstract
It is now well established that the blood-clotting protein fibrinogen can polymerise into an anomalous form of fibrin that is amyloid in character; the resultant clots and microclots entrap many other molecules, stain with fluorogenic amyloid stains, are rather resistant to fibrinolysis, can block up microcapillaries, are implicated in a variety of diseases including Long COVID, and have been referred to as fibrinaloids. A necessary corollary of this anomalous polymerisation is the generation of novel epitopes in proteins that would normally be seen as 'self', and otherwise immunologically silent. The precise conformation of the resulting fibrinaloid clots (that, as with prions and classical amyloid proteins, can adopt multiple, stable conformations) must depend on the existing small molecules and metal ions that the fibrinogen may (and is some cases is known to) have bound before polymerisation. Any such novel epitopes, however, are likely to lead to the generation of autoantibodies. A convergent phenomenology, including distinct conformations and seeding of the anomalous form for initiation and propagation, is emerging to link knowledge in prions, prionoids, amyloids and now fibrinaloids. We here summarise the evidence for the above reasoning, which has substantial implications for our understanding of the genesis of autoimmunity (and the possible prevention thereof) based on the primary process of fibrinaloid formation.
Collapse
Affiliation(s)
- Douglas B Kell
- Department of Biochemistry, Cell and Systems Biology, Institute of Systems, Molecular and Integrative Biology, Faculty of Health and Life Sciences, University of Liverpool, Liverpool L69 7ZB, U.K
- The Novo Nordisk Foundation Centre for Biosustainability, Technical University of Denmark, Kemitorvet 200, 2800 Kgs Lyngby, Denmark
- Department of Physiological Sciences, Faculty of Science, Stellenbosch University, Private Bag X1 Matieland, Stellenbosch 7602, South Africa
| | - Etheresia Pretorius
- Department of Biochemistry, Cell and Systems Biology, Institute of Systems, Molecular and Integrative Biology, Faculty of Health and Life Sciences, University of Liverpool, Liverpool L69 7ZB, U.K
- Department of Physiological Sciences, Faculty of Science, Stellenbosch University, Private Bag X1 Matieland, Stellenbosch 7602, South Africa
| |
Collapse
|
19
|
Song Z, Gatch A, Sun Y, Ding F. Differential Binding and Conformational Dynamics of Tau Microtubule-Binding Repeats with a Preformed Amyloid-β Fibril Seed. ACS Chem Neurosci 2023; 14:1321-1330. [PMID: 36975100 PMCID: PMC10119806 DOI: 10.1021/acschemneuro.3c00014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/29/2023] Open
Abstract
Both senile plaques formed by amyloid-β (Aβ) and neurofibrillary tangles (NFTs) comprised of tau are pathological hallmarks of Alzheimer's disease (AD). The accumulation of NFTs better correlates with the loss of cognitive function than senile plaques, but NFTs are rarely observed without the presence of senile plaques. Hence, cross-seeding of tau by preformed Aβ amyloid fibril seeds has been proposed to drive the aggregation of tau and exacerbate AD progression, but the molecular mechanism remains unknown. Here, we first identified cross-interaction hotspots between Aβ and tau using atomistic discrete molecular dynamics simulations (DMD) and confirmed the critical role of the four microtubule-binding repeats of tau (R1-R4) in the cross-interaction with Aβ. We further investigated the binding structure and dynamics of each tau repeat with a preformed Aβ fibril seed. Specifically, R1 and R3 preferred to bind the Aβ fibril lateral surface instead of the elongation end. In contrast, R2 and R4 had higher binding propensities to the fibril elongation end than the lateral surface, enhancing β-sheet content by forming hydrogen bonds with the exposed hydrogen bond donors and acceptors. Together, our results suggest that the four repeats play distinct roles in driving the binding of tau to different surfaces of an Aβ fibril seed. Binding of tau to the lateral surface of Aβ fibril can increase the local concentration, while the binding to the elongation surface promotes β-sheet formation, both of which reduce the free energy barrier for tau aggregation nucleation and subsequent fibrillization.
Collapse
Affiliation(s)
- Zhiyuan Song
- Department of Physics and Astronomy, Clemson University, Clemson, SC 29634, United States
| | - Adam Gatch
- Department of Physics and Astronomy, Clemson University, Clemson, SC 29634, United States
- Department of Genetics and Biochemistry, Clemson University, Clemson, SC 29634, United States
| | - Yunxiang Sun
- Department of Physics and Astronomy, Clemson University, Clemson, SC 29634, United States
- School of Physical Science and Technology, Ningbo University, Ningbo 315211, China
| | - Feng Ding
- Department of Physics and Astronomy, Clemson University, Clemson, SC 29634, United States
| |
Collapse
|
20
|
Somin S, Kulasiri D, Samarasinghe S. Alleviating the unwanted effects of oxidative stress on Aβ clearance: a review of related concepts and strategies for the development of computational modelling. Transl Neurodegener 2023; 12:11. [PMID: 36907887 PMCID: PMC10009979 DOI: 10.1186/s40035-023-00344-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Accepted: 02/21/2023] [Indexed: 03/14/2023] Open
Abstract
Treatment for Alzheimer's disease (AD) can be more effective in the early stages. Although we do not completely understand the aetiology of the early stages of AD, potential pathological factors (amyloid beta [Aβ] and tau) and other co-factors have been identified as causes of AD, which may indicate some of the mechanism at work in the early stages of AD. Today, one of the primary techniques used to help delay or prevent AD in the early stages involves alleviating the unwanted effects of oxidative stress on Aβ clearance. 4-Hydroxynonenal (HNE), a product of lipid peroxidation caused by oxidative stress, plays a key role in the adduction of the degrading proteases. This HNE employs a mechanism which decreases catalytic activity. This process ultimately impairs Aβ clearance. The degradation of HNE-modified proteins helps to alleviate the unwanted effects of oxidative stress. Having a clear understanding of the mechanisms associated with the degradation of the HNE-modified proteins is essential for the development of strategies and for alleviating the unwanted effects of oxidative stress. The strategies which could be employed to decrease the effects of oxidative stress include enhancing antioxidant activity, as well as the use of nanozymes and/or specific inhibitors. One area which shows promise in reducing oxidative stress is protein design. However, more research is needed to improve the effectiveness and accuracy of this technique. This paper discusses the interplay of potential pathological factors and AD. In particular, it focuses on the effect of oxidative stress on the expression of the Aβ-degrading proteases through adduction of the degrading proteases caused by HNE. The paper also elucidates other strategies that can be used to alleviate the unwanted effects of oxidative stress on Aβ clearance. To improve the effectiveness and accuracy of protein design, we explain the application of quantum mechanical/molecular mechanical approach.
Collapse
Affiliation(s)
- Sarawoot Somin
- Centre for Advanced Computational Solutions (C-fACS), Lincoln University, Christchurch, 7647, New Zealand.,Department of Wine, Food and Molecular Biosciences, Lincoln University, Christchurch, 7647, New Zealand
| | - Don Kulasiri
- Centre for Advanced Computational Solutions (C-fACS), Lincoln University, Christchurch, 7647, New Zealand. .,Department of Wine, Food and Molecular Biosciences, Lincoln University, Christchurch, 7647, New Zealand.
| | - Sandhya Samarasinghe
- Centre for Advanced Computational Solutions (C-fACS), Lincoln University, Christchurch, 7647, New Zealand
| |
Collapse
|
21
|
Tsoi PS, Quan MD, Ferreon JC, Ferreon ACM. Aggregation of Disordered Proteins Associated with Neurodegeneration. Int J Mol Sci 2023; 24:3380. [PMID: 36834792 PMCID: PMC9966039 DOI: 10.3390/ijms24043380] [Citation(s) in RCA: 23] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Revised: 02/02/2023] [Accepted: 02/06/2023] [Indexed: 02/10/2023] Open
Abstract
Cellular deposition of protein aggregates, one of the hallmarks of neurodegeneration, disrupts cellular functions and leads to neuronal death. Mutations, posttranslational modifications, and truncations are common molecular underpinnings in the formation of aberrant protein conformations that seed aggregation. The major proteins involved in neurodegeneration include amyloid beta (Aβ) and tau in Alzheimer's disease, α-synuclein in Parkinson's disease, and TAR DNA-binding protein (TDP-43) in amyotrophic lateral sclerosis (ALS). These proteins are described as intrinsically disordered and possess enhanced ability to partition into biomolecular condensates. In this review, we discuss the role of protein misfolding and aggregation in neurodegenerative diseases, specifically highlighting implications of changes to the primary/secondary (mutations, posttranslational modifications, and truncations) and the quaternary/supramolecular (oligomerization and condensation) structural landscapes for the four aforementioned proteins. Understanding these aggregation mechanisms provides insights into neurodegenerative diseases and their common underlying molecular pathology.
Collapse
Affiliation(s)
| | | | - Josephine C. Ferreon
- Department of Pharmacology and Chemical Biology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Allan Chris M. Ferreon
- Department of Pharmacology and Chemical Biology, Baylor College of Medicine, Houston, TX 77030, USA
| |
Collapse
|
22
|
Liquid-liquid Phase Separation of α-Synuclein: A New Mechanistic Insight for α-Synuclein Aggregation Associated with Parkinson's Disease Pathogenesis. J Mol Biol 2023; 435:167713. [PMID: 35787838 DOI: 10.1016/j.jmb.2022.167713] [Citation(s) in RCA: 41] [Impact Index Per Article: 41.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2022] [Revised: 06/25/2022] [Accepted: 06/27/2022] [Indexed: 02/04/2023]
Abstract
Aberrant aggregation of the misfolded presynaptic protein, α-Synuclein (α-Syn) into Lewy body (LB) and Lewy neuritis (LN) is a major pathological hallmark of Parkinson's disease (PD) and other synucleinopathies. Numerous studies have suggested that prefibrillar and fibrillar species of the misfolded α-Syn aggregates are responsible for cell death in PD pathogenesis. However, the precise molecular events during α-Syn aggregation, especially in the early stages, remain elusive. Emerging evidence has demonstrated that liquid-liquid phase separation (LLPS) of α-Syn occurs in the nucleation step of α-Syn aggregation, which offers an alternate non-canonical aggregation pathway in the crowded microenvironment. The liquid-like α-Syn droplets gradually undergo an irreversible liquid-to-solid phase transition into amyloid-like hydrogel entrapping oligomers and fibrils. This new mechanism of α-Syn LLPS and gel formation might represent the molecular basis of cellular toxicity associated with PD. This review aims to demonstrate the recent development of α-Syn LLPS, the underlying mechanism along with the microscopic events of aberrant phase transition. This review further discusses how several intrinsic and extrinsic factors regulate the thermodynamics and kinetics of α-Syn LLPS and co-LLPS with other proteins, which might explain the pathophysiology of α-Syn in various neurodegenerative diseases.
Collapse
|
23
|
Wang Y, Zhang Z, Li B, He B, Li L, Nice EC, Zhang W, Xu J. New Insights into the Gut Microbiota in Neurodegenerative Diseases from the Perspective of Redox Homeostasis. Antioxidants (Basel) 2022; 11:2287. [PMID: 36421473 PMCID: PMC9687622 DOI: 10.3390/antiox11112287] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 11/08/2022] [Accepted: 11/16/2022] [Indexed: 08/27/2023] Open
Abstract
An imbalance between oxidants and antioxidants in the body can lead to oxidative stress, which is one of the major causes of neurodegenerative diseases. The gut microbiota contains trillions of beneficial bacteria that play an important role in maintaining redox homeostasis. In the last decade, the microbiota-gut-brain axis has emerged as a new field that has revolutionized the study of the pathology, diagnosis, and treatment of neurodegenerative diseases. Indeed, a growing number of studies have found that communication between the brain and the gut microbiota can be accomplished through the endocrine, immune, and nervous systems. Importantly, dysregulation of the gut microbiota has been strongly associated with the development of oxidative stress-mediated neurodegenerative diseases. Therefore, a deeper understanding of the relationship between the gut microbiota and redox homeostasis will help explain the pathogenesis of neurodegenerative diseases from a new perspective and provide a theoretical basis for proposing new therapeutic strategies for neurodegenerative diseases. In this review, we will describe the role of oxidative stress and the gut microbiota in neurodegenerative diseases and the underlying mechanisms by which the gut microbiota affects redox homeostasis in the brain, leading to neurodegenerative diseases. In addition, we will discuss the potential applications of maintaining redox homeostasis by modulating the gut microbiota to treat neurodegenerative diseases, which could open the door for new therapeutic approaches to combat neurodegenerative diseases.
Collapse
Affiliation(s)
- Yu Wang
- West China School of Basic Medical Sciences & Forensic Medicine, and State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu 610041, China
| | - Zhe Zhang
- West China School of Basic Medical Sciences & Forensic Medicine, and State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu 610041, China
| | - Bowen Li
- West China School of Basic Medical Sciences & Forensic Medicine, and State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu 610041, China
| | - Bo He
- West China School of Basic Medical Sciences & Forensic Medicine, and State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu 610041, China
| | - Lei Li
- School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Edouard C. Nice
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, VIC 3800, Australia
| | - Wei Zhang
- West China Biomedical Big Data Center, West China Hospital, Sichuan University, Chengdu 610041, China
- Mental Health Center and Psychiatric Laboratory, the State Key Laboratory of Biotherapy, West China Hospital of Sichuan University, Chengdu 610000, China
| | - Jia Xu
- School of Medicine, Ningbo University, Ningbo 315211, China
| |
Collapse
|
24
|
Gropp MHM, Klaips CL, Hartl FU. Formation of toxic oligomers of polyQ-expanded Huntingtin by prion-mediated cross-seeding. Mol Cell 2022; 82:4290-4306.e11. [PMID: 36272412 DOI: 10.1016/j.molcel.2022.09.031] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 08/22/2022] [Accepted: 09/28/2022] [Indexed: 11/05/2022]
Abstract
Manifestation of aggregate pathology in Huntington's disease is thought to be facilitated by a preferential vulnerability of affected brain cells to age-dependent proteostatic decline. To understand how specific cellular backgrounds may facilitate pathologic aggregation, we utilized the yeast model in which polyQ-expanded Huntingtin forms aggregates only when the endogenous prion-forming protein Rnq1 is in its amyloid-like prion [PIN+] conformation. We employed optogenetic clustering of polyQ protein as an orthogonal method to induce polyQ aggregation in prion-free [pin-] cells. Optogenetic aggregation circumvented the prion requirement for the formation of detergent-resistant polyQ inclusions but bypassed the formation of toxic polyQ oligomers, which accumulated specifically in [PIN+] cells. Reconstitution of aggregation in vitro suggested that these polyQ oligomers formed through direct templating on Rnq1 prions. These findings shed light on the mechanism of prion-mediated formation of oligomers, which may play a role in triggering polyQ pathology in the patient brain.
Collapse
Affiliation(s)
- Michael H M Gropp
- Department of Cellular Biochemistry, Max Planck Institute of Biochemistry, Am Klopferspitz 18, 82152 Martinsried, Germany
| | - Courtney L Klaips
- Department of Cellular Biochemistry, Max Planck Institute of Biochemistry, Am Klopferspitz 18, 82152 Martinsried, Germany; Department of Biomedical Sciences of Cells & Systems, University Medical Center Groningen, Antonius Deusinglaan 1, 9713AV Groningen, the Netherlands.
| | - F Ulrich Hartl
- Department of Cellular Biochemistry, Max Planck Institute of Biochemistry, Am Klopferspitz 18, 82152 Martinsried, Germany; Munich Cluster for Systems Neurology (SyNergy), Munich, Germany.
| |
Collapse
|
25
|
Fedotov SA, Khrabrova MS, Anpilova AO, Dobronravov VA, Rubel AA. Noninvasive Diagnostics of Renal Amyloidosis: Current State and Perspectives. Int J Mol Sci 2022; 23:ijms232012662. [PMID: 36293523 PMCID: PMC9604123 DOI: 10.3390/ijms232012662] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2022] [Revised: 10/17/2022] [Accepted: 10/18/2022] [Indexed: 11/05/2022] Open
Abstract
Amyloidoses is a group of diseases characterized by the accumulation of abnormal proteins (called amyloids) in different organs and tissues. For systemic amyloidoses, the disease is related to increased levels and/or abnormal synthesis of certain proteins in the organism due to pathological processes, e.g., monoclonal gammopathy and chronic inflammation in rheumatic arthritis. Treatment of amyloidoses is focused on reducing amyloidogenic protein production and inhibition of its aggregation. Therapeutic approaches critically depend on the type of amyloidosis, which underlines the importance of early differential diagnostics. In fact, the most accurate diagnostics of amyloidosis and its type requires analysis of a biopsy specimen from the disease-affected organ. However, absence of specific symptoms of amyloidosis and the invasive nature of biomaterial sampling causes the late diagnostics of these diseases, which leads to a delayed treatment, and significantly reduces its efficacy and patient survival. The establishment of noninvasive diagnostic methods and discovery of specific amyloidosis markers are essential for disease detection and identification of its type at earlier stages, which enables timely and targeted treatment. This review focuses on current approaches to the diagnostics of amyloidoses, primarily with renal involvement, and research perspectives in order to design new specific tests for early diagnosis.
Collapse
Affiliation(s)
- Sergei A. Fedotov
- Laboratory of Amyloid Biology, St. Petersburg State University, St. Petersburg 199034, Russia
- Pavlov Institute of Physiology, Russian Academy of Sciences, St. Petersburg 199034, Russia
| | - Maria S. Khrabrova
- Laboratory of Amyloid Biology, St. Petersburg State University, St. Petersburg 199034, Russia
- Research Institute of Nephrology, Pavlov University, St. Petersburg 197101, Russia
| | - Anastasia O. Anpilova
- Laboratory of Amyloid Biology, St. Petersburg State University, St. Petersburg 199034, Russia
- Research Institute of Nephrology, Pavlov University, St. Petersburg 197101, Russia
| | | | - Aleksandr A. Rubel
- Laboratory of Amyloid Biology, St. Petersburg State University, St. Petersburg 199034, Russia
- Department of Genetics and Biotechnology, St. Petersburg State University, St. Petersburg 199034, Russia
- Correspondence: ; Tel.: +7-812-428-40-09
| |
Collapse
|
26
|
Prajapati KP, Anand BG, Ansari M, Temgire M, Tiku AB, Kar K. Amyloid-mimicking toxic nanofibers generated via self-assembly of dopamine. NANOSCALE 2022; 14:8649-8662. [PMID: 35667124 DOI: 10.1039/d1nr07741d] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Molecular self-assembly of biologically relevant aromatic metabolites is known to generate cytotoxic nanostructures and this unique property has opened up new concepts in the molecular mechanisms of metabolite-linked disorders. Because aromaticity is intrinsic to the chemical structure of some important neuromodulators, the question of whether this property can promote their self-assembly into toxic higher order structures is highly relevant to the advancement of both fundamental and applied research. We show here that dopamine, an aromatic neuromodulator of high significance, undergoes self-assembly, under physiological buffer conditions, yielding cytotoxic supramolecular nanostructures. The oxidation of dopamine seems crucial in driving the self-assembly, and substantial inhibition effect was observed in the presence of antioxidants and acidic buffers. Strong H-bonds and π-π interactions between optimally-oriented dopamine molecules were found to stabilize the dopamine nanostructure which displayed characteristic β-structure-patterns with hydrophobic exterior and hydrophilic interior moieties. Furthermore, dopamine nanostructures were found to be highly toxic to human neuroblastoma cells, revealing apoptosis and necrosis-mediated cytotoxicity. Abnormal fluctuation in the dopamine concentration is known to predispose a multitude of neuronal complications, hence, the new findings of this study on oxidation-driven buildup of amyloid-mimicking neurotoxic dopamine assemblies may have direct relevance to the molecular origin of several dopamine related disorders.
Collapse
Affiliation(s)
| | | | - Masihuzzaman Ansari
- School of Life Sciences, Jawaharlal Nehru University, New Delhi-110067, India.
| | - Mayur Temgire
- Department of Chemical Engineering, Indian Institution of Technology Bombay, Powai, Mumbai, 400076, India
| | - Ashu Bhan Tiku
- School of Life Sciences, Jawaharlal Nehru University, New Delhi-110067, India.
| | - Karunakar Kar
- School of Life Sciences, Jawaharlal Nehru University, New Delhi-110067, India.
| |
Collapse
|
27
|
Galzitskaya OV, Kurpe SR, Panfilov AV, Glyakina AV, Grishin SY, Kochetov AP, Deryusheva EI, Machulin AV, Kravchenko SV, Domnin PA, Surin AK, Azev VN, Ermolaeva SA. Amyloidogenic Peptides: New Class of Antimicrobial Peptides with the Novel Mechanism of Activity. Int J Mol Sci 2022; 23:5463. [PMID: 35628272 PMCID: PMC9140876 DOI: 10.3390/ijms23105463] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 04/28/2022] [Accepted: 05/11/2022] [Indexed: 12/13/2022] Open
Abstract
Antibiotic-resistant bacteria are recognized as one of the leading causes of death in the world. We proposed and successfully tested peptides with a new mechanism of antimicrobial action "protein silencing" based on directed co-aggregation. The amyloidogenic antimicrobial peptide (AAMP) interacts with the target protein of model or pathogenic bacteria and forms aggregates, thereby knocking out the protein from its working condition. In this review, we consider antimicrobial effects of the designed peptides on two model organisms, E. coli and T. thermophilus, and two pathogenic organisms, P. aeruginosa and S. aureus. We compare the amino acid composition of proteomes and especially S1 ribosomal proteins. Since this protein is inherent only in bacterial cells, it is a good target for studying the process of co-aggregation. This review presents a bioinformatics analysis of these proteins. We sum up all the peptides predicted as amyloidogenic by several programs and synthesized by us. For the four organisms we studied, we show how amyloidogenicity correlates with antibacterial properties. Let us especially dwell on peptides that have demonstrated themselves as AMPs for two pathogenic organisms that cause dangerous hospital infections, and in which the minimal inhibitory concentration (MIC) turned out to be comparable to the MIC of gentamicin sulfate. All this makes our study encouraging for the further development of AAMP. The hybrid peptides may thus provide a starting point for the antibacterial application of amyloidogenic peptides.
Collapse
Affiliation(s)
- Oxana V. Galzitskaya
- Institute of Protein Research, Russian Academy of Sciences, 142290 Pushchino, Russia; (S.R.K.); (A.V.P.); (A.V.G.); (S.Y.G.); (A.K.S.)
- Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, 142290 Pushchino, Russia
| | - Stanislav R. Kurpe
- Institute of Protein Research, Russian Academy of Sciences, 142290 Pushchino, Russia; (S.R.K.); (A.V.P.); (A.V.G.); (S.Y.G.); (A.K.S.)
| | - Alexander V. Panfilov
- Institute of Protein Research, Russian Academy of Sciences, 142290 Pushchino, Russia; (S.R.K.); (A.V.P.); (A.V.G.); (S.Y.G.); (A.K.S.)
| | - Anna V. Glyakina
- Institute of Protein Research, Russian Academy of Sciences, 142290 Pushchino, Russia; (S.R.K.); (A.V.P.); (A.V.G.); (S.Y.G.); (A.K.S.)
- Institute of Mathematical Problems of Biology, Russian Academy of Sciences, 142290 Pushchino, Russia
- Keldysh Institute of Applied Mathematics, Russian Academy of Sciences, 125047 Moscow, Russia
| | - Sergei Y. Grishin
- Institute of Protein Research, Russian Academy of Sciences, 142290 Pushchino, Russia; (S.R.K.); (A.V.P.); (A.V.G.); (S.Y.G.); (A.K.S.)
| | - Alexey P. Kochetov
- The Branch of the Institute of Bioorganic Chemistry, Russian Academy of Sciences, 142290 Pushchino, Russia; (A.P.K.); (V.N.A.)
| | - Evgeniya I. Deryusheva
- Institute for Biological Instrumentation, Federal Research Center “Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences”, 142290 Pushchino, Russia;
| | - Andrey V. Machulin
- Skryabin Institute of Biochemistry and Physiology of Microorganisms, Federal Research Center “Pushchino Scientific Center for Biological Research of the Russian Academy of Science”, 142290 Pushchino, Russia;
| | - Sergey V. Kravchenko
- Institute of Environmental and Agricultural Biology (X-BIO), Tyumen State University, 625003 Tyumen, Russia;
| | - Pavel A. Domnin
- Gamaleya Research Centre of Epidemiology and Microbiology, 123098 Moscow, Russia; (P.A.D.); (S.A.E.)
- Biology Faculty, Lomonosov Moscow State University, 119991 Moscow, Russia
| | - Alexey K. Surin
- Institute of Protein Research, Russian Academy of Sciences, 142290 Pushchino, Russia; (S.R.K.); (A.V.P.); (A.V.G.); (S.Y.G.); (A.K.S.)
- The Branch of the Institute of Bioorganic Chemistry, Russian Academy of Sciences, 142290 Pushchino, Russia; (A.P.K.); (V.N.A.)
- State Research Center for Applied Microbiology and Biotechnology, 142279 Obolensk, Russia
| | - Viacheslav N. Azev
- The Branch of the Institute of Bioorganic Chemistry, Russian Academy of Sciences, 142290 Pushchino, Russia; (A.P.K.); (V.N.A.)
| | - Svetlana A. Ermolaeva
- Gamaleya Research Centre of Epidemiology and Microbiology, 123098 Moscow, Russia; (P.A.D.); (S.A.E.)
| |
Collapse
|
28
|
Abstract
Amyloids are organized suprastructural polypeptide arrangements. The prevalence of amyloid-related processes of pathophysiological relevance has been linked to aging-related degenerative diseases. Besides the role of genetic polymorphisms on the relative risk of amyloid diseases, the contributions of nongenetic ontogenic cluster of factors remain elusive. In recent decades, mounting evidences have been suggesting the role of essential micronutrients, in particular transition metals, in the regulation of amyloidogenic processes, both directly (such as binding to amyloid proteins) or indirectly (such as regulating regulatory partners, processing enzymes, and membrane transporters). The features of transition metals as regulatory cofactors of amyloid proteins and the consequences of metal dyshomeostasis in triggering amyloidogenic processes, as well as the evidences showing amelioration of symptoms by dietary supplementation, suggest an exaptative role of metals in regulating amyloid pathways. The self- and cross-talk replicative nature of these amyloid processes along with their systemic distribution support the concept of their metastatic nature. The role of amyloidosis as nutrient sensors would act as intra- and transgenerational epigenetic metabolic programming factors determining health span and life span, viability, which could participate as an evolutive selective pressure.
Collapse
Affiliation(s)
- Luís Maurício T R Lima
- Laboratory for Pharmaceutical Biotechnology - pbiotech, Faculty of Pharmacy, Federal University of Rio de Janeiro, Rio de Janeiro, Rio de Janeiro, Brazil
- Laboratory for Macromolecules (LAMAC-DIMAV), National Institute of Metrology, Quality and Technology - INMETRO, Duque de Caxias, Rio de Janeiro, Rio de Janeiro, Brazil
| | - Tháyna Sisnande
- Laboratory for Pharmaceutical Biotechnology - pbiotech, Faculty of Pharmacy, Federal University of Rio de Janeiro, Rio de Janeiro, Rio de Janeiro, Brazil
| |
Collapse
|
29
|
Al Adem K, Shanti A, Srivastava A, Homouz D, Thomas SA, Khair M, Stefanini C, Chan V, Kim TY, Lee S. Linking Alzheimer’s Disease and Type 2 Diabetes: Characterization and Inhibition of Cytotoxic Aβ and IAPP Hetero-Aggregates. Front Mol Biosci 2022; 9:842582. [PMID: 35372522 PMCID: PMC8968156 DOI: 10.3389/fmolb.2022.842582] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Accepted: 02/07/2022] [Indexed: 12/18/2022] Open
Abstract
The cytotoxic self-aggregation of β-amyloid (Aβ) peptide and islet amyloid polypeptide (IAPP) is implicated in the pathogenesis of Alzheimer’s disease (AD) and Type 2 diabetes (T2D), respectively. Increasing evidence, particularly the co-deposition of Aβ and IAPP in both brain and pancreatic tissues, suggests that Aβ and IAPP cross-interaction may be responsible for a pathological link between AD and T2D. Here, we examined the nature of IAPP-Aβ40 co-aggregation and its inhibition by small molecules. In specific, we characterized the kinetic profiles, morphologies, secondary structures and toxicities of IAPP-Aβ40 hetero-assemblies and compared them to those formed by their homo-assemblies. We demonstrated that monomeric IAPP and Aβ40 form stable hetero-dimers and hetero-assemblies that further aggregate into β-sheet-rich hetero-aggregates that are toxic (cell viability <50%) to both PC-12 cells, a neuronal cell model, and RIN-m5F cells, a pancreatic cell model for β-cells. We then selected polyphenolic candidates to inhibit IAPP or Aβ40 self-aggregation and examined the inhibitory effect of the most potent candidate on IAPP-Aβ40 co-aggregation. We demonstrated that epigallocatechin gallate (EGCG) form inter-molecular hydrogen bonds with each of IAPP and Aβ40. We also showed that EGCG reduced hetero-aggregate formation and resulted in lower β-sheets content and higher unordered structures in IAPP-Aβ40-EGCG samples. Importantly, we showed that EGCG is highly effective in reducing the toxicity of IAPP-Aβ40 hetero-aggregates on both cell models, specifically at concentrations that are equivalent to or are 2.5-fold higher than the mixed peptide concentrations. To the best of our knowledge, this is the first study to report the inhibition of IAPP-Aβ40 co-aggregation by small molecules. We conclude that EGCG is a promising candidate to prevent co-aggregation and cytotoxicity of IAPP-Aβ40, which in turn, contribute to the pathological link between AD and T2D.
Collapse
Affiliation(s)
- Kenana Al Adem
- Department of Biomedical Engineering and Healthcare Engineering Innovation Center, Khalifa University of Science and Technology, Abu Dhabi, United Arab Emirates
| | - Aya Shanti
- Department of Biomedical Engineering and Healthcare Engineering Innovation Center, Khalifa University of Science and Technology, Abu Dhabi, United Arab Emirates
| | - Amit Srivastava
- Department of Physics, Khalifa University of Science and Technology, Abu Dhabi, United Arab Emirates
| | - Dirar Homouz
- Department of Physics, Khalifa University of Science and Technology, Abu Dhabi, United Arab Emirates
- Department of Physics, University of Houston, Houston, TX, United States
- Center for Theoretical Biological Physics, Rice University, Houston, TX, United States
| | - Sneha Ann Thomas
- Core Technology Platforms, New York University Abu Dhabi, Abu Dhabi, United Arab Emirates
| | - Mostafa Khair
- Core Technology Platforms, New York University Abu Dhabi, Abu Dhabi, United Arab Emirates
| | - Cesare Stefanini
- Department of Biomedical Engineering and Healthcare Engineering Innovation Center, Khalifa University of Science and Technology, Abu Dhabi, United Arab Emirates
| | - Vincent Chan
- Department of Biomedical Engineering and Healthcare Engineering Innovation Center, Khalifa University of Science and Technology, Abu Dhabi, United Arab Emirates
| | - Tae-Yeon Kim
- Department of Civil Infrastructure and Environmental Engineering, Khalifa University of Science and Technology, Abu Dhabi, United Arab Emirates
| | - Sungmun Lee
- Department of Biomedical Engineering and Healthcare Engineering Innovation Center, Khalifa University of Science and Technology, Abu Dhabi, United Arab Emirates
- Khalifa University’s Center for Biotechnology, Khalifa University of Science and Technology, Abu Dhabi, United Arab Emirates
- *Correspondence: Sungmun Lee,
| |
Collapse
|
30
|
Chau E, Kim JR. α-synuclein-assisted oligomerization of β-amyloid (1-42). Arch Biochem Biophys 2022; 717:109120. [PMID: 35041853 PMCID: PMC8818042 DOI: 10.1016/j.abb.2022.109120] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Revised: 12/24/2021] [Accepted: 01/12/2022] [Indexed: 11/02/2022]
Abstract
Alzheimer's disease (AD) and Parkinson's disease (PD) are the two most common neurodegenerative disorders, characterized by aggregation of amyloid polypeptides, β-amyloid (Aβ) and α-synuclein (αS), respectively. Aβ and αS follow similar aggregation pathways, starting from monomers, to soluble toxic oligomeric assemblies, and to insoluble fibrils. Various studies have suggested overlaps in the pathologies of AD and PD, and have shown Aβ-αS interactions. Unfortunately, whether these protein-protein interactions lead to self- and co-assembly of Aβ and αS into oligomers - a potentially toxic synergistic mechanism - is poorly understood. Among the various Aβ isoforms, interactions of Aβ containing 42 amino acids (Aβ (1-42), referred to as Aβ42) with αS are of most direct relevance due to the high aggregation propensity and the strong toxic effect of this Aβ isoform. In this study, we carefully determined molecular consequences of interactions between Aβ42 and αS in their respective monomeric, oligomeric, and fibrillar forms using a comprehensive set of experimental tools. We show that the three αS conformers, namely, monomers, oligomers and fibrils interfered with fibrillization of Aβ42. Specifically, αS monomers and oligomers promoted oligomerization and stabilization of soluble Aβ42, possibly via direct binding or co-assembly, while αS fibrils hindered soluble Aβ42 species from converting into insoluble aggregates by the formation of large oligomers. We also provide evidence that the interactions with αS were mediated by various parts of Aβ42, depending on Aβ42 and αS conformers. Furthermore, we compared similarities and dissimilarities between Aβ42-αS and Aβ40-αS interactions. Overall, the present study provides a comprehensive depiction of the molecular interplay between Aβ42 and αS, providing insight into its synergistic toxic mechanism.
Collapse
Affiliation(s)
- Edward Chau
- Department of Chemical and Biomolecular Engineering, New York University, 6 MetroTech Center, Brooklyn, NY, 11201, USA
| | - Jin Ryoun Kim
- Department of Chemical and Biomolecular Engineering, New York University, 6 MetroTech Center, Brooklyn, NY, 11201, USA.
| |
Collapse
|
31
|
Subedi S, Sasidharan S, Nag N, Saudagar P, Tripathi T. Amyloid Cross-Seeding: Mechanism, Implication, and Inhibition. Molecules 2022; 27:1776. [PMID: 35335141 PMCID: PMC8955620 DOI: 10.3390/molecules27061776] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 03/04/2022] [Accepted: 03/07/2022] [Indexed: 01/21/2023] Open
Abstract
Most neurodegenerative diseases such as Alzheimer's disease, type 2 diabetes, Parkinson's disease, etc. are caused by inclusions and plaques containing misfolded protein aggregates. These protein aggregates are essentially formed by the interactions of either the same (homologous) or different (heterologous) sequences. Several experimental pieces of evidence have revealed the presence of cross-seeding in amyloid proteins, which results in a multicomponent assembly; however, the molecular and structural details remain less explored. Here, we discuss the amyloid proteins and the cross-seeding phenomena in detail. Data suggest that targeting the common epitope of the interacting amyloid proteins may be a better therapeutic option than targeting only one species. We also examine the dual inhibitors that target the amyloid proteins participating in the cross-seeding events. The future scopes and major challenges in understanding the mechanism and developing therapeutics are also considered. Detailed knowledge of the amyloid cross-seeding will stimulate further research in the practical aspects and better designing anti-amyloid therapeutics.
Collapse
Affiliation(s)
- Sushma Subedi
- Molecular and Structural Biophysics Laboratory, Department of Biochemistry, North-Eastern Hill University, Shillong 793022, India; (S.S.); (N.N.)
| | - Santanu Sasidharan
- Department of Biotechnology, National Institute of Technology Warangal, Warangal 506004, India;
| | - Niharika Nag
- Molecular and Structural Biophysics Laboratory, Department of Biochemistry, North-Eastern Hill University, Shillong 793022, India; (S.S.); (N.N.)
| | - Prakash Saudagar
- Department of Biotechnology, National Institute of Technology Warangal, Warangal 506004, India;
| | - Timir Tripathi
- Molecular and Structural Biophysics Laboratory, Department of Biochemistry, North-Eastern Hill University, Shillong 793022, India; (S.S.); (N.N.)
| |
Collapse
|
32
|
Chatterjee D, Jacob RS, Ray S, Navalkar A, Singh N, Sengupta S, Gadhe L, Kadu P, Datta D, Paul A, Arunima S, Mehra S, Pindi C, Kumar S, Singru P, Senapati S, Maji SK. Co-aggregation and secondary nucleation in the life cycle of human prolactin/galanin functional amyloids. eLife 2022; 11:73835. [PMID: 35257659 PMCID: PMC8993219 DOI: 10.7554/elife.73835] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Accepted: 03/03/2022] [Indexed: 11/22/2022] Open
Abstract
Synergistic-aggregation and cross-seeding by two different proteins/peptides in the amyloid aggregation are well evident in various neurological disorders including Alzheimer’s disease. Here, we show co-storage of human Prolactin (PRL), which is associated with lactation in mammals, and neuropeptide galanin (GAL) as functional amyloids in secretory granules (SGs) of the female rat. Using a wide variety of biophysical studies, we show that irrespective of the difference in sequence and structure, both hormones facilitate their synergic aggregation to amyloid fibrils. Although each hormone possesses homotypic seeding ability, a unidirectional cross-seeding of GAL aggregation by PRL seeds and the inability of cross seeding by mixed fibrils suggest tight regulation of functional amyloid formation by these hormones for their efficient storage in SGs. Further, the faster release of functional hormones from mixed fibrils compared to the corresponding individual amyloid, suggests a novel mechanism of heterologous amyloid formation in functional amyloids of SGs in the pituitary. The formation of plaques of proteins called ‘amyloids’ in the brain is one of the hallmark characteristics of both Alzheimer’s and Parkinson’s disease, but amyloids can form in many tissues and organs, often disrupting normal activity. A lot of the research into amyloids has focused on their role in disease, but it turns out that amyloids can also appear in healthy tissues. For example, some protein hormones form amyloids that act as storage depots, helping cells to release the hormone when it is needed. Normally, amyloids are made mostly of a single type of protein or protein fragment associated with a particular disease like Alzheimer's. Often, this type of amyloid promotes plaque formation in other proteins, which aggravates other diseases (for example, the amyloids that form in Alzheimer’s can lead to Parkinson’s disease or type II diabetes getting worse).The plaques start growing from small amyloid fragments called seeds. In mixed amyloids – amyloids made of two types of proteins – seeds made of one protein can trigger the formation of amyloids of the other protein. This raises the question, is this true for hormones? The body often releases more than one hormone at a time from the same tissue; for example, the pituitary gland releases prolactin and galanin simultaneously. However, these hormones have completely different structures, so whether they can form a mixed amyloid is unclear. To answer this question, Chatterjee et al. first determined that, within the pituitary gland of female rats, prolactin and galanin could be found together in the same cells, forming mixed amyloids. To understand out how this happens, Chatterjee et al. tried seeding new amyloids using either prolactin or galanin. This revealed that only prolactin seeds were able to trigger the formation of galanin amyloids. Chatterjee et al. also found that the mixed amyloids could release the hormones faster than amyloids made from either protein alone. Together, these results suggest that the collaboration between these two proteins may help maintain hormone balance in the body. Problems with hormone storage and release lead to various human diseases, including prolactinoma. Understanding amyloid storage depots could reveal new ways to control hormone levels. Further research could also help to explain more about well-studied diseases linked to amyloids, like Alzheimer's.
Collapse
Affiliation(s)
- Debdeep Chatterjee
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai, India
| | - Reeba S Jacob
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai, India
| | - Soumik Ray
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai, India
| | - Ambuja Navalkar
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai, India
| | - Namrata Singh
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai, India
| | - Shinjinee Sengupta
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai, India
| | - Laxmikant Gadhe
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai, India
| | - Pradeep Kadu
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai, India
| | - Debalina Datta
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai, India
| | - Ajoy Paul
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai, India
| | - Sakunthala Arunima
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai, India
| | - Surabhi Mehra
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai, India
| | - Chinmai Pindi
- Department of Biotechnology, Indian Institute of Technology Madras, Chennai, India
| | - Santosh Kumar
- School of Biological Sciences, National Institute of Science Education and Research, Bhubaneswar, India
| | - Praful Singru
- School of Biological Sciences, National Institute of Science Education and Research, Bhubaneswar, India
| | - Sanjib Senapati
- Department of Biotechnology, Indian Institute of Technology Madras, Chennai, India
| | - Samir K Maji
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai, India
| |
Collapse
|
33
|
Vugmeyster L, Au DF, Smith MC, Ostrovsky D. Comparative Hydrophobic Core Dynamics Between Wild-Type Amyloid-β Fibrils, Glutamate-3 Truncation, and Serine-8 Phosphorylation. Chemphyschem 2022; 23:e202100709. [PMID: 34837296 PMCID: PMC9484291 DOI: 10.1002/cphc.202100709] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 11/10/2021] [Indexed: 02/06/2023]
Abstract
Post-translational modifications (PTMs) of amyloid-β (Aβ) species are implicated in the modulation of overall toxicities and aggregation propensities. We investigated the internal dynamics in the hydrophobic core of the truncated ΔE3 mutant fibrils of Aβ1-40 and compared them with prior and new data for wild-type fibrils as well as with phosphorylated S8 fibrils. Deuteron static solid-state NMR techniques, spanning line-shape analysis, longitudinal relaxation, and chemical exchange saturation transfer methods, were employed to assess the rotameric jumps of several methyl-bearing and aromatic groups in the core of the fibrils. Taken together, the results indicate the rather significant influence of the PTMs on the hydrophobic core dynamics, which propagates far beyond the local site of the chemical modification. The phosphorylated S8 fibrils display an overall rigidifying of the core based on the higher activation barriers of motions than the wild-type fibrils, whereas the ΔE3 fibrils induce a broader variety of changes, some of which are thermodynamic in nature rather than the kinetic ones.
Collapse
Affiliation(s)
- Liliya Vugmeyster
- Department of Chemistry, University of Colorado Denver, Denver CO USA 80204
| | - Dan Fai Au
- Department of Chemistry, University of Colorado Denver, Denver CO USA 80204
| | - Matthew C. Smith
- Department of Chemistry, University of Colorado Denver, Denver CO USA 80204
| | - Dmitry Ostrovsky
- Department of Mathematics, University of Colorado Denver, Denver CO USA 80204
| |
Collapse
|
34
|
Tianma Formula Alleviates Dementia via ACER2-Mediated Sphingolipid Signaling Pathway Involving A β. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2022; 2021:6029237. [PMID: 35069753 PMCID: PMC8357478 DOI: 10.1155/2021/6029237] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Accepted: 07/06/2021] [Indexed: 12/14/2022]
Abstract
Objective To reveal the molecular mechanism of the antagonistic effect of traditional Chinese medicine Tianma formula (TF) on dementia including vascular dementia (VaD) and Alzheimer's disease (AD) and to provide a scientific basis for the study of traditional Chinese medicine for prevention and treatment of dementia. Method The TF was derived from the concerted application of traditional Chinese medicine. We detected the pharmacological effect of TF in VaD rats. The molecular mechanism of TF was examined by APP/PS1 mice in vivo, Caenorhabditis elegans (C. elegans) in vitro, ELISA, pathological assay via HE staining, and transcriptome. Based on RNA-seq analysis in VaD rats, the differentially expressed genes (DEGs) were identified and then verified by quantitative PCR (qPCR) and ELISA. The molecular mechanisms of TF on dementia were further confirmed by network pharmacology and molecular docking finally. Results The Morris water maze showed that TF could improve the cognitive memory function of the VaD rats. The ELISA and histological analysis suggested that TF could protect the hippocampus via reducing tau and IL-6 levels and increasing SYN expression. Meanwhile, it could protect the neurological function by alleviating Aβ deposition in APP/PS1 mice and C. elegans. In the RNA-seq analysis, 3 sphingolipid metabolism pathway-related genes, ADORA3, FCER1G, and ACER2, and another 5 nerve-related genes in 45 key DEGs were identified, so it indicated that the protection mechanism of TF was mainly associated with the sphingolipid metabolism pathway. In the qPCR assay, compared with the model group, the mRNA expressions of the 8 genes mentioned above were upregulated, and these results were consistent with RNA-seq. The protein and mRNA levels of ACER2 were also upregulated. Also, the results of network pharmacology analysis and molecular docking were consistent with those of RNA-seq analysis. Conclusion TF alleviates dementia by reducing Aβ deposition via the ACER2-mediated sphingolipid signaling pathway.
Collapse
|
35
|
Hashimoto M, Ho G, Takamatsu Y, Wada R, Sugama S, Waragai M, Masliah E, Takenouchi T. Understanding Creutzfeldt-Jackob disease from a viewpoint of amyloidogenic evolvability. Prion 2021; 14:1-8. [PMID: 32375593 PMCID: PMC7219431 DOI: 10.1080/19336896.2020.1761514] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Creutzfeldt-Jackob disease (CJD), the most common human prion disorder, is frequently accompanied by ageing-associated neurodegenerative conditions, such as Alzheimer’s disease and Parkinson’s disease. Although cross-seeding of amyloidogenic proteins (APs), including amyloid β and α-synuclein, may be critical in the co-morbidity of neurodegenerative disorders, the direct interaction of APs with prion protein (PrP), the central molecule involved in the pathogenesis of CJD, is unlikely. Currently, the nature of this biological interaction and its significance remain obscure. In this context, the objective of the present study is to discuss such interactions from the perspective of amyloidogenic evolvability, a putative function of APs. Hypothetically, both hereditary- and sporadic CJD might be attributed to the role of PrP in evolvability against multiple stressors, such as physical stresses relevant to concussions, which might be manifest through the antagonistic pleiotropy mechanism in ageing. Furthermore, accumulating evidence suggests that PrP- and other APs evolvability may negatively regulate each other. Provided that increased APs evolvability might be beneficial for acquired CJD in young adults, a dose-reduction of α-synuclein, a natural inhibitor of αS aggregation, might be therapeutically effective in upregulating APs evolvability. Collectively, a better understanding of amyloidogenic evolvability may lead to the development of novel therapies for CJD.
Collapse
Affiliation(s)
- Makoto Hashimoto
- Laboratory for Parkinson's Disease, Tokyo Metropolitan Institute of Medical Science, Setagaya-ku, Japan
| | - Gilbert Ho
- PCND Neuroscience Research Institute, Poway, CA, USA
| | - Yoshiki Takamatsu
- Laboratory for Parkinson's Disease, Tokyo Metropolitan Institute of Medical Science, Setagaya-ku, Japan
| | - Ryoko Wada
- Laboratory for Parkinson's Disease, Tokyo Metropolitan Institute of Medical Science, Setagaya-ku, Japan
| | - Shuei Sugama
- Department of Physiology, Nippon Medical School, Tokyo, Japan
| | - Masaaki Waragai
- Laboratory for Parkinson's Disease, Tokyo Metropolitan Institute of Medical Science, Setagaya-ku, Japan
| | - Eliezer Masliah
- Division of Neurosciences, National Institute on Aging, National Institutes of Health, Bethesda, MD, USA
| | - Takato Takenouchi
- Institute of Agrobiological Sciences, National Agriculture and Food Research Organization, Tsukuba, Japan
| |
Collapse
|
36
|
Sandin L, Sjödin S, Brorsson AC, Kågedal K, Civitelli L. The Luminescent Conjugated Oligothiophene h-FTAA Attenuates the Toxicity of Different Aβ Species. Biochemistry 2021; 60:2773-2780. [PMID: 34469142 PMCID: PMC8459454 DOI: 10.1021/acs.biochem.1c00265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The prevailing opinion is that prefibrillar β-amyloid (Aβ) species, rather than end-stage amyloid fibrils, cause neuronal dysfunction in Alzheimer's disease, although the mechanisms behind Aβ neurotoxicity remain to be elucidated. Luminescent conjugated oligothiophenes (LCOs) exhibit spectral properties upon binding to amyloid proteins and have previously been reported to change the toxicity of Aβ1-42 and prion protein. In a previous study, we showed that an LCO, pentamer formyl thiophene acetic acid (p-FTAA), changed the toxicity of Aβ1-42. Here we investigated whether an LCO, heptamer formyl thiophene acetic acid (h-FTAA), could change the toxicity of Aβ1-42 by comparing its behavior with that of p-FTAA. Moreover, we investigated the effects on toxicity when Aβ with the Arctic mutation (AβArc) was aggregated with both LCOs. Cell viability assays on SH-SY5Y neuroblastoma cells demonstrated that h-FTAA has a stronger impact on Aβ1-42 toxicity than does p-FTAA. Interestingly, h-FTAA, but not p-FTAA, rescued the AβArc-mediated toxicity. Aggregation kinetics and binding assay experiments with Aβ1-42 and AβArc when aggregated with both LCOs showed that h-FTAA and p-FTAA either interact with different species or affect the aggregation in different ways. In conclusion, h-FTAA protects against Aβ1-42 and AβArc toxicity, thus showing h-FTAA to be a useful tool for improving our understanding of the process of Aβ aggregation linked to cytotoxicity.
Collapse
Affiliation(s)
- Linnea Sandin
- Experimental Pathology, Department of Clinical and Experimental Medicine, Faculty of Health Sciences, Linköping University, Linköping 581 83, Sweden
| | - Simon Sjödin
- Experimental Pathology, Department of Clinical and Experimental Medicine, Faculty of Health Sciences, Linköping University, Linköping 581 83, Sweden
| | - Ann-Christin Brorsson
- Division of Molecular Biotechnology, Department of Physics, Chemistry and Biology, Linköping University, Linköping 581 83, Sweden
| | - Katarina Kågedal
- Experimental Pathology, Department of Clinical and Experimental Medicine, Faculty of Health Sciences, Linköping University, Linköping 581 83, Sweden
| | - Livia Civitelli
- Experimental Pathology, Department of Clinical and Experimental Medicine, Faculty of Health Sciences, Linköping University, Linköping 581 83, Sweden
| |
Collapse
|
37
|
Nirwal S, Bharathi V, Patel BK. Amyloid-like aggregation of bovine serum albumin at physiological temperature induced by cross-seeding effect of HEWL amyloid aggregates. Biophys Chem 2021; 278:106678. [PMID: 34492451 DOI: 10.1016/j.bpc.2021.106678] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 08/28/2021] [Accepted: 08/29/2021] [Indexed: 01/16/2023]
Abstract
BSA can form amyloid-like aggregates in vitro at 65 °C. Heterologous amyloid can proposedly cross-seed other protein's aggregation, however, general mechanisms and driving conditions remain to be vividly elucidated. Here, we examined if pre-formed HEWL amyloid can cross-seed the aggregation of BSA at physiological temperature, 37 °C, and whether the efficacy depends on the BSA conformation. We find that at pH 3.0, 37 °C where BSA manifests exposure of abundant hydrophobic patches, HEWL amyloid efficiently drives BSA into ThT-positive, sarkosyl-resistant, β-sheet rich amyloid-like aggregates exhibiting fibrils in TEM. On the contrary, HEWL amyloid fails to cross-seed the BSA aggregation at pH 7.0, 37 °C where BSA has largely internalized hydrophobic patches. Strikingly, human lysozyme amyloid could also cross-seed human serum albumin aggregation at pH 3.0, 37 °C. Thus, heterologous amyloid cross-seeding can help overcome the energy-barrier for aggregation of other proteins that, for any reason, may have perturbed and promiscuous structural conformation at physiological temperatures.
Collapse
Affiliation(s)
- Sadhana Nirwal
- Department of Biotechnology, Indian Institute of Technology Hyderabad, Kandi, Sangareddy, Telangana 502285, India
| | - Vidhya Bharathi
- Department of Biotechnology, Indian Institute of Technology Hyderabad, Kandi, Sangareddy, Telangana 502285, India
| | - Basant K Patel
- Department of Biotechnology, Indian Institute of Technology Hyderabad, Kandi, Sangareddy, Telangana 502285, India.
| |
Collapse
|
38
|
Amyloid particles facilitate surface-catalyzed cross-seeding by acting as promiscuous nanoparticles. Proc Natl Acad Sci U S A 2021; 118:2104148118. [PMID: 34462352 PMCID: PMC8433567 DOI: 10.1073/pnas.2104148118] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Amyloid seeds are nanometer-sized protein particles that accelerate amyloid assembly as well as propagate and transmit the amyloid protein conformation associated with a wide range of protein misfolding diseases. However, seeded amyloid growth through templated elongation at fibril ends cannot explain the full range of molecular behaviors observed during cross-seeded formation of amyloid by heterologous seeds. Here, we demonstrate that amyloid seeds can accelerate amyloid formation via a surface catalysis mechanism without propagating the specific amyloid conformation associated with the seeds. This type of seeding mechanism is demonstrated through quantitative characterization of the cross-seeded assembly reactions involving two nonhomologous and unrelated proteins: the human Aβ42 peptide and the yeast prion-forming protein Sup35NM. Our results demonstrate experimental approaches to differentiate seeding by templated elongation from nontemplated amyloid seeding and rationalize the molecular mechanism of the cross-seeding phenomenon as a manifestation of the aberrant surface activities presented by amyloid seeds as nanoparticles.
Collapse
|
39
|
Wang C, Lau CY, Ma F, Zheng C. Genome-wide screen identifies curli amyloid fibril as a bacterial component promoting host neurodegeneration. Proc Natl Acad Sci U S A 2021; 118:e2106504118. [PMID: 34413194 PMCID: PMC8403922 DOI: 10.1073/pnas.2106504118] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Growing evidence indicates that gut microbiota play a critical role in regulating the progression of neurodegenerative diseases such as Parkinson's disease. The molecular mechanism underlying such microbe-host interaction is unclear. In this study, by feeding Caenorhabditis elegans expressing human α-syn with Escherichia coli knockout mutants, we conducted a genome-wide screen to identify bacterial genes that promote host neurodegeneration. The screen yielded 38 genes that fall into several genetic pathways including curli formation, lipopolysaccharide assembly, and adenosylcobalamin synthesis among others. We then focused on the curli amyloid fibril and found that genetically deleting or pharmacologically inhibiting the curli major subunit CsgA in E. coli reduced α-syn-induced neuronal death, restored mitochondrial health, and improved neuronal functions. CsgA secreted by the bacteria colocalized with α-syn inside neurons and promoted α-syn aggregation through cross-seeding. Similarly, curli also promoted neurodegeneration in C. elegans models of Alzheimer's disease, amyotrophic lateral sclerosis, and Huntington's disease and in human neuroblastoma cells.
Collapse
Affiliation(s)
- Chenyin Wang
- School of Biological Sciences, The University of Hong Kong, Hong Kong Special Administrative Region, China
| | - Chun Yin Lau
- School of Biological Sciences, The University of Hong Kong, Hong Kong Special Administrative Region, China
| | - Fuqiang Ma
- School of Biological Sciences, The University of Hong Kong, Hong Kong Special Administrative Region, China
| | - Chaogu Zheng
- School of Biological Sciences, The University of Hong Kong, Hong Kong Special Administrative Region, China
| |
Collapse
|
40
|
Kayed R, Dettmer U, Lesné SE. Soluble endogenous oligomeric α-synuclein species in neurodegenerative diseases: Expression, spreading, and cross-talk. JOURNAL OF PARKINSON'S DISEASE 2021; 10:791-818. [PMID: 32508330 PMCID: PMC7458533 DOI: 10.3233/jpd-201965] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
There is growing recognition in the field of neurodegenerative diseases that mixed proteinopathies are occurring at greater frequency than originally thought. This is particularly true for three amyloid proteins defining most of these neurological disorders, amyloid-beta (Aβ), tau, and alpha-synuclein (αSyn). The co-existence and often co-localization of aggregated forms of these proteins has led to the emergence of concepts positing molecular interactions and cross-seeding between Aβ, tau, and αSyn aggregates. Amongst this trio, αSyn has received particular attention in this context during recent years due to its ability to modulate Aβ and tau aggregation in vivo, to interact at a molecular level with Aβ and tau in vivo and to cross-seed tau in mice. Here we provide a comprehensive, critical, and accessible review about the expression, role and nature of endogenous soluble αSyn oligomers because of recent developments in the understanding of αSyn multimerization, misfolding, aggregation, cross-talk, spreading and cross-seeding in neurodegenerative disorders, including Parkinson's disease, dementia with Lewy bodies, multiple system atrophy, Alzheimer's disease, and Huntington's disease. We will also discuss our current understanding about the relative toxicity of endogenous αSyn oligomers in vivo and in vitro, and introduce potential opportunities to counter their deleterious effects.
Collapse
Affiliation(s)
- Rakez Kayed
- Departments of Neurology & Neuroscience & Cell Biology & Anatomy, University of Texas Medical Branch Galveston, Galveston, TX, USA,George and Cynthia Mitchell Center for Neurodegenerative Diseases, University of Texas Medical Branch Galveston, Galveston, TX, USA
| | - Ulf Dettmer
- Department of Neurology, Harvard Medical School, Boston, MA, USA,Ann Romney Center for Neurologic Diseases, Harvard Medical School, Boston, MA, USA
| | - Sylvain E. Lesné
- Department of Neuroscience, University of Minnesota, Minneapolis, MN, USA,Institute of Translational Neuroscience, University of Minnesota, Minneapolis, MN, USA,Correspondence to: Sylvain E. Lesné, PhD, University of Minnesota, Wallin Medical Biosciences Building (Room 4-114), 2101 Sixth Street SE, CDC 2641, Minneapolis, MN 55414, USA. Tel.: +1 612 626 8341; E-mail: ; Website: https://lesnelab.org
| |
Collapse
|
41
|
Niu F, Sharma A, Wang Z, Feng L, Muresanu DF, Sahib S, Tian ZR, Lafuente JV, Buzoianu AD, Castellani RJ, Nozari A, Menon PK, Patnaik R, Wiklund L, Sharma HS. Nanodelivery of oxiracetam enhances memory, functional recovery and induces neuroprotection following concussive head injury. PROGRESS IN BRAIN RESEARCH 2021; 265:139-230. [PMID: 34560921 DOI: 10.1016/bs.pbr.2021.06.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Military personnel are the most susceptible to concussive head injury (CHI) caused by explosion, blast or missile or blunt head trauma. Mild to moderate CHI could induce lifetime functional and cognitive disturbances causing significant decrease in quality of life. Severe CHI leads to instant death and lifetime paralysis. Thus, further exploration of novel therapeutic agents or new features of known pharmacological agents are needed to enhance quality of life of CHI victims. Previous reports from our laboratory showed that mild CHI induced by weight drop technique causing an impact of 0.224N results in profound progressive functional deficit, memory impairment and brain pathology from 5h after trauma that continued over several weeks of injury. In this investigation we report that TiO2 nanowired delivery of oxiracetam (50mg/kg, i.p.) daily for 5 days after CHI resulted in significant improvement of functional deficit on the 8th day. This was observed using Rota Rod treadmill, memory improvement assessed by the time spent in finding hidden platform under water. The motor function improvement is seen in oxiracetam treated CHI group by placing forepaw on an inclined mesh walking and foot print analysis for stride length and distance between hind feet. TiO2-nanowired oxiracetam also induced marked improvements in the cerebral blood flow, reduction in the BBB breakdown and edema formation as well as neuroprotection of neuronal, glial and myelin damages caused by CHI at light and electron microscopy on the 7th day after 5 days TiO2 oxiracetam treatment. Adverse biochemical events such as upregulation of CSF nitrite and nitrate, IL-6, TNF-a and p-Tau are also reduced significantly in oxiracetam treated CHI group. On the other hand post treatment of 100mg/kg dose of normal oxiracetam in identical conditions after CHI is needed to show slight but significant neuroprotection together with mild recovery of memory function and functional deficits on the 8th day. These observations are the first to point out that nanowired delivery of oxiracetam has superior neuroprotective ability in CHI. These results indicate a promising clinical future of TiO2 oxiracetam in treating CHI patients for better quality of life and neurorehabilitation, not reported earlier.
Collapse
Affiliation(s)
- Feng Niu
- CSPC NBP Pharmaceutical Medicine, Shijiazhuang, China
| | - Aruna Sharma
- International Experimental Central Nervous System Injury & Repair (IECNSIR), Department of Surgical Sciences, Anesthesiology & Intensive Care Medicine, Uppsala University Hospital, Uppsala University, Uppsala, Sweden.
| | - Zhenguo Wang
- CSPC NBP Pharmaceutical Medicine, Shijiazhuang, China
| | - Lianyuan Feng
- Department of Neurology, Bethune International Peace Hospital, Shijiazhuang, China
| | - Dafin F Muresanu
- Department of Clinical Neurosciences, University of Medicine & Pharmacy, Cluj-Napoca, Romania; "RoNeuro" Institute for Neurological Research and Diagnostic, Cluj-Napoca, Romania
| | - Seaab Sahib
- Department of Chemistry & Biochemistry, University of Arkansas, Fayetteville, AR, United States
| | - Z Ryan Tian
- Department of Chemistry & Biochemistry, University of Arkansas, Fayetteville, AR, United States
| | - José Vicente Lafuente
- LaNCE, Department of Neuroscience, University of the Basque Country (UPV/EHU), Leioa, Bizkaia, Spain
| | - Anca D Buzoianu
- Department of Clinical Pharmacology and Toxicology, "Iuliu Hatieganu" University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Rudy J Castellani
- Department of Pathology, University of Maryland, Baltimore, MD, United States
| | - Ala Nozari
- Anesthesiology & Intensive Care, Massachusetts General Hospital, Boston, MA, United States
| | - Preeti K Menon
- Department of Biochemistry and Biophysics, Stockholm University, Stockholm, Sweden
| | - Ranjana Patnaik
- Department of Biomaterials, School of Biomedical Engineering, Indian Institute of Technology, Banaras Hindu University, Varanasi, India
| | - Lars Wiklund
- International Experimental Central Nervous System Injury & Repair (IECNSIR), Department of Surgical Sciences, Anesthesiology & Intensive Care Medicine, Uppsala University Hospital, Uppsala University, Uppsala, Sweden
| | - Hari Shanker Sharma
- International Experimental Central Nervous System Injury & Repair (IECNSIR), Department of Surgical Sciences, Anesthesiology & Intensive Care Medicine, Uppsala University Hospital, Uppsala University, Uppsala, Sweden.
| |
Collapse
|
42
|
Anand BG, Prajapati KP, Ansari M, Yadav DK, Temgire M, Kar K. Genesis of Neurotoxic Hybrid Nanofibers from the Coassembly of Aromatic Amino Acids. ACS APPLIED MATERIALS & INTERFACES 2021; 13:36722-36736. [PMID: 34327979 DOI: 10.1021/acsami.1c04161] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Considering the relevance of accumulation and self-assembly of metabolites and aftermath of biological consequences, it is important to know whether they undergo coassembly and what properties the resultant hybrid higher-order structures would exhibit. This work reveals the inherent tendency of aromatic amino acids to undergo a spontaneous coassembly process under physiologically mimicked conditions, which yields neurotoxic hybrid nanofibers. Resultant hybrid nanostructures resembled the β-structured conformers stabilized by H-bonds and π-π stacking interactions, which were highly toxic to human neuroblastoma cells. The hybrid nanofibers also showed strong cross-seeding potential that triggered in vitro aggregation of diverse globular proteins and brain extract components, converting the native structures into cross-β-rich amyloid aggregates. The heterogenic nature of the hybrid nanofibers seems crucial for their higher toxicity and faster cross-seeding potential as compared to the homogeneous amino acid nanofibers. Our findings reveal the importance of aromaticity-driven optimized intermolecular arrangements for the coassembly of aromatic amino acids, and the results may provide important clues to the fundamental understanding of metabolite accumulation-related complications.
Collapse
Affiliation(s)
- Bibin Gnanadhason Anand
- Biophysical and Biomaterials Research Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi 110067, India
| | - Kailash Prasad Prajapati
- Biophysical and Biomaterials Research Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi 110067, India
| | - Masihuzzaman Ansari
- Biophysical and Biomaterials Research Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi 110067, India
| | - Deepak Kumar Yadav
- Biophysical and Biomaterials Research Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi 110067, India
| | - Mayur Temgire
- Department of Chemical Engineering, Indian Institution of Technology Bombay, Powai, Mumbai 400076, India
| | - Karunakar Kar
- Biophysical and Biomaterials Research Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi 110067, India
| |
Collapse
|
43
|
Zielinski M, Röder C, Schröder GF. Challenges in sample preparation and structure determination of amyloids by cryo-EM. J Biol Chem 2021; 297:100938. [PMID: 34224730 PMCID: PMC8335658 DOI: 10.1016/j.jbc.2021.100938] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 06/28/2021] [Accepted: 07/01/2021] [Indexed: 01/12/2023] Open
Abstract
Amyloids share a common architecture but play disparate biological roles in processes ranging from bacterial defense mechanisms to protein misfolding diseases. Their structures are highly polymorphic, which makes them difficult to study by X-ray diffraction or NMR spectroscopy. Our understanding of amyloid structures is due in large part to recent advances in the field of cryo-EM, which allows for determining the polymorphs separately. In this review, we highlight the main stepping stones leading to the substantial number of high-resolution amyloid fibril structures known today as well as recent developments regarding automation and software in cryo-EM. We discuss that sample preparation should move closer to physiological conditions to understand how amyloid aggregation and disease are linked. We further highlight new approaches to address heterogeneity and polymorphism of amyloid fibrils in EM image processing and give an outlook to the upcoming challenges in researching the structural biology of amyloids.
Collapse
Affiliation(s)
- Mara Zielinski
- Institute of Biological Information Processing, Structural Biochemistry (IBI-7) and JuStruct, Jülich Center for Structural Biology, Forschungszentrum Jülich, Jülich, Germany
| | - Christine Röder
- Institute of Biological Information Processing, Structural Biochemistry (IBI-7) and JuStruct, Jülich Center for Structural Biology, Forschungszentrum Jülich, Jülich, Germany; Institut für Physikalische Biologie, Heinrich-Heine-Universität Düsseldorf, Düsseldorf, Germany
| | - Gunnar F Schröder
- Institute of Biological Information Processing, Structural Biochemistry (IBI-7) and JuStruct, Jülich Center for Structural Biology, Forschungszentrum Jülich, Jülich, Germany; Physics Department, Heinrich-Heine-Universität Düsseldorf, Düsseldorf, Germany.
| |
Collapse
|
44
|
Kumar V, Sinha N, Thakur AK. Necessity of regulatory guidelines for the development of amyloid based biomaterials. Biomater Sci 2021; 9:4410-4422. [PMID: 34018497 DOI: 10.1039/d1bm00059d] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Amyloid diseases are caused due to protein homeostasis failure where incorrectly folded proteins/peptides form cross-β-sheet rich amyloid fibrillar structures. Besides proteins/peptides, small metabolite assemblies also exhibit amyloid-like features. These structures are linked to several human and animal diseases. In addition, non-toxic amyloids with diverse physiological roles are characterized as a new functional class. This finding, along with the unique properties of amyloid like stability and mechanical strength, led to a surge in the development of amyloid-based biomaterials. However, the usage of these materials by humans and animals may pose a health risk such as the development of amyloid diseases and toxicity. This is possible because amyloid-based biomaterials and their fragments may assist seeding and cross-seeding mechanisms of amyloid formation in the body. This review summarizes the potential uses of amyloids as biomaterials, the concerns regarding their usage, and a prescribed workflow to initiate a regulatory approach.
Collapse
Affiliation(s)
- Vijay Kumar
- Department of Molecular Microbiology and Biotechnology, Shmunis School of Biomedicine and Cancer Research, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv 69978, Israel
| | - Nabodita Sinha
- Department of Biological Sciences and Bioengineering, Indian Institute of Technology Kanpur, UP-208016, India.
| | - Ashwani Kumar Thakur
- Department of Biological Sciences and Bioengineering, Indian Institute of Technology Kanpur, UP-208016, India.
| |
Collapse
|
45
|
Tasaki M, Okada M, Yanagisawa A, Nomura T, Matsushita H, Ueda A, Inoue Y, Masuda T, Misumi Y, Yamashita T, Nakamura T, Miyamoto T, Obayashi K, Ando Y, Ueda M. Apolipoprotein AI amyloid deposits in the ligamentum flavum in patients with lumbar spinal canal stenosis. Amyloid 2021; 28:107-112. [PMID: 33305623 DOI: 10.1080/13506129.2020.1858404] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
Amyloidosis is a protein-misfolding disease characterised by insoluble amyloid deposits in the extracellular space of various organs and tissues, such as the brain, heart, kidneys, and ligaments. We previously reported the frequent occurrence of amyloid deposits in the ligament flavum in the presence of lumbar spinal canal stenosis (LSCS), which is a common spinal disorder in older individuals. Our earlier clinicopathological studies revealed that amyloid deposits derived from transthyretin (TTR) were involved in the pathogenesis of LSCS. ATTR amyloid was the most common form in the ligamentum flavum, but amyloid deposits that were not identified still existed in more than 50% of patients with LSCS. In this study, we found apolipoprotein AI (AApoAI) amyloid deposits in the ligamentum flavum of patients with LSCS. The deposits occurred in 12% of patients with LSCS. Biochemical studies revealed that the amyloid deposits consisted mainly of full-length ApoAI. As a notable finding, the lumbar ligamentum flavum of patients who had LSCS with double-positive amyloid deposits-positive for both ATTR and AApoAI-was significantly thicker than that of patients who had LSCS with single-positive-that is, positive for either ATTR or AApoAI-amyloid deposits. We thus suggest that lumbar AApoAI amyloid formation may enhance the pathological changes of lumbar ATTR amyloidosis in patients with LSCS.
Collapse
Affiliation(s)
- Masayoshi Tasaki
- Department of Morphological and Physiological Sciences, Graduate School of Health Sciences, Kumamoto University, Kumamoto, Japan.,Department of Neurology, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Masamitsu Okada
- Department of Neurology, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| | | | - Toshiya Nomura
- Department of Neurology, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Hiroaki Matsushita
- Department of Amyloidosis Research, Nagasaki International University, Sasebo, Japan
| | - Akihiko Ueda
- Department of Neurology, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Yasuteru Inoue
- Department of Neurology, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Teruaki Masuda
- Department of Neurology, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Yohei Misumi
- Department of Neurology, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Taro Yamashita
- Department of Neurology, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Takayuki Nakamura
- Department of Orthopedic Surgery, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Takeshi Miyamoto
- Department of Orthopedic Surgery, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Konen Obayashi
- Department of Morphological and Physiological Sciences, Graduate School of Health Sciences, Kumamoto University, Kumamoto, Japan
| | - Yukio Ando
- Department of Amyloidosis Research, Nagasaki International University, Sasebo, Japan
| | - Mitsuharu Ueda
- Department of Neurology, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| |
Collapse
|
46
|
Abstract
Neurodegenerative disorders are frequently associated with β-sheet-rich amyloid deposits. Amyloid-forming proteins can aggregate under different structural conformations known as strains, which can exhibit a prion-like behavior and distinct pathophenotypes. Precise molecular determinants defining strain specificity and cross-strain interactions (cross-seeding) are currently unknown. The HET-s prion protein from the fungus Podospora anserina represents a model system to study the fundamental properties of prion amyloids. Here, we report the amyloid prion structure of HELLF, a distant homolog of the model prion HET-s. We find that these two amyloids, sharing only 17% sequence identity, have nearly identical β-solenoid folds but lack cross-seeding ability in vivo, indicating that prion specificity can differ in extremely similar amyloid folds. We engineer the HELLF sequence to explore the limits of the sequence-to-fold conservation and to pinpoint determinants of cross-seeding and prion specificity. We find that amyloid fold conservation occurs even at an exceedingly low level of identity to HET-s (5%). Next, we derive a HELLF-based sequence, termed HEC, able to breach the cross-seeding barrier in vivo between HELLF and HET-s, unveiling determinants controlling cross-seeding at residue level. These findings show that virtually identical amyloid backbone structures might not be sufficient for cross-seeding and that critical side-chain positions could determine the seeding specificity of an amyloid fold. Our work redefines the conceptual boundaries of prion strain and sheds light on key molecular features concerning an important class of pathogenic agents.
Collapse
|
47
|
Singh S, DeMarco ML. In Vitro Conversion Assays Diagnostic for Neurodegenerative Proteinopathies. J Appl Lab Med 2021; 5:142-157. [PMID: 31811072 DOI: 10.1373/jalm.2019.029801] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Accepted: 10/01/2019] [Indexed: 11/06/2022]
Abstract
BACKGROUND In vitro conversion assays, including real-time quaking-induced conversion (RT-QuIC) and protein misfolding cyclic amplification (PMCA) techniques, were first developed to study the conversion process of the prion protein to its misfolded, disease-associated conformation. The intrinsic property of prion proteins to propagate their misfolded structure was later exploited to detect subfemtogram quantities of the misfolded protein present in tissues and fluids from humans and animals with transmissible spongiform encephalopathies. Currently, conversion assays are used clinically as sensitive and specific diagnostic tools for antemortem diagnosis of prion disease. CONTENT In vitro conversion assays are now being applied to the development of diagnostics for related neurodegenerative diseases, including detection of misfolded α-synuclein in Parkinson disease, misfolded amyloid-β in Alzheimer disease, and misfolded tau in Pick disease. Like the predicate prion protein in vitro conversion diagnostics, these assays exploit the ability of endogenously misfolded proteins to induce misfolding and aggregation of their natively folded counterpart in vitro. This property enables biomarker detection of the underlying protein pathology. Herein, we review RT-QuIC and PMCA for (a) prion-, (b) α-synuclein-, (c) amyloid-β-, and (d) tau-opathies. SUMMARY Although already in routine clinical use for the detection of transmissible spongiform encephalopathies, in vitro conversion assays for other neurodegenerative disorders require further development and evaluation of diagnostic performance before consideration for clinical implementation.
Collapse
Affiliation(s)
- Serena Singh
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, Canada
| | - Mari L DeMarco
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, Canada.,Department of Pathology and Laboratory Medicine, St. Paul's Hospital, Providence Health Care, Vancouver, Canada
| |
Collapse
|
48
|
Yamashita S, O Kamatari Y, Honda R, Niwa A, Tomiata H, Hara A, Kuwata K. Monomeric a-synuclein (aS) inhibits amyloidogenesis of human prion protein (hPrP) by forming a stable aS-hPrP hetero-dimer. Prion 2021; 15:37-43. [PMID: 33849375 PMCID: PMC8049198 DOI: 10.1080/19336896.2021.1910176] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Intermolecular interaction between hPrP and αS was investigated using high-speed atomic force microscopy, dynamic light scattering, and nuclear magnetic resonance. We found that hPrP spontaneously gathered and naturally formed oligomers. Upon addition of monomer αS with a disordered conformation, poly-dispersive property of hPrP was lost, and hetero-dimer formation started quite coherently, and further oligomerization was not observed. Solution structure of hPrP-αS dimer was firstly characterized using hetero-nuclear NMR spectroscopy. In this hetero-dimeric complex, C-terminal helical region of hPrP was in the molten-globule like state, while specific sites including hot spot and C-terminal region of αS selectively interacted with hPrP. Thus αS may suppress amyloidogenesis of hPrP by trapping the hPrP intermediate by the formation of a stable hetero-dimer with hPrP. Abbreviations: hPrP, human prion protein of amino acid residues of 23-231; PrPC, cellular form of prion protein; PrPSc, scrapie form of prion protein, HS-AFM; high speed atomic force microscopy; αS, α-synuclein; DLS, dynamic light scattering
Collapse
Affiliation(s)
- Satoshi Yamashita
- United Graduate School of Drug Discovery and Medical Information Sciences, Gifu University, Tokai National Higher Education and Research System, Gifu, Japan
| | - Yuji O Kamatari
- United Graduate School of Drug Discovery and Medical Information Sciences, Gifu University, Tokai National Higher Education and Research System, Gifu, Japan.,Institute for Glyco-core Research, Tokai National Higher Education and Research System, Gifu, Japan
| | - Ryo Honda
- United Graduate School of Drug Discovery and Medical Information Sciences, Gifu University, Tokai National Higher Education and Research System, Gifu, Japan
| | - Ayumi Niwa
- Department of Tumor Pathology, Gifu University Graduate School of Medicine, Tokai National Higher Education System, Gifu, Japan
| | - Hiroyuki Tomiata
- Department of Tumor Pathology, Gifu University Graduate School of Medicine, Tokai National Higher Education System, Gifu, Japan
| | - Akira Hara
- Department of Tumor Pathology, Gifu University Graduate School of Medicine, Tokai National Higher Education System, Gifu, Japan
| | - Kazuo Kuwata
- United Graduate School of Drug Discovery and Medical Information Sciences, Gifu University, Tokai National Higher Education and Research System, Gifu, Japan.,Department of Gene and Development, Gifu University School of Medicine, Tokai National Higher Education and Research System, Gifu, Japan
| |
Collapse
|
49
|
Li X, Lao Z, Zou Y, Dong X, Li L, Wei G. Mechanistic Insights into the Co-Aggregation of Aβ and hIAPP: An All-Atom Molecular Dynamic Study. J Phys Chem B 2021; 125:2050-2060. [PMID: 33616398 DOI: 10.1021/acs.jpcb.0c11132] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Patients with Alzheimer's disease (AD) have a high risk of developing Type II diabetes (T2D). The co-aggregation of the two disease-related proteins, Aβ and hIAPP, has been proposed as a potential molecular mechanism. However, the detailed Aβ-hIAPP interactions and structural characteristics of co-aggregates are mostly unknown at atomic level. Here, we explore the conformational ensembles of the Aβ-hIAPP heterodimer and Aβ or hIAPP homodimer by performing all-atom explicit-solvent replica exchange molecular dynamic simulations. Our simulations show that the interaction propensity of Aβ-hIAPP in the heterodimer is comparable with that of Aβ-Aβ/hIAPP-hIAPP in the homodimer. Similar hot spot residues of Aβ/hIAPP in the homodimer and heterodimer are identified, indicating that both Aβ and hIAPP have similar molecular recognition sites for self-aggregation and co-aggregation. Aβ in the heterodimer possesses three high β-sheet probability regions: the N-terminal region E3-H6, the central hydrophobic core region K16-E22, and the C-terminal hydrophobic region I31-A41, which is highly similar to Aβ in the homodimer. More importantly, in the heterodimer, the regions E3-H6, F19-E22, and I31-M35 of Aβ and the amyloid core region N20-T30 of hIAPP display higher β-sheet probability than they do in homodimer, implying their crucial roles in the formation of β-sheet-rich co-aggregates. Our study sheds light on the co-aggregation of Aβ and hIAPP at an atomic level, which will be helpful for an in-depth understanding of the molecular mechanism for epidemiological correlation of AD and T2D.
Collapse
Affiliation(s)
- Xuhua Li
- State Key Laboratory of Surface Physics and Department of Physics, Fudan University, 2005 Songhu Road, Shanghai 200438, China.,MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter, School of Physics, Xi'an Jiaotong University, Xi'an 710049, China
| | - Zenghui Lao
- State Key Laboratory of Surface Physics and Department of Physics, Fudan University, 2005 Songhu Road, Shanghai 200438, China
| | - Yu Zou
- Department of Sport and Exercise Science, College of Education, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310007 Zhejiang, China
| | - Xuewei Dong
- State Key Laboratory of Surface Physics and Department of Physics, Fudan University, 2005 Songhu Road, Shanghai 200438, China
| | - Le Li
- State Key Laboratory of Surface Physics and Department of Physics, Fudan University, 2005 Songhu Road, Shanghai 200438, China
| | - Guanghong Wei
- State Key Laboratory of Surface Physics and Department of Physics, Fudan University, 2005 Songhu Road, Shanghai 200438, China
| |
Collapse
|
50
|
Schimansky A, Yadav JK. Amyloid cross-sequence interaction between Aβ(1-40) and αA(66-80) in relation to the pathogenesis of cataract. Int J Biol Macromol 2021; 179:61-70. [PMID: 33626371 DOI: 10.1016/j.ijbiomac.2021.02.111] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Revised: 01/29/2021] [Accepted: 02/15/2021] [Indexed: 10/22/2022]
Abstract
Alzheimer's disease (AD) and cataract represent two common protein misfolding diseases closely associated with aging. Growing evidence suggests that these two diseases may be interrelated with each other through cross-sequence interactions between β-amyloid (Aβ) peptide and the short aggregating peptides derived from proteolytic breakdown of α-crystallin. αΑ(66-80) is one of several peptides produced by the proteolytic breakdown of α-crystallin in aged eye lens. Although it is evident that the Aβ(1-40) and αΑ(66-80) coexist in aged eye lenses and both the peptides are known to form macromolecular assemblies, their cross-sequence interaction and the seeding behavior are not known. In this study, the aggregation behavior of αΑ(66-80) has been examined in the presence of Aβ(1-40) on using thioflavin T (ThT) based aggregation kinetics. The presence of monomeric Aβ(1-40) augmented the aggregation kinetics of αΑ(66-80) and reduced the lag time of αΑ(66-80) aggregation. However, the addition of Aβ(1-40) or αΑ(66-80) fibrils (seeds) didn't result in any change in the rate of αΑ(66-80) aggregation. In this in vitro study, we could show that the presence Aβ(1-40) has substantial effect on the aggregation of αΑ(66-80), which suggests a possible interaction between AD and cataract pathologies.
Collapse
Affiliation(s)
- Anna Schimansky
- Ulm University, Institute of Protein Biochemistry, Helmholtzstraße 8/1, 89081 Ulm, Germany
| | - Jay Kant Yadav
- Ulm University, Institute of Protein Biochemistry, Helmholtzstraße 8/1, 89081 Ulm, Germany; Department of Biotechnology, Central University of Rajasthan, NH-8 Bandarsindri, Kishangarh, Ajmer 305817, Rajasthan, India.
| |
Collapse
|