1
|
Silva RCMC, Ramos IB, Travassos LH, Mendez APG, Gomes FM. Evolution of innate immunity: lessons from mammalian models shaping our current view of insect immunity. J Comp Physiol B 2024; 194:105-119. [PMID: 38573502 DOI: 10.1007/s00360-024-01549-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Revised: 01/23/2024] [Accepted: 03/09/2024] [Indexed: 04/05/2024]
Abstract
The innate immune system, a cornerstone for organismal resilience against environmental and microbial insults, is highly conserved across the evolutionary spectrum, underpinning its pivotal role in maintaining homeostasis and ensuring survival. This review explores the evolutionary parallels between mammalian and insect innate immune systems, illuminating how investigations into these disparate immune landscapes have been reciprocally enlightening. We further delve into how advancements in mammalian immunology have enriched our understanding of insect immune responses, highlighting the intertwined evolutionary narratives and the shared molecular lexicon of immunity across these organisms. Therefore, this review posits a holistic understanding of innate immune mechanisms, including immunometabolism, autophagy and cell death. The examination of how emerging insights into mammalian and vertebrate immunity inform our understanding of insect immune responses and their implications for vector-borne disease transmission showcases the imperative for a nuanced comprehension of innate immunity's evolutionary tale. This understanding is quintessential for harnessing innate immune mechanisms' potential in devising innovative disease mitigation strategies and promoting organismal health across the animal kingdom.
Collapse
Affiliation(s)
- Rafael Cardoso M C Silva
- Laboratory of Immunoreceptors and Signaling, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil.
| | - Isabela B Ramos
- Laboratório de Ovogênese Molecular de Vetores, Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
- Instituto Nacional de Entomologia Molecular, Rio de Janeiro, Brazil
| | - Leonardo H Travassos
- Laboratory of Immunoreceptors and Signaling, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Ana Paula Guzman Mendez
- Laboratório de Ultraestrutura Celular Hertha Meyer, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Fabio M Gomes
- Instituto Nacional de Entomologia Molecular, Rio de Janeiro, Brazil.
- Laboratório de Ultraestrutura Celular Hertha Meyer, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil.
| |
Collapse
|
2
|
Coal dust nanoparticles induced pulmonary fibrosis by promoting inflammation and epithelial-mesenchymal transition via the NF-κB/NLRP3 pathway driven by IGF1/ROS-mediated AKT/GSK3β signals. Cell Death Dis 2022; 8:500. [PMID: 36581638 PMCID: PMC9800584 DOI: 10.1038/s41420-022-01291-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 12/20/2022] [Accepted: 12/21/2022] [Indexed: 12/30/2022]
Abstract
Pneumoconiosis is the most common and serious disease among coal miners. In earlier work on this subject, we documented that coal dust (CD) nanoparticles (CD-NPs) induced pulmonary fibrosis (PF) more profoundly than did CD micron particles (CD-MPs), but the mechanism has not been thoroughly studied. Based on the GEO database, jveen, STRING, and Cytoscape tools were used to screen hub genes regulating PF. Particle size distribution of CD were analyzed with Malvern nanoparticle size potentiometer. Combining 8 computational methods, we found that IGF1, POSTN, MMP7, ASPN, and CXCL14 may act as hub genes regulating PF. Based on the high score of IGF1 and its important regulatory role in various tissue fibrosis, we selected it as the target gene in this study. Activation of the IGF1/IGF1R axis promoted CD-NPs-induced PF, and inhibition of the axis activation had the opposite effect in vitro and in vivo. Furthermore, activation of the IGF1/IGF1R axis induced generation of reactive oxygen species (ROS) to promote epithelial-mesenchymal transition (EMT) in alveolar epithelial cells (AECs) to accelerate PF. High-throughput gene sequencing based on lung tissue suggested that cytokine-cytokine receptor interaction and the NF-kB signaling pathway play a key role in PF. Also, ROS induced inflammation and EMT by the activation of the NF-kB/NLRP3 axis to accelerate PF. ROS can induce the activation of AKT/GSK3β signaling, and inhibition of it can inhibit ROS-induced inflammation and EMT by the NF-kB/NLRP3 axis, thereby inhibiting PF. CD-NPs induced PF by promoting inflammation and EMT via the NF-κB/NLRP3 pathway driven by IGF1/ROS-mediated AKT/GSK3β signals. This study provides a valuable experimental basis for the prevention and treatment of coal workers' pneumoconiosis. Illustration of the overall research idea of this study: IGF1 stimulates coal dust nanoparticles induced pulmonary fibrosis by promoting inflammation and EMT via the NF-κB/NLRP3 pathway driven by ROS-mediated AKT/GSK3β signals.
Collapse
|
3
|
Hendrickx S, Caljon G. The effect of the sugar metabolism on Leishmania infantum promastigotes inside the gut of Lutzomyia longipalpis: A sweet relationship? PLoS Negl Trop Dis 2022; 16:e0010293. [PMID: 35385472 PMCID: PMC8985994 DOI: 10.1371/journal.pntd.0010293] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2021] [Accepted: 03/02/2022] [Indexed: 11/26/2022] Open
Abstract
It is well-known that Leishmania parasites can alter the behavior of the sand fly vector in order to increase their transmission potential. However, little is known about the contribution of the infecting host’s blood composition on subsequent sand fly infection and survival. This study focused on the host’s glucose metabolism and the insulin/insulin-like growth factor 1 (IGF-1) pathway as both metabolic processes are known to impact vector-parasite interactions of other protozoa and insect species. The focus of this study was inspired by the observation that the glycemic levels in the blood of infected Syrian golden hamsters inversely correlated to splenic and hepatic parasite burdens. To evaluate the biological impact of these findings on further transmission, Lutzomyia longipalpis sand flies were infected with blood that was artificially supplemented with different physiological concentrations of several monosaccharides, insulin or IGF-1. Normoglycemic levels resulted in transiently higher parasite loads and faster appearance of metacyclics, whereas higher carbohydrate and insulin/IGF-1 levels favored sand fly survival. Although the recorded effects were modest or transient of nature, these observations support the concept that the host blood biochemistry may affect Leishmania transmission and sand fly longevity. Past research on the interaction between the Leishmania parasite and the sand fly vector has revealed that Leishmania is capable of changing vector behavior to favor transmission of parasites in the environment. Little is known about the impact of host blood composition on parasite development inside the vector and on vector survival. Here, we showed that parasite burdens in the spleen and the liver inversely correlated to the serum blood glucose levels of infected animals, which triggered us to further investigate the effect of blood monosaccharides, insulin and insulin-like growth factor 1 (IGF-1) on sand fly infection and survival. We demonstrated that normal serum glucose levels in the initial parasitized blood meal resulted in transiently higher parasite loads and a faster appearance of infectious parasites, whereas higher sugar and insulin/IGF-1 levels favored sand fly survival, which supports the concept that the host blood biochemistry may affect Leishmania transmission and sand fly longevity.
Collapse
Affiliation(s)
- Sarah Hendrickx
- Laboratory of Microbiology, Parasitology and Hygiene (LMPH), University of Antwerp, Antwerp, Belgium
- * E-mail: (SH); (GC)
| | - Guy Caljon
- Laboratory of Microbiology, Parasitology and Hygiene (LMPH), University of Antwerp, Antwerp, Belgium
- * E-mail: (SH); (GC)
| |
Collapse
|
4
|
Aedes aegypti Shows Increased Susceptibility to Zika Virus via Both In Vitro and In Vivo Models of Type II Diabetes. Viruses 2022; 14:v14040665. [PMID: 35458395 PMCID: PMC9024453 DOI: 10.3390/v14040665] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 03/11/2022] [Accepted: 03/18/2022] [Indexed: 11/16/2022] Open
Abstract
Chronic conditions like type II diabetes (T2DM) have long been known to exacerbate many infectious diseases. For many arboviruses, including Zika virus (ZIKV), severe outcomes, morbidity and mortality usually only occur in patients with such pre-existing conditions. However, the effects of T2DM and other pre-existing conditions on human blood (e.g., hypo/hyperinsulinemia, hyperglycemia and hyperlipidemia) that may impact infectivity of arboviruses for vectors is largely unexplored. We investigated whether the susceptibility of Aedes aegypti mosquitoes was affected when the mosquitoes fed on “diabetic” bloodmeals, such as bloodmeals composed of artificially glycosylated erythrocytes or those from viremic, diabetic mice (LEPRDB/DB). Increasing glycosylation of erythrocytes from hemoglobin A1c (HgbA1c) values of 5.5–5.9 to 6.2 increased the infection rate of a Galveston, Texas strain of Ae. aegypti to ZIKV strain PRVABC59 at a bloodmeal titer of 4.14 log10 FFU/mL from 0.0 to 40.9 and 42.9%, respectively. ZIKV was present in the blood of viremic LEPRDB/DB mice at similar levels as isogenic control C57BL/6J mice (3.3 log10 FFU/mL and 3.6 log10 FFU/mL, respectively. When mice sustained a higher ZIKV viremia of 4.6 log10 FFU/mL, LEPRDB/DB mice infected 36.3% of mosquitoes while control C57BL/6J mice with a viremia of 4.2 log10 FFU/mL infected only 4.1%. Additionally, when highly susceptible Ae. aegypti Rockefeller mosquitoes fed on homozygous LEPRDB/DB, heterozygous LEPRWT/DB, and control C57BL/6J mice with viremias of ≈ 4 log10 FFU/mL, 54%, 15%, and 33% were infected, respectively. In total, these data suggest that the prevalence of T2DM in a population may have a significant impact on ZIKV transmission and indicates the need for further investigation of the impacts of pre-existing metabolic conditions on arbovirus transmission.
Collapse
|
5
|
Hun LV, Cheung KW, Brooks E, Zudekoff R, Luckhart S, Riehle MA. Increased insulin signaling in the Anopheles stephensi fat body regulates metabolism and enhances the host response to both bacterial challenge and Plasmodium falciparum infection. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2021; 139:103669. [PMID: 34666189 PMCID: PMC8647039 DOI: 10.1016/j.ibmb.2021.103669] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2021] [Revised: 10/09/2021] [Accepted: 10/10/2021] [Indexed: 05/06/2023]
Abstract
In vertebrates and invertebrates, the insulin/insulin-like growth factor 1 (IGF1) signaling (IIS) cascade is highly conserved and plays a vital role in many different physiological processes. Among the many tissues that respond to IIS in mosquitoes, the fat body has a central role in metabolism, lifespan, reproduction, and innate immunity. We previously demonstrated that fat body specific expression of active Akt, a key IIS signaling molecule, in adult Anopheles stephensi and Aedes aegypti activated the IIS cascade and extended lifespan. Additionally, we found that transgenic females produced more vitellogenin (Vg) protein than non-transgenic mosquitoes, although this did not translate into increased fecundity. These results prompted us to further examine how IIS impacts immunity, metabolism, growth and development of these transgenic mosquitoes. We observed significant changes in glycogen, trehalose, triglycerides, glucose, and protein in young (3-5 d) transgenic mosquitoes relative to non-transgenic sibling controls, while only triglycerides were significantly changed in older (18 d) transgenic mosquitoes. More importantly, we demonstrated that enhanced fat body IIS decreased both the prevalence and intensity of Plasmodium falciparum infection in transgenic An. stephensi. Additionally, challenging transgenic An. stephensi with Gram-positive and Gram-negative bacteria altered the expression of several antimicrobial peptides (AMPs) and two anti-Plasmodium genes, nitric oxide synthase (NOS) and thioester complement-like protein (TEP1), relative to non-transgenic controls. Increased IIS in the fat body of adult female An. stephensi had little to no impact on body size, growth or development of progeny from transgenic mosquitoes relative to non-transgenic controls. This study both confirms and expands our understanding of the critical roles insulin signaling plays in regulating the diverse functions of the mosquito fat body.
Collapse
Affiliation(s)
- Lewis V Hun
- Department of Entomology, University of California Riverside, Riverside, CA, USA; Department of Entomology, University of Arizona, Tucson, AZ, USA
| | - Kong Wai Cheung
- Department of Medical Microbiology and Immunology, University of California Davis, Davis, CA, USA
| | - Elizabeth Brooks
- Department of Entomology, University of Arizona, Tucson, AZ, USA
| | - Rissa Zudekoff
- Department of Entomology, University of Arizona, Tucson, AZ, USA
| | - Shirley Luckhart
- Departrment of Entomology, Plant Pathology and Nematology and Department of Biological Sciences, University of Idaho, Moscow, ID, USA
| | - Michael A Riehle
- Department of Entomology, University of Arizona, Tucson, AZ, USA.
| |
Collapse
|
6
|
Zhang K, Huang Q, Deng S, Yang Y, Li J, Wang S. Mechanisms of TLR4-Mediated Autophagy and Nitroxidative Stress. Front Cell Infect Microbiol 2021; 11:766590. [PMID: 34746034 PMCID: PMC8570305 DOI: 10.3389/fcimb.2021.766590] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2021] [Accepted: 10/04/2021] [Indexed: 01/23/2023] Open
Abstract
Pathogenic infections have badly affected public health and the development of the breeding industry. Billions of dollars are spent every year fighting against these pathogens. The immune cells of a host produce reactive oxygen species and reactive nitrogen species which promote the clearance of these microbes. In addition, autophagy, which is considered an effective method to promote the destruction of pathogens, is involved in pathological processes. As research continues, the interplay between autophagy and nitroxidative stress has become apparent. Autophagy is always intertwined with nitroxidative stress. Autophagy regulates nitroxidative stress to maintain homeostasis within an appropriate range. Intracellular oxidation, in turn, is a strong inducer of autophagy. Toll-like receptor 4 (TLR4) is a pattern recognition receptor mainly involved in the regulation of inflammation during infectious diseases. Several studies have suggested that TLR4 is also a key regulator of autophagy and nitroxidative stress. In this review, we describe the role of TLR4 in autophagy and oxidation, and focus on its function in influencing autophagy-nitroxidative stress interactions.
Collapse
Affiliation(s)
- Kunli Zhang
- State Key Laboratory of Livestock and Poultry Breeding, Guangdong Key Laboratory of Animal Breeding and Nutrition, Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou, China.,Institute of Animal Health, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| | - Qiuyan Huang
- State Key Laboratory of Livestock and Poultry Breeding, Guangdong Key Laboratory of Animal Breeding and Nutrition, Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| | - Shoulong Deng
- Institute of Laboratory Animal Sciences, Chinese Academy of Medical Sciences and Comparative Medicine Center, Peking Union Medical College, Beijing, China
| | - Yecheng Yang
- State Key Laboratory of Livestock and Poultry Breeding, Guangdong Key Laboratory of Animal Breeding and Nutrition, Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou, China.,Guangdong Provincial Key Laboratory of Animal Molecular Design and Precise Breeding/Guangdong Provincial Research Center of Gene Editing Engineering Technology, Foshan University, Foshan, China
| | - Jianhao Li
- State Key Laboratory of Livestock and Poultry Breeding, Guangdong Key Laboratory of Animal Breeding and Nutrition, Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| | - Sutian Wang
- State Key Laboratory of Livestock and Poultry Breeding, Guangdong Key Laboratory of Animal Breeding and Nutrition, Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| |
Collapse
|
7
|
Trammell CE, Goodman AG. Host Factors That Control Mosquito-Borne Viral Infections in Humans and Their Vector. Viruses 2021; 13:748. [PMID: 33923307 PMCID: PMC8145797 DOI: 10.3390/v13050748] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Revised: 04/13/2021] [Accepted: 04/22/2021] [Indexed: 02/07/2023] Open
Abstract
Mosquito-borne viral infections are responsible for a significant degree of morbidity and mortality across the globe due to the severe diseases these infections cause, and they continue to increase each year. These viruses are dependent on the mosquito vector as the primary means of transmission to new vertebrate hosts including avian, livestock, and human populations. Due to the dynamic host environments that mosquito-borne viruses pass through as they are transmitted between vector and vertebrate hosts, there are various host factors that control the response to infection over the course of the pathogen's life cycle. In this review, we discuss these host factors that are present in either vector or vertebrate models during infection, how they vary or are conserved between hosts, and their implications in future research pertaining to disease prevention and treatment.
Collapse
Affiliation(s)
- Chasity E. Trammell
- School of Molecular Biosciences, College of Veterinary Medicine, Washington State University, Pullman, WA 99163, USA;
- NIH Protein Biotechnology Training Program, Washington State University, Pullman, WA 99164-6240, USA
| | - Alan G. Goodman
- School of Molecular Biosciences, College of Veterinary Medicine, Washington State University, Pullman, WA 99163, USA;
- Paul G. Allen School for Global Health, College of Veterinary Medicine, Washington State University, Pullman, WA 99164, USA
| |
Collapse
|
8
|
Luckhart S, Riehle MA. Midgut Mitochondrial Function as a Gatekeeper for Malaria Parasite Infection and Development in the Mosquito Host. Front Cell Infect Microbiol 2020; 10:593159. [PMID: 33363053 PMCID: PMC7759495 DOI: 10.3389/fcimb.2020.593159] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2020] [Accepted: 11/13/2020] [Indexed: 12/15/2022] Open
Abstract
Across diverse organisms, various physiologies are profoundly regulated by mitochondrial function, which is defined by mitochondrial fusion, biogenesis, oxidative phosphorylation (OXPHOS), and mitophagy. Based on our data and significant published studies from Caenorhabditis elegans, Drosophila melanogaster and mammals, we propose that midgut mitochondria control midgut health and the health of other tissues in vector mosquitoes. Specifically, we argue that trade-offs among resistance to infection, metabolism, lifespan, and reproduction in vector mosquitoes are fundamentally controlled both locally and systemically by midgut mitochondrial function.
Collapse
Affiliation(s)
- Shirley Luckhart
- Department of Entomology, Plant Pathology and Nematology, University of Idaho, Moscow, ID, United States.,Department of Biological Sciences, University of Idaho, Moscow, ID, United States
| | - Michael A Riehle
- Department of Entomology, University of Arizona, Tucson, AZ, United States
| |
Collapse
|
9
|
Taylor DM, Haney RS, Luckhart S. Aquatic Exposure to Abscisic Acid Transstadially Enhances Anopheles stephensi Resistance to Malaria Parasite Infection. Genes (Basel) 2020; 11:E1393. [PMID: 33255333 PMCID: PMC7761407 DOI: 10.3390/genes11121393] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2020] [Revised: 11/21/2020] [Accepted: 11/22/2020] [Indexed: 12/13/2022] Open
Abstract
The ancient stress signaling molecule abscisic acid (ABA) is ubiquitous in animals and plants but is perhaps most well-known from its early discovery as a plant hormone. ABA can be released into water by plants and is found in nectar, but is also present in mammalian blood, three key contexts for mosquito biology. We previously established that addition of ABA to Anopheles stephensi larval rearing water altered immature development and life history traits of females derived from treated larvae, while addition of ABA to an infected bloodmeal increased resistance of adult female A. stephensi to human malaria parasite infection. Here we sought to determine whether larval treatment with ABA could similarly impact resistance to parasite infection in females derived from treated larvae and, if so, whether resistance could be extended to another parasite species. We examined nutrient levels and gene expression to demonstrate that ABA can transstadially alter resistance to a rodent malaria parasite with hallmarks of previously observed mechanisms of resistance following provision of ABA in blood to A. stephensi.
Collapse
Affiliation(s)
- Dean M. Taylor
- Department of Entomology, Plant Pathology and Nematology, University of Idaho, Moscow, ID 83844, USA; (D.M.T.); (R.S.H.)
| | - Reagan S. Haney
- Department of Entomology, Plant Pathology and Nematology, University of Idaho, Moscow, ID 83844, USA; (D.M.T.); (R.S.H.)
| | - Shirley Luckhart
- Department of Entomology, Plant Pathology and Nematology, University of Idaho, Moscow, ID 83844, USA; (D.M.T.); (R.S.H.)
- Department of Biological Sciences, University of Idaho, Moscow, ID 83844, USA
| |
Collapse
|
10
|
Liu WQ, Chen SQ, Bai HQ, Wei QM, Zhang SN, Chen C, Zhu YH, Yi TW, Guo XP, Chen SY, Yin MJ, Sun CF, Liang SH. The Ras/ERK signaling pathway couples antimicrobial peptides to mediate resistance to dengue virus in Aedes mosquitoes. PLoS Negl Trop Dis 2020; 14:e0008660. [PMID: 32866199 PMCID: PMC7485967 DOI: 10.1371/journal.pntd.0008660] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2019] [Revised: 09/11/2020] [Accepted: 07/29/2020] [Indexed: 12/23/2022] Open
Abstract
Aedes mosquitoes can transmit dengue and several other severe vector-borne viral diseases, thereby influencing millions of people worldwide. Insects primarily control and clear the viral infections via their innate immune systems. Mitogen-Activated Protein Kinases (MAPKs) and antimicrobial peptides (AMPs) are both evolutionarily conserved components of the innate immune systems. In this study, we investigated the role of MAPKs in Aedes mosquitoes following DENV infection by using genetic and pharmacological approaches. We demonstrated that knockdown of ERK, but not of JNK or p38, significantly enhances the viral replication in Aedes mosquito cells. The Ras/ERK signaling is activated in both the cells and midguts of Aedes mosquitoes following DENV infection, and thus plays a role in restricting the viral infection, as both genetic and pharmacological activation of the Ras/ERK pathway significantly decreases the viral titers. In contrast, inhibition of the Ras/ERK pathway enhances DENV infection. In addition, we identified a signaling crosstalk between the Ras/ERK pathway and DENV-induced AMPs in which defensin C participates in restricting DENV infection in Aedes mosquitoes. Our results reveal that the Ras/ERK signaling pathway couples AMPs to mediate the resistance of Aedes mosquitoes to DENV infection, which provides a new insight into understanding the crosstalk between MAPKs and AMPs in the innate immunity of mosquito vectors during the viral infection.
Collapse
Affiliation(s)
- Wen-Quan Liu
- Department of Parasitology, School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Si-Qi Chen
- Department of Parasitology, School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Hao-Qiang Bai
- Department of Parasitology, School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Qi-Mei Wei
- Department of Parasitology, School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Sheng-Nan Zhang
- Department of Parasitology, School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Chen Chen
- Department of Parasitology, School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Yi-Han Zhu
- Department of Parasitology, School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Tang-Wei Yi
- Department of Parasitology, School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Xiao-Pu Guo
- Department of Parasitology, School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Si-Yuan Chen
- School of the 1 Clinical Medical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Meng-Jie Yin
- School of the 1 Clinical Medical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Chen-Feng Sun
- School of the 1 Clinical Medical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Shao-Hui Liang
- Department of Parasitology, School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, China
- * E-mail:
| |
Collapse
|
11
|
Zhu Y, Tong L, Nie K, Wiwatanaratanabutr I, Sun P, Li Q, Yu X, Wu P, Wu T, Yu C, Liu Q, Bian Z, Wang P, Cheng G. Host serum iron modulates dengue virus acquisition by mosquitoes. Nat Microbiol 2019; 4:2405-2415. [DOI: 10.1038/s41564-019-0555-x] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Accepted: 08/06/2019] [Indexed: 12/14/2022]
|
12
|
Santana RAG, Oliveira MC, Cabral I, Junior RCAS, de Sousa DRT, Ferreira L, Lacerda MVG, Monteiro WM, Abrantes P, Guerra MDGVB, Silveira H. Anopheles aquasalis transcriptome reveals autophagic responses to Plasmodium vivax midgut invasion. Parasit Vectors 2019; 12:261. [PMID: 31126324 PMCID: PMC6534896 DOI: 10.1186/s13071-019-3506-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2018] [Accepted: 05/14/2019] [Indexed: 01/23/2023] Open
Abstract
Background Elimination of malaria depends on mastering transmission and understanding the biological basis of Plasmodium infection in the vector. The first mosquito organ to interact with the parasite is the midgut and its transcriptomic characterization during infection can reveal effective antiplasmodial responses able to limit the survival of the parasite. The vector response to Plasmodium vivax is not fully characterized, and its specificities when compared with other malaria parasites can be of fundamental interest for specific control measures. Methods Experimental infections were performed using a membrane-feeding device. Three groups were used: P. vivax-blood-fed, blood-fed on inactivated gametocytes, and unfed mosquitoes. Twenty-four hours after feeding, the mosquitoes were dissected and the midgut collected for transcriptomic analysis using RNAseq. Nine cDNA libraries were generated and sequenced on an Illumina HiSeq2500. Readings were checked for quality control and analysed using the Trinity platform for de novo transcriptome assembly. Transcript quantification was performed and the transcriptome was functionally annotated. Differential expression gene analysis was carried out. The role of the identified mechanisms was further explored using functional approaches. Results Forty-nine genes were identified as being differentially expressed with P. vivax infection: 34 were upregulated and 15 were downregulated. Half of the P. vivax-related differentially expressed genes could be related to autophagy; therefore, the effect of the known inhibitor (wortmannin) and activator (spermidine) was tested on the infection outcome. Autophagic activation significantly reduced the intensity and prevalence of infection. This was associated with transcription alterations of the autophagy regulating genes Beclin, DRAM and Apg8. Conclusions Our data indicate that P. vivax invasion of An. aquasalis midgut epithelium triggers an autophagic response and its activation reduces infection. This suggests a novel mechanism that mosquitoes can use to fight Plasmodium infection. Electronic supplementary material The online version of this article (10.1186/s13071-019-3506-8) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Rosa Amélia Gonçalves Santana
- Programa de Pós-Graduação em Medicina Tropical, Universidade do Estado do Amazonas/Fundação de Medicina Tropical Dr. Heitor Vieira Dourado, Manaus, Brazil
| | - Maurício Costa Oliveira
- Programa de Pós-Graduação em Medicina Tropical, Universidade do Estado do Amazonas/Fundação de Medicina Tropical Dr. Heitor Vieira Dourado, Manaus, Brazil
| | - Iria Cabral
- Programa de Pós-Graduação em Medicina Tropical, Universidade do Estado do Amazonas/Fundação de Medicina Tropical Dr. Heitor Vieira Dourado, Manaus, Brazil
| | - Rubens Celso Andrade Silva Junior
- Programa de Pós-Graduação em Medicina Tropical, Universidade do Estado do Amazonas/Fundação de Medicina Tropical Dr. Heitor Vieira Dourado, Manaus, Brazil
| | - Débora Raysa Teixeira de Sousa
- Programa de Pós-Graduação em Medicina Tropical, Universidade do Estado do Amazonas/Fundação de Medicina Tropical Dr. Heitor Vieira Dourado, Manaus, Brazil
| | - Lucas Ferreira
- Programa de Pós-Graduação em Medicina Tropical, Universidade do Estado do Amazonas/Fundação de Medicina Tropical Dr. Heitor Vieira Dourado, Manaus, Brazil
| | - Marcus Vinícius Guimarães Lacerda
- Programa de Pós-Graduação em Medicina Tropical, Universidade do Estado do Amazonas/Fundação de Medicina Tropical Dr. Heitor Vieira Dourado, Manaus, Brazil.,Instituto Leônidas & Maria Deane, Fundação Oswaldo Cruz, Manaus, Brazil
| | - Wuelton Marcelo Monteiro
- Programa de Pós-Graduação em Medicina Tropical, Universidade do Estado do Amazonas/Fundação de Medicina Tropical Dr. Heitor Vieira Dourado, Manaus, Brazil
| | - Patrícia Abrantes
- Instituto de Higiene e Medicina Tropical, Global Health and Tropical Medicine, Universidade Nova de Lisboa, Lisboa, Portugal
| | - Maria das Graças Vale Barbosa Guerra
- Programa de Pós-Graduação em Medicina Tropical, Universidade do Estado do Amazonas/Fundação de Medicina Tropical Dr. Heitor Vieira Dourado, Manaus, Brazil
| | - Henrique Silveira
- Programa de Pós-Graduação em Medicina Tropical, Universidade do Estado do Amazonas/Fundação de Medicina Tropical Dr. Heitor Vieira Dourado, Manaus, Brazil. .,Instituto de Higiene e Medicina Tropical, Global Health and Tropical Medicine, Universidade Nova de Lisboa, Lisboa, Portugal.
| |
Collapse
|
13
|
Abstract
All people want to age "successfully," maintaining functional capacity and quality of life as they reach advanced age. Achieving this goal depends on preserving optimal cognitive and brain functioning. Yet, significant individual differences exist in this regard. Some older adults continue to retain most cognitive abilities throughout their lifetime. Others experience declines in cognitive and functional capacity that range from mild decrements in certain cognitive functions over time to severe dementia among those with neurodegenerative diseases. Even among relatively healthy "successful agers," certain cognitive functions are reduced from earlier levels. This is particularly true for cognitive functions that are dependent on cognitive processing speed and efficiency. Working memory and executive and attentional functions tend to be most vulnerable. Learning and memory functions are also usually reduced, although in the absence of neurodegenerative disease learning and retrieval efficiency rather than memory storage are affected. Other functions, such as visual perception, language, semantics, and knowledge, are often well preserved. Structural, functional, and physiologic/metabolic brain changes correspond with age-associated cognitive decline. Physiologic and metabolic mechanisms, such as oxidative stress and neuroinflammation, may contribute to these changes, along with the contribution of comorbidities that secondarily affect the brain of older adults. Cognitive frailty often corresponds with physical frailty, both affected by multiple exogenous and endogenous factors. Neuropsychologic assessment provides a way of measuring the cognitive and functional status of older adults, which is useful for monitoring changes that may be occurring. Neuroimaging is also useful for characterizing age-associated structural, functional, physiologic, and metabolic brain changes, including alterations in cerebral blood flow and metabolite concentrations. Some interventions that may enhance cognitive function, such as cognitive training, neuromodulation, and pharmacologic approaches, exist or are being developed. Yet, preventing, slowing, and reversing the adverse effects of cognitive aging remains a challenge.
Collapse
Affiliation(s)
- Ronald A Cohen
- Center for Cognitive Aging and Memory, McKnight Brain Institute, University of Florida, Gainesville, FL, United States; Department of Clinical and Health Psychology, University of Florida, Gainesville, FL, United States.
| | - Michael M Marsiske
- Center for Cognitive Aging and Memory, McKnight Brain Institute, University of Florida, Gainesville, FL, United States; Department of Clinical and Health Psychology, University of Florida, Gainesville, FL, United States
| | - Glenn E Smith
- Center for Cognitive Aging and Memory, McKnight Brain Institute, University of Florida, Gainesville, FL, United States; Department of Clinical and Health Psychology, University of Florida, Gainesville, FL, United States
| |
Collapse
|
14
|
Sharma A, Nuss AB, Gulia-Nuss M. Insulin-Like Peptide Signaling in Mosquitoes: The Road Behind and the Road Ahead. Front Endocrinol (Lausanne) 2019; 10:166. [PMID: 30984106 PMCID: PMC6448002 DOI: 10.3389/fendo.2019.00166] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/05/2018] [Accepted: 02/28/2019] [Indexed: 12/18/2022] Open
Abstract
Insulin signaling is a conserved pathway in all metazoans. This pathway contributed toward primordial metazoans responding to a greater diversity of environmental signals by modulating nutritional storage, reproduction, and longevity. Most of our knowledge of insulin signaling in insects comes from the vinegar fly, Drosophila melanogaster, where it has been extensively studied and shown to control several physiological processes. Mosquitoes are the most important vectors of human disease in the world and their control constitutes a significant area of research. Recent studies have shown the importance of insulin signaling in multiple physiological processes such as reproduction, innate immunity, lifespan, and vectorial capacity in mosquitoes. Although insulin-like peptides have been identified and functionally characterized from many mosquito species, a comprehensive review of this pathway in mosquitoes is needed. To fill this gap, our review provides up-to-date knowledge of this subfield.
Collapse
Affiliation(s)
- Arvind Sharma
- Department of Biochemistry and Molecular Biology, University of Nevada, Reno, NV, United States
| | - Andrew B. Nuss
- Department of Biochemistry and Molecular Biology, University of Nevada, Reno, NV, United States
- Department of Agriculture, Veterinary, and Rangeland Sciences, University of Nevada, Reno, NV, United States
- *Correspondence: Andrew B. Nuss
| | - Monika Gulia-Nuss
- Department of Biochemistry and Molecular Biology, University of Nevada, Reno, NV, United States
- Monika Gulia-Nuss
| |
Collapse
|
15
|
Souvannaseng L, Hun LV, Baker H, Klyver JM, Wang B, Pakpour N, Bridgewater JM, Napoli E, Giulivi C, Riehle MA, Luckhart S. Inhibition of JNK signaling in the Asian malaria vector Anopheles stephensi extends mosquito longevity and improves resistance to Plasmodium falciparum infection. PLoS Pathog 2018; 14:e1007418. [PMID: 30496310 PMCID: PMC6264519 DOI: 10.1371/journal.ppat.1007418] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2018] [Accepted: 10/18/2018] [Indexed: 11/18/2022] Open
Abstract
Malaria is a global health concern caused by infection with Plasmodium parasites. With rising insecticide and drug resistance, there is a critical need to develop novel control strategies, including strategies to block parasite sporogony in key mosquito vector species. MAPK signaling pathways regulated by extracellular signal-regulated kinases (ERKs) and the stress-activated protein kinases (SAPKs) c-Jun N-terminal kinases (JNKs) and p38 MAPKs are highly conserved across eukaryotes, including mosquito vectors of the human malaria parasite Plasmodium falciparum. Some of these pathways in mosquitoes have been investigated in detail, but the mechanisms of integration of parasite development and mosquito fitness by JNK signaling have not been elucidated. To this end, we engineered midgut-specific overexpression of MAPK phosphatase 4 (MKP4), which targets the SAPKs, and used two potent and specific JNK small molecule inhibitors (SMIs) to assess the effects of JNK signaling manipulations on Anopheles stephensi fecundity, lifespan, intermediary metabolism, and P. falciparum development. MKP4 overexpression and SMI treatment reduced the proportion of P. falciparum-infected mosquitoes and decreased oocyst loads relative to controls. SMI-treated mosquitoes exhibited no difference in lifespan compared to controls, whereas genetically manipulated mosquitoes exhibited extended longevity. Metabolomics analyses of SMI-treated mosquitoes revealed insights into putative resistance mechanisms and the physiology behind lifespan extension, suggesting for the first time that P. falciparum-induced JNK signaling reduces mosquito longevity and increases susceptibility to infection, in contrast to previously published reports, likely via a critical interplay between the invertebrate host and parasite for nutrients that play essential roles during sporogonic development. Malaria is a global health concern caused by infection with Plasmodium parasites. With rising insecticide and drug resistance, there is a critical need to develop novel control strategies. One strategy is to develop a Plasmodium-resistant mosquito through the manipulation of key signaling pathways and processes in the mosquito midgut, a critical tissue for parasite development. MAPK signaling pathways are highly conserved among eukaryotes and regulate development of the human malaria parasite Plasmodium falciparum in the mosquito vector. Here, we investigated how manipulation of Anopheles stephensi JNK signaling affects development of P. falciparum and key mosquito life history traits. We used multiple, complementary approaches to demonstrate that malaria parasite infection activates mosquito JNK signaling for its own benefit at a cost to host lifespan. Notably, these combined effects derive from networked signaling with other transduction pathways and alterations to intermediary metabolism in the mosquito host.
Collapse
Affiliation(s)
- Lattha Souvannaseng
- Department of Medical Microbiology and Immunology, University of California Davis, Davis, CA, United States of America
- Department of Pathobiology, St. George's University, School of Veterinary Medicine, True Blue, St. George, Grenada, West Indies
| | - Lewis Vibul Hun
- Department of Entomology, University of Arizona, Tucson, AZ, United States of America
| | - Heather Baker
- Department of Medical Microbiology and Immunology, University of California Davis, Davis, CA, United States of America
| | - John M. Klyver
- Department of Medical Microbiology and Immunology, University of California Davis, Davis, CA, United States of America
| | - Bo Wang
- Department of Medical Microbiology and Immunology, University of California Davis, Davis, CA, United States of America
| | - Nazzy Pakpour
- Department of Medical Microbiology and Immunology, University of California Davis, Davis, CA, United States of America
| | - Jordan M. Bridgewater
- Department of Entomology, University of Arizona, Tucson, AZ, United States of America
| | - Eleonora Napoli
- Department of Molecular Biosciences, University of California, Davis, Davis, CA
| | - Cecilia Giulivi
- Department of Molecular Biosciences, University of California, Davis, Davis, CA
- M.I.N.D. Institute, Sacramento, CA, United States of America
| | - Michael A. Riehle
- Department of Entomology, University of Arizona, Tucson, AZ, United States of America
| | - Shirley Luckhart
- Department of Entomology, Plant Pathology and Nematology and Department of Biological Sciences, University of Idaho, Moscow, ID, United States of America
- * E-mail:
| |
Collapse
|
16
|
Paraquat-Mediated Oxidative Stress in Anopheles gambiae Mosquitoes Is Regulated by An Endoplasmic Reticulum (ER) Stress Response. Proteomes 2018; 6:proteomes6040047. [PMID: 30424486 PMCID: PMC6313908 DOI: 10.3390/proteomes6040047] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Revised: 11/07/2018] [Accepted: 11/09/2018] [Indexed: 11/20/2022] Open
Abstract
Paraquat is a potent superoxide (O2−)-inducing agent that is capable of inducing an oxidative imbalance in the mosquito midgut. This oxidative imbalance can super-stress the malaria parasite, leading to arrested development in the mosquito midgut and reduced transmission. While several studies have explored the effect of paraquat on malaria parasites, a fundamental understanding of the mosquito response to this compound remains unknown. Here, we quantified the mosquito midgut proteomic response to a paraquat-laced sugar meal, and found that An. gambiae midguts were enriched in proteins that are indicative of cells under endoplasmic reticulum (ER) stress. We also carried out qRT-PCR analyses for nine prominent thioredoxin (Trx) and glutathione (GSH)-dependent genes in mosquito midguts post P. falciparum blood meal ingestion to evaluate the concordance between transcripts and proteins under different oxidative stress conditions. Our data revealed an absence of significant upregulation in the Trx and GSH-dependent genes following infected blood meal ingestion. These data suggest that the intrinsic tolerance of the mosquito midgut to paraquat-mediated oxidative stress is through an ER stress response. These data indicate that mosquitoes have at least two divergent pathways of managing the oxidative stress that is induced by exogenous compounds, and outline the potential application of paraquat-like drugs to act selectively against malaria parasite development in mosquito midguts, thereby blocking mosquito-to-human transmission.
Collapse
|
17
|
Whon TW, Shin NR, Jung MJ, Hyun DW, Kim HS, Kim PS, Bae JW. Conditionally Pathogenic Gut Microbes Promote Larval Growth by Increasing Redox-Dependent Fat Storage in High-Sugar Diet-Fed Drosophila. Antioxid Redox Signal 2017; 27:1361-1380. [PMID: 28462587 DOI: 10.1089/ars.2016.6790] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
AIMS Changes in the composition of the gut microbiota contribute to the development of obesity and subsequent complications that are associated with metabolic syndrome. However, the role of increased numbers of certain bacterial species during the progress of obesity and factor(s) controlling the community structure of gut microbiota remain unclear. Here, we demonstrate the inter-relationship between Drosophila melanogaster and their resident gut microbiota under chronic high-sugar diet (HSD) conditions. RESULTS Chronic feeding of an HSD to Drosophila resulted in a predominance of resident uracil-secreting bacteria in the gut. Axenic insects mono-associated with uracil-secreting bacteria or supplemented with uracil under HSD conditions promoted larval development. Redox signaling induced by bacterial uracil promoted larval growth by regulating sugar and lipid metabolism via activation of p38a mitogen-activated protein kinase. INNOVATION The present study identified a new redox-dependent mechanism by which uracil-secreting bacteria (previously regarded as opportunistic pathobionts) protect the host from metabolic perturbation under chronic HSD conditions. CONCLUSION These results illustrate how Drosophila and gut microbes form a symbiotic relationship under stress conditions, and changes in the gut microbiota play an important role in alleviating deleterious diet-derived effects such as hyperglycemia. Antioxid. Redox Signal. 27, 1361-1380.
Collapse
Affiliation(s)
- Tae Woong Whon
- Department of Life and Nanopharmaceutical Sciences and Department of Biology, Kyung Hee University , Seoul, Republic of Korea
| | - Na-Ri Shin
- Department of Life and Nanopharmaceutical Sciences and Department of Biology, Kyung Hee University , Seoul, Republic of Korea
| | - Mi-Ja Jung
- Department of Life and Nanopharmaceutical Sciences and Department of Biology, Kyung Hee University , Seoul, Republic of Korea
| | - Dong-Wook Hyun
- Department of Life and Nanopharmaceutical Sciences and Department of Biology, Kyung Hee University , Seoul, Republic of Korea
| | - Hyun Sik Kim
- Department of Life and Nanopharmaceutical Sciences and Department of Biology, Kyung Hee University , Seoul, Republic of Korea
| | - Pil Soo Kim
- Department of Life and Nanopharmaceutical Sciences and Department of Biology, Kyung Hee University , Seoul, Republic of Korea
| | - Jin-Woo Bae
- Department of Life and Nanopharmaceutical Sciences and Department of Biology, Kyung Hee University , Seoul, Republic of Korea
| |
Collapse
|
18
|
Glennon EKK, Torrevillas BK, Morrissey SF, Ejercito JM, Luckhart S. Abscisic acid induces a transient shift in signaling that enhances NF-κB-mediated parasite killing in the midgut of Anopheles stephensi without reducing lifespan or fecundity. Parasit Vectors 2017; 10:333. [PMID: 28705245 PMCID: PMC5508651 DOI: 10.1186/s13071-017-2276-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2017] [Accepted: 07/06/2017] [Indexed: 12/28/2022] Open
Abstract
Background Abscisic acid (ABA) is naturally present in mammalian blood and circulating levels can be increased by oral supplementation. We showed previously that oral ABA supplementation in a mouse model of Plasmodium yoelii 17XNL infection reduced parasitemia and gametocytemia, spleen and liver pathology, and parasite transmission to the mosquito Anopheles stephensi fed on these mice. Treatment of cultured Plasmodium falciparum with ABA at levels detected in our model had no effects on asexual growth or gametocyte formation in vitro. However, ABA treatment of cultured P. falciparum immediately prior to mosquito feeding significantly reduced oocyst development in A. stephensi via ABA-dependent synthesis of nitric oxide (NO) in the mosquito midgut. Results Here we describe the mechanisms of effects of ABA on mosquito physiology, which are dependent on phosphorylation of TGF-β-activated kinase 1 (TAK1) and associated with changes in homeostatic gene expression and activity of kinases that are central to metabolic regulation in the midgut epithelium. Collectively, the timing of these effects suggests a transient physiological shift that enhances NF-κB-dependent innate immunity without significantly altering mosquito lifespan or fecundity. Conclusions ABA is a highly conserved regulator of immune and metabolic homeostasis within the malaria vector A. stephensi with potential as a transmission-blocking supplemental treatment. Electronic supplementary material The online version of this article (doi:10.1186/s13071-017-2276-4) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Elizabeth K K Glennon
- Department of Medical Microbiology and Immunology, University of California at Davis, Davis, CA, USA.,Center for Infectious Disease Research, Seattle, WA, USA
| | - Brandi K Torrevillas
- Department of Medical Microbiology and Immunology, University of California at Davis, Davis, CA, USA.,Department of Entomology, Plant Pathology and Nematology, University of Idaho, Moscow, ID, USA.,Department of Biological Sciences, University of Idaho, Moscow, ID, USA
| | - Shannon F Morrissey
- Department of Medical Microbiology and Immunology, University of California at Davis, Davis, CA, USA
| | - Jadrian M Ejercito
- Department of Medical Microbiology and Immunology, University of California at Davis, Davis, CA, USA.,Department of Entomology, University of California at Riverside, Riverside, CA, USA
| | - Shirley Luckhart
- Department of Medical Microbiology and Immunology, University of California at Davis, Davis, CA, USA. .,Department of Entomology, Plant Pathology and Nematology, University of Idaho, Moscow, ID, USA. .,Department of Biological Sciences, University of Idaho, Moscow, ID, USA.
| |
Collapse
|
19
|
Oliver SV, Brooke BD. The effects of ingestion of hormonal host factors on the longevity and insecticide resistance phenotype of the major malaria vector Anopheles arabiensis (Diptera: Culicidae). PLoS One 2017; 12:e0180909. [PMID: 28700639 PMCID: PMC5507448 DOI: 10.1371/journal.pone.0180909] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2017] [Accepted: 06/22/2017] [Indexed: 12/17/2022] Open
Abstract
Exogenous vertebrate-derived factors circulating in the blood have the capacity to modulate the biology of haematophagous insects. These include insulin, insulin growth factor 1 (IGF) and transforming growth factor β1 (TGFβ). The effects of the consumption of these three proteins were examined on laboratory strains of Anopheles arabiensis. SENN, an insecticide susceptible strain and SENN DDT, a resistant strain selected from SENN, were fed with host factor-supplemented sucrose. Adult longevity was measured and insecticide resistance phenotype over time was assessed by WHO bioassay. Detoxification and oxidative stress defence enzyme activity was assessed calorimetrically. Insulin supplementation augmented insecticide resistance in young adult mosquitoes. This effect was due to the hormonal nature of the protein, as heat-denatured insulin did not elicit the same response. In contrast, IGF and TGFβ consumption generally reduced the expression of insecticide resistance. Insulin ingestion significantly reduced longevity in the insecticide susceptible strain. IGF elicited the same response in the susceptible strain, while TGF consumption had no effect on either strain. Consumption of all factors significantly decreased Glutathione S-transferase activity and increased cytochrome P450 and superoxide dismutase activity. This suggests that the altered detoxification phenotype is mediated primarily by cytochrome P450 activity, which would result in an increase in oxidative stress. The increased superoxide dismutase activity suggests that this enzyme class alleviates the oxidative stress as opposed to glutathione-based redox systems. Oxidative stress responses play a crucial role in insecticide resistance and longevity. These data show that ingested hormonal factors can affect mosquito longevity and insecticide susceptibility, both of which are important characteristics in terms of malaria transmission and control.
Collapse
Affiliation(s)
- Shüné V. Oliver
- Centre for Emerging, Zoonotic and Parasitic Diseases, National Institute for Communicable Diseases, Johannesburg, South Africa
- Wits Research Institute for Malaria, School of Pathology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
- * E-mail:
| | - Basil D. Brooke
- Centre for Emerging, Zoonotic and Parasitic Diseases, National Institute for Communicable Diseases, Johannesburg, South Africa
- Wits Research Institute for Malaria, School of Pathology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| |
Collapse
|
20
|
Saraiva RG, Kang S, Simões ML, Angleró-Rodríguez YI, Dimopoulos G. Mosquito gut antiparasitic and antiviral immunity. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2016; 64:53-64. [PMID: 26827888 DOI: 10.1016/j.dci.2016.01.015] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2015] [Revised: 01/16/2016] [Accepted: 01/26/2016] [Indexed: 06/05/2023]
Abstract
Mosquitoes are responsible for the transmission of diseases with a serious impact on global human health, such as malaria and dengue. All mosquito-transmitted pathogens complete part of their life cycle in the insect gut, where they are exposed to mosquito-encoded barriers and active factors that can limit their development. Here we present the current understanding of mosquito gut immunity against malaria parasites, filarial worms, and viruses such as dengue, Chikungunya, and West Nile. The most recently proposed immune mediators involved in intestinal defenses are discussed, as well as the synergies identified between the recognition of gut microbiota and the mounting of the immune response.
Collapse
Affiliation(s)
- Raúl G Saraiva
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, USA
| | - Seokyoung Kang
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, USA
| | - Maria L Simões
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, USA
| | - Yesseinia I Angleró-Rodríguez
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, USA
| | - George Dimopoulos
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, USA.
| |
Collapse
|
21
|
Two insulin-like peptides differentially regulate malaria parasite infection in the mosquito through effects on intermediary metabolism. Biochem J 2016; 473:3487-3503. [PMID: 27496548 DOI: 10.1042/bcj20160271] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2016] [Accepted: 08/05/2016] [Indexed: 01/20/2023]
Abstract
Insulin-like peptides (ILPs) play important roles in growth and metabolic homeostasis, but have also emerged as key regulators of stress responses and immunity in a variety of vertebrates and invertebrates. Furthermore, a growing literature suggests that insulin signaling-dependent metabolic provisioning can influence host responses to infection and affect infection outcomes. In line with these studies, we previously showed that knockdown of either of two closely related, infection-induced ILPs, ILP3 and ILP4, in the mosquito Anopheles stephensi decreased infection with the human malaria parasite Plasmodium falciparum through kinetically distinct effects on parasite death. However, the precise mechanisms by which ILP3 and ILP4 control the response to infection remained unknown. To address this knowledge gap, we used a complementary approach of direct ILP supplementation into the blood meal to further define ILP-specific effects on mosquito biology and parasite infection. Notably, we observed that feeding resulted in differential effects of ILP3 and ILP4 on blood-feeding behavior and P. falciparum development. These effects depended on ILP-specific regulation of intermediary metabolism in the mosquito midgut, suggesting a major contribution of ILP-dependent metabolic shifts to the regulation of infection resistance and parasite transmission. Accordingly, our data implicate endogenous ILP signaling in balancing intermediary metabolism for the host response to infection, affirming this emerging tenet in host-pathogen interactions with novel insights from a system of significant public health importance.
Collapse
|
22
|
Londono-Renteria B, Grippin C, Cardenas JC, Troupin A, Colpitts TM. Human C5a Protein Participates in the Mosquito Immune Response Against Dengue Virus. JOURNAL OF MEDICAL ENTOMOLOGY 2016; 53:505-512. [PMID: 26843451 PMCID: PMC4892811 DOI: 10.1093/jme/tjw003] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2015] [Accepted: 01/11/2016] [Indexed: 06/05/2023]
Abstract
Dengue virus (DENV) is transmitted by Aedes spp mosquitoes during a bloodmeal uptake. The bloodmeal consists of host cells, immune factors, and possibly blood-borne pathogens, such as arboviruses. Human cells and immune-related factors, like the complement system, can remain active in the bloodmeal and may be able to interact with pathogens in the mosquito. Previous studies have shown that active complement proteins impact Plasmodium parasite viability in the Anopheles midgut. Thus, we investigated the effects of the human complement on DENV infection in the midgut of Aedes aegypti. Our findings indicate that mosquitoes receiving DENV mixed with normal non-inactivated human serum showed significantly lower viremia than those fed with heat-inactivated serum. This implies that human complement may act to limit DENV infection in the mosquito midgut. In addition, we found that human complement C5a protein was able to directly communicate with mosquito cells, affecting the cell antiviral response against DENV. Our results also show that human C5a protein is able to interact with several membrane-bound mosquito proteins. Together these results suggest an important role of human complement protein in DENV transmission.
Collapse
Affiliation(s)
- Berlin Londono-Renteria
- Department of Pathology, Microbiology and Immunology, University of South Carolina School of Medicine, Columbia, SC, 29209 (; ),
| | - Crystal Grippin
- Department of Tropical Medicine, Tulane University School of Public Health and Tropical Medicine, New Orleans, LA, 70130 , and
| | - Jenny C Cardenas
- Microbiology and Clinical Laboratory, Hospital San Juan de Dios, Los Patios - Norte de Santander, Colombia
| | - Andrea Troupin
- Department of Pathology, Microbiology and Immunology, University of South Carolina School of Medicine, Columbia, SC, 29209 (; )
| | - Tonya M Colpitts
- Department of Pathology, Microbiology and Immunology, University of South Carolina School of Medicine, Columbia, SC, 29209 (; )
| |
Collapse
|
23
|
Glennon EKK, Adams LG, Hicks DR, Dehesh K, Luckhart S. Supplementation with Abscisic Acid Reduces Malaria Disease Severity and Parasite Transmission. Am J Trop Med Hyg 2016; 94:1266-75. [PMID: 27001761 DOI: 10.4269/ajtmh.15-0904] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2015] [Accepted: 01/29/2016] [Indexed: 01/20/2023] Open
Abstract
Nearly half of the world's population is at risk for malaria. Increasing drug resistance has intensified the need for novel therapeutics, including treatments with intrinsic transmission-blocking properties. In this study, we demonstrate that the isoprenoid abscisic acid (ABA) modulates signaling in the mammalian host to reduce parasitemia and the formation of transmissible gametocytes and in the mosquito host to reduce parasite infection. Oral ABA supplementation in a mouse model of malaria was well tolerated and led to reduced pathology and enhanced gene expression in the liver and spleen consistent with infection recovery. Oral ABA supplementation also increased mouse plasma ABA to levels that can signal in the mosquito midgut upon blood ingestion. Accordingly, we showed that supplementation of a Plasmodium falciparum-infected blood meal with ABA increased expression of mosquito nitric oxide synthase and reduced infection prevalence in a nitric oxide-dependent manner. Identification of the mechanisms whereby ABA reduces parasite growth in mammals and mosquitoes could shed light on the balance of immunity and metabolism across eukaryotes and provide a strong foundation for clinical translation.
Collapse
Affiliation(s)
- Elizabeth K K Glennon
- Department of Medical Microbiology and Immunology, School of Medicine, University of California, Davis, Davis, California; Department of Veterinary Pathobiology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, Texas; Department of Plant Biology, University of California, Davis, Davis, California
| | - L Garry Adams
- Department of Medical Microbiology and Immunology, School of Medicine, University of California, Davis, Davis, California; Department of Veterinary Pathobiology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, Texas; Department of Plant Biology, University of California, Davis, Davis, California
| | - Derrick R Hicks
- Department of Medical Microbiology and Immunology, School of Medicine, University of California, Davis, Davis, California; Department of Veterinary Pathobiology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, Texas; Department of Plant Biology, University of California, Davis, Davis, California
| | - Katayoon Dehesh
- Department of Medical Microbiology and Immunology, School of Medicine, University of California, Davis, Davis, California; Department of Veterinary Pathobiology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, Texas; Department of Plant Biology, University of California, Davis, Davis, California
| | - Shirley Luckhart
- Department of Medical Microbiology and Immunology, School of Medicine, University of California, Davis, Davis, California; Department of Veterinary Pathobiology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, Texas; Department of Plant Biology, University of California, Davis, Davis, California
| |
Collapse
|
24
|
Pietri JE, Pietri EJ, Potts R, Riehle MA, Luckhart S. Plasmodium falciparum suppresses the host immune response by inducing the synthesis of insulin-like peptides (ILPs) in the mosquito Anopheles stephensi. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2015; 53:134-44. [PMID: 26165161 PMCID: PMC4536081 DOI: 10.1016/j.dci.2015.06.012] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2015] [Revised: 06/17/2015] [Accepted: 06/17/2015] [Indexed: 05/12/2023]
Abstract
The insulin-like peptides (ILPs) and their respective signaling and regulatory pathways are highly conserved across phyla. In invertebrates, ILPs regulate diverse physiological processes, including metabolism, reproduction, behavior, and immunity. We previously reported that blood feeding alone induced minimal changes in ILP expression in Anopheles stephensi. However, ingestion of a blood meal containing human insulin or Plasmodium falciparum, which can mimic insulin signaling, leads to significant increases in ILP expression in the head and midgut, suggesting a potential role for AsILPs in the regulation of P. falciparum sporogonic development. Here, we show that soluble P. falciparum products, but not LPS or zymosan, directly induced AsILP expression in immortalized A. stephensi cells in vitro. Further, AsILP expression is dependent on signaling by the mitogen-activated protein kinase kinase/extracellular signal-regulated kinase (MEK/ERK) and phosphatidylinositol 3'-kinase (PI3K)/Akt branches of the insulin/insulin-like growth factor signaling (IIS) pathway. Inhibition of P. falciparum-induced ILPs in vivo decreased parasite development through kinetically distinct effects on mosquito innate immune responses. Specifically, knockdown of AsILP4 induced early expression of immune effector genes (1-6 h after infection), a pattern associated with significantly reduced parasite abundance prior to invasion of the midgut epithelium. In contrast, knockdown of AsILP3 increased later expression of the same genes (24 h after infection), a pattern that was associated with significantly reduced oocyst development. These data suggest that P. falciparum parasites alter the expression of mosquito AsILPs to dampen the immune response and facilitate their development in the mosquito vector.
Collapse
Affiliation(s)
- Jose E Pietri
- Department of Medical Microbiology and Immunology, 3437 Tupper Hall, One Shields Avenue, School of Medicine, University of California, Davis, CA 95616, USA.
| | - Eduardo J Pietri
- Department of Medical Microbiology and Immunology, 3437 Tupper Hall, One Shields Avenue, School of Medicine, University of California, Davis, CA 95616, USA.
| | - Rashaun Potts
- Department of Medical Microbiology and Immunology, 3437 Tupper Hall, One Shields Avenue, School of Medicine, University of California, Davis, CA 95616, USA.
| | - Michael A Riehle
- Department of Entomology, 410 Forbes, College of Agriculture and Life Sciences, University of Arizona, Tucson, AZ 85721, USA.
| | - Shirley Luckhart
- Department of Medical Microbiology and Immunology, 3437 Tupper Hall, One Shields Avenue, School of Medicine, University of California, Davis, CA 95616, USA.
| |
Collapse
|
25
|
Johnson AA, Riehle MA. Resveratrol Fails to Extend Life Span in the MosquitoAnopheles stephensi. Rejuvenation Res 2015; 18:473-8. [DOI: 10.1089/rej.2015.1670] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Affiliation(s)
- Adiv A. Johnson
- Department of Entomology, University of Arizona, Tucson, Arizona
| | | |
Collapse
|
26
|
Wang B, Pakpour N, Napoli E, Drexler A, Glennon EKK, Surachetpong W, Cheung K, Aguirre A, Klyver JM, Lewis EE, Eigenheer R, Phinney BS, Giulivi C, Luckhart S. Anopheles stephensi p38 MAPK signaling regulates innate immunity and bioenergetics during Plasmodium falciparum infection. Parasit Vectors 2015; 8:424. [PMID: 26283222 PMCID: PMC4539710 DOI: 10.1186/s13071-015-1016-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2015] [Accepted: 07/21/2015] [Indexed: 01/30/2023] Open
Abstract
Background Fruit flies and mammals protect themselves against infection by mounting immune and metabolic responses that must be balanced against the metabolic needs of the pathogens. In this context, p38 mitogen-activated protein kinase (MAPK)-dependent signaling is critical to regulating both innate immunity and metabolism during infection. Accordingly, we asked to what extent the Asian malaria mosquito Anopheles stephensi utilizes p38 MAPK signaling during infection with the human malaria parasite Plasmodium falciparum. Methods A. stephensi p38 MAPK (AsP38 MAPK) was identified and patterns of signaling in vitro and in vivo (midgut) were analyzed using phospho-specific antibodies and small molecule inhibitors. Functional effects of AsP38 MAPK inhibition were assessed using P. falciparum infection, quantitative real-time PCR, assays for reactive oxygen species and survivorship under oxidative stress, proteomics, and biochemical analyses. Results The genome of A. stephensi encodes a single p38 MAPK that is activated in the midgut in response to parasite infection. Inhibition of AsP38 MAPK signaling significantly reduced P. falciparum sporogonic development. This phenotype was associated with AsP38 MAPK regulation of mitochondrial physiology and stress responses in the midgut epithelium, a tissue critical for parasite development. Specifically, inhibition of AsP38 MAPK resulted in reduction in mosquito protein synthesis machinery, a shift in glucose metabolism, reduced mitochondrial metabolism, enhanced production of mitochondrial reactive oxygen species, induction of an array of anti-parasite effector genes, and decreased resistance to oxidative stress-mediated damage. Hence, P. falciparum-induced activation of AsP38 MAPK in the midgut facilitates parasite infection through a combination of reduced anti-parasite immune defenses and enhanced host protein synthesis and bioenergetics to minimize the impact of infection on the host and to maximize parasite survival, and ultimately, transmission. Conclusions These observations suggest that, as in mammals, innate immunity and mitochondrial responses are integrated in mosquitoes and that AsP38 MAPK-dependent signaling facilitates mosquito survival during parasite infection, a fact that may attest to the relatively longer evolutionary relationship of these parasites with their invertebrate compared to their vertebrate hosts. On a practical level, improved understanding of the balances and trade-offs between resistance and metabolism could be leveraged to generate fit, resistant mosquitoes for malaria control. Electronic supplementary material The online version of this article (doi:10.1186/s13071-015-1016-x) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Bo Wang
- Department of Medical Microbiology and Immunology, School of Medicine, University of California Davis, 3437 Tupper Hall, One Shields Avenue, Davis, CA, 95616, USA.
| | - Nazzy Pakpour
- Department of Medical Microbiology and Immunology, School of Medicine, University of California Davis, 3437 Tupper Hall, One Shields Avenue, Davis, CA, 95616, USA.
| | - Eleonora Napoli
- Department of Molecular Biosciences, School of Veterinary Medicine, University of California Davis, Davis, CA, USA.
| | - Anna Drexler
- Department of Medical Microbiology and Immunology, School of Medicine, University of California Davis, 3437 Tupper Hall, One Shields Avenue, Davis, CA, 95616, USA.
| | - Elizabeth K K Glennon
- Department of Medical Microbiology and Immunology, School of Medicine, University of California Davis, 3437 Tupper Hall, One Shields Avenue, Davis, CA, 95616, USA.
| | - Win Surachetpong
- Department of Medical Microbiology and Immunology, School of Medicine, University of California Davis, 3437 Tupper Hall, One Shields Avenue, Davis, CA, 95616, USA.
| | - Kong Cheung
- Department of Medical Microbiology and Immunology, School of Medicine, University of California Davis, 3437 Tupper Hall, One Shields Avenue, Davis, CA, 95616, USA.
| | - Alejandro Aguirre
- Department of Medical Microbiology and Immunology, School of Medicine, University of California Davis, 3437 Tupper Hall, One Shields Avenue, Davis, CA, 95616, USA.
| | - John M Klyver
- Department of Medical Microbiology and Immunology, School of Medicine, University of California Davis, 3437 Tupper Hall, One Shields Avenue, Davis, CA, 95616, USA.
| | - Edwin E Lewis
- Department of Entomology and Nematology, University of California Davis, Davis, CA, USA.
| | - Richard Eigenheer
- Genome and Biomedical Sciences Center, University of California Davis, Davis, CA, USA.
| | - Brett S Phinney
- Genome and Biomedical Sciences Center, University of California Davis, Davis, CA, USA.
| | - Cecilia Giulivi
- Department of Molecular Biosciences, School of Veterinary Medicine, University of California Davis, Davis, CA, USA. .,Medical Investigations of Neurodevelopmental Disorders (MIND) Institute, University of California Davis, Davis, CA, USA.
| | - Shirley Luckhart
- Department of Medical Microbiology and Immunology, School of Medicine, University of California Davis, 3437 Tupper Hall, One Shields Avenue, Davis, CA, 95616, USA.
| |
Collapse
|
27
|
Autologous Bone Marrow Mononuclear Cell Transplantation Delays Progression of Carotid Atherosclerosis in Rabbits. Mol Neurobiol 2015; 53:4387-96. [PMID: 26232064 DOI: 10.1007/s12035-015-9347-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2015] [Accepted: 07/07/2015] [Indexed: 10/23/2022]
Abstract
Bone marrow mononuclear cells (BMMNCs) can counteract oxidative stress and inhibit the inflammatory response in focal ischemic stroke models. However, the effect of BMMNC transplantation on carotid atherosclerosis needs to be determined. The carotid atherosclerotic plaque model was established in New Zealand White rabbits by balloon injury and 8 weeks of high-fat diet. Rabbits were randomized to receive an intravenous injection of autologous bromodeoxyuridine (BrdU)-labeled BMMNCs or an equal volume of phosphate-buffered saline. Plaques were evaluated for expression of proinflammatory and anti-inflammatory cytokines, anti-oxidant proteins, and markers of cell death. BMMNCs migrated into atherosclerotic plaque on the first day after cell transplantation. BMMNC-treated rabbits had smaller plaques and more collagen deposition than did the vehicle-treated controls on day 28 (p < 0.05). BMMNC treatment significantly increased endothelial nitric oxide synthase and the anti-oxidant enzymes glutathione peroxidase and superoxide dismutase in plaques compared to vehicle treatment on day 7. BMMNC-treated rabbits also had lower levels of cleaved caspase-3 expression; lower levels of proinflammatory cytokines interleukin-1β, tumor necrosis factor alpha, and matrix metalloproteinase 9; and higher levels of insulin-like growth factor-1 and its receptor (p < 0.05). Autologous BMMNC transplantation can suppress the process of atherosclerotic plaque formation and is associated with enhanced anti-oxidative effect, reduced levels of inflammatory cytokines and cleaved caspase-3, and increased expression of insulin-like growth factor-1 and its receptor. BMMNC transplantation represents a novel approach for the treatment of carotid atherosclerosis.
Collapse
|
28
|
Luckhart S, Pakpour N, Giulivi C. Host-pathogen interactions in malaria: cross-kingdom signaling and mitochondrial regulation. Curr Opin Immunol 2015. [PMID: 26210301 DOI: 10.1016/j.coi.2015.07.002] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Malaria parasite-host interactions are complex and have confounded available drugs and the development of vaccines. Further, we now appreciate that interventions for malaria elimination and eradication must include therapeutics with intrinsic transmission blocking activity to treat the patient and prevent disease spread. Studies over the past 15 years have revealed significant conservation in the response to infection in mosquito and human hosts. More recently, we have recognized that conserved cell signaling cascades in mosquitoes and humans dictate infection outcome through the regulation of mitochondrial function and biogenesis, which feed back to host immunity, basic intermediary metabolism, and stress responses. These responses - reflected clearly in the primeval insect host - provide fertile ground for innovative strategies for both treatment and transmission blocking.
Collapse
Affiliation(s)
- Shirley Luckhart
- Department of Medical Microbiology and Immunology, School of Medicine, University of California, Davis, Davis CA 95616, United States.
| | - Nazzy Pakpour
- Department of Medical Microbiology and Immunology, School of Medicine, University of California, Davis, Davis CA 95616, United States
| | - Cecilia Giulivi
- Department of Molecular Biosciences, School of Veterinary Medicine, and Medical Investigations of Neurodevelopmental Disorders (MIND) Institute, University of California, Davis, Davis CA 95616, United States
| |
Collapse
|
29
|
Cator LJ, Pietri JE, Murdock CC, Ohm JR, Lewis EE, Read AF, Luckhart S, Thomas MB. Immune response and insulin signalling alter mosquito feeding behaviour to enhance malaria transmission potential. Sci Rep 2015; 5:11947. [PMID: 26153094 PMCID: PMC4495552 DOI: 10.1038/srep11947] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2015] [Accepted: 06/04/2015] [Indexed: 12/18/2022] Open
Abstract
Malaria parasites alter mosquito feeding behaviour in a way that enhances parasite transmission. This is widely considered a prime example of manipulation of host behaviour to increase onward transmission, but transient immune challenge in the absence of parasites can induce the same behavioural phenotype. Here, we show that alterations in feeding behaviour depend on the timing and dose of immune challenge relative to blood ingestion and that these changes are functionally linked to changes in insulin signalling in the mosquito gut. These results suggest that altered phenotypes derive from insulin signalling-dependent host resource allocation among immunity, blood feeding, and reproduction in a manner that is not specific to malaria parasite infection. We measured large increases in mosquito survival and subsequent transmission potential when feeding patterns are altered. Leveraging these changes in physiology, behaviour and life history could promote effective and sustainable control of female mosquitoes responsible for transmission.
Collapse
Affiliation(s)
- Lauren J Cator
- Grand Challenges in Ecosystem and Environment, Department of Life Sciences, Imperial College London, Silwood Park
| | - Jose E Pietri
- Department of Medical Microbiology and Immunology, University of California, Davis
| | - Courtney C Murdock
- Department of Infectious Disease in College of Veterinary Medicine and Odum School of Ecology, University of Georgia
| | - Johanna R Ohm
- Center for Infectious Disease Dynamics, Pennsylvania State University
| | - Edwin E Lewis
- Department of Entomology, University of California, Davis
| | - Andrew F Read
- Center for Infectious Disease Dynamics, Pennsylvania State University
| | - Shirley Luckhart
- Department of Medical Microbiology and Immunology, University of California, Davis
| | - Matthew B Thomas
- Center for Infectious Disease Dynamics, Pennsylvania State University
| |
Collapse
|
30
|
Ramphul UN, Garver LS, Molina-Cruz A, Canepa GE, Barillas-Mury C. Plasmodium falciparum evades mosquito immunity by disrupting JNK-mediated apoptosis of invaded midgut cells. Proc Natl Acad Sci U S A 2015; 112:1273-80. [PMID: 25552553 PMCID: PMC4321252 DOI: 10.1073/pnas.1423586112] [Citation(s) in RCA: 90] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The malaria parasite, Plasmodium, must survive and develop in the mosquito vector to be successfully transmitted to a new host. The Plasmodium falciparum Pfs47 gene is critical for malaria transmission. Parasites that express Pfs47 (NF54 WT) evade mosquito immunity and survive, whereas Pfs47 knockouts (KO) are efficiently eliminated by the complement-like system. Two alternative approaches were used to investigate the mechanism of action of Pfs47 on immune evasion. First, we examined whether Pfs47 affected signal transduction pathways mediating mosquito immune responses, and show that the Jun-N-terminal kinase (JNK) pathway is a key mediator of Anopheles gambiae antiplasmodial responses to P. falciparum infection and that Pfs47 disrupts JNK signaling. Second, we used microarrays to compare the global transcriptional responses of A. gambiae midguts to infection with WT and KO parasites. The presence of Pfs47 results in broad and profound changes in gene expression in response to infection that are already evident 12 h postfeeding, but become most prominent at 26 h postfeeding, the time when ookinetes invade the mosquito midgut. Silencing of 15 differentially expressed candidate genes identified caspase-S2 as a key effector of Plasmodium elimination in parasites lacking Pfs47. We provide experimental evidence that JNK pathway regulates activation of caspases in Plasmodium-invaded midgut cells, and that caspase activation is required to trigger midgut epithelial nitration. Pfs47 alters the cell death pathway of invaded midgut cells by disrupting JNK signaling and prevents the activation of several caspases, resulting in an ineffective nitration response that makes the parasite undetectable by the mosquito complement-like system.
Collapse
Affiliation(s)
- Urvashi N Ramphul
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD 20852
| | - Lindsey S Garver
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD 20852
| | - Alvaro Molina-Cruz
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD 20852
| | - Gaspar E Canepa
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD 20852
| | - Carolina Barillas-Mury
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD 20852
| |
Collapse
|
31
|
Pakpour N, Riehle MA, Luckhart S. Effects of ingested vertebrate-derived factors on insect immune responses. CURRENT OPINION IN INSECT SCIENCE 2014; 3:1-5. [PMID: 25401083 PMCID: PMC4228800 DOI: 10.1016/j.cois.2014.07.001] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
During the process of blood feeding insect vectors are exposed to an array of vertebrate-derived blood factors ranging from byproducts of blood meal digestion to naturally occurring products in the blood including growth hormones, cytokines and factors derived from blood-borne pathogens themselves. In this review, we examine the ability of these ingested vertebrate blood factors to alter the innate pathogen defenses of insect vectors. The ability of these factors to modify the immune responses of insect vectors offers new intriguing targets for blocking or reducing transmission of human disease-causing pathogens.
Collapse
Affiliation(s)
- Nazzy Pakpour
- Department of Medical Microbiology and Immunology, School of Medicine, University of California, Davis, California, 95616
| | - Michael A. Riehle
- Department of Entomology, University of Arizona, Tucson, Arizona 85721
| | - Shirley Luckhart
- Department of Medical Microbiology and Immunology, School of Medicine, University of California, Davis, California, 95616
| |
Collapse
|