1
|
Lee D, Cho M, Kim E, Seo Y, Cha JH. PD-L1: From cancer immunotherapy to therapeutic implications in multiple disorders. Mol Ther 2024:S1525-0016(24)00650-6. [PMID: 39342430 DOI: 10.1016/j.ymthe.2024.09.026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2024] [Revised: 06/24/2024] [Accepted: 09/25/2024] [Indexed: 10/01/2024] Open
Abstract
The PD-L1/PD-1 signaling pathway is the gold standard for cancer immunotherapy. Therapeutic antibodies targeting PD-1, such as nivolumab (Opdivo) and pembrolizumab (Keytruda), and PD-L1, including atezolizumab (Tecentriq), durvalumab (Imfinzi), and avelumab (Bavencio) have received Food and Drug Administration approval and are currently being used to treat various cancers. Traditionally, PD-L1 is known as an immune checkpoint protein that binds to the PD-1 receptor on its surface to inhibit the activity of T cells, which are the primary effector cells in antitumor immunity. However, it also plays a role in cancer progression, which goes beyond traditional understanding. Here, we highlight the multifaceted mechanisms of action of PD-L1 in cancer cell proliferation, transcriptional regulation, and systemic immune suppression. Moreover, we consider the potential role of PD-L1 in the development and pathogenesis of diseases other than cancer, explore PD-L1-focused therapeutic approaches for these diseases, and assess their clinical relevance. Through this review, we hope to provide deeper insights into the PD-L1/PD-1 signaling pathway and present a broad perspective on potential therapeutic approaches for cancer and other diseases.
Collapse
Affiliation(s)
- Daeun Lee
- Department of Biomedical Science, College of Medicine, Program in Biomedical Sciences and Engineering Graduate School, Inha University, Incheon 22212, Republic of Korea
| | - Minjeong Cho
- Department of Biological Sciences, Inha University, Incheon 22212, Republic of Korea
| | - Eunseo Kim
- Department of Biomedical Science, College of Medicine, Program in Biomedical Sciences and Engineering Graduate School, Inha University, Incheon 22212, Republic of Korea
| | - Youngbin Seo
- Department of Biomedical Science, College of Medicine, Program in Biomedical Sciences and Engineering Graduate School, Inha University, Incheon 22212, Republic of Korea
| | - Jong-Ho Cha
- Department of Biomedical Science, College of Medicine, Program in Biomedical Sciences and Engineering Graduate School, Inha University, Incheon 22212, Republic of Korea; Biohybrid Systems Research Center, Inha University, Incheon 22212, Republic of Korea.
| |
Collapse
|
2
|
King HAD, Lewin SR. Immune checkpoint inhibitors in infectious disease. Immunol Rev 2024. [PMID: 39248154 DOI: 10.1111/imr.13388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/10/2024]
Abstract
Following success in cancer immunotherapy, immune checkpoint blockade is emerging as an exciting potential treatment for some infectious diseases, specifically two chronic viral infections, HIV and hepatitis B. Here, we will discuss the function of immune checkpoints, their role in infectious disease pathology, and the ability of immune checkpoint blockade to reinvigorate the immune response. We focus on blockade of programmed cell death 1 (PD-1) to induce durable immune-mediated control of HIV, given that anti-PD-1 can restore function to exhausted HIV-specific T cells and also reverse HIV latency, a long-lived form of viral infection. We highlight several key studies and future directions of research in relation to anti-PD-1 and HIV persistence from our group, including the impact of immune checkpoint blockade on the establishment (AIDS, 2018, 32, 1491), maintenance (PLoS Pathog, 2016, 12, e1005761; J Infect Dis, 2017, 215, 911; Cell Rep Med, 2022, 3, 100766) and reversal of HIV latency (Nat Commun, 2019, 10, 814; J Immunol, 2020, 204, 1242), enhancement of HIV-specific T cell function (J Immunol, 2022, 208, 54; iScience, 2023, 26, 108165), and investigating the effects of anti-PD-1 and anti-CTLA-4 in vivo in people with HIV on ART with cancer (Sci Transl Med, 2022, 14, eabl3836; AIDS, 2021, 35, 1631; Clin Infect Dis, 2021, 73, e1973). Our future work will focus on the impact of anti-PD-1 in vivo in people with HIV on ART without cancer and potential combinations of anti-PD-1 with other interventions, including therapeutic vaccines or antibodies and less toxic immune checkpoint blockers.
Collapse
Affiliation(s)
- Hannah A D King
- Department of Infectious Diseases, The University of Melbourne at The Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
| | - Sharon R Lewin
- Department of Infectious Diseases, The University of Melbourne at The Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
- Victorian Infectious Diseases Service, Royal Melbourne Hospital at The Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
- Department of Infectious Diseases, Alfred Hospital and Monash University, Melbourne, Victoria, Australia
| |
Collapse
|
3
|
Pondé RADA, Amorim GDSP. Elimination of the hepatitis B virus: A goal, a challenge. Med Res Rev 2024; 44:2015-2034. [PMID: 38528684 DOI: 10.1002/med.22030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 01/24/2024] [Accepted: 02/05/2024] [Indexed: 03/27/2024]
Abstract
The hepatitis B elimination is a goal proposed by the WHO to be achieved by 2030 through the adoption of synergistic measures for the prevention and chronic HBV infection treatment. Complete cure is characterized by the HBV elimination from the body and is the goal of the chronic hepatitis B treatment, which once achieved, will enable the hepatitis B elimination. This, today, has been a scientific challenge. The difficulty in achieving a complete cure is due to the indefinite maintenance of a covalently closed episomal circular DNA (cccDNA) reservoir and the maintenance and persistence of an insufficient and dysfunctional immune response in chronically infected patients. Among the measures adopted to eliminate hepatitis B, two have the potential to directly interfere with the virus cycle, but with limited effect on HBV control. These are conventional vaccines-blocking transmission and antiviral therapy-inhibiting replication. Vaccines, despite their effectiveness in protecting against horizontal transmission and preventing mother-to-child vertical transmission, have no effect on chronic infection or potential to eliminate the virus. Treatment with antivirals suppresses viral replication, but has no curative effect, as it has no action against cccDNA. Therapeutic vaccines comprise an additional approach in the chronic infection treatment, however, they have only a modest effect on the immune system, enhancing it temporarily. This manuscript aims to address (1) the cccDNA persistence in the hepatocyte nucleus and the immune response dysfunction in chronically infected individuals as two primary factors that have hampered the treatment and HBV elimination from the human body; (2) the limitations of antiviral therapy and therapeutic vaccines, as strategies to control hepatitis B; and (3) the possibly promising therapeutic approaches for the complete cure and elimination of hepatitis B.
Collapse
Affiliation(s)
- Robério Amorim de Almeida Pondé
- Secretaria de Estado da Saúde-SES, Superintendência de Vigilância em Saúde-SUVISA/GO, Gerência de Vigilância Epidemiológica de Doenças Transmissíveis-GVEDT/Coordenação de Análises e Pesquisas-CAP, Goiânia, Goiás, Brazil
- Department of Microbiology, Laboratory of Human Virology, Institute of Tropical Pathology and Public Health, Federal University of Goiás, Goiânia, Goiás, Brazil
| | | |
Collapse
|
4
|
Korkmaz P, Demirtürk N. Discontinuation of Nucleos(t)ide Analogues in HBeAg Negative Chronic Hepatitis B Patients: Risks and Benefits. INFECTIOUS DISEASES & CLINICAL MICROBIOLOGY 2024; 6:70-77. [PMID: 39005698 PMCID: PMC11243777 DOI: 10.36519/idcm.2024.339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Accepted: 06/11/2024] [Indexed: 07/16/2024]
Abstract
Chronic hepatitis B (CHB) remains a major threat to global public health, affecting 296 million people worldwide. Although there is no curative treatment for CHB today, the virus can be effectively controlled with current antiviral treatment strategies. Since HBsAg loss can rarely (1%) be achieved with current nucleos(t)ide analogues (NA) options, lifelong treatment is usually required in HBeAg-negative patients. In recent years, guidelines have stated that long-term NA treatments can be discontinued for HBeAg-negative patients without achieving HBsAg loss. There is no general consensus on how discontinuation of NA can be included in the treatment approach. This review aimed to evaluate the current literature regarding the discontinuation of NA treatment in HBeAg-negative patients. Patients with HBeAg-negative CHB who have a higher chance of response after discontinuation of NA therapy can be defined as non-cirrhotic patients who have low HBsAg, HBcrAg, and HBV RNA levels at the discontinuation of treatment and accept close follow-up. The management of relapses that develop after NA discontinuation in patients is also unclear. The agent used in NA treatment itself may also affect the pattern of relapse development. Relapse after NA treatment occurs significantly slower and less frequently with entecavir compared to other regimens, including tenofovir dipivoxil. Prospective studies are needed in order to maintain the chance of HBsAg clearance in case of exacerbation and to treat acute exacerbations that can be fatal in a timely manner. Algorithms to be developed for use after discontinuation of NA treatment will help the clinician manage the patient safely.
Collapse
Affiliation(s)
- Pınar Korkmaz
- Department of Infectious Diseases and Clinical Microbiology, Kütahya Health Sciences University School of Medicine, Kütahya, Türkiye
| | - Neşe Demirtürk
- Department of Infectious Diseases and Clinical Microbiology, Afyonkarahisar Health Sciences University School of Medicine, Afyonkarahisar, Türkiye
| |
Collapse
|
5
|
Schmidt S, Mengistu M, Daffis S, Ahmadi-Erber S, Deutschmann D, Grigoriev T, Chu R, Leung C, Tomkinson A, Uddin MN, Moshkani S, Robek MD, Perry J, Lauterbach H, Orlinger K, Fletcher SP, Balsitis S. Alternating Arenavirus Vector Immunization Generates Robust Polyfunctional Genotype Cross-Reactive Hepatitis B Virus-Specific CD8 T-Cell Responses and High Anti-Hepatitis B Surface Antigen Titers. J Infect Dis 2024; 229:1077-1087. [PMID: 37602681 DOI: 10.1093/infdis/jiad340] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 08/02/2023] [Accepted: 08/17/2023] [Indexed: 08/22/2023] Open
Abstract
Hepatitis B Virus (HBV) is a major driver of infectious disease mortality. Curative therapies are needed and ideally should induce CD8 T cell-mediated clearance of infected hepatocytes plus anti-hepatitis B surface antigen (HBsAg) antibodies (anti-HBs) to neutralize residual virus. We developed a novel therapeutic vaccine using non-replicating arenavirus vectors. Antigens were screened for genotype conservation and magnitude and genotype reactivity of T cell response, then cloned into Pichinde virus (PICV) vectors (recombinant PICV, GS-2829) and lymphocytic choriomeningitis virus (LCMV) vectors (replication-incompetent, GS-6779). Alternating immunizations with GS-2829 and GS-6779 induced high-magnitude HBV T cell responses, and high anti-HBs titers. Dose schedule optimization in macaques achieved strong polyfunctional CD8 T cell responses against core, HBsAg, and polymerase and high titer anti-HBs. In AAV-HBV mice, GS-2829 and GS-6779 were efficacious in animals with low pre-treatment serum HBsAg. Based on these results, GS-2829 and GS-6779 could become a central component of cure regimens.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Ruth Chu
- Gilead Sciences, Foster City, California, USA
| | - Cleo Leung
- Gilead Sciences, Foster City, California, USA
| | | | - Mohammad Nizam Uddin
- Department of Immunology and Microbial Disease, Albany Medical College, Albany, New York, USA
| | - Safiehkhatoon Moshkani
- Department of Immunology and Microbial Disease, Albany Medical College, Albany, New York, USA
| | - Michael D Robek
- Department of Immunology and Microbial Disease, Albany Medical College, Albany, New York, USA
| | - Jason Perry
- Gilead Sciences, Foster City, California, USA
| | | | | | | | | |
Collapse
|
6
|
Ren W, Wan H, Own SA, Berglund M, Wang X, Yang M, Li X, Liu D, Ye X, Sonnevi K, Enblad G, Amini RM, Sander B, Wu K, Zhang H, Wahlin BE, Smedby KE, Pan-Hammarström Q. Genetic and transcriptomic analyses of diffuse large B-cell lymphoma patients with poor outcomes within two years of diagnosis. Leukemia 2024; 38:610-620. [PMID: 38158444 PMCID: PMC10912034 DOI: 10.1038/s41375-023-02120-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 12/08/2023] [Accepted: 12/12/2023] [Indexed: 01/03/2024]
Abstract
Despite the improvements in clinical outcomes for DLBCL, a significant proportion of patients still face challenges with refractory/relapsed (R/R) disease after receiving first-line R-CHOP treatment. To further elucidate the underlying mechanism of R/R disease and to develop methods for identifying patients at risk of early disease progression, we integrated clinical, genetic and transcriptomic data derived from 2805 R-CHOP-treated patients from seven independent cohorts. Among these, 887 patients exhibited R/R disease within two years (poor outcome), and 1918 patients remained in remission at two years (good outcome). Our analysis identified four preferentially mutated genes (TP53, MYD88, SPEN, MYC) in the untreated (diagnostic) tumor samples from patients with poor outcomes. Furthermore, transcriptomic analysis revealed a distinct gene expression pattern linked to poor outcomes, affecting pathways involved in cell adhesion/migration, T-cell activation/regulation, PI3K, and NF-κB signaling. Moreover, we developed and validated a 24-gene expression score as an independent prognostic predictor for treatment outcomes. This score also demonstrated efficacy in further stratifying high-risk patients when integrated with existing genetic or cell-of-origin subtypes, including the unclassified cases in these models. Finally, based on these findings, we developed an online analysis tool ( https://lymphprog.serve.scilifelab.se/app/lymphprog ) that can be used for prognostic prediction for DLBCL patients.
Collapse
Affiliation(s)
- Weicheng Ren
- Division of Immunology, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Hui Wan
- Division of Immunology, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Sulaf Abd Own
- Division of Clinical Epidemiology, Department of Medicine Solna, Karolinska Institutet, Stockholm, Sweden
- Division of Pathology, Department of Laboratory Medicine, Karolinska Institutet and Karolinska University Hospital, Stockholm, Sweden
| | - Mattias Berglund
- Division of Immunology, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
- Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
| | - Xianhuo Wang
- Department of Lymphoma, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center of Cancer, Tianjin's Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, China
| | - Mingyu Yang
- Division of Immunology, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
- BGI Research, Shenzhen, China
- Guangdong Provincial Key Laboratory of Human Disease Genomic, Shenzhen Key Laboratory of Genomics, BGI Research, Shenzhen, China
| | - Xiaobo Li
- BGI Research, Shenzhen, China
- Guangdong Provincial Key Laboratory of Human Disease Genomic, Shenzhen Key Laboratory of Genomics, BGI Research, Shenzhen, China
| | - Dongbing Liu
- BGI Research, Shenzhen, China
- Guangdong Provincial Key Laboratory of Human Disease Genomic, Shenzhen Key Laboratory of Genomics, BGI Research, Shenzhen, China
| | - Xiaofei Ye
- Division of Immunology, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
- Kindstar Global Precision Medicine Institute, Wuhan, China
| | - Kristina Sonnevi
- Department of Medicine Huddinge, Karolinska Institutet, Stockholm, Sweden
- Department of Hematology, Karolinska University Hospital, Stockholm, Sweden
| | - Gunilla Enblad
- Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
| | - Rose-Marie Amini
- Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
| | - Birgitta Sander
- Department of Hematology, Karolinska University Hospital, Stockholm, Sweden
| | - Kui Wu
- BGI Research, Shenzhen, China
- Guangdong Provincial Key Laboratory of Human Disease Genomic, Shenzhen Key Laboratory of Genomics, BGI Research, Shenzhen, China
| | - Huilai Zhang
- Department of Lymphoma, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center of Cancer, Tianjin's Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, China
| | | | - Karin E Smedby
- Division of Clinical Epidemiology, Department of Medicine Solna, Karolinska Institutet, Stockholm, Sweden
- Department of Hematology, Karolinska University Hospital, Stockholm, Sweden
| | - Qiang Pan-Hammarström
- Division of Immunology, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden.
| |
Collapse
|
7
|
Borhani K, Bamdad T, Hashempour A, Salek Farrokhi A, Moayedi J. Comparison of the inhibitory and stimulatory effects of Core and NS3 candidate HCV vaccines on the cellular immune response. AMERICAN JOURNAL OF CLINICAL AND EXPERIMENTAL IMMUNOLOGY 2023; 12:153-163. [PMID: 38187363 PMCID: PMC10767197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 08/20/2023] [Accepted: 11/16/2023] [Indexed: 01/09/2024]
Abstract
Currently, hepatitis C virus (HCV) infects nearly 3% of the global population, the majority of whom are chronically infected; however, hepatitis C vaccines are still in the developmental stage. Numerous studies suggest that the spontaneous resolution of HCV infection and the design of its vaccine are reliant on vital contributions from CTL cell responses and T regulatory cells. Multiple researchers have identified both Core and nonstructural protein 3 (NS3) proteins as crucial immune genes and potential candidates for HCV DNA vaccine design. In this study, Core and NS3 were subcloned and inserted into pcDNA3.1 to construct HCV DNA vaccines administered in mouse models. Furthermore, the effects of Core and NS3 on the induction of CTL and NK were compared in spleen mouse models using the LDH method. Additionally, flow cytometry was employed to investigate the percentage of T regulatory cells (Treg cells) and cells expressing PD-1 in the spleens of the mouse models. Our data indicated that pcDNA3.1+NS3 and pcDNA3.1+Core could enhance CTL and NK activity in mouse models. Importantly, the Treg and PD-1 analysis in mouse models revealed a substantial reduction in the proportions of CD4+/CD25+/Foxp3+ T cells and PD-1+ cells in experimental subjects treated with HCV NS3 along with 5 mg/kg of lenalidomide, utilized as a novel adjuvant, compared to those administered an equivalent dosage of lenalidomide in conjunction with HCV Core. In conclusion, our observations indicated that the NS3-HCV gene had a limited impact on the activation of inhibitory factors. Therefore, NS3 is considered a more suitable candidate for DNA vaccine design compared to Core HCV.
Collapse
Affiliation(s)
- Kiandokht Borhani
- Department of Virology, School of Medical Sciences, Tarbiat Modares UniversityTehran, Iran
| | - Taravat Bamdad
- Department of Virology, School of Medical Sciences, Tarbiat Modares UniversityTehran, Iran
| | - Ava Hashempour
- Clinical Microbiology Research Center, Nemazee Hospital, Shiraz University of Medical SciencesShiraz, Iran
| | - Amir Salek Farrokhi
- Department of Immunology, School of Medical Sciences, Tarbiat Modares UniversityTehran, Iran
| | - Javad Moayedi
- Clinical Microbiology Research Center, Nemazee Hospital, Shiraz University of Medical SciencesShiraz, Iran
| |
Collapse
|
8
|
Wang L, Zeng X, Wang Z, Fang L, Liu J. Recent advances in understanding T cell activation and exhaustion during HBV infection. Virol Sin 2023; 38:851-859. [PMID: 37866815 PMCID: PMC10786656 DOI: 10.1016/j.virs.2023.10.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Accepted: 10/18/2023] [Indexed: 10/24/2023] Open
Abstract
Chronic hepatitis B virus (HBV) infection remains a major public health concern globally, and T cell responses are widely believed to play a pivotal role in mediating HBV clearance. Accordingly, research on the characteristics of HBV-specific T cell responses, from activation to exhaustion, has advanced rapidly. Here, we summarize recent developments in characterizing T cell immunity in HBV infection by reviewing basic and clinical research published in the last five years. We provide a comprehensive summary of the mechanisms that induce effective anti-HBV T cell immunity, as well as the latest developments in understanding T cell dysfunction in chronic HBV infection. Furthermore, we briefly discuss current novel treatment strategies aimed at restoring anti-HBV T cell responses.
Collapse
Affiliation(s)
- Lu Wang
- Department of Infectious Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China; Joint International Laboratory of Infection and Immunity, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Xiaoqing Zeng
- Department of Infectious Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Zida Wang
- Department of Infectious Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Ling Fang
- Central Sterile Supply Department, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
| | - Jia Liu
- Department of Infectious Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China; Joint International Laboratory of Infection and Immunity, Huazhong University of Science and Technology, Wuhan, 430022, China.
| |
Collapse
|
9
|
Korkmaz P, Asan A, Karakeçili F, Tekin S, Demirtürk N. New Treatment Options in Chronic Hepatitis B: How Close Are We to Cure? INFECTIOUS DISEASES & CLINICAL MICROBIOLOGY 2023; 5:267-280. [PMID: 38633851 PMCID: PMC10986727 DOI: 10.36519/idcm.2023.265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Accepted: 11/18/2023] [Indexed: 04/19/2024]
Abstract
Hepatitis B virus (HBV) infection is the leading cause of chronic liver disease worldwide. HBV-infected patients are at a lifetime risk of developing liver cirrhosis and hepatocellular carcinoma (HCC). Today, pegylated interferon (Peg-IFN) and nucleos(t)ide analogs (NAs) are used in the treatment of patients with chronic hepatitis B (CHB). Both treatment options have limitations. Despite effective viral suppression, NAs have little effect on covalently closed circular DNA (cccDNA), the stable episomal form of the HBV genome in hepatocytes. Therefore, the cure rate with NAs is low, and long-term treatment is required. Although the cure rate is better with Peg-IFN, it is difficult to tolerate due to drug side effects. Therefore, new treatment options are needed in the treatment of HBV infection. We can group new treatments under two headings: those that interfere with the viral life cycle and spread and those that modulate the immune response. Clinical studies show that combinations of treatments that directly target the viral life cycle and treatments that regulate the host immune system will be among the important treatment strategies in the future. As new direct-acting antiviral (DAA) and immunomodulatory therapies continue to emerge and evolve, functional cures in HBV treatment may be an achievable goal.
Collapse
Affiliation(s)
- Pınar Korkmaz
- Department of Infectious Diseases and Clinical Microbiology, Kütahya Health Sciences University School of Medicine, Kütahya, Türkiye
| | - Ali Asan
- Department of Infectious Diseases and Clinical Microbiology, Bursa Health Sciences University School of Medicine, Bursa, Türkiye
| | - Faruk Karakeçili
- Department of Infectious Diseases and Clinical Microbiology, Erzincan Binali Yıldırım University School of Medicine, Erzincan, Türkiye
| | - Süda Tekin
- Department of Infectious Diseases and Clinical Microbiology, Koç University School of Medicine, İstanbul, Türkiye
| | - Neşe Demirtürk
- Department of Infectious Diseases and Clinical Microbiology, Afyonkarahisar Health Sciences University, School of Medicine, Afyonkarahisar, Türkiye
| |
Collapse
|
10
|
Papadakis M, Karniadakis I, Mazonakis N, Akinosoglou K, Tsioutis C, Spernovasilis N. Immune Checkpoint Inhibitors and Infection: What Is the Interplay? In Vivo 2023; 37:2409-2420. [PMID: 37905657 PMCID: PMC10621463 DOI: 10.21873/invivo.13346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 09/01/2023] [Accepted: 09/08/2023] [Indexed: 11/02/2023]
Abstract
Immune checkpoint molecules are receptors expressed on immune cells, especially T-cells, which activate immunosuppressive pathways and lead them to a state known as T-cell exhaustion. Immune checkpoint inhibitors (ICIs) constitute a group of specific antibodies that target these molecules, restoring T-cell effector function. Several ICIs have already been approved by the FDA as therapeutic options for certain malignancies. However, evidence in the literature remains unclear regarding the possible risk of infection in patients receiving this treatment. A thorough examination of existing literature was carried out to investigate whether the use of ICIs increases the likelihood of specific infections and to explore the potential beneficial effects of ICIs on the treatment of infections. Our review found most infectious complications are related to immunosuppressive therapy for immune-related adverse events caused by checkpoint blockade. Current evidence shows that ICIs per se do not seem to generally increase the risk of infection, yet they might increase susceptibility to certain infections, such as tuberculosis. On the other hand, reinvigoration of immune responses triggered by ICIs might play a significant role in pathogen clearance, establishing a possible positive impact of ICIs, especially on chronic infectious diseases, such as HIV infection. Data from preclinical models are limited and larger clinical trials are warranted to shed more light on the effect of immune checkpoint blockade on specific pathogens.
Collapse
Affiliation(s)
- Michail Papadakis
- Third Department of Internal Medicine and Diabetes Center, Agios Panteleimon General Hospital of Nikaia, Piraeus, Greece
| | - Ioannis Karniadakis
- Cardiff Transplant Unit, University Hospital of Wales, Cardiff and Vale University Health Board, Cardiff, U.K
| | - Nikolaos Mazonakis
- Department of Internal Medicine, Thoracic Diseases General Hospital Sotiria, Athens, Greece
| | - Karolina Akinosoglou
- Department of Internal Medicine and Infectious Diseases, University General Hospital of Patras, Patras, Greece
| | | | | |
Collapse
|
11
|
Cargill T, Cicconi P, Brown A, Holland L, Karanth B, Rutkowski K, Ashwin E, Mehta R, Chinnakannan S, Sebastian S, Bussey L, Sorensen H, Klenerman P, Evans T, Barnes E. HBV001: Phase I study evaluating the safety and immunogenicity of the therapeutic vaccine ChAdOx1-HBV. JHEP Rep 2023; 5:100885. [PMID: 37791379 PMCID: PMC10543776 DOI: 10.1016/j.jhepr.2023.100885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 06/23/2023] [Accepted: 07/22/2023] [Indexed: 10/05/2023] Open
Abstract
Background & Aims Millions of people worldwide are infected chronically with HBV, which results in significant morbidity and mortality. Therapeutic vaccination is a strategy that aims to induce functional cure by restoring cellular immunity to HBV. Previously we have shown the candidate HBV immunotherapeutic vaccine ChAdOx1-HBV, encoding all major HBV antigens and a genetic adjuvant (shark invariant chain), is highly immunogenic in mice. Methods Here we report the results of HBV001, a first-in-human, phase I, non-randomised, dose-escalation trial of ChAdOx1-HBV assessed in healthy volunteers and patients with chronic HBV (CHB). Results Vaccination with a single dose of ChAdOx1-HBV was safe and well tolerated in both healthy and CHB cohorts. Vaccination induced high magnitude HBV-specific T cell responses against all major HBV antigens (core, polymerase, and surface) in healthy volunteers. Responses were detected but lower in patients with CHB. T cells generated by vaccination were cross-reactive between HBV C and D genotypes. Conclusions ChAdOx1-HBV is safe and immunogenic in healthy volunteers and patients with CHB. In further studies, ChAdOx1-HBV will be used in combination with other therapeutic strategies with an aim to overcome the attenuated immunogenicity in patients with CHB. Impact and implications Therapeutic vaccine ChAdOx1-HBV, a novel treatment for chronic hepatitis B infection (CHB), has been shown to be immunogenic in preclinical studies. In HBV001, a first-in-human phase I study, we show vaccination with ChAdOx1-HBV is safe and generates high magnitude T cell responses in healthy volunteers and lower levels of responses in patients with CHB. This is an important first step in the development of ChAdOx1-HBV as part of a wider therapeutic strategy to induce hepatitis B functional cure, and is of great interest to patients CHB and clinicians treating the condition. Clinical Trials Registration This study is registered at ClinicalTrials.gov (NCT04297917).
Collapse
Affiliation(s)
- Tamsin Cargill
- Peter Medawar Building for Pathogen Research, Nuffield Department of Medicine, University of Oxford, Oxford, UK
- Translational Gastroenterology Unit, Nuffield Department of Medicine, University of Oxford, John Radcliffe Hospital, Oxford, UK
| | - Paola Cicconi
- Jenner Vaccine Trials Centre for Clinical Vaccinology and Tropical Medicine, University of Oxford, Churchill Hospital, Oxford, UK
| | - Anthony Brown
- Peter Medawar Building for Pathogen Research, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Louise Holland
- Translational Gastroenterology Unit, Nuffield Department of Medicine, University of Oxford, John Radcliffe Hospital, Oxford, UK
- Jenner Vaccine Trials Centre for Clinical Vaccinology and Tropical Medicine, University of Oxford, Churchill Hospital, Oxford, UK
| | | | | | - Emily Ashwin
- Translational Gastroenterology Unit, Nuffield Department of Medicine, University of Oxford, John Radcliffe Hospital, Oxford, UK
- Jenner Vaccine Trials Centre for Clinical Vaccinology and Tropical Medicine, University of Oxford, Churchill Hospital, Oxford, UK
| | | | - Senthil Chinnakannan
- Peter Medawar Building for Pathogen Research, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | | | | | | | - Paul Klenerman
- Peter Medawar Building for Pathogen Research, Nuffield Department of Medicine, University of Oxford, Oxford, UK
- Translational Gastroenterology Unit, Nuffield Department of Medicine, University of Oxford, John Radcliffe Hospital, Oxford, UK
- Oxford NIHR Biomedical Research Centre, University of Oxford, The Joint Research Office, OUH Cowley, Oxford, UK
| | | | - Eleanor Barnes
- Peter Medawar Building for Pathogen Research, Nuffield Department of Medicine, University of Oxford, Oxford, UK
- Translational Gastroenterology Unit, Nuffield Department of Medicine, University of Oxford, John Radcliffe Hospital, Oxford, UK
- Oxford NIHR Biomedical Research Centre, University of Oxford, The Joint Research Office, OUH Cowley, Oxford, UK
| |
Collapse
|
12
|
Su M, Ye T, Wu W, Shu Z, Xia Q. Possibility of PD-1/PD-L1 Inhibitors for the Treatment of Patients with Chronic Hepatitis B Infection. Dig Dis 2023; 42:53-60. [PMID: 37820605 PMCID: PMC10836741 DOI: 10.1159/000534535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Accepted: 10/03/2023] [Indexed: 10/13/2023]
Abstract
BACKGROUND Chronic hepatitis B (CHB) infection is still a major global public health problem, with nearly two billion patients. Although current antiviral drugs can inhibit viral replication and reduce hepatitis B virus (HBV) related complications, it is difficult to achieve clinical endpoints due to drug resistance. SUMMARY Immune checkpoint inhibitors (ICIs) are an important strategy to reverse T-cell exhaustion, and rebuilding an effective functional T-cell response is a promising immunomodulatory approach for CHB patients. However, ICIs may lead to viral reactivation or immune-related adverse effects. There are still many controversies in the application of ICIs in treating patients with CHB. KEY MESSAGES This article reviews the research progress of ICIs in CHB infection and related issues. The goal of this paper was to summarize the possible impact of new therapies for CHB with the aim of reducing potential clinical risks.
Collapse
Affiliation(s)
- Menghan Su
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China,
| | - Ting Ye
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Wei Wu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Zheyue Shu
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
- NHC Key Laboratory of Combined Multi-Organ Transplantation, Hangzhou, China
- Key Laboratory of the Diagnosis and Treatment of Organ Transplantation, Research Unit of Collaborative Diagnosis and Treatment for Hepatobiliary and Pancreatic Cancer, Chinese Academy of Medical Sciences, Hangzhou, China
| | - Qi Xia
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
- Key Laboratory for Biomedical Engineering of Ministry of Education, Zhejiang University, Hangzhou, China
| |
Collapse
|
13
|
Xia Z, Zhang J, Chen W, Zhou H, Du D, Zhu K, Chen H, Meng J, Yang J. Hepatitis B reactivation in cancer patients receiving immune checkpoint inhibitors: a systematic review and meta-analysis. Infect Dis Poverty 2023; 12:87. [PMID: 37736699 PMCID: PMC10515058 DOI: 10.1186/s40249-023-01128-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Accepted: 08/10/2023] [Indexed: 09/23/2023] Open
Abstract
BACKGROUND Immunotherapy shows promise as a treatment option for various cancers. However, there is growing concern over potential complications from hepatitis B virus (HBV) reactivation after checkpoint blockade immunotherapy. Although most of the previous clinical trials on immune checkpoint inhibitors (ICIs) excluded patients with HBV, a few case reports and retrospective studies of HBV reactivation have been published. The aim of this study is to assess the risk of hepatitis B virus reactivation (HBVr) in patients receiving ICIs for advanced cancer. METHODS English and Chinese language literature published prior to April 30, 2023, was searched in PubMed, EMBASE, Web of Science, Cochrane, SinoMed, CNKI and Wanfang Data for studies reporting HBVr rates in cancer patients treated with ICIs. A pooled risk estimate was calculated for HBVr rates with 95% confidence intervals (CI). RESULTS Data from 34 studies including 7126 patients were retrieved and analyzed. The pooled HBVr rate in cancer patients treated with ICIs was 1.3% (I2 = 90.44%, 95% CI: 0.2-2.9%, P < 0.001). Subgroup analysis revealed that patients diagnosed with hepatocellular carcinoma (HCC), HBV carriers, and patients from Asian regions or in developing countries have a higher rate of HBVr. CONCLUSIONS Our meta-analysis demonstrated a low risk of HBVr in patients treated with ICIs for advanced cancer. ICI treatment may be safely used in patients with existing HBV infection or chronic hepatitis B, accompanied by regular monitoring and appropriate antiviral prophylaxis if necessary.
Collapse
Affiliation(s)
- Zhengzheng Xia
- Department of Pharmacy, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- Department of Pharmacy, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital and Shenzhen Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Shenzhen, China
| | - Jianyu Zhang
- Department of Pharmacy, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital and Shenzhen Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Shenzhen, China
| | - Wenjun Chen
- Department of Pharmacy, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital and Shenzhen Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Shenzhen, China
| | - Haiyan Zhou
- Department of Pharmacy, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Di Du
- Department of Pharmacy, Hubei Cancer Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Kongcai Zhu
- Department of Pharmacy, Beijing Youan Hospital, Capital Medical University, Beijing, China
| | - Hui Chen
- Department of Pharmacy, Tangshan Central Hospital, Tangshan, China
| | - Jun Meng
- Department of Pharmacy, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital and Shenzhen Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Shenzhen, China.
| | - Jun Yang
- Department of Pharmacy, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.
| |
Collapse
|
14
|
Zeng G, Koffas A, Mak LY, Gill US, Kennedy PT. Utility of novel viral and immune markers in predicting HBV treatment endpoints: A systematic review of treatment discontinuation studies. JHEP Rep 2023; 5:100720. [PMID: 37138673 PMCID: PMC10149368 DOI: 10.1016/j.jhepr.2023.100720] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Accepted: 02/06/2023] [Indexed: 05/05/2023] Open
Abstract
Background & Aims Antivirals represent the mainstay of chronic hepatitis B treatment given their efficacy and tolerability, but rates of functional cure remain low during long-term therapy. Treatment discontinuation has emerged as a strategy to maintain partial cure and achieve functional cure in select patient groups. We aimed to evaluate how data from treatment discontinuation studies exploring novel viral and/or immune markers could be applied to the functional cure program. Methods Treatment discontinuation studies evaluating novel viral and/or immune markers were identified by a systematic search of the PubMed database through to October 30, 2022. Data extraction focused on information regarding novel markers, including identified cut-off levels, timing of measurement, and associated effect on study outcomes of virological relapse, clinical relapse, and HBsAg seroclearance. Results From a search of 4,492 citations, 33 studies comprising a minimum of 2,986 unique patients met the inclusion criteria. Novel viral markers, HBcrAg and HBV RNA, were demonstrated across most studies to be helpful in predicting off-therapy partial cure, with emerging evidence to support a link with functional cure. From novel immune marker studies, we observed that treatment discontinuation has the potential to trigger immune restoration, which may be associated with a transient virological relapse. To this end, these studies support the combination of virus-directing agents with immunomodulator therapies to induce two key steps underlying functional cure: viral antigen load reduction and restoration of the host immune response. Conclusions Patients with a favourable profile of novel viral and immune markers stand to benefit from a trial of antiviral treatment discontinuation alongside novel virus-directing agents with the aim of achieving functional cure without excessive risk of severe clinical relapse. Impact and implications Select patients with chronic hepatitis B undergoing nucleoside analogue therapy may benefit from a trial of treatment discontinuation, aiming to maintain partial cure and/or achieve functional cure. We propose a profile of novel viral and immune markers to identify patients who are likely to achieve these goals without excessive risk of hepatic decompensation. Furthermore, treatment discontinuation may also be considered as a therapeutic strategy to trigger immune restoration, which may increase the chance of functional cure when used in conjunction with novel virus-directing agents.
Collapse
Affiliation(s)
- Georgia Zeng
- Faculty of Medicine, St Vincent’s Clinical School, University of New South Wales, Sydney, Australia
| | - Apostolos Koffas
- Barts Liver Centre, Blizard Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Lung-Yi Mak
- Barts Liver Centre, Blizard Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK
- Department of Medicine, Queen Mary Hospital, School of Clinical Medicine, The University of Hong Kong, Hong Kong, China
| | - Upkar S. Gill
- Barts Liver Centre, Blizard Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Patrick T.F. Kennedy
- Barts Liver Centre, Blizard Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK
- Corresponding author. Address: Department of Immunobiology, The Blizard Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| |
Collapse
|
15
|
Sharma S, Rawal P, Kaur S, Puria R. Liver organoids as a primary human model to study HBV-mediated Hepatocellular carcinoma. A review. Exp Cell Res 2023; 428:113618. [PMID: 37142202 DOI: 10.1016/j.yexcr.2023.113618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Revised: 04/21/2023] [Accepted: 04/26/2023] [Indexed: 05/06/2023]
Abstract
Hepatitis B Virus (HBV) is the prevailing cause of chronic liver disease, which progresses to Hepatocellular carcinoma (HCC) in 75% of cases. It represents a serious health concern being the fourth leading cause of cancer-related mortality worldwide. Treatments available to date fail to provide a complete cure with high chances of recurrence and related side effects. The lack of reliable, reproducible, and scalable in vitro modeling systems that could recapitulate the viral life cycle and represent virus-host interactions has hindered the development of effective treatments so far. The present review provides insights into the current in-vivo and in-vitro models used for studying HBV and their major limitations. We highlight the use of three-dimensional liver organoids as a novel and suitable platform for modeling HBV infection and HBV-mediated HCC. HBV organoids can be expanded, genetically altered, patient-derived, tested for drug discovery, and biobanked. This review also provides the general guidelines for culturing HBV organoids and highlights their several prospects for HBV drug discovery and screening.
Collapse
Affiliation(s)
- Simran Sharma
- School of Biotechnology, Gautam Buddha University, Greater Noida, India
| | - Preety Rawal
- School of Biotechnology, Gautam Buddha University, Greater Noida, India
| | - Savneet Kaur
- Institute of Liver and Biliary Sciences, Delhi, India.
| | - Rekha Puria
- School of Biotechnology, Gautam Buddha University, Greater Noida, India.
| |
Collapse
|
16
|
Pang XQ, Li X, Zhu WH, Huang RK, Mo ZS, Huang ZX, Zhang Y, Xie DY, Gao ZL. LAG3+ erythroid progenitor cells inhibit HBsAg seroclearance during finite pegylated interferon treatment through LAG3 and TGF-β. Antiviral Res 2023; 213:105592. [PMID: 37004734 DOI: 10.1016/j.antiviral.2023.105592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 03/16/2023] [Accepted: 03/29/2023] [Indexed: 04/03/2023]
Abstract
HBsAg seroclearance, the ideal aim of anti-hepatitis B virus (HBV) treatment, cannot be achieved easily. Anemia is another common issue for chronic hepatitis B (CHB) patients, which leads to elevation of erythroid progenitor cells (EPCs) and immune suppression in cancer. This study investigated the role of EPCs in HBsAg seroclearance following PEGylated interferon-α (PEG-IFN) treatment. CD45+EPC accumulation in CHB patients and an AAV/HBV mice model was found in the circulation and liver by flow cytometry and immunofluorescence tests. Wright-Giemsa staining showed that these pathological CD45+EPCs presented elevated erythroid cells with relative immature morphologies and atypical cells compared with the control cells. CD45+EPCs were associated with immune tolerance and decreased HBsAg seroclearance during finite PEG-IFN treatment. CD45+EPCs suppressed antigen non-specific T cell activation and HBV-specific CD8+T cells, partially through transforming growth factor β (TGF-β). RNA-seq revealed that CD45+EPCs in patients with CHB presented a distinct gene expression profile compared with CD45-EPCs and CD45+EPCs from cord blood. Notably, CD45+EPCs from patients with CHB expressed high level of Lymphocyte-activation gene 3 (LAG3), an immune checkpoint molecule, and were then defined as LAG3+EPCs. LAG3+EPCs diminished the function of antigen presenting cells through LAG3, which was another mechanism by which LAG3+EPCs' suppressed HBV-specific CD8+T cells. Anti-LAG3 and anti-TGF-β combination treatment decreased serum HBeAg, HBV DNA levels and HBsAg level, as well as HBsAg-expression in hepatocytes during PEG-IFN treatment in the AAV/HBV mice model. Conclusions: LAG3+EPCs inhibited the efficacy of PEG-IFN treatment on HBsAg seroclearance induced by LAG3 and TGF-β. Anti-LAG3, anti-TGF-β and PEG-IFN combination treatment might facilitate HBV clearance.
Collapse
|
17
|
Dumolard L, Aspord C, Marche PN, Macek Jilkova Z. Immune checkpoints on T and NK cells in the context of HBV infection: Landscape, pathophysiology and therapeutic exploitation. Front Immunol 2023; 14:1148111. [PMID: 37056774 PMCID: PMC10086248 DOI: 10.3389/fimmu.2023.1148111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Accepted: 03/10/2023] [Indexed: 03/30/2023] Open
Abstract
In hepatitis B virus (HBV) infection, the interplay between the virus and the host immune system is crucial in determining the pathogenesis of the disease. Patients who fail to mount a sufficient and sustained anti-viral immune response develop chronic hepatitis B (CHB). T cells and natural killer (NK) cells play decisive role in viral clearance, but they are defective in chronic HBV infection. The activation of immune cells is tightly controlled by a combination of activating and inhibitory receptors, called immune checkpoints (ICs), allowing the maintenance of immune homeostasis. Chronic exposure to viral antigens and the subsequent dysregulation of ICs actively contribute to the exhaustion of effector cells and viral persistence. The present review aims to summarize the function of various ICs and their expression in T lymphocytes and NK cells in the course of HBV infection as well as the use of immunotherapeutic strategies targeting ICs in chronic HBV infection.
Collapse
Affiliation(s)
- Lucile Dumolard
- University Grenoble Alpes, Inserm U 1209, CNRS UMR 5309, Team Epigenetics, Immunity, Metabolism, Cell Signaling & Cancer, Institute for Advanced Biosciences, Grenoble, France
| | - Caroline Aspord
- University Grenoble Alpes, Inserm U 1209, CNRS UMR 5309, Team Epigenetics, Immunity, Metabolism, Cell Signaling & Cancer, Institute for Advanced Biosciences, Grenoble, France
- R&D Laboratory, Etablissement Français du Sang Auvergne-Rhone-Alpes, Grenoble, France
| | - Patrice N. Marche
- University Grenoble Alpes, Inserm U 1209, CNRS UMR 5309, Team Epigenetics, Immunity, Metabolism, Cell Signaling & Cancer, Institute for Advanced Biosciences, Grenoble, France
| | - Zuzana Macek Jilkova
- University Grenoble Alpes, Inserm U 1209, CNRS UMR 5309, Team Epigenetics, Immunity, Metabolism, Cell Signaling & Cancer, Institute for Advanced Biosciences, Grenoble, France
- Hepato-Gastroenterology and Digestive Oncology Department, CHU Grenoble Alpes, Grenoble, France
- *Correspondence: Zuzana Macek Jilkova,
| |
Collapse
|
18
|
Mak LY, Hui RWH, Cheung KS, Fung J, Seto WK, Yuen MF. Advances in determining new treatments for hepatitis B infection by utilizing existing and novel biomarkers. Expert Opin Drug Discov 2023; 18:401-416. [PMID: 36943183 DOI: 10.1080/17460441.2023.2192920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/23/2023]
Abstract
INTRODUCTION Chronic hepatitis B (CHB) infection is a major global health threat and accounts for significant liver-related morbidity and mortality. An improved understanding of how hepatitis B virus (HBV) interacts with the host immune system allows the discovery of novel biomarkers and new treatment options. Viral biomarkers including hepatitis B surface antigen (HBsAg) and newer ones like HBV RNA and hepatitis B core-related antigen appear to be useful to select patients who are likely to benefit from cessation of long-term antiviral therapy. These markers can also help to confirm target engagement for novel compounds, and efficacy in HBsAg reduction and seroclearance is deemed essential as this is how the current treatment endpoint of functional cure is defined. AREAS COVERED In this review, the authors discuss the current standard of care and the gaps between such standard and the ideal goals for treatment in CHB. The authors highlight novel viral and immunological biomarkers that are potentially useful to evaluate treatment response. Novel treatment approaches in relation to these novel biomarkers are also evaluated. EXPERT OPINION Novel serum viral biomarkers and immunological markers are indispensable in the HBV functional cure program. These will likely become part of standard monitoring soon.
Collapse
Affiliation(s)
- Lung-Yi Mak
- Department of Medicine, School of Clinical Medicine, Pokfulam, Hong Kong
- State Key Laboratory of Liver Research, The University of Hong Kong, Pok Fu Lam, Hong Kong
| | - Rex Wan-Hin Hui
- Department of Medicine, School of Clinical Medicine, Pokfulam, Hong Kong
| | - Ka-Shing Cheung
- Department of Medicine, School of Clinical Medicine, Pokfulam, Hong Kong
| | - James Fung
- Department of Medicine, School of Clinical Medicine, Pokfulam, Hong Kong
- State Key Laboratory of Liver Research, The University of Hong Kong, Pok Fu Lam, Hong Kong
| | - Wai-Kay Seto
- Department of Medicine, School of Clinical Medicine, Pokfulam, Hong Kong
- State Key Laboratory of Liver Research, The University of Hong Kong, Pok Fu Lam, Hong Kong
| | - Man-Fung Yuen
- Department of Medicine, School of Clinical Medicine, Pokfulam, Hong Kong
- State Key Laboratory of Liver Research, The University of Hong Kong, Pok Fu Lam, Hong Kong
| |
Collapse
|
19
|
Boumaza X, Bonneau B, Roos-Weil D, Pinnetti C, Rauer S, Nitsch L, Del Bello A, Jelcic I, Sühs KW, Gasnault J, Goreci Y, Grauer O, Gnanapavan S, Wicklein R, Lambert N, Perpoint T, Beudel M, Clifford D, Sommet A, Cortese I, Martin-Blondel G. Progressive Multifocal Leukoencephalopathy Treated by Immune Checkpoint Inhibitors. Ann Neurol 2023; 93:257-270. [PMID: 36151879 PMCID: PMC10092874 DOI: 10.1002/ana.26512] [Citation(s) in RCA: 20] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2022] [Revised: 09/01/2022] [Accepted: 09/16/2022] [Indexed: 01/31/2023]
Abstract
OBJECTIVE Our aim was to assess the real-world effectiveness of immune checkpoint inhibitors for treatment of patients with progressive multifocal leukoencephalopathy (PML). METHODS We conducted a multicenter survey compiling retrospective data from 79 PML patients, including 38 published cases and 41 unpublished cases, who received immune checkpoint inhibitors as add-on to standard of care. One-year follow-up data were analyzed to determine clinical outcomes and safety profile. Logistic regression was used to identify variables associated with 1-year survival. RESULTS Predisposing conditions included hematological malignancy (n = 38, 48.1%), primary immunodeficiency (n = 14, 17.7%), human immunodeficiency virus/acquired immunodeficiency syndrome (n = 12, 15.2%), inflammatory disease (n = 8, 10.1%), neoplasm (n = 5, 6.3%), and transplantation (n = 2, 2.5%). Pembrolizumab was most commonly used (n = 53, 67.1%). One-year survival was 51.9% (41/79). PML-immune reconstitution inflammatory syndrome (IRIS) was reported in 15 of 79 patients (19%). Pretreatment expression of programmed cell death-1 on circulating T cells did not differ between survivors and nonsurvivors. Development of contrast enhancement on follow-up magnetic resonance imaging at least once during follow-up (OR = 3.16, 95% confidence interval = 1.20-8.72, p = 0.02) was associated with 1-year survival. Cerebrospinal fluid JC polyomavirus DNA load decreased significantly by 1-month follow-up in survivors compared to nonsurvivors (p < 0.0001). Thirty-two adverse events occurred among 24 of 79 patients (30.4%), and led to treatment discontinuation in 7 of 24 patients (29.1%). INTERPRETATION In this noncontrolled retrospective study of patients with PML who were treated with immune checkpoint inhibitors, mortality remains high. Development of inflammatory features or overt PML-IRIS was commonly observed. This study highlights that use of immune checkpoint inhibitors should be strictly personalized toward characteristics of the individual PML patient. ANN NEUROL 2023;93:257-270.
Collapse
Affiliation(s)
- Xavier Boumaza
- Department of Infectious and Tropical Diseases, Toulouse University Hospital, Toulouse, France
| | - Baptiste Bonneau
- Department of Medical Pharmacology, CIC 1436, Toulouse University Hospital, Toulouse, France
| | - Damien Roos-Weil
- Department of Hematology, Pitié-Salpêtrière Hospital, Sorbonne University, Paris, France
| | - Carmela Pinnetti
- HIV/AIDS Clinical Unit, National Institute for Infectious Disease "L. Spallanzani", Rome, Italy
| | - Sebastian Rauer
- Department of Neurology, Medical Center, University of Freiburg, Freiburg, Germany
| | - Louisa Nitsch
- Department of Neurology, University Hospital Bonn, Bonn, Germany
| | - Arnaud Del Bello
- Department of Nephrology and Organ Transplantation, CHU Rangueil, Toulouse, France.,Toulouse Institute for Infectious and Inflammatory Diseases (Infinity), INSERM UMR1291, CNRS UMR5051, Toulouse III University, Toulouse, France
| | - Ilijas Jelcic
- Neuroimmunology and Multiple Sclerosis Research Section, Department of Neurology, University Hospital Zurich and University of Zurich, Zurich, Switzerland
| | - Kurt-Wolfram Sühs
- Clinical Neuroimmunology and Neurochemistry, Department of Neurology, Hannover Medical School, Hannover, Germany
| | - Jacques Gasnault
- Unit of Rehabilitation of Neuroviral Diseases, Bicêtre Hospital, APHP, Le Kremlin-Bicêtre, France.,INSERM U1186, Paul Brousse Hospital, Paris Saclay University, Villejuif, France
| | - Yasemin Goreci
- Department of Neurology, University Hospital of Cologne, Cologne, Germany
| | - Oliver Grauer
- Department of Neurology, Institute of Translational Neurology, University Hospital Münster, Münster, Germany
| | - Sharmilee Gnanapavan
- Department of Neurology, Barts Health NHS Trust and Queen Mary University of London, London, UK
| | - Rebecca Wicklein
- Department of Neurology, Technical University of Munich, Munich, Germany
| | - Nicolas Lambert
- Department of Neurology, University Hospital of Liège, Liège, Belgium
| | - Thomas Perpoint
- Department of Infectious and Tropical Diseases, Lyon University Hospital, Lyon, France
| | - Martijn Beudel
- Amsterdam University Medical Center, University of Amsterdam, Amsterdam, the Netherlands.,Department of Neuroscience, Amsterdam University Medical Center, Amsterdam, the Netherlands
| | - David Clifford
- Department of Neurology, Washington University in St Louis, St Louis, MO, USA
| | - Agnès Sommet
- Department of Medical Pharmacology, CIC 1436, Toulouse University Hospital, Toulouse, France
| | - Irene Cortese
- Experimental Immunotherapeutics Unit, National Institute of Neurological Disorders and Stroke, Bethesda, MD
| | - Guillaume Martin-Blondel
- Department of Infectious and Tropical Diseases, Toulouse University Hospital, Toulouse, France.,Toulouse Institute for Infectious and Inflammatory Diseases (Infinity), INSERM UMR1291, CNRS UMR5051, Toulouse III University, Toulouse, France.,European Society of Clinical Microbiology and Infectious Diseases (ESCMID) Study Group on Infections of the Brain (ESGIB), Basel, Switzerland
| | | |
Collapse
|
20
|
Exosomes in HBV infection. Clin Chim Acta 2023; 538:65-69. [PMID: 36375524 DOI: 10.1016/j.cca.2022.11.012] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 11/07/2022] [Accepted: 11/07/2022] [Indexed: 11/13/2022]
Abstract
Exosomes have been identified as important mediators of intercellular communication in several physiological and pathological processes. Hepatitis B is caused by infection with the hepatitis B virus (HBV), which impairs hepatocytes, with chronic infection resulting in cirrhosis or liver cancer. We studied the roles and functions of exosomes in HBV infection and found that exosomes could promote HBV spread and development of HBV-related diseases. Exosomes could be used as potential biomarkers for HBV diagnosis. Furthermore, exosomes have potential applications in treatment for HBV infection via inhibition of HBV replication and transcription.
Collapse
|
21
|
Tian Y, Hu D, Li Y, Yang L. Development of therapeutic vaccines for the treatment of diseases. MOLECULAR BIOMEDICINE 2022; 3:40. [PMID: 36477638 PMCID: PMC9729511 DOI: 10.1186/s43556-022-00098-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Accepted: 10/24/2022] [Indexed: 12/12/2022] Open
Abstract
Vaccines are one of the most effective medical interventions to combat newly emerging and re-emerging diseases. Prophylactic vaccines against rabies, measles, etc., have excellent effectiveness in preventing viral infection and associated diseases. However, the host immune response is unable to inhibit virus replication or eradicate established diseases in most infected people. Therapeutic vaccines, expressing specific endogenous or exogenous antigens, mainly induce or boost cell-mediated immunity via provoking cytotoxic T cells or elicit humoral immunity via activating B cells to produce specific antibodies. The ultimate aim of a therapeutic vaccine is to reshape the host immunity for eradicating a disease and establishing lasting memory. Therefore, therapeutic vaccines have been developed for the treatment of some infectious diseases and chronic noncommunicable diseases. Various technological strategies have been implemented for the development of therapeutic vaccines, including molecular-based vaccines (peptide/protein, DNA and mRNA vaccines), vector-based vaccines (bacterial vector vaccines, viral vector vaccines and yeast-based vaccines) and cell-based vaccines (dendritic cell vaccines and genetically modified cell vaccines) as well as combinatorial approaches. This review mainly summarizes therapeutic vaccine-induced immunity and describes the development and status of multiple types of therapeutic vaccines against infectious diseases, such as those caused by HPV, HBV, HIV, HCV, and SARS-CoV-2, and chronic noncommunicable diseases, including cancer, hypertension, Alzheimer's disease, amyotrophic lateral sclerosis, diabetes, and dyslipidemia, that have been evaluated in recent preclinical and clinical studies.
Collapse
Affiliation(s)
- Yaomei Tian
- grid.412605.40000 0004 1798 1351College of Bioengineering, Sichuan University of Science & Engineering, No. 519, Huixing Road, Zigong, Sichuan 643000 The People’s Republic of China ,grid.13291.380000 0001 0807 1581State Key Laboratory of Biotherapy and Cancer Center/Collaborative Innovation Center for Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China No. 17, Section 3, South Renmin Road, Chengdu, Sichuan 610041 The People’s Republic of China
| | - Die Hu
- grid.13291.380000 0001 0807 1581State Key Laboratory of Biotherapy and Cancer Center/Collaborative Innovation Center for Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China No. 17, Section 3, South Renmin Road, Chengdu, Sichuan 610041 The People’s Republic of China
| | - Yuhua Li
- grid.410749.f0000 0004 0577 6238Department of Arboviral Vaccine, National Institutes for Food and Drug Control, Tiantan Xili, Dongcheng District, Beijing, 100050 The People’s Republic of China
| | - Li Yang
- grid.13291.380000 0001 0807 1581State Key Laboratory of Biotherapy and Cancer Center/Collaborative Innovation Center for Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China No. 17, Section 3, South Renmin Road, Chengdu, Sichuan 610041 The People’s Republic of China
| |
Collapse
|
22
|
Corkum CP, Wiede LL, Ruble CLA, Qiu J, Mulrooney-Cousins PM, Steeves MA, Watson DE, Michalak TI. Identification of antibodies cross-reactive with woodchuck immune cells and activation of virus-specific and global cytotoxic T cell responses by anti-PD-1 and anti-PD-L1 in experimental chronic hepatitis B and persistent occult hepadnaviral infection. Front Microbiol 2022; 13:1011070. [PMID: 36560951 PMCID: PMC9764628 DOI: 10.3389/fmicb.2022.1011070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Accepted: 11/14/2022] [Indexed: 12/12/2022] Open
Abstract
Woodchuck (Marmota monax) infected with woodchuck hepatitis virus (WHV) is the most pathogenically compatible naturally occurring model of human hepatitis B virus (HBV) infection, chronic hepatitis B, and HBV-induced hepatocellular carcinoma. This system plays a crucial role in discovery and preclinical evaluation of anti-HBV therapies. Its utilization remains tempered by the relatively narrow range of validated immunologic and molecular tools. We evaluated commercial antibodies against immune cell phenotypic markers and T cell molecules for cross-reactivity with woodchuck antigenic equivalents. The confirmed antibodies against programed cell death protein-1 (PD-1) and its ligand (PD-L1) were examined for ex vivo ability to activate WHV-specific, global and bystander cytotoxic T cells (CTLs) in chronic hepatitis and asymptomatic infection persisting after self-resolved acute hepatitis. Examination of 65 antibodies led to identification or confirmation of 23 recognizing woodchuck T, regulatory T, B and natural killer cells, T cell-associated PD-1, PD-L1, CTLA-4 and TIM-3 molecules, CD25 and CD69 markers of T cell activation, and interferon gamma (IFNγ). Antibodies against woodchuck PD-1 and PD-L1 triggered in vitro highly individualized WHV-specific and global activation of CTLs in both chronic hepatitis and persistent occult infection. WHV-specific CTLs were more robustly augmented by anti-PD-1 than by anti-PD-L1 in chronic hepatitis, while global IFNγ-positive CTL response was significantly suppressed in chronic hepatitis compared to persistent occult infection. Anti-PD-1 and anti-PD-L1 also occasionally activated CTLs to specificities other than those tested suggesting their potency to trigger side effects. This was particularly apparent when T cells from chronic hepatitis were treated with anti-PD-L1. The current findings indicate that inhibition of the PD-1/PD-L1 pathway could reactivate virus-specific and global T cell responses in both chronic hepatitis and asymptomatic persistent infection. They suggest a mechanism of potential reactivation of clinically silent infection during anti-PD-1/PD-L1 treatment and indicate that this therapy may also subdue occult HBV infection.
Collapse
Affiliation(s)
- Christopher P. Corkum
- Molecular Virology and Hepatology Research Group, Division of BioMedical Sciences, Faculty of Medicine, Health Sciences Centre, Memorial University of Newfoundland, St. John’s, NL, Canada
| | - Louisa L. Wiede
- Molecular Virology and Hepatology Research Group, Division of BioMedical Sciences, Faculty of Medicine, Health Sciences Centre, Memorial University of Newfoundland, St. John’s, NL, Canada
| | - Cara L.-A. Ruble
- Lilly Research Laboratories, Elli Lilly and Company, Indianapolis, IN, United States
| | - Jiabin Qiu
- Lilly Research Laboratories, Elli Lilly and Company, Indianapolis, IN, United States
| | - Patricia M. Mulrooney-Cousins
- Molecular Virology and Hepatology Research Group, Division of BioMedical Sciences, Faculty of Medicine, Health Sciences Centre, Memorial University of Newfoundland, St. John’s, NL, Canada
| | - Meredith A. Steeves
- Non-Clinical Safety Assessment, Toxicology, Elli Lilly and Company, Lilly Corporate Center, Indianapolis, IN, United States
| | - David E. Watson
- Lilly Research Laboratories, Elli Lilly and Company, Indianapolis, IN, United States
| | - Tomasz I. Michalak
- Molecular Virology and Hepatology Research Group, Division of BioMedical Sciences, Faculty of Medicine, Health Sciences Centre, Memorial University of Newfoundland, St. John’s, NL, Canada,*Correspondence: Tomasz I. Michalak,
| |
Collapse
|
23
|
Programmed Cell Death-Ligand 1 in Head and Neck Squamous Cell Carcinoma: Molecular Insights, Preclinical and Clinical Data, and Therapies. Int J Mol Sci 2022; 23:ijms232315384. [PMID: 36499710 PMCID: PMC9738355 DOI: 10.3390/ijms232315384] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 11/24/2022] [Accepted: 12/02/2022] [Indexed: 12/12/2022] Open
Abstract
Aberrant expression of the programmed cell death protein ligand 1 (PD-L1) constitutes one of the main immune evasion mechanisms of cancer cells. The approval of drugs against the PD-1-PD-L1 axis has given new impetus to the chemo-therapy of many malignancies. We performed a literature review from 1992 to August 2022, summarizing evidence regarding molecular structures, physiological and pathological roles, mechanisms of PD-L1 overexpression, and immunotherapy evasion. Furthermore, we summarized the studies concerning head and neck squamous cell carcinomas (HNSCC) immunotherapy and the prospects for improving the associated outcomes, such as identifying treatment response biomarkers, new pharmacological combinations, and new molecules. PD-L1 overexpression can occur via four mechanisms: genetic modifications; inflammatory signaling; oncogenic pathways; microRNA or protein-level regulation. Four molecular mechanisms of resistance to immunotherapy have been identified: tumor cell adaptation; changes in T-cell function or proliferation; alterations of the tumor microenvironment; alternative immunological checkpoints. Immunotherapy was indeed shown to be superior to traditional chemotherapy in locally advanced/recurrent/metastatic HNSCC treatments.
Collapse
|
24
|
Hagiwara S, Nishida N, Ida H, Ueshima K, Minami Y, Takita M, Aoki T, Morita M, Chishina H, Komeda Y, Yoshida A, Hayashi H, Nakagawa K, Kudo M. Clinical implication of immune checkpoint inhibitor on the chronic hepatitis B virus infection. Hepatol Res 2022; 52:754-761. [PMID: 35635496 DOI: 10.1111/hepr.13798] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/26/2022] [Revised: 05/17/2022] [Accepted: 05/23/2022] [Indexed: 02/08/2023]
Abstract
AIM The risk of hepatitis B virus (HBV) reactivation with immune checkpoint inhibitors (ICIs) is an important issue that has not yet been fully investigated. ICI is also expected to have an antiviral effect on HBV due to its immune tolerance inhibitory effect. We herein investigated the risk of HBV reactivation and the antiviral effect of ICI administration. METHODS This study included 892 patients on ICIs between September 2014 and May 2021 at our hospital. The frequency of HBV reactivation and antiviral effects were investigated. RESULTS Among the 892 patients who underwent ICI, 27 were hepatitis B surface antigen (HBsAg) positive. HBV reactivation was evaluated in 24 cases, among which 4.1% (1/24) had HBV reactivation. Nucleic acid analog prophylaxis was not administered to patients with reactivation. In a study of 15 cases, the amount of HBsAg decreased from baseline; 2.18 ± 0.77 log to 48 weeks later; 1.61 ± 1.38 log (p = 0.17). Forty-eight weeks after the start of ICI, disappearance of HBsAg was observed in two out of 15 cases (13.3%), and one case each with and without nucleic acid analog. CONCLUSION In rare cases, HBsAg-positive patients may be reactivated by ICI administration. On the other hand, when ICI is administered, it is expected to have an antiviral effect on HBV due to its immune tolerance inhibitory effect, and future drug development is expected.
Collapse
Affiliation(s)
- Satoru Hagiwara
- Department of Gastroenterology and Hepatology, Kindai University Faculty of Medicine, Osaka, Japan
| | - Naoshi Nishida
- Department of Gastroenterology and Hepatology, Kindai University Faculty of Medicine, Osaka, Japan
| | - Hiroshi Ida
- Department of Gastroenterology and Hepatology, Kindai University Faculty of Medicine, Osaka, Japan
| | - Kazuomi Ueshima
- Department of Gastroenterology and Hepatology, Kindai University Faculty of Medicine, Osaka, Japan
| | - Yasunori Minami
- Department of Gastroenterology and Hepatology, Kindai University Faculty of Medicine, Osaka, Japan
| | - Masahiro Takita
- Department of Gastroenterology and Hepatology, Kindai University Faculty of Medicine, Osaka, Japan
| | - Tomoko Aoki
- Department of Gastroenterology and Hepatology, Kindai University Faculty of Medicine, Osaka, Japan
| | - Masahiro Morita
- Department of Gastroenterology and Hepatology, Kindai University Faculty of Medicine, Osaka, Japan
| | - Hirokazu Chishina
- Department of Gastroenterology and Hepatology, Kindai University Faculty of Medicine, Osaka, Japan
| | - Yoriaki Komeda
- Department of Gastroenterology and Hepatology, Kindai University Faculty of Medicine, Osaka, Japan
| | - Akihiro Yoshida
- Department of Gastroenterology and Hepatology, Kindai University Faculty of Medicine, Osaka, Japan
| | - Hidetoshi Hayashi
- Department of Medical Oncology, Kindai University Faculty of Medicine, Osaka, Japan
| | - Kazuhiko Nakagawa
- Department of Medical Oncology, Kindai University Faculty of Medicine, Osaka, Japan
| | - Masatoshi Kudo
- Department of Gastroenterology and Hepatology, Kindai University Faculty of Medicine, Osaka, Japan
| |
Collapse
|
25
|
Yuan HF, Zhao M, Zhao LN, Yun HL, Yang G, Geng Y, Wang YF, Zheng W, Yuan Y, Song TQ, Niu JQ, Zhang XD. PRMT5 confers lipid metabolism reprogramming, tumour growth and metastasis depending on the SIRT7-mediated desuccinylation of PRMT5 K387 in tumours. Acta Pharmacol Sin 2022; 43:2373-2385. [PMID: 35046516 PMCID: PMC9433386 DOI: 10.1038/s41401-021-00841-y] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Accepted: 12/09/2021] [Indexed: 12/14/2022] Open
Abstract
The protein arginine methyltransferase 5 (PRMT5), which is highly expressed in tumour tissues, plays a crucial role in cancer development. However, the mechanism by which PRMT5 promotes cancer growth is poorly understood. Here, we report that PRMT5 contributes to lipid metabolism reprogramming, tumour growth and metastasis depending on the SIRT7-mediated desuccinylation of PRMT5 K387 in tumours. Mass spectrometric analysis identified PRMT5 lysine 387 as its succinylation site. Moreover, the desuccinylation of PRMT5 K387 enhances the methyltransferase activity of PRMT5. SIRT7 catalyses the desuccinylation of PRMT5 in cells. The SIRT7-mediated dessuccinylation of PRMT5 lysine 387 fails to bind to STUB1, decreasing PRMT5 ubiquitination and increasing the interaction between PRMT5 and Mep50, which promotes the formation of the PRMT5-Mep50 octamer. The PRMT5-Mep50 octamer increases PRMT5 methyltransferase activity, leading to arginine methylation of SREBP1a. The symmetric dimethylation of SREBP1a increases the levels of cholesterol, fatty acid, and triglyceride biogenesis in the cells, escaping degradation through the ubiquitin-proteasome pathway. Functionally, the desuccinylation of PRMT5 K387 promotes lipid metabolism reprogramming, tumour growth and metastasis in vitro and in vivo in tumours.
Collapse
Affiliation(s)
- Hong-Feng Yuan
- Department of Gastrointestinal Cancer Biology, Tianjin Cancer Institute, Liver Cancer Center, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin, 300060, China
- Department of Cancer Research, College of Life Sciences, Nankai University, Tianjin, 300071, China
| | - Man Zhao
- Department of Gastrointestinal Cancer Biology, Tianjin Cancer Institute, Liver Cancer Center, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin, 300060, China
- Department of Cancer Research, College of Life Sciences, Nankai University, Tianjin, 300071, China
| | - Li-Na Zhao
- Department of Cancer Research, College of Life Sciences, Nankai University, Tianjin, 300071, China
| | - Hao-Lin Yun
- Department of Cancer Research, College of Life Sciences, Nankai University, Tianjin, 300071, China
| | - Guang Yang
- Department of Gastrointestinal Cancer Biology, Tianjin Cancer Institute, Liver Cancer Center, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin, 300060, China
| | - Yu Geng
- Department of Cancer Research, College of Life Sciences, Nankai University, Tianjin, 300071, China
| | - Yu-Fei Wang
- Department of Cancer Research, College of Life Sciences, Nankai University, Tianjin, 300071, China
| | - Wei Zheng
- Department of Cancer Research, College of Life Sciences, Nankai University, Tianjin, 300071, China
| | - Ying Yuan
- Department of Cancer Research, College of Life Sciences, Nankai University, Tianjin, 300071, China
| | - Tian-Qiang Song
- Department of Hepatobiliary Cancer, Liver Cancer Research Center, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin, 300060, China.
| | - Jun-Qi Niu
- Department of Hepatology, the First Hospital, Jilin University, Jilin, 130021, China.
| | - Xiao-Dong Zhang
- Department of Gastrointestinal Cancer Biology, Tianjin Cancer Institute, Liver Cancer Center, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin, 300060, China.
| |
Collapse
|
26
|
Suresh M, Menne S. Recent Drug Development in the Woodchuck Model of Chronic Hepatitis B. Viruses 2022; 14:v14081711. [PMID: 36016334 PMCID: PMC9416195 DOI: 10.3390/v14081711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Revised: 07/22/2022] [Accepted: 07/31/2022] [Indexed: 11/24/2022] Open
Abstract
Infection with hepatitis B virus (HBV) is responsible for the increasing global hepatitis burden, with an estimated 296 million people being carriers and living with the risk of developing chronic liver disease and cancer. While the current treatment options for chronic hepatitis B (CHB), including oral nucleos(t)ide analogs and systemic interferon-alpha, are deemed suboptimal, the path to finding an ultimate cure for this viral disease is rather challenging. The lack of suitable laboratory animal models that support HBV infection and associated liver disease progression is one of the major hurdles in antiviral drug development. For more than four decades, experimental infection of the Eastern woodchuck with woodchuck hepatitis virus has been applied for studying the immunopathogenesis of HBV and developing new antiviral therapeutics against CHB. There are several advantages to this animal model that are beneficial for performing both basic and translational HBV research. Previous review articles have focused on the value of this animal model in regard to HBV replication, pathogenesis, and immune response. In this article, we review studies of drug development and preclinical evaluation of direct-acting antivirals, immunomodulators, therapeutic vaccines, and inhibitors of viral entry, gene expression, and antigen release in the woodchuck model of CHB since 2014 until today and discuss their significance for clinical trials in patients.
Collapse
|
27
|
Fung S, Choi HSJ, Gehring A, Janssen HLA. Getting to HBV cure: The promising paths forward. Hepatology 2022; 76:233-250. [PMID: 34990029 DOI: 10.1002/hep.32314] [Citation(s) in RCA: 73] [Impact Index Per Article: 36.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Revised: 12/17/2021] [Accepted: 12/19/2021] [Indexed: 12/18/2022]
Abstract
Chronic HBV infection is a global public health burden estimated to impact nearly 300 million persons worldwide. Despite the advent of potent antiviral agents that effectively suppress viral replication, HBV cure remains difficult to achieve because of the persistence of covalently closed circular DNA (cccDNA), HBV-DNA integration into the host genome, and impaired immune response. Indefinite treatment is necessary for most patients to maintain level of viral suppression. The success of direct-acting antivirals (DAAs) for hepatitis C treatment has rejuvenated the search for a cure for chronic hepatitis B (CHB), though an HBV cure likely requires an additional layer: immunomodulators for restoration of robust immune responses. DAAs such as entry inhibitors, capsid assembly modulators, inhibitors of subviral particle release, cccDNA silencers, and RNA interference molecules have reached clinical development. Immunomodulators, namely innate immunomodulators (Toll-like receptor agonists), therapeutic vaccines, checkpoint inhibitors, and monoclonal antibodies, are also progressing toward clinical development. The future of the HBV cure possibly lies in triple combination therapies with concerted action on replication inhibition, antigen reduction, and immune stimulation. Many obstacles remain, such as overcoming translational failures, choosing the right endpoint using the right biomarkers, and leveraging current treatments in combination regimens to enhance response rates. This review gives an overview of the current therapies for CHB, HBV biomarkers used to evaluate treatment response, and development of DAAs and immune-targeting drugs and discusses the limitations and unanswered questions on the journey to an HBV cure.
Collapse
Affiliation(s)
- Scott Fung
- Toronto Centre for Liver Disease, Toronto General Hospital, Toronto, Ontario, Canada
| | - Hannah S J Choi
- Toronto Centre for Liver Disease, Toronto General Hospital, Toronto, Ontario, Canada
| | - Adam Gehring
- Toronto Centre for Liver Disease, Toronto General Hospital, Toronto, Ontario, Canada
| | - Harry L A Janssen
- Toronto Centre for Liver Disease, Toronto General Hospital, Toronto, Ontario, Canada
| |
Collapse
|
28
|
Novel Pegylated Interferon for the Treatment of Chronic Viral Hepatitis. Viruses 2022; 14:v14061128. [PMID: 35746606 PMCID: PMC9230558 DOI: 10.3390/v14061128] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Revised: 05/12/2022] [Accepted: 05/20/2022] [Indexed: 11/17/2022] Open
Abstract
Ropeginterferon alfa-2b is a novel mono-pegylated and extra-long-acting interferon, being developed for the treatment of myeloproliferative neoplasm (MPN) and chronic viral hepatitis. It has a favorable pharmacokinetic profile and less frequent dosing schedule, i.e., once every two to four weeks, compared to conventional pegylated interferon products, which have multiple isomers and are administered weekly. It was approved for the long-term treatment of polycythemia vera, an MPN, and has been included in the NCCN clinical practice guidelines for this indication. Ropeginterferon alfa-2b has demonstrated efficacy and showed a favorable safety profile for the treatment of chronic viral hepatitis in several clinical studies. In this article, we review its pharmacokinetics and available clinical data and suggest that ropeginterferon alfa-2b administered once every two weeks can serve as a new treatment option for patients with chronic viral hepatitis, including chronic hepatitis B, C, and D.
Collapse
|
29
|
Diniz MO, Schurich A, Chinnakannan SK, Duriez M, Stegmann KA, Davies J, Kucykowicz S, Suveizdyte K, Amin OE, Alcock F, Cargill T, Barnes E, Maini MK. NK cells limit therapeutic vaccine-induced CD8 +T cell immunity in a PD-L1-dependent manner. Sci Transl Med 2022; 14:eabi4670. [PMID: 35417187 DOI: 10.1126/scitranslmed.abi4670] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
A better understanding of mechanisms that regulate CD8+T cell responses to therapeutic vaccines is needed to develop approaches to enhance vaccine efficacy for chronic viral infections and cancers. We show here that NK cell depletion enhanced antigen-specific T cell responses to chimp adenoviral vector (ChAdOx) vaccination in a mouse model of chronic HBV infection (CHB). Probing the mechanism underlying this negative regulation, we observed that CHB drove parallel up-regulation of programmed cell death ligand 1 (PD-L1) on liver-resident NK cells and programmed cell death 1 (PD-1) on intrahepatic T cells. PD-L1-expressing liver-resident NK cells suppressed PD-1hiCD8+T cells enriched within the HBV-specific response to therapeutic vaccination. Cytokine activation of NK cells also induced PD-L1, and combining cytokine activation with PD-L1 blockade resulted in conversion of NK cells into efficient helpers that boosted HBV-specific CD8+T cell responses to therapeutic vaccination in mice and to chronic infection in humans. Our findings delineate an immunotherapeutic combination that can boost the response to therapeutic vaccination in CHB and highlight the broader importance of PD-L1-dependent regulation of T cells by cytokine-activated NK cells.
Collapse
Affiliation(s)
- Mariana O Diniz
- Division of Infection and Immunity and Institute of Immunity and Transplantation, UCL, London, UK
| | - Anna Schurich
- Division of Infection and Immunity and Institute of Immunity and Transplantation, UCL, London, UK
| | - Senthil K Chinnakannan
- Peter Medawar Building for Pathogen Research, Nuffield Dept of Medicine, University of Oxford, Oxford, UK
| | - Marion Duriez
- Division of Infection and Immunity and Institute of Immunity and Transplantation, UCL, London, UK
| | - Kerstin A Stegmann
- Division of Infection and Immunity and Institute of Immunity and Transplantation, UCL, London, UK
| | - Jessica Davies
- Division of Infection and Immunity and Institute of Immunity and Transplantation, UCL, London, UK
| | - Stephanie Kucykowicz
- Division of Infection and Immunity and Institute of Immunity and Transplantation, UCL, London, UK
| | - Kornelija Suveizdyte
- Division of Infection and Immunity and Institute of Immunity and Transplantation, UCL, London, UK
| | - Oliver E Amin
- Division of Infection and Immunity and Institute of Immunity and Transplantation, UCL, London, UK
| | - Frances Alcock
- Division of Infection and Immunity and Institute of Immunity and Transplantation, UCL, London, UK
| | - Tamsin Cargill
- Peter Medawar Building for Pathogen Research, Nuffield Dept of Medicine, University of Oxford, Oxford, UK
| | - Eleanor Barnes
- Peter Medawar Building for Pathogen Research, Nuffield Dept of Medicine, University of Oxford, Oxford, UK
| | - Mala K Maini
- Division of Infection and Immunity and Institute of Immunity and Transplantation, UCL, London, UK
| |
Collapse
|
30
|
Risk of Hepatitis B Virus Reactivation in Patients Treated With Immunotherapy for Anti-cancer Treatment. Clin Gastroenterol Hepatol 2022; 20:898-907. [PMID: 34182151 DOI: 10.1016/j.cgh.2021.06.019] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Revised: 06/17/2021] [Accepted: 06/18/2021] [Indexed: 02/07/2023]
Abstract
BACKGROUND & AIMS Hepatitis B virus (HBV) reactivation is a well-known complication in patients with chronic hepatitis B treated with cytotoxic chemotherapy. However, the risk of HBV reactivation through use of immune checkpoint inhibitors (ICIs) is not well understood. Therefore, we aimed to evaluate the risk of HBV reactivation and hepatic adverse events in patients with cancer receiving ICIs according to cancer type and virologic serology. METHODS This historical cohort study included 3465 patients with cancer treated with ICIs between January 2015 and September 2020. The primary outcome was the occurrence of HBV reactivation, and the secondary outcome was presence of hepatic adverse events during ICI treatment. RESULTS The mean patient age was 62.2 years, and 68.8% of patients were men. Of the 3465 eligible patients, 511 (14.7%) showed hepatitis B surface antigen (HBsAg) positivity. The incidence rates of HBV reactivation of the total patients, HBsAg-positive patients, and HBsAg-negative patients were 0.14% (5/3465), 1.0% (5/511), and 0.0% (0/2954), respectively. Among HBsAg-positive patients, HBV reactivation occurred at a rate of 0.5% (2/409) and 2.9% (3/102) in patients with and without hepatocellular carcinoma, respectively. The HBV reactivation rates were 0.4% (2/464) and 6.4% (3/47) in patients with and without antiviral prophylaxis, respectively. Grade 3-4 hepatitis occurred in 23 (4.5%) HBsAg-positive, and 218 (7.4%) HBsAg-negative patients. No HBV-related fatality occurred. Only 2 patients (0.4%) experienced HBsAg seroclearance after ICI treatment among HBsAg-positive patients. CONCLUSIONS In general, HBV reactivation was rarely observed in patients with antiviral prophylaxis while undergoing ICI treatment. However, HBV reactivation may occur in HBsAg-positive patients without antiviral prophylaxis or noncompliant with antiviral prophylaxis.
Collapse
|
31
|
PD-L1 Silencing in Liver Using siRNAs Enhances Efficacy of Therapeutic Vaccination for Chronic Hepatitis B. Biomolecules 2022; 12:biom12030470. [PMID: 35327662 PMCID: PMC8946278 DOI: 10.3390/biom12030470] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2022] [Revised: 03/11/2022] [Accepted: 03/15/2022] [Indexed: 12/12/2022] Open
Abstract
In chronic hepatitis B virus (HBV) infection, virus-specific T cells are scarce and partially dysfunctional. Therapeutic vaccination is a promising strategy to induce and activate new virus-specific T cells. In long-term or high-level HBV carriers, however, therapeutic vaccination by itself may not suffice to cure HBV. One reason is the impairment of antiviral T cells by immune checkpoints. In this study, we used small-interfering RNA (siRNA) in combination with a heterologous prime-boost therapeutic vaccination scheme (TherVacB) to interfere with a major immune checkpoint, the interaction of programmed death protein-1 (PD-1) and its ligand (PDL-1). In mice persistently replicating HBV after infection with an adeno-associated virus harboring the HBV genome, siRNA targeting PD-L1 resulted in a higher functionality of HBV-specific CD8+ T cells after therapeutic vaccination, and allowed for a more sustained antiviral effect and control of HBV in peripheral blood and in the liver. The antiviral effect was more pronounced if PD-L1 was down-regulated during prime than during boost vaccination. Thus, targeting PD-L1 using siRNA is a promising approach to enhance the efficacy of therapeutic vaccination and finally cure HBV.
Collapse
|
32
|
Jia J, Zhang Y, Zhang H, Chen Z, Chen L, Zhou Q, Lv X, Wang Q. Hepcidin expression levels involve efficacy of pegylated interferon-α treatment in hepatitis B-infected liver. Int Immunopharmacol 2022; 107:108641. [PMID: 35217337 DOI: 10.1016/j.intimp.2022.108641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 02/10/2022] [Accepted: 02/17/2022] [Indexed: 11/17/2022]
Abstract
BACKGROUND Hepcidin is the master iron regulator hormone produced by the liver. The association of serum hepcidin with pegylated interferon therapy in patients with chronic hepatitis C infection has been studied. However, the role of serum hepcidin level in predicting the effect of pegylated interferon treatment in patients with chronic hepatitis B (CHB) infection is yet to be elucidated. Our study aims to investigate the correlation between hepcidin expression levels and the curative effect of interferon-alpha therapy in patients with CHB. METHODS A total of 47 patients with CHB who accepted pegylated interferon-α (PEG-IFN- α) treatment were recruited. The serum level of hepcidin was estimated by ELISA. The alternation in the gene expression level of hepcidin was detected by RT-PCR, and immunofluorescence cell staining was performed to detect hepcidin peptide. The induction of antiviral proteins was analyzed by Western blotting. The predictive value of early on-treatment variation in serum hepcidin during treatment progress was assessed by receiver operating characteristic analysis. RESULTS High levels of early on-treatment serum hepcidin were observed in patients who achieved a decline in HBsAg > 1 log10 IU/mL or HBV DNA > 1 log10 IU/mL. In vitro, an elevation of the hepcidin expression in HepG2.2.15 cells induced by PEG-IFN-α treatment was noted. Furthermore, combined treatment with hepcidin and PEG-IFN-α increased the levels of antiviral proteins. The predictive cut-off value of hepcidin for HBsAg decline > 1 log10 IU/mL was 239 pg/mL, and the sensitivity and specificity were 72.73% and 70.97%, respectively. The predictive cut-off value of hepcidin for the decline in HBV DNA > 1 log10 IU/mL was 190.4 pg/mL, and the sensitivity and specificity were 72.73% and 61.11%, respectively. Early-on treatment changes in the hepcidin level signified the predictive value of the PEG-IFN-α curative effect. CONCLUSIONS A higher early-on treatment hepcidin level indicates a higher possibility of HBsAg and HBV DNA decline in patients with CHB during PEG-IFN-α treatment. A high early-on treatment serum hepcidin level is significant in predicting the PEG-IFN-α therapeutic effect in patients with CHB.
Collapse
Affiliation(s)
- Jia Jia
- Department of Clinical Laboratory, the Second Hospital of Anhui Medical University, Hefei 230601, China
| | - Yunyun Zhang
- Department of Clinical Laboratory, the Second Hospital of Anhui Medical University, Hefei 230601, China
| | - Hao Zhang
- Department of Clinical Laboratory, the Second Hospital of Anhui Medical University, Hefei 230601, China
| | - Zhidong Chen
- Department of Clinical Laboratory, the Second Hospital of Anhui Medical University, Hefei 230601, China
| | - Liwen Chen
- Department of Clinical Laboratory, the Second Hospital of Anhui Medical University, Hefei 230601, China
| | - Qiang Zhou
- Department of Clinical Laboratory, the Second Hospital of Anhui Medical University, Hefei 230601, China
| | - Xiongwen Lv
- School of Pharmacy, Institute for Liver Diseases of Anhui Medical University, Anhui Key Laboratory of Bioactivity of Natural Products, Anhui Medical University, Mei Shan Road, Hefei, Anhui Province 230032, China.
| | - Qin Wang
- Department of Clinical Laboratory, the Second Hospital of Anhui Medical University, Hefei 230601, China.
| |
Collapse
|
33
|
Leoni S, Casabianca A, Biagioni B, Serio I. Viral hepatitis: Innovations and expectations. World J Gastroenterol 2022; 28:517-531. [PMID: 35316960 PMCID: PMC8905017 DOI: 10.3748/wjg.v28.i5.517] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 07/14/2021] [Accepted: 01/17/2022] [Indexed: 02/06/2023] Open
Abstract
Viral hepatitis is a significant health problem worldwide, associated with morbidity and mortality. Hepatitis B, C, D, and occasionally E viruses (HBV, HCV, HDV, and HEV) can evolve in chronic infections, whereas hepatitis A virus (HAV) frequently produces acute self-limiting hepatitis. In the last years, different studies have been performed to introduce new antiviral therapies. The most important goal in the treatment of viral hepatitis is to avoid chronic liver disease and complications. This review analyzes currently available therapies, in particular for viruses associated with chronic liver disease. The focus is especially on HBV and HCV therapies, investigating new drugs already introduced in clinical practice and clinical trials. We also describe new entry inhibitors, developed for the treatment of chronic HDV and HBV and currently available treatments for HEV. The last drugs introduced have shown important efficacy in HCV, with achievable target HCV elimination by 2030. Concurrently, renewed interest in curative HBV therapies has been registered; current nucleotide/ nucleoside analogs positively impact liver-related complications, ensuring high safety and tolerability. Novel approaches to HBV cure are based on new antivirals, targeting different steps of the HBV life cycle and immune modulators. The improved knowledge of the HDV life cycle has facilitated the development of some direct-acting agents, as bulevirtide, the first drug conditionally approved in Europe for HDV associated compensated liver disease. Further studies are required to identify a new therapeutic approach in hepatitis E, especially in immunosuppressed patients.
Collapse
Affiliation(s)
- Simona Leoni
- Division of Internal Medicine, Hepatobiliary and Immunoallergic Diseases, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna 40138, Italy
| | - Alberto Casabianca
- Division of Internal Medicine, Hepatobiliary and Immunoallergic Diseases, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna 40138, Italy
| | - Benedetta Biagioni
- Division of Internal Medicine, Hepatobiliary and Immunoallergic Diseases, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna 40138, Italy
| | - Ilaria Serio
- Division of Internal Medicine, Hepatobiliary and Immunoallergic Diseases, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna 40138, Italy
| |
Collapse
|
34
|
Abstract
Chronic hepatitis B virus (HBV) infection remains a global health burden. Timely and effective antiviral therapy is beneficial for patients with HBV infection. With existing antiviral drugs, including nucleos(t)ide analogs and interferon-alfa, patients can achieve viral suppression with improved prognosis. However, the rate of hepatitis B surface antigen loss is low. To achieve a functional cure and even complete cure in chronic hepatitis B patients, new antivirals need to be developed. In this review, we summarized the advantages and disadvantages of existing antiviral drugs and focused on new antivirals including direct-acting antiviral drugs and immunotherapeutic approaches.
Collapse
|
35
|
Humoral immunity in hepatitis B virus infection: Rehabilitating the B in HBV. JHEP REPORTS : INNOVATION IN HEPATOLOGY 2022; 4:100398. [PMID: 35059620 PMCID: PMC8760517 DOI: 10.1016/j.jhepr.2021.100398] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 11/08/2021] [Accepted: 11/09/2021] [Indexed: 12/15/2022]
Abstract
Insights into the immunopathogenesis of chronic HBV infections are fundamental in the quest for novel treatment approaches aimed at a functional cure. While much is known about the ineffective HBV-specific T-cell responses that characterise persistent HBV replication, B cells have been left largely understudied. However, an important role for humoral immunity during the natural history of HBV infections, as well as after functional cure, has been inadvertently revealed by the occurrence of HBV flares following B cell-depleting treatments. Herein, we review our current understanding of the role of the humoral immune response in chronic HBV, both at the level of HBV-specific antibody production and at the phenotypic and broader functional level of B cells. The recent development of fluorescently labelled HBV proteins has given us unprecedented insights into the phenotype and function of HBsAg- and HBcAg-specific B cells. This should fuel novel research into the mechanisms behind dysfunctional HBsAg-specific and fluctuating, possibly pathogenic, HBcAg-specific B-cell responses in chronic HBV. Finally, novel immunomodulatory treatments that partly target B cells are currently in clinical development, but a detailed assessment of their impact on HBV-specific B-cell responses is lacking. We plead for a rehabilitation of B-cell studies related to both the natural history of HBV and treatment development programmes.
Collapse
|
36
|
Nosaka T, Naito T, Murata Y, Matsuda H, Ohtani M, Hiramatsu K, Nishizawa T, Okamoto H, Nakamoto Y. Regulatory function of interferon-inducible 44-like for hepatitis B virus covalently closed circular DNA in primary human hepatocytes. Hepatol Res 2022; 52:141-152. [PMID: 34697871 DOI: 10.1111/hepr.13722] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 10/13/2021] [Accepted: 10/17/2021] [Indexed: 12/12/2022]
Abstract
AIM Curing hepatitis B virus (HBV) infection requires elimination of covalently closed circular DNA (cccDNA). Interferon (IFN)-γ has noncytolytic antiviral potential; however, elimination of cccDNA could not be achieved. To enhance the regulatory effect, we comprehensively analyzed the host factors associated with cccDNA amplification and IFN-γ and IFN-α effects using an in vitro HBV infection system showing various transcription levels. METHODS Primary human hepatocytes were infected with HBV using genomic plasmids carrying the basic core promoter mutation A1762T/G1764A and/or the precore mutation G1896A and treated with IFN-γ and IFN-α. Comprehensive and functional studies involving microarray and small interfering RNA analysis revealed the host factors related to cccDNA regulation. RESULTS The HBV infection system reproduced the HBV life cycle and showed various propagation levels. Microarray analysis revealed 53 genes correlated with the cccDNA levels. Of the 53 genes, expression of IFN-induced protein 44-like (IFI44L) was significantly upregulated by IFN-γ and IFN-α. The anti-HBV effect of IFI44L is exerted regardless of IFN-γ or IFN-α by inhibiting the activation of nuclear factor-κB and signal transducer and activator of transcription 1 pathways. CONCLUSIONS Using the in vitro HBV infection system, an IFN-inducible molecule, IFI44L, associated with cccDNA amplification, was identified. These results suggest an innovative molecular strategy for the regulation of HBV cccDNA by controlling a novel host factor, IFI44L.
Collapse
Affiliation(s)
- Takuto Nosaka
- Second Department of Internal Medicine, Faculty of Medical Sciences, University of Fukui, Fukui, Japan
| | - Tatsushi Naito
- Second Department of Internal Medicine, Faculty of Medical Sciences, University of Fukui, Fukui, Japan
| | - Yosuke Murata
- Second Department of Internal Medicine, Faculty of Medical Sciences, University of Fukui, Fukui, Japan
| | - Hidetaka Matsuda
- Second Department of Internal Medicine, Faculty of Medical Sciences, University of Fukui, Fukui, Japan
| | - Masahiro Ohtani
- Second Department of Internal Medicine, Faculty of Medical Sciences, University of Fukui, Fukui, Japan
| | - Katsushi Hiramatsu
- Second Department of Internal Medicine, Faculty of Medical Sciences, University of Fukui, Fukui, Japan
| | - Tsutomu Nishizawa
- Division of Virology, Department of Infection and Immunity, Jichi Medical University School of Medicine, Tochigi, Japan
| | - Hiroaki Okamoto
- Division of Virology, Department of Infection and Immunity, Jichi Medical University School of Medicine, Tochigi, Japan
| | - Yasunari Nakamoto
- Second Department of Internal Medicine, Faculty of Medical Sciences, University of Fukui, Fukui, Japan
| |
Collapse
|
37
|
Cellular and Molecular Mechanisms Underlying Scope and Limitation of Ongoing and Innovative Therapies for Treating Chronic Hepatitis B. LIVERS 2022. [DOI: 10.3390/livers2010001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Millions of people of the world suffer from chronic hepatitis B (CHB), a pathological entity in which the patients are chronically infected with hepatitis B virus (HBV) and express hepatitis B surface antigen (HBsAg) and HBV DNA, as well as evidence of liver damages. Considerable numbers of CHB patients develop cirrhosis of the liver and hepatocellular carcinoma if untreated. Two groups of drugs (interferons and nucleoside analogs) are used to treat CHB patients, but both are endowed with considerable adverse effects, increased costs, extended duration of therapy, and limited efficacy. Thus, there is a pressing need to develop new and innovative therapeutics for CHB patients, and many such drugs have been developed during the last four decades. Some of these drugs have inspired considerable optimism to be a game-changer for the treatment of CHB. Here, we first discuss why ongoing therapeutics such as interferon and nucleoside analogs could not stand the test of time. Next, we dissect the scope and limitation of evolving therapies for CHB by dissecting the cellular and molecular mechanisms of some of these innovative therapeutics.
Collapse
|
38
|
Khan IW, Dad Ullah MU, Choudhry M, Ali MJ, Ali MA, Lam SLK, Shah PA, Kaur SP, Lau DTY. Novel Therapies of Hepatitis B and D. Microorganisms 2021; 9:2607. [PMID: 34946209 PMCID: PMC8707465 DOI: 10.3390/microorganisms9122607] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Revised: 12/03/2021] [Accepted: 12/07/2021] [Indexed: 02/05/2023] Open
Abstract
Hepatitis B virus (HBV) infection is a global public health issue and is a major cause of cirrhosis and hepatocellular carcinoma (HCC). Hepatitis D virus (HDV) requires the hepatitis B surface antigen (HBsAg) to replicate. The eradication of HBV, therefore, can also cure HDV. The current therapies for chronic hepatitis B and D are suboptimal and cannot definitely cure the viruses. In order to achieve functional or complete cure of these infections, novel therapeutic agents that target the various sites of the viral replicative cycle are necessary. Furthermore, novel immunomodulatory agents are also essential to achieve viral clearance. Many of these new promising compounds such as entry inhibitors, covalently closed circular DNA (cccDNA) inhibitors, small interfering RNAs (siRNAs), capsid assembly modulators and nucleic acid polymers are in various stages of clinical developments. In this review article, we provided a comprehensive overview of the structure and lifecycle of HBV, the limitations of the current therapies and a summary of the novel therapeutic agents for both HDV and HBV infection.
Collapse
Affiliation(s)
- Iman Waheed Khan
- Liver Center, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02115, USA; (I.W.K.); (M.U.D.U.); (M.C.); (M.J.A.); (M.A.A.); (S.P.K.)
| | - Mati Ullah Dad Ullah
- Liver Center, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02115, USA; (I.W.K.); (M.U.D.U.); (M.C.); (M.J.A.); (M.A.A.); (S.P.K.)
| | - Mina Choudhry
- Liver Center, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02115, USA; (I.W.K.); (M.U.D.U.); (M.C.); (M.J.A.); (M.A.A.); (S.P.K.)
| | - Mukarram Jamat Ali
- Liver Center, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02115, USA; (I.W.K.); (M.U.D.U.); (M.C.); (M.J.A.); (M.A.A.); (S.P.K.)
| | - Muhammad Ashar Ali
- Liver Center, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02115, USA; (I.W.K.); (M.U.D.U.); (M.C.); (M.J.A.); (M.A.A.); (S.P.K.)
| | - Sam L. K. Lam
- Liver Center, Department of Medicine, Department of Pharmacy, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02115, USA;
| | - Pir Ahmad Shah
- Department of Internal Medicine, University of Texas, San Antonio, TX 78229, USA;
| | - Satinder Pal Kaur
- Liver Center, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02115, USA; (I.W.K.); (M.U.D.U.); (M.C.); (M.J.A.); (M.A.A.); (S.P.K.)
| | - Daryl T. Y. Lau
- Liver Center, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02115, USA; (I.W.K.); (M.U.D.U.); (M.C.); (M.J.A.); (M.A.A.); (S.P.K.)
| |
Collapse
|
39
|
Hasanpourghadi M, Novikov M, Newman D, Xiang Z, Zhou XY, Magowan C, Ertl HCJ. Hepatitis B virus polymerase-specific T cell epitopes shift in a mouse model of chronic infection. Virol J 2021; 18:242. [PMID: 34876153 PMCID: PMC8650432 DOI: 10.1186/s12985-021-01712-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2021] [Accepted: 11/26/2021] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND Chronic hepatitis B virus (HBV) infection (CHB) is a significant public health problem that could benefit from treatment with immunomodulators. Here we describe a set of therapeutic HBV vaccines that target the internal viral proteins. METHODS Vaccines are delivered by chimpanzee adenovirus vectors (AdC) of serotype 6 (AdC6) and 7 (AdC7) used in prime only or prime-boost regimens. The HBV antigens are fused into an early T cell checkpoint inhibitor, herpes simplex virus (HSV) glycoprotein D (gD), which enhances and broadens vaccine-induced cluster of differentiation (CD8)+ T cell responses. RESULTS Our results show that the vaccines are immunogenic in mice. They induce potent CD8+ T cell responses that recognize multiple epitopes. CD8+ T cell responses increase after a boost, although the breadth remains similar. In mice, which carry high sustained loads of HBV particles due to a hepatic infection with an adeno-associated virus (AAV)8 vector expressing the 1.3HBV genome, CD8+ T cell responses to the vaccines are attenuated with a marked shift in the CD8+ T cells' epitope recognition profile. CONCLUSIONS Our data show that in different stains of mice including those that carry a human major histocompatibility complex (MHC) class I antigen HBV vaccines adjuvanted with a checkpoint inhibitor induce potent and broad HBV-specific CD8+ T cell responses and lower but still detectable CD4+ T cell responses. CD8+ T cell responses are reduced and their epitope specificity changes in mice that are chronically exposed to HBV antigens. Implications for the design of therapeutic HBV vaccines are discussed.
Collapse
Affiliation(s)
| | - Mikhail Novikov
- Wistar Institute, 3601 Spruce Street, Philadelphia, PA, 19104, USA
| | - Dakota Newman
- Wistar Institute, 3601 Spruce Street, Philadelphia, PA, 19104, USA
| | - ZhiQuan Xiang
- Wistar Institute, 3601 Spruce Street, Philadelphia, PA, 19104, USA
| | - Xiang Yang Zhou
- Wistar Institute, 3601 Spruce Street, Philadelphia, PA, 19104, USA
| | - Colin Magowan
- Virion Therapeutics LLC, 7 Creek Bend Ct, Newark, DE, 19711, USA
| | | |
Collapse
|
40
|
Knolle PA, Huang LR, Kosinska A, Wohlleber D, Protzer U. Improving Therapeutic Vaccination against Hepatitis B-Insights from Preclinical Models of Immune Therapy against Persistent Hepatitis B Virus Infection. Vaccines (Basel) 2021; 9:1333. [PMID: 34835264 PMCID: PMC8623083 DOI: 10.3390/vaccines9111333] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 11/05/2021] [Accepted: 11/09/2021] [Indexed: 12/02/2022] Open
Abstract
Chronic hepatitis B affects more than 250 million individuals worldwide, putting them at risk of developing liver cirrhosis and liver cancer. While antiviral immune responses are key to eliminating hepatitis B virus (HBV) infections, insufficient antiviral immunity characterized by failure to eliminate HBV-infected hepatocytes is associated with chronic hepatitis B. Prophylactic vaccination against hepatitis B successfully established protective immunity against infection with the hepatitis B virus and has been instrumental in controlling hepatitis B. However, prophylactic vaccination schemes have not been successful in mounting protective immunity to eliminate HBV infections in patients with chronic hepatitis B. Here, we discuss the current knowledge on the development and efficacy of therapeutic vaccination strategies against chronic hepatitis B with particular emphasis on the pathogenetic understanding of dysfunctional anti-viral immunity. We explore the development of additional immune stimulation measures within tissues, in particular activation of immunogenic myeloid cell populations, and their use for combination with therapeutic vaccination strategies to improve the efficacy of therapeutic vaccination against chronic hepatitis B.
Collapse
Affiliation(s)
- Percy A. Knolle
- Institute of Molecular Immunology and Experimental Oncology, School of Medicine, Technical University of Munich, 81675 Munich, Germany;
- German Center for infection Research (DZIF), Munich Site, 81675 Munich, Germany;
| | - Li-Rung Huang
- Institute of Molecular and Genomic Medicine, National Health Research Institutes, Zhunan Town, Miaoli City 350, Taiwan;
| | - Anna Kosinska
- Institute of Virology, School of Medicine, Technical University of Munich, 81675 Munich, Germany;
| | - Dirk Wohlleber
- Institute of Molecular Immunology and Experimental Oncology, School of Medicine, Technical University of Munich, 81675 Munich, Germany;
| | - Ulrike Protzer
- German Center for infection Research (DZIF), Munich Site, 81675 Munich, Germany;
- Institute of Virology, School of Medicine, Technical University of Munich, 81675 Munich, Germany;
| |
Collapse
|
41
|
Tsounis EP, Mouzaki A, Triantos C. Nucleic acid vaccines: A taboo broken and prospect for a hepatitis B virus cure. World J Gastroenterol 2021; 27:7005-7013. [PMID: 34887624 PMCID: PMC8613654 DOI: 10.3748/wjg.v27.i41.7005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Revised: 07/07/2021] [Accepted: 10/14/2021] [Indexed: 02/06/2023] Open
Abstract
Although a prophylactic vaccine is available, hepatitis B virus (HBV) remains a major cause of liver-related morbidity and mortality. Current treatment options are improving clinical outcomes in chronic hepatitis B; however, true functional cure is currently the exception rather than the rule. Nucleic acid vaccines are among the emerging immunotherapies that aim to restore weakened immune function in chronically infected hosts. DNA vaccines in particular have shown promising results in vivo by reducing viral replication, breaking immune tolerance in a sustained manner, or even decimating the intranuclear covalently closed circular DNA reservoir, the hallmark of HBV treatment. Although DNA vaccines encoding surface antigens administered by conventional injection elicit HBV-specific T cell responses in humans, initial clinical trials failed to demonstrate additional therapeutic benefit when administered with nucleos(t)ide analogs. In an attempt to improve vaccine immunogenicity, several techniques have been used, including codon/promoter optimization, coadministration of cytokine adjuvants, plasmids engineered to express multiple HBV epitopes, or combinations with other immunomodulators. DNA vaccine delivery by electroporation is among the most efficient strategies to enhance the production of plasmid-derived antigens to stimulate a potent cellular and humoral anti-HBV response. Preliminary results suggest that DNA vaccination via electroporation efficiently invigorates both arms of adaptive immunity and suppresses serum HBV DNA. In contrast, the study of mRNA-based vaccines is limited to a few in vitro experiments in this area. Further studies are needed to clarify the prospects of nucleic acid vaccines for HBV cure.
Collapse
Affiliation(s)
- Efthymios P Tsounis
- Division of Gastroenterology, Department of Internal Medicine, University of Patras, Patras 26504, Greece
| | - Athanasia Mouzaki
- Division of Hematology, Department of Internal Medicine, University of Patras, Patras 26504, Greece
| | - Christos Triantos
- Division of Gastroenterology, Department of Internal Medicine, University of Patras, Patras 26504, Greece
| |
Collapse
|
42
|
Abstract
The hepatitis B virus (HBV) is a member of the Hepadnaviridae family, which includes small DNA enveloped viruses that infect primates, rodents, and birds and is the causative factor of chronic hepatitis B. A common feature of all these viruses is their great specificity by species and cell type, as well as a peculiar genomic and replication organization similar to that of retroviruses. The HBV virion consists of an external lipid envelope and an internal icosahedral protein capsid containing the viral genome and a DNA polymerase, which also functions as a reverse transcriptase.
Collapse
Affiliation(s)
- Alessandro Loglio
- Division of Gastroenterology and Hepatology, Foundation IRCCS Ca' Granda Ospedale Maggiore Policlinico, Via F. Sforza 35, 20122 Milan, Italy
| | - Mauro Viganò
- Hepatology Division, San Giuseppe Hospital Multimedica Spa, Via San Vittore 12, 20123 Milan, Italy
| | - Pietro Lampertico
- Division of Gastroenterology and Hepatology, Foundation IRCCS Ca' Granda Ospedale Maggiore Policlinico, Via F. Sforza 35, 20122 Milan, Italy; Department of Pathophysiology and Transplantation, CRC "A. M. and A. Migliavacca" Center for Liver Disease, University of Milan, Via F. Sforza 35, Milan 20122, Italy.
| |
Collapse
|
43
|
Lang-Meli J, Neumann-Haefelin C, Thimme R. Immunotherapy and therapeutic vaccines for chronic HBV infection. Curr Opin Virol 2021; 51:149-157. [PMID: 34710645 DOI: 10.1016/j.coviro.2021.10.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Revised: 09/08/2021] [Accepted: 10/07/2021] [Indexed: 12/17/2022]
Abstract
Chronic hepatitis B virus (HBV) infection is a major global health burden causing severe complications like liver cirrhosis or hepatocellular carcinoma. Curative treatment options are lacking. Therefore, there is an urgent need for new therapeutic options. Immunotherapy with the goal to restore dysfunctional HBV-specific T cell immunity is an interesting new therapeutic strategy. Based on current evidence on dysfunction of the HBV-specific CD8+ T cell response in chronic HBV infection, we will review the growing field of immunotherapeutic approaches for treatment of chronic HBV infection. The review will focus on therapies targeting T cells and will cover checkpoint inhibitors, T cell engineering, Toll-like receptor agonists and therapeutic vaccination.
Collapse
Affiliation(s)
- Julia Lang-Meli
- Dept. of Medicine II, Medical Center - University of Freiburg and Faculty of Medicine, University Hospital Freiburg, Freiburg, Germany; IMM-PACT Programm, Faculty of Medicine, University Hospital Freiburg, Freiburg, Germany
| | - Christoph Neumann-Haefelin
- Dept. of Medicine II, Medical Center - University of Freiburg and Faculty of Medicine, University Hospital Freiburg, Freiburg, Germany
| | - Robert Thimme
- Dept. of Medicine II, Medical Center - University of Freiburg and Faculty of Medicine, University Hospital Freiburg, Freiburg, Germany.
| |
Collapse
|
44
|
van Bömmel F, Berg T. Risks and Benefits of Discontinuation of Nucleos(t)ide Analogue Treatment: A Treatment Concept for Patients With HBeAg-Negative Chronic Hepatitis B. Hepatol Commun 2021; 5:1632-1648. [PMID: 34558833 PMCID: PMC8485892 DOI: 10.1002/hep4.1708] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Revised: 01/29/2021] [Accepted: 02/15/2021] [Indexed: 12/11/2022] Open
Abstract
Systematic discontinuation of long-term treatment with nucleos(t)ide analogues (NAs) is one strategy to increase functional cure rates in patients with chronic hepatitis B e antigen (HBeAg)-negative hepatitis B. Currently, available study results are heterogeneous; however, long-term hepatitis B surface antigen (HBsAg) loss rates of up to 20% have been reported in prospective trials. This review proposes criteria that can be used when considering NA discontinuation in patients with chronic hepatitis B virus (HBV). Discontinuing NA treatment frequently results in a virologic and biochemical relapse that runs through different phases: the lag phase, reactivation phase, and consolidation phase. The HBV-DNA flares observed during the reactivation phase are often transient and most likely represent a trigger for inducing a long-term immune control by specific CD8+ T cells, and therefore do not need immediate interventions but close follow-up evaluation. Low HBsAg levels at the time of treatment cessation predict a positive long-term response to NA discontinuation associated with a higher likelihood of HBsAg clearance. Other host and viral biomarkers are currently under evaluation that may prove to be helpful to further characterize the population that may benefit most from the finite NA treatment concept. Potential harmful biochemical flares during the reactivation phase need to be identified early and can be effectively terminated by reintroducing NA treatment. Hepatic decompensation represents a risk to patients with cirrhosis undergoing NA discontinuation. Therefore, the finite NA approach should only be considered after excluding advanced fibrosis and cirrhosis and if a close follow-up of the patient and supervision by an experienced physician can be guaranteed. Conclusion: For selected patients, NA discontinuation has become a powerful tool to achieve control over HBeAg-negative HBV infections. Its significant effect represents a challenge to novel treatment approaches, but it may also serve as their enhancer.
Collapse
Affiliation(s)
- Florian van Bömmel
- Division of HepatologyDepartment of Medicine IILeipzig University Medical CenterLeipzigGermany
| | | |
Collapse
|
45
|
Abstract
Chronic hepatitis B virus (HBV) infection is the leading cause of liver cirrhosis and hepatocellular carcinoma, estimated to be globally responsible for ∼800,000 deaths annually. Although effective vaccines are available to prevent new HBV infection, treatment of existing chronic hepatitis B (CHB) is limited, as the current standard-of-care antiviral drugs can only suppress viral replication without achieving cure. In 2016, the World Health Organization called for the elimination of viral hepatitis as a global public health threat by 2030. The United States and other nations are working to meet this ambitious goal by developing strategies to cure CHB, as well as prevent HBV transmission. This review considers recent research progress in understanding HBV pathobiology and development of therapeutics for the cure of CHB, which is necessary for elimination of hepatitis B by 2030.
Collapse
Affiliation(s)
- Timothy M Block
- Baruch S. Blumberg Institute, Doylestown, Pennsylvania 18902, USA;
| | - Kyong-Mi Chang
- The Corporal Michael J. Crescenz VA Medical Center and University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania 19104, USA
| | - Ju-Tao Guo
- Baruch S. Blumberg Institute, Doylestown, Pennsylvania 18902, USA;
| |
Collapse
|
46
|
Barili V, Vecchi A, Rossi M, Montali I, Tiezzi C, Penna A, Laccabue D, Missale G, Fisicaro P, Boni C. Unraveling the Multifaceted Nature of CD8 T Cell Exhaustion Provides the Molecular Basis for Therapeutic T Cell Reconstitution in Chronic Hepatitis B and C. Cells 2021; 10:2563. [PMID: 34685543 PMCID: PMC8533840 DOI: 10.3390/cells10102563] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Revised: 09/22/2021] [Accepted: 09/23/2021] [Indexed: 12/15/2022] Open
Abstract
In chronic hepatitis B and C virus infections persistently elevated antigen levels drive CD8+ T cells toward a peculiar differentiation state known as T cell exhaustion, which poses crucial constraints to antiviral immunity. Available evidence indicates that T cell exhaustion is associated with a series of metabolic and signaling deregulations and with a very peculiar epigenetic status which all together lead to reduced effector functions. A clear mechanistic network explaining how intracellular metabolic derangements, transcriptional and signaling alterations so far described are interconnected in a comprehensive and unified view of the T cell exhaustion differentiation profile is still lacking. Addressing this issue is of key importance for the development of innovative strategies to boost host immunity in order to achieve viral clearance. This review will discuss the current knowledge in HBV and HCV infections, addressing how innate immunity, metabolic derangements, extensive stress responses and altered epigenetic programs may be targeted to restore functionality and responsiveness of virus-specific CD8 T cells in the context of chronic virus infections.
Collapse
Affiliation(s)
- Valeria Barili
- Laboratory of Viral Immunopathology, Unit of Infectious Diseases and Hepatology, Azienda Ospedaliero-Universitaria di Parma, 43126 Parma, Italy; (V.B.); (A.V.); (M.R.); (I.M.); (C.T.); (A.P.); (D.L.); (G.M.)
- Department of Medicine and Surgery, University of Parma, 43126 Parma, Italy
| | - Andrea Vecchi
- Laboratory of Viral Immunopathology, Unit of Infectious Diseases and Hepatology, Azienda Ospedaliero-Universitaria di Parma, 43126 Parma, Italy; (V.B.); (A.V.); (M.R.); (I.M.); (C.T.); (A.P.); (D.L.); (G.M.)
| | - Marzia Rossi
- Laboratory of Viral Immunopathology, Unit of Infectious Diseases and Hepatology, Azienda Ospedaliero-Universitaria di Parma, 43126 Parma, Italy; (V.B.); (A.V.); (M.R.); (I.M.); (C.T.); (A.P.); (D.L.); (G.M.)
- Department of Medicine and Surgery, University of Parma, 43126 Parma, Italy
| | - Ilaria Montali
- Laboratory of Viral Immunopathology, Unit of Infectious Diseases and Hepatology, Azienda Ospedaliero-Universitaria di Parma, 43126 Parma, Italy; (V.B.); (A.V.); (M.R.); (I.M.); (C.T.); (A.P.); (D.L.); (G.M.)
- Department of Medicine and Surgery, University of Parma, 43126 Parma, Italy
| | - Camilla Tiezzi
- Laboratory of Viral Immunopathology, Unit of Infectious Diseases and Hepatology, Azienda Ospedaliero-Universitaria di Parma, 43126 Parma, Italy; (V.B.); (A.V.); (M.R.); (I.M.); (C.T.); (A.P.); (D.L.); (G.M.)
| | - Amalia Penna
- Laboratory of Viral Immunopathology, Unit of Infectious Diseases and Hepatology, Azienda Ospedaliero-Universitaria di Parma, 43126 Parma, Italy; (V.B.); (A.V.); (M.R.); (I.M.); (C.T.); (A.P.); (D.L.); (G.M.)
| | - Diletta Laccabue
- Laboratory of Viral Immunopathology, Unit of Infectious Diseases and Hepatology, Azienda Ospedaliero-Universitaria di Parma, 43126 Parma, Italy; (V.B.); (A.V.); (M.R.); (I.M.); (C.T.); (A.P.); (D.L.); (G.M.)
- Department of Medicine and Surgery, University of Parma, 43126 Parma, Italy
| | - Gabriele Missale
- Laboratory of Viral Immunopathology, Unit of Infectious Diseases and Hepatology, Azienda Ospedaliero-Universitaria di Parma, 43126 Parma, Italy; (V.B.); (A.V.); (M.R.); (I.M.); (C.T.); (A.P.); (D.L.); (G.M.)
- Department of Medicine and Surgery, University of Parma, 43126 Parma, Italy
| | - Paola Fisicaro
- Laboratory of Viral Immunopathology, Unit of Infectious Diseases and Hepatology, Azienda Ospedaliero-Universitaria di Parma, 43126 Parma, Italy; (V.B.); (A.V.); (M.R.); (I.M.); (C.T.); (A.P.); (D.L.); (G.M.)
- Department of Medicine and Surgery, University of Parma, 43126 Parma, Italy
| | - Carolina Boni
- Laboratory of Viral Immunopathology, Unit of Infectious Diseases and Hepatology, Azienda Ospedaliero-Universitaria di Parma, 43126 Parma, Italy; (V.B.); (A.V.); (M.R.); (I.M.); (C.T.); (A.P.); (D.L.); (G.M.)
| |
Collapse
|
47
|
Korolowicz KE, Suresh M, Li B, Huang X, Yon C, Kallakury BV, Lee KP, Park S, Kim YW, Menne S. Combination Treatment with the Vimentin-Targeting Antibody hzVSF and Tenofovir Suppresses Woodchuck Hepatitis Virus Infection in Woodchucks. Cells 2021; 10:2321. [PMID: 34571970 PMCID: PMC8466705 DOI: 10.3390/cells10092321] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Revised: 08/24/2021] [Accepted: 08/27/2021] [Indexed: 02/07/2023] Open
Abstract
Current treatment options for patients infected with hepatitis B virus (HBV) are suboptimal, because the approved drugs rarely induce cure due to the persistence of the viral DNA genome in the nucleus of infected hepatocytes, and are associated with either severe side effects (pegylated interferon-alpha) or require life-long administration (nucleos(t)ide analogs). We report here the evaluation of the safety and therapeutic efficacy of a novel, humanized antibody (hzVSF) in the woodchuck model of HBV infection. hzVSF has been shown to act as a viral entry inhibitor, most likely by suppressing vimentin-mediated endocytosis of virions. Targeting the increased vimentin expression on liver cells by hzVSF after infection with HBV or woodchuck hepatitis virus (WHV) was demonstrated initially. Thereafter, hzVSF safety was assessed in eight woodchucks naïve for WHV infection. Antiviral efficacy of hzVSF was evaluated subsequently in 24 chronic WHV carrier woodchucks by monotreatment with three ascending doses and in combination with tenofovir alafenamide fumarate (TAF). Consistent with the proposed blocking of WHV reinfection, intravenous hzVSF administration for 12 weeks resulted in a modest but transient reduction of viral replication and associated liver inflammation. In combination with oral TAF dosing, the antiviral effect of hzVSF was enhanced and sustained in half of the woodchucks with an antibody response to viral proteins. Thus, hzVSF safely but modestly alters chronic WHV infection in woodchucks; however, as a combination partner to TAF, its antiviral efficacy is markedly increased. The results of this preclinical study support future evaluation of this novel anti-HBV drug in patients.
Collapse
Affiliation(s)
- Kyle E. Korolowicz
- Department of Microbiology & Immunology, Georgetown University Medical Center, Washington, DC 20057, USA; (K.E.K.); (M.S.); (B.L.); (X.H.); (C.Y.)
| | - Manasa Suresh
- Department of Microbiology & Immunology, Georgetown University Medical Center, Washington, DC 20057, USA; (K.E.K.); (M.S.); (B.L.); (X.H.); (C.Y.)
| | - Bin Li
- Department of Microbiology & Immunology, Georgetown University Medical Center, Washington, DC 20057, USA; (K.E.K.); (M.S.); (B.L.); (X.H.); (C.Y.)
| | - Xu Huang
- Department of Microbiology & Immunology, Georgetown University Medical Center, Washington, DC 20057, USA; (K.E.K.); (M.S.); (B.L.); (X.H.); (C.Y.)
| | - Changsuek Yon
- Department of Microbiology & Immunology, Georgetown University Medical Center, Washington, DC 20057, USA; (K.E.K.); (M.S.); (B.L.); (X.H.); (C.Y.)
| | - Bhaskar V. Kallakury
- Department of Pathology, Georgetown University Medical Center, Washington, DC 20057, USA;
| | - Kyoung-pil Lee
- ImmuneMed, Inc., Chuncheon BioTown, Soyanggang ro 32, Chuncheon-si 24232, Gangwon-do, Korea; (K.-p.L.); (S.P.); (Y.-W.K.)
| | - Sungman Park
- ImmuneMed, Inc., Chuncheon BioTown, Soyanggang ro 32, Chuncheon-si 24232, Gangwon-do, Korea; (K.-p.L.); (S.P.); (Y.-W.K.)
| | - Yoon-Won Kim
- ImmuneMed, Inc., Chuncheon BioTown, Soyanggang ro 32, Chuncheon-si 24232, Gangwon-do, Korea; (K.-p.L.); (S.P.); (Y.-W.K.)
| | - Stephan Menne
- Department of Microbiology & Immunology, Georgetown University Medical Center, Washington, DC 20057, USA; (K.E.K.); (M.S.); (B.L.); (X.H.); (C.Y.)
| |
Collapse
|
48
|
Bartoli A, Gabrielli F, Tassi A, Cursaro C, Pinelli A, Andreone P. Treatments for HBV: A Glimpse into the Future. Viruses 2021; 13:1767. [PMID: 34578347 PMCID: PMC8473442 DOI: 10.3390/v13091767] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Revised: 08/17/2021] [Accepted: 08/24/2021] [Indexed: 12/16/2022] Open
Abstract
The hepatitis B virus is responsible for most of the chronic liver disease and liver cancer worldwide. As actual therapeutic strategies have had little success in eradicating the virus from hepatocytes, and as lifelong treatment is often required, new drugs targeting the various phases of the hepatitis B virus (HBV) lifecycle are currently under investigation. In this review, we provide an overview of potential future treatments for HBV.
Collapse
Affiliation(s)
- Alessandra Bartoli
- Department of Medical and Surgical Sciences, Division of Internal Medicine, Maternal-Infantile and Adult, University of Modena and Reggio Emilia, 41126 Modena, Italy; (A.B.); (F.G.); (A.T.); (C.C.); (A.P.)
- Postgraduate School of Allergy and Clinical Immunology, University of Modena and Reggio Emilia, 41126 Modena, Italy
| | - Filippo Gabrielli
- Department of Medical and Surgical Sciences, Division of Internal Medicine, Maternal-Infantile and Adult, University of Modena and Reggio Emilia, 41126 Modena, Italy; (A.B.); (F.G.); (A.T.); (C.C.); (A.P.)
- Postgraduate School of Internal Medicine, University of Modena and Reggio Emilia, 41126 Modena, Italy
| | - Andrea Tassi
- Department of Medical and Surgical Sciences, Division of Internal Medicine, Maternal-Infantile and Adult, University of Modena and Reggio Emilia, 41126 Modena, Italy; (A.B.); (F.G.); (A.T.); (C.C.); (A.P.)
- Postgraduate School of Internal Medicine, University of Modena and Reggio Emilia, 41126 Modena, Italy
| | - Carmela Cursaro
- Department of Medical and Surgical Sciences, Division of Internal Medicine, Maternal-Infantile and Adult, University of Modena and Reggio Emilia, 41126 Modena, Italy; (A.B.); (F.G.); (A.T.); (C.C.); (A.P.)
| | - Ambra Pinelli
- Department of Medical and Surgical Sciences, Division of Internal Medicine, Maternal-Infantile and Adult, University of Modena and Reggio Emilia, 41126 Modena, Italy; (A.B.); (F.G.); (A.T.); (C.C.); (A.P.)
- Postgraduate School of Allergy and Clinical Immunology, University of Modena and Reggio Emilia, 41126 Modena, Italy
| | - Pietro Andreone
- Department of Medical and Surgical Sciences, Division of Internal Medicine, Maternal-Infantile and Adult, University of Modena and Reggio Emilia, 41126 Modena, Italy; (A.B.); (F.G.); (A.T.); (C.C.); (A.P.)
- Postgraduate School of Allergy and Clinical Immunology, University of Modena and Reggio Emilia, 41126 Modena, Italy
| |
Collapse
|
49
|
Shared immunotherapeutic approaches in HIV and hepatitis B virus: combine and conquer. Curr Opin HIV AIDS 2021; 15:157-164. [PMID: 32167944 DOI: 10.1097/coh.0000000000000621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
PURPOSE OF REVIEW The aim of this study was to identify similarities, differences and lessons to be shared from recent progress in HIV and hepatitis B virus (HBV) immunotherapeutic approaches. RECENT FINDINGS Immune dysregulation is a hallmark of both HIV and HBV infection, which have shared routes of transmission, with approximately 10% of HIV-positive patients worldwide being coinfected with HBV. Immune modulation therapies to orchestrate effective innate and adaptive immune responses are currently being sought as potential strategies towards a functional cure in both HIV and HBV infection. These are based on activating immunological mechanisms that would allow durable control by triggering innate immunity, reviving exhausted endogenous responses and/or generating new immune responses. Recent technological advances and increased appreciation of humoral responses in the control of HIV have generated renewed enthusiasm in the cure field. SUMMARY For both HIV and HBV infection, a primary consideration with immunomodulatory therapies continues to be a balance between generating highly effective immune responses and mitigating any significant toxicity. A large arsenal of new approaches and ongoing research offer the opportunity to define the pathways that underpin chronic infection and move closer to a functional cure.
Collapse
|
50
|
Zhang X, Wang X, Wu M, Ghildyal R, Yuan Z. Animal Models for the Study of Hepatitis B Virus Pathobiology and Immunity: Past, Present, and Future. Front Microbiol 2021; 12:715450. [PMID: 34335553 PMCID: PMC8322840 DOI: 10.3389/fmicb.2021.715450] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Accepted: 06/18/2021] [Indexed: 12/11/2022] Open
Abstract
Hepatitis B virus (HBV) infection is a global public health problem that plagues approximately 240 million people. Chronic hepatitis B (CHB) often leads to liver inflammation and aberrant repair which results in diseases ranging from liver fibrosis, cirrhosis, to hepatocellular carcinoma. Despite its narrow species tropism, researchers have established various in vivo models for HBV or its related viruses which have provided a wealth of knowledge on viral lifecycle, pathogenesis, and immunity. Here we briefly revisit over five decades of endeavor in animal model development for HBV and summarize their advantages and limitations. We also suggest directions for further improvements that are crucial for elucidation of the viral immune-evasion strategies and for development of novel therapeutics for a functional cure.
Collapse
Affiliation(s)
- Xiaonan Zhang
- Centre for Research in Therapeutic Solutions, Faculty of Science and Technology, University of Canberra, Canberra, ACT, Australia.,Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
| | - Xiaomeng Wang
- Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
| | - Min Wu
- Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
| | - Reena Ghildyal
- Centre for Research in Therapeutic Solutions, Faculty of Science and Technology, University of Canberra, Canberra, ACT, Australia
| | - Zhenghong Yuan
- Key Laboratory of Medical Molecular Virology, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai, China
| |
Collapse
|