1
|
Das PK, Kielian M. Rubella virus assembly requirements and evolutionary relationships with novel rubiviruses. mBio 2024; 15:e0196524. [PMID: 39207105 PMCID: PMC11481484 DOI: 10.1128/mbio.01965-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Accepted: 08/01/2024] [Indexed: 09/04/2024] Open
Abstract
Rubella virus (RuV) is an enveloped virus that usually causes mild disease in children, but can produce miscarriage or severe congenital birth defects. While in nature RuV only infects humans, the discovery of the related Ruhugu (RuhV) and Rustrela (RusV) viruses highlights the spillover potential of mammalian rubiviruses to humans. RuV buds into the Golgi, but its assembly and exit are not well understood. We identified a potential late domain motif 278PPAY281 at the C-terminus of the RuV E2 envelope protein. Such late domain motifs can promote virus budding by recruiting the cellular ESCRT machinery. An E2 Y281A mutation reduced infectious virus production by >3 logs and inhibited virus particle production. However, RuV was insensitive to inhibition by dominant-negative VPS4, and thus appeared ESCRT-independent. The E2 Y281A mutation did not significantly inhibit the production of the viral structural proteins capsid (Cp), E2, and E1, or dimerization, glycosylation, Golgi transport, and colocalization of E2 and E1. However, E2 Y281A significantly reduced glycoprotein-Cp colocalization and interaction, and inhibited Cp localization to the Golgi. Revertants of the E2 Y281A mutant contained an E2 281V substitution or the second site mutations [E2 N277I + Cp D215A]. These mutations promoted virus growth, particle production, E2/Cp colocalization and Cp-Golgi localization. Both the E2 substitutions 281V and 277I were found at the corresponding positions in the RuhV E2 protein. Taken together, our data identify a key interaction of the RuV E2 endodomain with the Cp during RuV biogenesis, and support the close evolutionary relationship between human and animal rubiviruses. IMPORTANCE Rubella virus (RuV) is an enveloped virus that only infects humans, where transplacental infection can cause miscarriage or congenital birth defects. We identified a potential late domain, 278PPAY281, at the C terminus of the E2 envelope protein. However, rather than this domain recruiting the cellular ESCRT machinery as predicted, our data indicate that E2 Y281 promotes a critical interaction of the E2 endodomain with the capsid protein, leading to capsid's localization to the Golgi where virus budding occurs. Revertant analysis demonstrated that two substitutions on the E2 protein could partially rescue virus growth and Cp-Golgi localization. Both residues were found at the corresponding positions in Ruhugu virus E2, supporting the close evolutionary relationship between RuV and Ruhugu virus, a recently discovered rubivirus from bats.
Collapse
Affiliation(s)
- Pratyush Kumar Das
- Department of Cell Biology, Albert Einstein College of Medicine, Bronx, New York, USA
| | - Margaret Kielian
- Department of Cell Biology, Albert Einstein College of Medicine, Bronx, New York, USA
| |
Collapse
|
2
|
Shaw AB, Tse HN, Byford O, Plahe G, Moon-Walker A, Hover SE, Saphire EO, Whelan SPJ, Mankouri J, Fontana J, Barr JN. Cellular endosomal potassium ion flux regulates arenavirus uncoating during virus entry. mBio 2024; 15:e0168423. [PMID: 38874413 PMCID: PMC11253613 DOI: 10.1128/mbio.01684-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Accepted: 03/21/2024] [Indexed: 06/15/2024] Open
Abstract
Lymphocytic choriomeningitis virus (LCMV) is an enveloped and segmented negative-sense RNA virus classified within the Arenaviridae family of the Bunyavirales order. LCMV is associated with fatal disease in immunocompromised populations and, as the prototypical arenavirus member, acts as a model for the many highly pathogenic members of the Arenaviridae family, such as Junín, Lassa, and Lujo viruses, all of which are associated with devastating hemorrhagic fevers. To enter cells, the LCMV envelope fuses with late endosomal membranes, for which two established requirements are low pH and interaction between the LCMV glycoprotein (GP) spike and secondary receptor CD164. LCMV subsequently uncoats, where the RNA genome-associated nucleoprotein (NP) separates from the Z protein matrix layer, releasing the viral genome into the cytosol. To further examine LCMV endosome escape, we performed an siRNA screen which identified host cell potassium ion (K+) channels as important for LCMV infection, with pharmacological inhibition confirming K+ channel involvement during the LCMV entry phase completely abrogating productive infection. To better understand the K+-mediated block in infection, we tracked incoming virions along their entry pathway under physiological conditions, where uncoating was signified by separation of NP and Z proteins. In contrast, K+ channel blockade prevented uncoating, trapping virions within Rab7 and CD164-positive endosomes, identifying K+ as a third LCMV entry requirement. K+ did not increase GP-CD164 binding or alter GP-CD164-dependent fusion. Thus, we propose that K+ mediates uncoating by modulating NP-Z interactions within the virion interior. These results suggest K+ channels represent a potential anti-arenaviral target.IMPORTANCEArenaviruses can cause fatal human disease for which approved preventative or therapeutic options are not available. Here, using the prototypical LCMV, we identified K+ channels as critical for arenavirus infection, playing a vital role during the entry phase of the infection cycle. We showed that blocking K+ channel function resulted in entrapment of LCMV particles within late endosomal compartments, thus preventing productive replication. Our data suggest K+ is required for LCMV uncoating and genome release by modulating interactions between the viral nucleoprotein and the matrix protein layer inside the virus particle.
Collapse
Affiliation(s)
- Amelia B. Shaw
- School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, United Kingdom
- Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, United Kingdom
| | - Hiu Nam Tse
- School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, United Kingdom
- Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, United Kingdom
| | - Owen Byford
- School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, United Kingdom
- Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, United Kingdom
| | - Grace Plahe
- School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, United Kingdom
- Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, United Kingdom
| | - Alex Moon-Walker
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology, La Jolla, California, USA
- Department of Molecular Microbiology, Washington University in St. Louis, St. Louis, Missouri, USA
- Program in Virology, Harvard Medical School, Boston, Massachusetts, USA
| | - Samantha E. Hover
- School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, United Kingdom
- Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, United Kingdom
| | - Erica Ollmann Saphire
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology, La Jolla, California, USA
| | - Sean P. J. Whelan
- Department of Molecular Microbiology, Washington University in St. Louis, St. Louis, Missouri, USA
| | - Jamel Mankouri
- School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, United Kingdom
- Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, United Kingdom
| | - Juan Fontana
- School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, United Kingdom
- Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, United Kingdom
| | - John N. Barr
- School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, United Kingdom
- Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, United Kingdom
| |
Collapse
|
3
|
de Antonellis P, Ferrucci V, Miceli M, Bibbo F, Asadzadeh F, Gorini F, Mattivi A, Boccia A, Russo R, Andolfo I, Lasorsa VA, Cantalupo S, Fusco G, Viscardi M, Brandi S, Cerino P, Monaco V, Choi DR, Cheong JH, Iolascon A, Amente S, Monti M, Fava LL, Capasso M, Kim HY, Zollo M. Targeting ATP2B1 impairs PI3K/Akt/FOXO signaling and reduces SARS-COV-2 infection and replication. EMBO Rep 2024; 25:2974-3007. [PMID: 38816514 PMCID: PMC11239940 DOI: 10.1038/s44319-024-00164-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 05/02/2024] [Accepted: 05/07/2024] [Indexed: 06/01/2024] Open
Abstract
ATP2B1 is a known regulator of calcium (Ca2+) cellular export and homeostasis. Diminished levels of intracellular Ca2+ content have been suggested to impair SARS-CoV-2 replication. Here, we demonstrate that a nontoxic caloxin-derivative compound (PI-7) reduces intracellular Ca2+ levels and impairs SARS-CoV-2 infection. Furthermore, a rare homozygous intronic variant of ATP2B1 is shown to be associated with the severity of COVID-19. The mechanism of action during SARS-CoV-2 infection involves the PI3K/Akt signaling pathway activation, inactivation of FOXO3 transcription factor function, and subsequent transcriptional inhibition of the membrane and reticulum Ca2+ pumps ATP2B1 and ATP2A1, respectively. The pharmacological action of compound PI-7 on sustaining both ATP2B1 and ATP2A1 expression reduces the intracellular cytoplasmic Ca2+ pool and thus negatively influences SARS-CoV-2 replication and propagation. As compound PI-7 lacks toxicity in vitro, its prophylactic use as a therapeutic agent against COVID-19 is envisioned here.
Collapse
Affiliation(s)
- Pasqualino de Antonellis
- CEINGE Biotecnologie Avanzate, Naples, 80145, Italy
- Dipartimento di Medicina Molecolare e Biotecnologie Mediche (DMMBM), 'Federico II' University of Naples, Naples, 80131, Italy
- Elysium Cell Bio Ita SRL, Via Gaetano Salvatore 486, 80145, Naples, Italy
| | - Veronica Ferrucci
- CEINGE Biotecnologie Avanzate, Naples, 80145, Italy
- Dipartimento di Medicina Molecolare e Biotecnologie Mediche (DMMBM), 'Federico II' University of Naples, Naples, 80131, Italy
- Elysium Cell Bio Ita SRL, Via Gaetano Salvatore 486, 80145, Naples, Italy
| | - Marco Miceli
- CEINGE Biotecnologie Avanzate, Naples, 80145, Italy
| | - Francesca Bibbo
- CEINGE Biotecnologie Avanzate, Naples, 80145, Italy
- Dipartimento di Medicina Molecolare e Biotecnologie Mediche (DMMBM), 'Federico II' University of Naples, Naples, 80131, Italy
| | - Fatemeh Asadzadeh
- CEINGE Biotecnologie Avanzate, Naples, 80145, Italy
- Dipartimento di Medicina Molecolare e Biotecnologie Mediche (DMMBM), 'Federico II' University of Naples, Naples, 80131, Italy
- European School of Molecular Medicine, SEMM, Naples, Italy
| | - Francesca Gorini
- Dipartimento di Medicina Molecolare e Biotecnologie Mediche (DMMBM), 'Federico II' University of Naples, Naples, 80131, Italy
| | - Alessia Mattivi
- Armenise-Harvard Laboratory of Cell Division, Department of Cellular Computational and Integrative Biology-CIBIO, University of Trento, Trento, Italy
| | | | - Roberta Russo
- CEINGE Biotecnologie Avanzate, Naples, 80145, Italy
- Dipartimento di Medicina Molecolare e Biotecnologie Mediche (DMMBM), 'Federico II' University of Naples, Naples, 80131, Italy
| | - Immacolata Andolfo
- CEINGE Biotecnologie Avanzate, Naples, 80145, Italy
- Dipartimento di Medicina Molecolare e Biotecnologie Mediche (DMMBM), 'Federico II' University of Naples, Naples, 80131, Italy
| | | | | | - Giovanna Fusco
- Istituto Zooprofilattico Sperimentale del Mezzogiorno, Naples, 80055, Italy
| | - Maurizio Viscardi
- Istituto Zooprofilattico Sperimentale del Mezzogiorno, Naples, 80055, Italy
| | - Sergio Brandi
- Istituto Zooprofilattico Sperimentale del Mezzogiorno, Naples, 80055, Italy
| | - Pellegrino Cerino
- Istituto Zooprofilattico Sperimentale del Mezzogiorno, Naples, 80055, Italy
| | - Vittoria Monaco
- CEINGE Biotecnologie Avanzate, Naples, 80145, Italy
- Department of Chemical Sciences, University 'Federico II' University of Naples, Naples, 80125, Italy
| | - Dong-Rac Choi
- Department of Surgery, Yonsei University College of Medicine, Seoul, Korea
- Elysiumbio Inc., #2007, Samsung Cheil B/D, 309, Teheran-ro, Gangnam-gu, Seoul, 06151, Korea
| | - Jae-Ho Cheong
- Department of Surgery, Yonsei University College of Medicine, Seoul, Korea
| | - Achille Iolascon
- CEINGE Biotecnologie Avanzate, Naples, 80145, Italy
- Dipartimento di Medicina Molecolare e Biotecnologie Mediche (DMMBM), 'Federico II' University of Naples, Naples, 80131, Italy
| | - Stefano Amente
- Dipartimento di Medicina Molecolare e Biotecnologie Mediche (DMMBM), 'Federico II' University of Naples, Naples, 80131, Italy
| | - Maria Monti
- CEINGE Biotecnologie Avanzate, Naples, 80145, Italy
- Department of Chemical Sciences, University 'Federico II' University of Naples, Naples, 80125, Italy
| | - Luca L Fava
- Armenise-Harvard Laboratory of Cell Division, Department of Cellular Computational and Integrative Biology-CIBIO, University of Trento, Trento, Italy
| | - Mario Capasso
- CEINGE Biotecnologie Avanzate, Naples, 80145, Italy
- Dipartimento di Medicina Molecolare e Biotecnologie Mediche (DMMBM), 'Federico II' University of Naples, Naples, 80131, Italy
| | - Hong-Yeoul Kim
- Elysiumbio Inc., #2007, Samsung Cheil B/D, 309, Teheran-ro, Gangnam-gu, Seoul, 06151, Korea
| | - Massimo Zollo
- CEINGE Biotecnologie Avanzate, Naples, 80145, Italy.
- Dipartimento di Medicina Molecolare e Biotecnologie Mediche (DMMBM), 'Federico II' University of Naples, Naples, 80131, Italy.
- Elysium Cell Bio Ita SRL, Via Gaetano Salvatore 486, 80145, Naples, Italy.
- European School of Molecular Medicine, SEMM, Naples, Italy.
- DAI Medicina di Laboratorio e Trasfusionale, 'Federico II' University of Naples, 80131, Naples, Italy.
| |
Collapse
|
4
|
Das PK, Gonzalez PA, Jangra RK, Yin P, Kielian M. A single-point mutation in the rubella virus E1 glycoprotein promotes rescue of recombinant vesicular stomatitis virus. mBio 2024; 15:e0237323. [PMID: 38334805 PMCID: PMC10936182 DOI: 10.1128/mbio.02373-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Accepted: 01/10/2024] [Indexed: 02/10/2024] Open
Abstract
Rubella virus (RuV) is an enveloped plus-sense RNA virus and a member of the Rubivirus genus. RuV infection in pregnant women can lead to miscarriage or an array of severe birth defects known as congenital rubella syndrome. Novel rubiviruses were recently discovered in various mammals, highlighting the spillover potential of other rubiviruses to humans. Many features of the rubivirus infection cycle remain unexplored. To promote the study of rubivirus biology, here, we generated replication-competent recombinant VSV-RuV (rVSV-RuV) encoding the RuV transmembrane glycoproteins E2 and E1. Sequencing of rVSV-RuV showed that the RuV glycoproteins acquired a single-point mutation W448R in the E1 transmembrane domain. The E1 W448R mutation did not detectably alter the intracellular expression, processing, glycosylation, colocalization, or dimerization of the E2 and E1 glycoproteins. Nonetheless, the mutation enhanced the incorporation of RuV E2/E1 into VSV particles, which bud from the plasma membrane rather than the RuV budding site in the Golgi. Neutralization by E1 antibodies, calcium dependence, and cell tropism were comparable between WT-RuV and either rVSV-RuV or RuV containing the E1 W448R mutation. However, the E1 W448R mutation strongly shifted the threshold for the acid pH-triggered virus fusion reaction, from pH 6.2 for the WT RuV to pH 5.5 for the mutant. These results suggest that the increased resistance of the mutant RuV E1 to acidic pH promotes the ability of viral envelope proteins to generate infectious rVSV and provide insights into the regulation of RuV fusion during virus entry and exit.IMPORTANCERubella virus (RuV) infection in pregnant women can cause miscarriage or severe fetal birth defects. While a highly effective vaccine has been developed, RuV cases are still a significant problem in areas with inadequate vaccine coverage. In addition, related viruses have recently been discovered in mammals, such as bats and mice, leading to concerns about potential virus spillover to humans. To facilitate studies of RuV biology, here, we generated and characterized a replication-competent vesicular stomatitis virus encoding the RuV glycoproteins (rVSV-RuV). Sequence analysis of rVSV-RuV identified a single-point mutation in the transmembrane region of the E1 glycoprotein. While the overall properties of rVSV-RuV are similar to those of WT-RuV, the mutation caused a marked shift in the pH dependence of virus membrane fusion. Together, our studies of rVSV-RuV and the identified W448R mutation expand our understanding of rubivirus biology and provide new tools for its study.
Collapse
Affiliation(s)
- Pratyush Kumar Das
- Department of Cell Biology, Albert Einstein College of Medicine, Bronx, New York, USA
| | | | - Rohit K. Jangra
- Department of Microbiology and Immunology, Louisiana State University Health Science Center-Shreveport, Shreveport, Louisiana, USA
| | - Peiqi Yin
- Department of Cell Biology, Albert Einstein College of Medicine, Bronx, New York, USA
| | - Margaret Kielian
- Department of Cell Biology, Albert Einstein College of Medicine, Bronx, New York, USA
| |
Collapse
|
5
|
Carten JD, Khelashvili G, Bidon MK, Straus MR, Tang T, Jaimes JA, Whittaker GR, Weinstein H, Daniel S. A Mechanistic Understanding of the Modes of Ca 2+ Ion Binding to the SARS-CoV-1 Fusion Peptide and Their Role in the Dynamics of Host Membrane Penetration. ACS Infect Dis 2024; 10:398-411. [PMID: 38270149 DOI: 10.1021/acsinfecdis.3c00260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2024]
Abstract
The SARS-CoV-1 spike glycoprotein contains a fusion peptide (FP) segment that mediates the fusion of the viral and host cell membranes. Calcium ions are thought to position the FP optimally for membrane insertion by interacting with negatively charged residues in this segment (E801, D802, D812, E821, D825, and D830); however, which residues bind to calcium and in what combinations supportive of membrane insertion are unknown. Using biological assays and molecular dynamics studies, we have determined the functional configurations of FP-Ca2+ binding that likely promote membrane insertion. We first individually mutated the negatively charged residues in the SARS CoV-1 FP to assay their roles in cell entry and syncytia formation, finding that charge loss in the D802A or D830A mutants greatly reduced syncytia formation and pseudoparticle transduction of VeroE6 cells. Interestingly, one mutation (D812A) led to a modest increase in cell transduction, further indicating that FP function likely depends on calcium binding at specific residues and in specific combinations. To interpret these results mechanistically and identify specific modes of FP-Ca2+ binding that modulate membrane insertion, we performed molecular dynamics simulations of the SARS-CoV-1 FP and Ca2+ions. The preferred residue pairs for Ca2+ binding we identified (E801/D802, E801/D830, and D812/E821) include the two residues found to be essential for S function in our biological studies (D802 and D830). The three preferred Ca2+ binding pairs were also predicted to promote FP membrane insertion. We also identified a Ca2+ binding pair (E821/D825) predicted to inhibit FP membrane insertion. We then carried out simulations in the presence of membranes and found that binding of Ca2+ to SARS-CoV-1 FP residue pairs E801/D802 and D812/E821 facilitates membrane insertion by enabling the peptide to adopt conformations that shield the negative charges of the FP to reduce repulsion by the membrane phospholipid headgroups. This calcium binding mode also optimally positions the hydrophobic LLF region of the FP for membrane penetration. Conversely, Ca2+ binding to the FP E801/D802 and D821/D825 pairs eliminates the negative charge screening and instead creates a repulsive negative charge that hinders membrane penetration of the LLF motif. These computational results, taken together with our biological studies, provide an improved and nuanced mechanistic understanding of the dymanics of SARS-CoV-1 calcium binding and their potential effects on host cell entry.
Collapse
Affiliation(s)
- Juliana Debrito Carten
- Robert Frederick Smith School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, New York 14853, United States
| | - George Khelashvili
- Department of Physiology & Biophysics, Weill Cornell Medicine, New York, New York 10065, United States
- Institute for Computational Biomedicine, Weill Cornell Medicine, New York, New York 10065, United States
| | - Miya K Bidon
- Robert Frederick Smith School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, New York 14853, United States
| | - Marco R Straus
- Departments of Microbiology & Immunology, Cornell University, Ithaca, New York 14853, United States
| | - Tiffany Tang
- Robert Frederick Smith School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, New York 14853, United States
| | - Javier A Jaimes
- Departments of Microbiology & Immunology, Cornell University, Ithaca, New York 14853, United States
| | - Gary R Whittaker
- Departments of Microbiology & Immunology, Cornell University, Ithaca, New York 14853, United States
- Public & Ecosystem Health, Cornell University, Ithaca, New York 14853, United States
| | - Harel Weinstein
- Department of Physiology & Biophysics, Weill Cornell Medicine, New York, New York 10065, United States
- Institute for Computational Biomedicine, Weill Cornell Medicine, New York, New York 10065, United States
| | - Susan Daniel
- Robert Frederick Smith School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, New York 14853, United States
| |
Collapse
|
6
|
Jain A, Govindan R, Berkman AR, Luban J, Díaz-Salinas MA, Durham ND, Munro JB. Regulation of Ebola GP conformation and membrane binding by the chemical environment of the late endosome. PLoS Pathog 2023; 19:e1011848. [PMID: 38055723 PMCID: PMC10727438 DOI: 10.1371/journal.ppat.1011848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 12/18/2023] [Accepted: 11/20/2023] [Indexed: 12/08/2023] Open
Abstract
Interaction between the Ebola virus envelope glycoprotein (GP) and the endosomal membrane is an essential step during virus entry into the cell. Acidic pH and Ca2+ have been implicated in mediating the GP-membrane interaction. However, the molecular mechanism by which these environmental factors regulate the conformational changes that enable engagement of GP with the target membrane is unknown. Here, we apply fluorescence correlation spectroscopy (FCS) and single-molecule Förster resonance energy transfer (smFRET) imaging to elucidate how the acidic pH, Ca2+ and anionic phospholipids in the late endosome promote GP-membrane interaction, thereby facilitating virus entry. We find that bis(monoacylglycero)phosphate (BMP), which is specific to the late endosome, is especially critical in determining the Ca2+-dependence of the GP-membrane interaction. Molecular dynamics (MD) simulations suggested residues in GP that sense pH and induce conformational changes that make the fusion loop available for insertion into the membrane. We similarly confirm residues in the fusion loop that mediate GP's interaction with Ca2+, which likely promotes local conformational changes in the fusion loop and mediates electrostatic interactions with the anionic phospholipids. Collectively, our results provide a mechanistic understanding of how the environment of the late endosome regulates the timing and efficiency of virus entry.
Collapse
Affiliation(s)
- Aastha Jain
- Department of Microbiology and Physiological Systems, UMass Chan Medical School, Worcester, Massachusetts, United States of America
| | - Ramesh Govindan
- Department of Microbiology and Physiological Systems, UMass Chan Medical School, Worcester, Massachusetts, United States of America
- Medical Scientist Training Program, Tufts University School of Medicine, Boston, Massachusetts, United States of America
| | - Alex R. Berkman
- Department of Microbiology and Physiological Systems, UMass Chan Medical School, Worcester, Massachusetts, United States of America
| | - Jeremy Luban
- Program in Molecular Medicine, UMass Chan Medical School, Worcester, Massachusetts, United States of America
- Department of Biochemistry and Molecular Biotechnology, UMass Chan Medical School, Worcester, Massachusetts, United States of America
| | - Marco A. Díaz-Salinas
- Department of Microbiology and Physiological Systems, UMass Chan Medical School, Worcester, Massachusetts, United States of America
| | - Natasha D. Durham
- Department of Microbiology and Physiological Systems, UMass Chan Medical School, Worcester, Massachusetts, United States of America
| | - James B. Munro
- Department of Microbiology and Physiological Systems, UMass Chan Medical School, Worcester, Massachusetts, United States of America
- Department of Biochemistry and Molecular Biotechnology, UMass Chan Medical School, Worcester, Massachusetts, United States of America
| |
Collapse
|
7
|
Yagi M, Hama M, Ichii S, Nakashima Y, Kanbayashi D, Kurata T, Yusa K, Komano J. S phingomyelin synthase 1 supports two steps of rubella virus life cycle. iScience 2023; 26:108267. [PMID: 38026182 PMCID: PMC10654604 DOI: 10.1016/j.isci.2023.108267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 08/23/2023] [Accepted: 10/17/2023] [Indexed: 12/01/2023] Open
Abstract
Our knowledge of the regulatory mechanisms that govern the replication of the rubella virus (RV) in human cells is limited. To gain insight into the host-pathogen interaction, we conducted a loss-of-function screening using the CRISPR-Cas9 system in the human placenta-derived JAR cells. We identified sphingomyelin synthase 1 (SGMS1 or SMS1) as a susceptibility factor for RV infection. Genetic knockout of SGMS1 rendered JAR cells resistant to infection by RV. The re-introduction of SGMS1 restored cellular susceptibility to RV infection. The restricted step of RV infection was post-endocytosis processes associated with the endosomal acidification. In the late phase of the RV replication cycle, the maintenance of viral persistence was disrupted, partly due to the attenuated viral gene expression. Our results shed light on the unique regulation of RV replication by a host factor during the early and late phases of viral life cycle.
Collapse
Affiliation(s)
- Mayuko Yagi
- Department of Microbiology and Infection Control, Faculty of Pharmacy, Osaka Medical and Pharmaceutical University, 4-20-1 Nasahara, Takatsuki City, Osaka 569-1041, Japan
| | - Minami Hama
- Department of Microbiology and Infection Control, Faculty of Pharmacy, Osaka Medical and Pharmaceutical University, 4-20-1 Nasahara, Takatsuki City, Osaka 569-1041, Japan
| | - Sayaka Ichii
- Department of Microbiology and Infection Control, Faculty of Pharmacy, Osaka Medical and Pharmaceutical University, 4-20-1 Nasahara, Takatsuki City, Osaka 569-1041, Japan
| | - Yurie Nakashima
- Department of Microbiology and Infection Control, Faculty of Pharmacy, Osaka Medical and Pharmaceutical University, 4-20-1 Nasahara, Takatsuki City, Osaka 569-1041, Japan
| | - Daiki Kanbayashi
- Osaka Institute of Public Health, Morinomiya Center, 1-3-69, Nakamichi, Higashinari-ku, Osaka 537-0025, Japan
| | - Takako Kurata
- Osaka Institute of Public Health, Morinomiya Center, 1-3-69, Nakamichi, Higashinari-ku, Osaka 537-0025, Japan
| | - Kosuke Yusa
- Stem Cell Genetics, Institute for Frontier Life and Medical Sciences, Kyoto University, Kyoto 606-8507, Japan
| | - Jun Komano
- Department of Microbiology and Infection Control, Faculty of Pharmacy, Osaka Medical and Pharmaceutical University, 4-20-1 Nasahara, Takatsuki City, Osaka 569-1041, Japan
| |
Collapse
|
8
|
Jain A, Govindan R, Berkman A, Luban J, Durham ND, Munro J. Regulation of Ebola GP conformation and membrane binding by the chemical environment of the late endosome. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.01.18.524651. [PMID: 36711925 PMCID: PMC9882366 DOI: 10.1101/2023.01.18.524651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
Interaction between the Ebola virus envelope glycoprotein (GP) and the endosomal membrane is an essential step during virus entry into the cell. Acidic pH and Ca2+ have been implicated in mediating the GP-membrane interaction. However, the molecular mechanism by which these environmental factors regulate the conformational changes that enable engagement of GP with the target membrane is unknown. Here, we apply fluorescence correlation spectroscopy (FCS) and single-molecule Forster resonance energy transfer (smFRET) imaging to elucidate how the acidic pH, Ca2+ and anionic phospholipids in the late endosome promote GP-membrane interaction, thereby facilitating virus entry. We find that bis(monoacylglycero)phosphate (BMP), which is specific to the late endosome, is especially critical in determining the Ca2+-dependence of the GP-membrane interaction. Molecular dynamics (MD) simulations suggested residues in GP that sense pH and induce conformational changes that make the fusion loop available for insertion into the membrane. We similarly confirm residues in the fusion loop that mediate GPs interaction with Ca2+, which likely promotes local conformational changes in the fusion loop and mediates electrostatic interactions with the anionic phospholipids. Collectively, our results provide a mechanistic understanding of how the environment of the late endosome regulates the timing and efficiency of virus entry.
Collapse
|
9
|
Ali H, Naseem A, Siddiqui ZI. SARS-CoV-2 Syncytium under the Radar: Molecular Insights of the Spike-Induced Syncytia and Potential Strategies to Limit SARS-CoV-2 Replication. J Clin Med 2023; 12:6079. [PMID: 37763019 PMCID: PMC10531702 DOI: 10.3390/jcm12186079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 09/14/2023] [Accepted: 09/17/2023] [Indexed: 09/29/2023] Open
Abstract
SARS-CoV-2 infection induces non-physiological syncytia when its spike fusogenic protein on the surface of the host cells interacts with the ACE2 receptor on adjacent cells. Spike-induced syncytia are beneficial for virus replication, transmission, and immune evasion, and contribute to the progression of COVID-19. In this review, we highlight the properties of viral fusion proteins, mainly the SARS-CoV-2 spike, and the involvement of the host factors in the fusion process. We also highlight the possible use of anti-fusogenic factors as an antiviral for the development of therapeutics against newly emerging SARS-CoV-2 variants and how the fusogenic property of the spike could be exploited for biomedical applications.
Collapse
Affiliation(s)
- Hashim Ali
- Department of Pathology, University of Cambridge, Addenbrookes Hospital, Cambridge CB2 0QQ, UK
| | - Asma Naseem
- Infection, Immunity and Inflammation Research and Teaching Department, Great Ormond Street Institute of Child Health, University College London, London WC1N 1DZ, UK
| | - Zaheenul Islam Siddiqui
- Diabetes and Obesity Research Center, NYU Grossman Long Island School of Medicine, New York, NY 11501, USA
| |
Collapse
|
10
|
Nguyen H, Nguyen HL, Lan PD, Thai NQ, Sikora M, Li MS. Interaction of SARS-CoV-2 with host cells and antibodies: experiment and simulation. Chem Soc Rev 2023; 52:6497-6553. [PMID: 37650302 DOI: 10.1039/d1cs01170g] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/01/2023]
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is the causative agent of the devastating global COVID-19 pandemic announced by WHO in March 2020. Through unprecedented scientific effort, several vaccines, drugs and antibodies have been developed, saving millions of lives, but the fight against COVID-19 continues as immune escape variants of concern such as Delta and Omicron emerge. To develop more effective treatments and to elucidate the side effects caused by vaccines and therapeutic agents, a deeper understanding of the molecular interactions of SARS-CoV-2 with them and human cells is required. With special interest in computational approaches, we will focus on the structure of SARS-CoV-2 and the interaction of its spike protein with human angiotensin-converting enzyme-2 (ACE2) as a prime entry point of the virus into host cells. In addition, other possible viral receptors will be considered. The fusion of viral and human membranes and the interaction of the spike protein with antibodies and nanobodies will be discussed, as well as the effect of SARS-CoV-2 on protein synthesis in host cells.
Collapse
Affiliation(s)
- Hung Nguyen
- Institute of Physics, Polish Academy of Sciences, al. Lotnikow 32/46, 02-668 Warsaw, Poland.
| | - Hoang Linh Nguyen
- Institute of Fundamental and Applied Sciences, Duy Tan University, Ho Chi Minh City 700000, Vietnam
- Faculty of Environmental and Natural Sciences, Duy Tan University, Da Nang 550000, Vietnam
| | - Pham Dang Lan
- Life Science Lab, Institute for Computational Science and Technology, Quang Trung Software City, Tan Chanh Hiep Ward, District 12, 729110 Ho Chi Minh City, Vietnam
- Faculty of Physics and Engineering Physics, VNUHCM-University of Science, 227, Nguyen Van Cu Street, District 5, 749000 Ho Chi Minh City, Vietnam
| | - Nguyen Quoc Thai
- Dong Thap University, 783 Pham Huu Lau Street, Ward 6, Cao Lanh City, Dong Thap, Vietnam
| | - Mateusz Sikora
- Malopolska Centre of Biotechnology, Jagiellonian University, Kraków, Poland
- Department of Theoretical Biophysics, Max Planck Institute of Biophysics, Frankfurt am Main, Germany
| | - Mai Suan Li
- Institute of Physics, Polish Academy of Sciences, al. Lotnikow 32/46, 02-668 Warsaw, Poland.
| |
Collapse
|
11
|
Fani M, Moossavi M, Bakhshi H, Jahrodi AN, Khazdair MR, Zardast AH, Ghafari S. Targeting host calcium channels and viroporins: a promising strategy for SARS-CoV-2 therapy. Future Virol 2023:10.2217/fvl-2022-0203. [PMID: 37700758 PMCID: PMC10494978 DOI: 10.2217/fvl-2022-0203] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Accepted: 08/18/2023] [Indexed: 09/14/2023]
Abstract
Despite passing the pandemic phase of the COVID-19, researchers are still investigating various drugs. Previous evidence suggests that blocking the calcium channels may be a suitable treatment option. Ca2+ is required to enhance the fusion process of Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Also, some important inflammatory factors during SARS-CoV-2 infection are dependent on Ca2+ level. On the other hand, viroporins have emerged as attractive targets for antiviral therapy due to their essential role in viral replication and pathogenesis. By inhibiting the host calcium channels and viroporins, it is possible to limit the spread of infection. Therefore, calcium channel blockers (CCBs) and drugs targeting Viroporins can be considered an effective option in the fight against SARS-CoV-2.
Collapse
Affiliation(s)
- Mona Fani
- Vector-borne Diseases Research Center, North Khorasan University of Medical Sciences, Bojnurd, Iran
- North Khorasan University of Medical Sciences, Bojnurd, Iran
| | - Maryam Moossavi
- Department of Immunology, Birjand University of Medical Sciences, Birjand, Iran
| | - Hasan Bakhshi
- Vector-borne Diseases Research Center, North Khorasan University of Medical Sciences, Bojnurd, Iran
| | | | - Mohammad Reza Khazdair
- Pharmaceutical Science & Clinical Physiology, Cardiovascular Diseases Research Center, Birjand University of Medical Sciences, Birjand, Iran
| | | | - Shokouh Ghafari
- Cellular & Molecular Research Center, Faculty of Medicine, Shahrekord University of Medical Sciences, Shahrekord, 8815713471, Iran
- Department of Microbiology & Immunology, School of Medicine, Shahrekord University of Medical Sciences, Shahrekord, 8815713471, Iran
| |
Collapse
|
12
|
Azimi FC, Dean TT, Minari K, Basso LGM, Vance TDR, Serrão VHB. A Frame-by-Frame Glance at Membrane Fusion Mechanisms: From Viral Infections to Fertilization. Biomolecules 2023; 13:1130. [PMID: 37509166 PMCID: PMC10377500 DOI: 10.3390/biom13071130] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 07/09/2023] [Accepted: 07/12/2023] [Indexed: 07/30/2023] Open
Abstract
Viral entry and fertilization are distinct biological processes that share a common mechanism: membrane fusion. In viral entry, enveloped viruses attach to the host cell membrane, triggering a series of conformational changes in the viral fusion proteins. This results in the exposure of a hydrophobic fusion peptide, which inserts into the host membrane and brings the viral and host membranes into close proximity. Subsequent structural rearrangements in opposing membranes lead to their fusion. Similarly, membrane fusion occurs when gametes merge during the fertilization process, though the exact mechanism remains unclear. Structural biology has played a pivotal role in elucidating the molecular mechanisms underlying membrane fusion. High-resolution structures of the viral and fertilization fusion-related proteins have provided valuable insights into the conformational changes that occur during this process. Understanding these mechanisms at a molecular level is essential for the development of antiviral therapeutics and tools to influence fertility. In this review, we will highlight the biological importance of membrane fusion and how protein structures have helped visualize both common elements and subtle divergences in the mechanisms behind fusion; in addition, we will examine the new tools that recent advances in structural biology provide researchers interested in a frame-by-frame understanding of membrane fusion.
Collapse
Affiliation(s)
- Farshad C. Azimi
- Department of Biochemistry, University of Toronto, Toronto, ON M5S 1A8, Canada;
| | - Trevor T. Dean
- Pharmaceutical Sciences, University of Illinois Chicago, Chicago, IL 60612, USA;
| | - Karine Minari
- Biomolecular Cryo-Electron Microscopy Facility, University of California-Santa Cruz, Santa Cruz, CA 95064, USA;
| | - Luis G. M. Basso
- Laboratório de Ciências Físicas, Universidade Estadual do Norte Fluminense Darcy Ribeiro, Campos dos Goytacazes, Rio de Janeiro 28013-602, Brazil;
| | - Tyler D. R. Vance
- Department of Laboratory Medicine and Pathobiology, Temerty Faculty of Medicine, University of Toronto, Toronto, ON M5S 1A8, Canada;
| | - Vitor Hugo B. Serrão
- Biomolecular Cryo-Electron Microscopy Facility, University of California-Santa Cruz, Santa Cruz, CA 95064, USA;
- Department of Chemistry and Biochemistry, University of California-Santa Cruz, Santa Cruz, CA 95064, USA
| |
Collapse
|
13
|
Tosheva II, Saygan KS, Mijnhardt SM, Russell CJ, Fraaij PLA, Herfst S. Hemagglutinin stability as a key determinant of influenza A virus transmission via air. Curr Opin Virol 2023; 61:101335. [PMID: 37307646 DOI: 10.1016/j.coviro.2023.101335] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 05/12/2023] [Accepted: 05/14/2023] [Indexed: 06/14/2023]
Abstract
To cause pandemics, zoonotic respiratory viruses need to adapt to replication in and spread between humans, either via (indirect or direct) contact or through the air via droplets and aerosols. To render influenza A viruses transmissible via air, three phenotypic viral properties must change, of which receptor-binding specificity and polymerase activity have been well studied. However, the third adaptive property, hemagglutinin (HA) acid stability, is less understood. Recent studies show that there may be a correlation between HA acid stability and virus survival in the air, suggesting that a premature conformational change of HA, triggered by low pH in the airways or droplets, may render viruses noninfectious before they can reach a new host. We here summarize available data from (animal) studies on the impact of HA acid stability on airborne transmission and hypothesize that the transmissibility of other respiratory viruses may also be impacted by an acidic environment in the airways.
Collapse
Affiliation(s)
- Ilona I Tosheva
- Department of Viroscience, Erasmus University Medical Center, Rotterdam, the Netherlands
| | - Kain S Saygan
- Department of Viroscience, Erasmus University Medical Center, Rotterdam, the Netherlands; Pandemic and Disaster Preparedness Center, Delft, Rotterdam, the Netherlands
| | - Suzanne Ma Mijnhardt
- Department of Viroscience, Erasmus University Medical Center, Rotterdam, the Netherlands; Pandemic and Disaster Preparedness Center, Delft, Rotterdam, the Netherlands
| | - Charles J Russell
- Department of Infectious Diseases, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Pieter LA Fraaij
- Department of Viroscience, Erasmus University Medical Center, Rotterdam, the Netherlands; Pandemic and Disaster Preparedness Center, Delft, Rotterdam, the Netherlands; Department of Paediatrics, Erasmus University Medical Center, Rotterdam, the Netherlands
| | - Sander Herfst
- Department of Viroscience, Erasmus University Medical Center, Rotterdam, the Netherlands; Pandemic and Disaster Preparedness Center, Delft, Rotterdam, the Netherlands.
| |
Collapse
|
14
|
Kumar PS, Radhakrishnan A, Mukherjee T, Khamaru S, Chattopadhyay S, Chattopadhyay S. Understanding the role of Ca 2+ via transient receptor potential (TRP) channel in viral infection: Implications in developing future antiviral strategies. Virus Res 2023; 323:198992. [PMID: 36309316 PMCID: PMC10194134 DOI: 10.1016/j.virusres.2022.198992] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 10/23/2022] [Accepted: 10/25/2022] [Indexed: 11/09/2022]
Abstract
Transient receptor potential (TRP) channels are a superfamily of cation-specific permeable channels primarily conducting Ca2+ions across various membranes of the cell. The perturbation of the Ca2+ homeostasis is the hallmark of viral infection. Viruses hijack the host cell Ca2+ signaling, employing tailored Ca2+ requirements via TRP channels to meet their own cellular demands. This review summarizes the importance of Ca2+ across diverse viruses based on the Baltimore classification and focuses on the associated role of Ca2+-conducting TRP channels in viral pathophysiology. More emphasis has been given to the role of the TRP channel in viral life-cycle events such as viral fusion, viral entry, viral replication, virion maturation, and egress. Additionally, this review highlights the TRP channel as a store-operated channel which has been discussed vividly. The TRP channels form an essential aspect of host-virus interaction by virtue of its Ca2+ permeability. These channels are directly involved in regulating the viral calcium dynamics in host cells and thereby affect the viral infection. Considering its immense potential in regulating viral infection, the TRP channels may act as a target for antiviral therapeutics.
Collapse
Affiliation(s)
- P Sanjai Kumar
- School of Biological Sciences, National Institute of Science Education & Research, an OCC of Homi Bhabha National Institute, Bhubaneswar, Jatni, Khurda, Odisha 752050, India; Infectious Disease Biology, Institute of Life Sciences, Autonomous Institute of Department of Biotechnology, Government of India, Nalco Square, Bhubaneswar, Odisha 751023, India
| | - Anukrishna Radhakrishnan
- School of Biological Sciences, National Institute of Science Education & Research, an OCC of Homi Bhabha National Institute, Bhubaneswar, Jatni, Khurda, Odisha 752050, India
| | - Tathagata Mukherjee
- School of Biological Sciences, National Institute of Science Education & Research, an OCC of Homi Bhabha National Institute, Bhubaneswar, Jatni, Khurda, Odisha 752050, India
| | - Somlata Khamaru
- School of Biological Sciences, National Institute of Science Education & Research, an OCC of Homi Bhabha National Institute, Bhubaneswar, Jatni, Khurda, Odisha 752050, India
| | - Soma Chattopadhyay
- Infectious Disease Biology, Institute of Life Sciences, Autonomous Institute of Department of Biotechnology, Government of India, Nalco Square, Bhubaneswar, Odisha 751023, India.
| | - Subhasis Chattopadhyay
- School of Biological Sciences, National Institute of Science Education & Research, an OCC of Homi Bhabha National Institute, Bhubaneswar, Jatni, Khurda, Odisha 752050, India.
| |
Collapse
|
15
|
Membrane Sphingomyelin in Host Cells Is Essential for Nucleocapsid Penetration into the Cytoplasm after Hemifusion during Rubella Virus Entry. mBio 2022; 13:e0169822. [PMID: 36346228 PMCID: PMC9765692 DOI: 10.1128/mbio.01698-22] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
The lipid composition of the host cell membrane is one of the key determinants of the entry of enveloped viruses into cells. To elucidate the detailed mechanisms behind the cell entry of rubella virus (RuV), one of the enveloped viruses, we searched for host factors involved in such entry by using CRISPR/Cas9 genome-wide knockout screening, and we found sphingomyelin synthase 1 (SMS1), encoded by the SGMS1 gene, as a candidate. RuV growth was strictly suppressed in SGMS1-knockout cells and was completely recovered by the overexpression of enzymatically active SMS1 and partially recovered by that of SMS2, another member of the SMS family, but not by that of enzymatically inactive SMS1. An entry assay using pseudotyped vesicular stomatitis virus possessing RuV envelope proteins revealed that sphingomyelin generated by SMSs is crucial for at least RuV entry. In SGMS1-knockout cells, lipid mixing between the RuV envelope membrane and the membrane of host cells occurred, but entry of the RuV genome from the viral particles into the cytoplasm was strongly inhibited. This indicates that sphingomyelin produced by SMSs is essential for the formation of membrane pores after hemifusion occurs during RuV entry. IMPORTANCE Infection with rubella virus during pregnancy causes congenital rubella syndrome in infants. Despite its importance in public health, the detailed mechanisms of rubella virus cell entry have only recently become somewhat clearer. The E1 protein of rubella virus is classified as a class II fusion protein based on its structural similarity, but it has the unique feature that its activity is dependent on calcium ion binding in the fusion loops. In this study, we found another unique feature, as cellular sphingomyelin plays a critical role in the penetration of the nucleocapsid into the cytoplasm after hemifusion by rubella virus. This provides important insight into the entry mechanism of rubella virus. This study also presents a model of hemifusion arrest during cell entry by an intact virus, providing a useful tool for analyzing membrane fusion, a biologically important phenomenon.
Collapse
|
16
|
Klug YA, Schwarzer R, Ravula T, Rotem E, Ramamoorthy A, Shai Y. Structural and Mechanistic Evidence for Calcium Interacting Sites in the HIV Transmembrane Protein gp41 Involved in Membrane Fusion. Biochemistry 2022; 61:1915-1922. [PMID: 35994087 PMCID: PMC9454089 DOI: 10.1021/acs.biochem.2c00372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 08/05/2022] [Indexed: 11/29/2022]
Abstract
The HIV envelope protein gp160 comprises two subunits, gp120 and gp41, responsible for receptor binding and membrane fusion during viral entry, respectively. In the course of the membrane fusion process, gp41 undergoes a conformational change, leading to the formation of a six-helix bundle (SHB), which ultimately drives membrane fusion. The gp41 C-terminal and N-terminal heptad repeats (CHR and NHR) interact with one another to form the SHB, and this step can be targeted by peptide inhibitors, which are used in the clinic to mitigate HIV infection. Here, we discover the calcium interaction motifs (CIMs) in the gp41 CHR and NHR regions via NMR spectroscopy. We find that the assembly of the CHR-NHR SHB is facilitated in Ca2+-containing media and impaired in CIM mutants. Of note, the clinically approved, gp41-derived fusion inhibitor T20, which does not contain the CIM motif, exhibits reduced inhibitory efficiency when challenged with calcium. This finding could have important implications for the development of better fusion inhibitors for HIV.
Collapse
Affiliation(s)
- Yoel A. Klug
- Department
of Biomolecular Sciences, The Weizmann Institute
of Science, Rehovot 7632701, Israel
| | - Roland Schwarzer
- Department
of Biomolecular Sciences, The Weizmann Institute
of Science, Rehovot 7632701, Israel
- Institute
for Translational HIV Research, University Hospital Essen, University of Duisburg-Essen, Essen 45147, Germany
| | - Thirupathi Ravula
- Biophysics
Program, Department of Chemistry, Macromolecular Science and Engineering,
Biomedical Engineering, Michigan Neuroscience Institute, The University of Michigan, Ann Arbor, Michigan 48109-1055, United States
| | - Etai Rotem
- Department
of Biomolecular Sciences, The Weizmann Institute
of Science, Rehovot 7632701, Israel
| | - Ayyalusamy Ramamoorthy
- Biophysics
Program, Department of Chemistry, Macromolecular Science and Engineering,
Biomedical Engineering, Michigan Neuroscience Institute, The University of Michigan, Ann Arbor, Michigan 48109-1055, United States
| | - Yechiel Shai
- Department
of Biomolecular Sciences, The Weizmann Institute
of Science, Rehovot 7632701, Israel
| |
Collapse
|
17
|
Birtles D, Oh AE, Lee J. Exploring the
pH
dependence of the
SARS‐CoV
‐2 complete fusion domain and the role of its unique structural features. Protein Sci 2022. [PMCID: PMC9538437 DOI: 10.1002/pro.4390] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2022]
Abstract
SARS‐CoV‐2 may enter target cells through the process of membrane fusion at either the plasma (~pH 7.4–7.0) or endosomal (~pH 6.5–5.0) membrane in order to deliver its genetic information. The fusion domain (FD) of the spike glycoprotein is responsible for initiating fusion and is thus integral to the viral life cycle. The FD of SARS‐CoV‐2 is unique in that it consists of two structurally distinctive regions referred to as the fusion peptide (FP) and the fusion loop (FL); yet the molecular mechanisms behind how this FD perturbs the membrane to initiate fusion remains unclear. In this study via solution NMR, we witnessed only a slight conformational change in the FD between pH 7.4 and pH 5.0, resulting in a minor elongation of helix 1. However, we found that the FD's ability to mediate membrane fusion has a large and significant pH dependence, with fusion events being more readily induced at low pH. Interestingly, a biphasic relationship between the environmental pH and fusogenicity was discovered, suggesting a preference for the FD to initiate fusion at the late endosomal membrane. Furthermore, the conserved disulfide bond and hydrophobic motif “LLF” were found to be critical for the function of the complete FD, with minimal activity witnessed when either was perturbed. In conclusion, these findings indicate that the SARS‐CoV‐2 FD preferably initiates fusion at a pH similar to the late endosome through a mechanism that heavily relies on the internal disulfide bond of the FL and hydrophobic LLF motif within the FP.
Collapse
Affiliation(s)
- Daniel Birtles
- Department of Chemistry and Biochemistry University of Maryland College Park Maryland USA
| | - Anna E. Oh
- Department of Chemistry and Biochemistry University of Maryland College Park Maryland USA
| | - Jinwoo Lee
- Department of Chemistry and Biochemistry University of Maryland College Park Maryland USA
| |
Collapse
|
18
|
Singh P, Mukherji S, Basak S, Hoffmann M, Das DK. Dynamic Ca 2+ sensitivity stimulates the evolved SARS-CoV-2 spike strain-mediated membrane fusion for enhanced entry. Cell Rep 2022; 39:110694. [PMID: 35397208 PMCID: PMC8993541 DOI: 10.1016/j.celrep.2022.110694] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Revised: 12/10/2021] [Accepted: 03/25/2022] [Indexed: 12/18/2022] Open
Abstract
Mutations in the spike protein generated a highly infectious and transmissible D614G variant, which is present in newly evolved fast-spreading variants. The D614G, Alpha, Beta, and Delta spike variants of SARS-CoV-2 appear to expedite membrane fusion process for entry, but the mechanism of spike-mediated fusion is unknown. Here, we reconstituted an in vitro pseudovirus-liposome fusion reaction and report that SARS-CoV-2 wild-type spike is a dynamic Ca2+ sensor, and D614G mutation enhances dynamic calcium sensitivity of spike protein for facilitating membrane fusion. This dynamic calcium sensitivity for fusion is found to be higher in Alpha and Beta variants and highest in Delta spike variant. We find that efficient fusion is dependent on Ca2+ concentration at low pH, and the fusion activity of spike dropped as the Ca2+ level rose beyond physiological levels. Thus, evolved spike variants may control the high fusion probability for entry by increasing Ca2+ sensing ability.
Collapse
Affiliation(s)
- Puspangana Singh
- Department of Biological Sciences and Bioengineering, Indian Institute of Technology Kanpur, Kanpur, Uttar Pradesh 208016, India
| | - Shreya Mukherji
- Department of Biological Sciences and Bioengineering, Indian Institute of Technology Kanpur, Kanpur, Uttar Pradesh 208016, India
| | - Swarnendu Basak
- Department of Biological Sciences and Bioengineering, Indian Institute of Technology Kanpur, Kanpur, Uttar Pradesh 208016, India
| | - Markus Hoffmann
- Infection Biology Unit, German Primate Center, Kellnerweg 4, 37077 Göttingen, Germany; Faculty of Biology and Psychology, Georg-August-University Göttingen, Wilhelmsplatz 1, 37073 Göttingen, Germany
| | - Dibyendu Kumar Das
- Department of Biological Sciences and Bioengineering, Indian Institute of Technology Kanpur, Kanpur, Uttar Pradesh 208016, India; The Mehta Family Center for Engineering in Medicine, Indian Institute of Technology Kanpur, Kanpur, Uttar Pradesh 208016, India.
| |
Collapse
|
19
|
di Filippo L, Doga M, Frara S, Giustina A. Hypocalcemia in COVID-19: Prevalence, clinical significance and therapeutic implications. Rev Endocr Metab Disord 2022; 23:299-308. [PMID: 33846867 PMCID: PMC8041474 DOI: 10.1007/s11154-021-09655-z] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 04/09/2021] [Indexed: 01/08/2023]
Abstract
COVID-19 extra-pulmonary features include several endocrine manifestations and these are becoming strongly clinically relevant in patients affected influencing disease severity and outcomes.At the beginning of COVID-19 pandemic no population data on calcium levels in patients affected were available and in April 2020 a first case of severe acute hypocalcemia in an Italian patient with SARS-CoV-2 infection was reported. Subsequently, several studies reported hypocalcemia as a highly prevalent biochemical abnormality in COVID-19 patients with a marked negative influence on disease severity, biochemical inflammation and thrombotic markers, and mortality. Also a high prevalence of vertebral fractures with worse respiratory impairment in patients affected and a widespread vitamin D deficiency have been frequently observed, suggesting an emerging "Osteo-Metabolic Phenotype" in COVID-19.To date, several potential pathophysiological factors have been hypothesized to play a role in determining hypocalcemia in COVID-19 including calcium dependent viral mechanisms of action, high prevalence of hypovitaminosis D in general population, chronic and acute malnutrition during critical illness and high levels of unbound and unsaturated fatty acids in inflammatory responses.Since hypocalcemia is a frequent biochemical finding in hospitalized COVID-19 patients possibly predicting worse outcomes and leading to acute cardiovascular and neurological complications if severe, it is reasonable to assess, monitor and, if indicated, replace calcium at first patient hospital evaluation and during hospitalization.
Collapse
Affiliation(s)
- Luigi di Filippo
- Institute of Endocrine and Metabolic Sciences, Università Vita-Salute San Raffaele, IRCCS Ospedale San Raffaele, Milan, Italy
| | - Mauro Doga
- Institute of Endocrine and Metabolic Sciences, Università Vita-Salute San Raffaele, IRCCS Ospedale San Raffaele, Milan, Italy
| | - Stefano Frara
- Institute of Endocrine and Metabolic Sciences, Università Vita-Salute San Raffaele, IRCCS Ospedale San Raffaele, Milan, Italy
| | - Andrea Giustina
- Institute of Endocrine and Metabolic Sciences, Università Vita-Salute San Raffaele, IRCCS Ospedale San Raffaele, Milan, Italy
| |
Collapse
|
20
|
Identification of endoplasmic-reticulum-associated proteins involved in Bombyx mori nucleopolyhedrovirus entry by RNA-seq analysis. Arch Virol 2022; 167:1051-1059. [PMID: 35201427 DOI: 10.1007/s00705-022-05397-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Accepted: 01/13/2022] [Indexed: 11/02/2022]
Abstract
Membrane fusion is a key step in enveloped virus infection, releasing the viral genome into the cytoplasm to initiate infection. Bombyx mori nucleopolyhedrovirus (BmNPV) is an enveloped DNA virus that mainly infects silkworms. Information about membrane fusion of BmNPV with host cells is still limited. In this study, BmN cells were pretreated with ??ammonium chloride??, and infection with BmNPV was allowed to occur naturally through endocytosis or artificially through low-pH-induced fusion with the plasma membrane, after which the cells were subjected to RNA-seq. The results indicated that a few endoplasmic reticulum-associated proteins (ERAPs) were among the common upregulated DEGs, including BiP, CRT, and HSP90, and this upregulation was confirmed by q-PCR. Knockdown of BiP, CRT, and HSP90 expression by siRNA resulted in significant inhibition of BmNPV infection. This study suggests that ERAPs may be involved in the BmNPV membrane fusion process during infection.
Collapse
|
21
|
Straus MR, Bidon MK, Tang T, Jaimes JA, Whittaker GR, Daniel S. Inhibitors of L-Type Calcium Channels Show Therapeutic Potential for Treating SARS-CoV-2 Infections by Preventing Virus Entry and Spread. ACS Infect Dis 2021; 7:2807-2815. [PMID: 34498840 PMCID: PMC8442615 DOI: 10.1021/acsinfecdis.1c00023] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Indexed: 01/06/2023]
Abstract
COVID-19 is caused by a novel coronavirus, the severe acute respiratory syndrome coronavirus (CoV)-2 (SARS-CoV-2). The virus is responsible for an ongoing pandemic and concomitant public health crisis around the world. While vaccine development is proving to be highly successful, parallel drug development approaches are also critical in the response to SARS-CoV-2 and other emerging viruses. Coronaviruses require Ca2+ ions for host cell entry, and we have previously shown that Ca2+ modulates the interaction of the viral fusion peptide with host cell membranes. In an attempt to accelerate drug repurposing, we tested a panel of L-type calcium channel blocker (CCB) drugs currently developed for other conditions to determine whether they would inhibit SARS-CoV-2 infection in cell culture. All the CCBs tested showed varying degrees of inhibition, with felodipine and nifedipine strongly limiting SARS-CoV-2 entry and infection in epithelial lung cells at concentrations where cell toxicity was minimal. Further studies with pseudotyped particles displaying the SARS-CoV-2 spike protein suggested that inhibition occurs at the level of virus entry. Overall, our data suggest that certain CCBs have the potential to treat SARS-CoV-2 infections and are worthy of further examination for possible treatment of COVID-19.
Collapse
Affiliation(s)
- Marco R. Straus
- Department of Microbiology & Immunology, College
of Veterinary Medicine, Cornell University, Ithaca, New York
14853, United States
| | - Miya K. Bidon
- Robert Frederick Smith School of Chemical &
Biomolecular Engineering, Cornell University, Ithaca, New York
14853, United States
| | - Tiffany Tang
- Robert Frederick Smith School of Chemical &
Biomolecular Engineering, Cornell University, Ithaca, New York
14853, United States
| | - Javier A. Jaimes
- Department of Microbiology & Immunology, College
of Veterinary Medicine, Cornell University, Ithaca, New York
14853, United States
| | - Gary R. Whittaker
- Department of Microbiology & Immunology, College
of Veterinary Medicine, Cornell University, Ithaca, New York
14853, United States
- Master of Public Health Program, Cornell
University, Ithaca, New York 14853, United States
| | - Susan Daniel
- Robert Frederick Smith School of Chemical &
Biomolecular Engineering, Cornell University, Ithaca, New York
14853, United States
| |
Collapse
|
22
|
Saurav S, Tanwar J, Ahuja K, Motiani RK. Dysregulation of host cell calcium signaling during viral infections: Emerging paradigm with high clinical relevance. Mol Aspects Med 2021; 81:101004. [PMID: 34304899 PMCID: PMC8299155 DOI: 10.1016/j.mam.2021.101004] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Revised: 05/18/2021] [Accepted: 07/16/2021] [Indexed: 12/22/2022]
Abstract
Viral infections are one of the leading causes of human illness. Viruses take over host cell signaling cascades for their replication and infection. Calcium (Ca2+) is a versatile and ubiquitous second messenger that modulates plethora of cellular functions. In last two decades, a critical role of host cell Ca2+ signaling in modulating viral infections has emerged. Furthermore, recent literature clearly implicates a vital role for the organellar Ca2+ dynamics (influx and efflux across organelles) in regulating virus entry, replication and severity of the infection. Therefore, it is not surprising that a number of viral infections including current SARS-CoV-2 driven COVID-19 pandemic are associated with dysregulated Ca2+ homeostasis. The focus of this review is to first discuss the role of host cell Ca2+ signaling in viral entry, replication and egress. We further deliberate on emerging literature demonstrating hijacking of the host cell Ca2+ dynamics by viruses. In particular, a variety of viruses including SARS-CoV-2 modulate lysosomal and cytosolic Ca2+ signaling for host cell entry and replication. Moreover, we delve into the recent studies, which have demonstrated the potential of several FDA-approved drugs targeting Ca2+ handling machinery in inhibiting viral infections. Importantly, we discuss the prospective of targeting intracellular Ca2+ signaling for better management and treatment of viral pathogenesis including COVID-19. Finally, we highlight the key outstanding questions in the field that demand critical and timely attention.
Collapse
Affiliation(s)
- Suman Saurav
- Laboratory of Calciomics and Systemic Pathophysiology, Regional Centre for Biotechnology (RCB), Faridabad-121001, Delhi-NCR, India
| | - Jyoti Tanwar
- CSIR-Institute of Genomics and Integrative Biology (IGIB), New Delhi-110025, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad-201002, India
| | - Kriti Ahuja
- Laboratory of Calciomics and Systemic Pathophysiology, Regional Centre for Biotechnology (RCB), Faridabad-121001, Delhi-NCR, India
| | - Rajender K Motiani
- Laboratory of Calciomics and Systemic Pathophysiology, Regional Centre for Biotechnology (RCB), Faridabad-121001, Delhi-NCR, India.
| |
Collapse
|
23
|
Taheri M, Bahrami A, Habibi P, Nouri F. A Review on the Serum Electrolytes and Trace Elements Role in the Pathophysiology of COVID-19. Biol Trace Elem Res 2021; 199:2475-2481. [PMID: 32901413 PMCID: PMC7478435 DOI: 10.1007/s12011-020-02377-4] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Accepted: 09/02/2020] [Indexed: 01/01/2023]
Abstract
All the world is involved in the COVID-19 disease caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Coronavirus is a positive-sense RNA and has an envelope. There is no specific drug for this disease and treatment methods are limited. Malnutrition and electrolyte imbalance can make dysfunction in the immune system and impairment of the immune system causes increasing the risk of infection. Understanding the aspects of biological features of the virus will help the development of diagnostic tests, pharmacological therapies, and vaccines. Here, we review and discuss increasing and decreasing some trace elements and imbalance of serum and plasma electrolytes involving in COVID-19.
Collapse
Affiliation(s)
- Mohammad Taheri
- Department of Medical Microbiology, Faculty of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Ali Bahrami
- Student Research Committee, Hamadan University of Medical Sciences, Hamadan, Iran
- Department of Pharmaceutical Biotechnology, School of Pharmacy, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Parisa Habibi
- Neurophysiology Research Center, Faculty of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Fatemeh Nouri
- Department of Pharmaceutical Biotechnology, School of Pharmacy, Hamadan University of Medical Sciences, Hamadan, Iran.
| |
Collapse
|
24
|
Lai AL, Freed JH. SARS-CoV-2 Fusion Peptide has a Greater Membrane Perturbating Effect than SARS-CoV with Highly Specific Dependence on Ca 2. J Mol Biol 2021; 433:166946. [PMID: 33744314 PMCID: PMC7969826 DOI: 10.1016/j.jmb.2021.166946] [Citation(s) in RCA: 47] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 03/11/2021] [Accepted: 03/11/2021] [Indexed: 11/03/2022]
Abstract
Coronaviruses are a major infectious disease threat, and include the zoonotic-origin human pathogens SARS-CoV-2, SARS-CoV, and MERS-CoV (SARS-2, SARS-1, and MERS). Entry of coronaviruses into host cells is mediated by the spike (S) protein. In our previous ESR studies, the local membrane ordering effect of the fusion peptide (FP) of various viral glycoproteins including the S of SARS-1 and MERS has been consistently observed. We previously determined that the sequence immediately downstream from the S2' cleavage site is the bona fide SARS-1 FP. In this study, we used sequence alignment to identify the SARS-2 FP, and studied its membrane ordering effect. Although there are only three residue differences, SARS-2 FP induces even greater membrane ordering than SARS-1 FP, possibly due to its greater hydrophobicity. This may be a reason that SARS-2 is better able to infect host cells. In addition, the membrane binding enthalpy for SARS-2 is greater. Both the membrane ordering of SARS-2 and SARS-1 FPs are dependent on Ca2+, but that of SARS-2 shows a greater response to the presence of Ca2+. Both FPs bind two Ca2+ ions as does SARS-1 FP, but the two Ca2+ binding sites of SARS-2 exhibit greater cooperativity. This Ca2+ dependence by the SARS-2 FP is very ion-specific. These results show that Ca2+ is an important regulator that interacts with the SARS-2 FP and thus plays a significant role in SARS-2 viral entry. This could lead to therapeutic solutions that either target the FP-calcium interaction or block the Ca2+ channel.
Collapse
Affiliation(s)
- Alex L Lai
- ACERT, Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY 14853, United States
| | - Jack H Freed
- ACERT, Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY 14853, United States.
| |
Collapse
|
25
|
Abstract
Rubella virus (RUBV), a rubivirus, is an airborne human pathogen that generally causes mild measles-like symptoms in children or adults. However, RUBV infection of pregnant women can result in miscarriage or congenital rubella syndrome (CRS), a collection of long-term birth defects including incomplete organ development and mental retardation. Worldwide vaccination campaigns have significantly reduced the number of RUBV infections, but RUBV continues to be a problem in countries with low vaccination coverage. Further, the recent discovery of pathogenic rubiviruses in other mammals emphasizes the spillover potential of rubella-related viruses to humans. In the last decade, our understanding of RUBV has been significantly increased by virological, biochemical, and structural studies, providing a platform to begin understanding the life cycle of RUBV at the molecular level. This review concentrates on recent work on RUBV, focusing on the virion, its structural components, and its entry, fusion, and assembly mechanisms. Important features of RUBV are compared with those of viruses from other families. We also use comparative genomics, manual curation, and protein homology modeling to highlight distinct features of RUBV that are evolutionarily conserved in the non-human rubiviruses. Since rubella-like viruses may potentially have higher pathogenicity and transmissibility to humans, we also propose a framework for utilizing RUBV as a model to study its more pathogenic cousins.
Collapse
|
26
|
Dinesh DC, Tamilarasan S, Rajaram K, Bouřa E. Antiviral Drug Targets of Single-Stranded RNA Viruses Causing Chronic Human Diseases. Curr Drug Targets 2021; 21:105-124. [PMID: 31538891 DOI: 10.2174/1389450119666190920153247] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2019] [Revised: 08/08/2019] [Accepted: 08/08/2019] [Indexed: 02/08/2023]
Abstract
Ribonucleic acid (RNA) viruses associated with chronic diseases in humans are major threats to public health causing high mortality globally. The high mutation rate of RNA viruses helps them to escape the immune response and also is responsible for the development of drug resistance. Chronic infections caused by human immunodeficiency virus (HIV) and hepatitis viruses (HBV and HCV) lead to acquired immunodeficiency syndrome (AIDS) and hepatocellular carcinoma respectively, which are one of the major causes of human deaths. Effective preventative measures to limit chronic and re-emerging viral infections are absolutely necessary. Each class of antiviral agents targets a specific stage in the viral life cycle and inhibits them from its development and proliferation. Most often, antiviral drugs target a specific viral protein, therefore only a few broad-spectrum drugs are available. This review will be focused on the selected viral target proteins of pathogenic viruses containing single-stranded (ss) RNA genome that causes chronic infections in humans (e.g. HIV, HCV, Flaviviruses). In the recent past, an exponential increase in the number of available three-dimensional protein structures (>150000 in Protein Data Bank), allowed us to better understand the molecular mechanism of action of protein targets and antivirals. Advancements in the in silico approaches paved the way to design and develop several novels, highly specific small-molecule inhibitors targeting the viral proteins.
Collapse
Affiliation(s)
| | - Selvaraj Tamilarasan
- Section of Microbial Biotechnology, Charles Tanford Protein Center, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany
| | - Kaushik Rajaram
- Department of Microbiology, Central University of Tamil Nadu, Thiruvarur, India
| | - Evžen Bouřa
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Prague, Czech Republic
| |
Collapse
|
27
|
Lim JH, Jung HY, Choi JY, Park SH, Kim CD, Kim YL, Cho JH. Hypertension and Electrolyte Disorders in Patients with COVID-19. Electrolyte Blood Press 2020; 18:23-30. [PMID: 33408744 PMCID: PMC7781764 DOI: 10.5049/ebp.2020.18.2.23] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2020] [Revised: 11/21/2020] [Accepted: 11/22/2020] [Indexed: 02/07/2023] Open
Abstract
The worldwide coronavirus disease 2019 (COVID-19) pandemic is still in progress, but much remains unknown about the disease. In this article, we review the association of hypertension or the renin-angiotensin system (RAS) with COVID-19 and the correlation between electrolyte disorders and disease severity. Underlying hypertension is likely to be associated with severe or critical COVID-19, but the relationship is not clear owing to confounding factors. Angiotensin-converting enzyme 2 (ACE2) plays an important role in the non-classical RAS pathway and binds to a receptor binding domain of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). The RAS blockade is known to increase ACE2 levels, but controversy remains regarding the effect of RAS blockade therapy in the course of COVID-19. Some reports have indicated a protective effect of RAS blockade on COVID-19, whereas others have reported an association of RAS blockade therapy with the occurrence of severe complications such as acute kidney injury and admission to the intensive care unit. Electrolyte disorders are not uncommon in patients with COVID-19, and severe COVID-19 has frequently shown hypokalemia, hyponatremia, and hypocalcemia. Electrolyte imbalances are caused by alteration of RAS, gastrointestinal loss, effects of proinflammatory cytokines, and renal tubular dysfunction by the invasion of SARS-CoV-2.
Collapse
Affiliation(s)
- Jeong-Hoon Lim
- Division of Nephrology, Department of Internal Medicine, Kyungpook National University Hospital, Kyungpook National University School of Medicine, Daegu, Korea
| | - Hee-Yeon Jung
- Division of Nephrology, Department of Internal Medicine, Kyungpook National University Hospital, Kyungpook National University School of Medicine, Daegu, Korea
| | - Ji-Young Choi
- Division of Nephrology, Department of Internal Medicine, Kyungpook National University Hospital, Kyungpook National University School of Medicine, Daegu, Korea
| | - Sun-Hee Park
- Division of Nephrology, Department of Internal Medicine, Kyungpook National University Hospital, Kyungpook National University School of Medicine, Daegu, Korea
| | - Chan-Duck Kim
- Division of Nephrology, Department of Internal Medicine, Kyungpook National University Hospital, Kyungpook National University School of Medicine, Daegu, Korea
| | - Yong-Lim Kim
- Division of Nephrology, Department of Internal Medicine, Kyungpook National University Hospital, Kyungpook National University School of Medicine, Daegu, Korea
| | - Jang-Hee Cho
- Division of Nephrology, Department of Internal Medicine, Kyungpook National University Hospital, Kyungpook National University School of Medicine, Daegu, Korea
| |
Collapse
|
28
|
ACE2: from protection of liver disease to propagation of COVID-19. Clin Sci (Lond) 2020; 134:3137-3158. [PMID: 33284956 DOI: 10.1042/cs20201268] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Revised: 11/19/2020] [Accepted: 11/23/2020] [Indexed: 01/08/2023]
Abstract
Twenty years ago, the discovery of angiotensin-converting enzyme 2 (ACE2) was an important breakthrough dramatically enhancing our understanding of the renin-angiotensin system (RAS). The classical RAS is driven by its key enzyme ACE and is pivotal in the regulation of blood pressure and fluid homeostasis. More recently, it has been recognised that the protective RAS regulated by ACE2 counterbalances many of the deleterious effects of the classical RAS. Studies in murine models demonstrated that manipulating the protective RAS can dramatically alter many diseases including liver disease. Liver-specific overexpression of ACE2 in mice with liver fibrosis has proved to be highly effective in antagonising liver injury and fibrosis progression. Importantly, despite its highly protective role in disease pathogenesis, ACE2 is hijacked by SARS-CoV-2 as a cellular receptor to gain entry to alveolar epithelial cells, causing COVID-19, a severe respiratory disease in humans. COVID-19 is frequently life-threatening especially in elderly or people with other medical conditions. As an unprecedented number of COVID-19 patients have been affected globally, there is an urgent need to discover novel therapeutics targeting the interaction between the SARS-CoV-2 spike protein and ACE2. Understanding the role of ACE2 in physiology, pathobiology and as a cellular receptor for SARS-CoV-2 infection provides insight into potential new therapeutic strategies aiming to prevent SARS-CoV-2 infection related tissue injury. This review outlines the role of the RAS with a strong focus on ACE2-driven protective RAS in liver disease and provides therapeutic approaches to develop strategies to prevent SARS-CoV-2 infection in humans.
Collapse
|
29
|
Galindo I, Garaigorta U, Lasala F, Cuesta-Geijo MA, Bueno P, Gil C, Delgado R, Gastaminza P, Alonso C. Antiviral drugs targeting endosomal membrane proteins inhibit distant animal and human pathogenic viruses. Antiviral Res 2020; 186:104990. [PMID: 33249093 PMCID: PMC7690281 DOI: 10.1016/j.antiviral.2020.104990] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Revised: 11/17/2020] [Accepted: 11/23/2020] [Indexed: 01/18/2023]
Abstract
The endocytic pathway is a common strategy that several highly pathogenic viruses use to enter into the cell. To demonstrate the usefulness of this pathway as a common target for the development of broad-spectrum antivirals, the inhibitory effect of drug compounds targeting endosomal membrane proteins were investigated. This study entailed direct comparison of drug effectiveness against animal and human pathogenic viruses, namely Ebola (EBOV), African swine fever virus (ASFV), and the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). A panel of experimental and FDA-approved compounds targeting calcium channels and PIKfyve at the endosomal membrane caused potent reductions of entry up to 90% in SARS-CoV-2 S-protein pseudotyped retrovirus. Similar inhibition was observed against transduced EBOV glycoprotein pseudovirus and ASFV. SARS-CoV-2 infection was potently inhibited by selective estrogen receptor modulators in cells transduced with pseudovirus, among them Raloxifen inhibited ASFV with very low 50% inhibitory concentration. Finally, the mechanism of the inhibition caused by the latter in ASFV infection was analyzed. Overall, this work shows that cellular proteins related to the endocytic pathway can constitute suitable cellular targets for broad range antiviral compounds.
Collapse
Affiliation(s)
- I Galindo
- Dpt. Biotechnology, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Ctra. de la Coruña Km 7.5, 28040, Madrid, Spain
| | - U Garaigorta
- Centro Nacional de Biotecnología CSIC, Calle Darwin 3, 28049, Madrid, Spain
| | - F Lasala
- Instituto de Investigación Biomédica Hospital, 12 de Octubre S/n, 28041, Madrid, Spain
| | - M A Cuesta-Geijo
- Dpt. Biotechnology, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Ctra. de la Coruña Km 7.5, 28040, Madrid, Spain; Centro de Investigaciones Biológicas Margarita Salas (CSIC), Ramiro de Maeztu 9, 28040, Madrid, Spain
| | - P Bueno
- Instituto de Investigación Biomédica Hospital, 12 de Octubre S/n, 28041, Madrid, Spain
| | - C Gil
- Centro de Investigaciones Biológicas Margarita Salas (CSIC), Ramiro de Maeztu 9, 28040, Madrid, Spain
| | - R Delgado
- Instituto de Investigación Biomédica Hospital, 12 de Octubre S/n, 28041, Madrid, Spain
| | - P Gastaminza
- Centro Nacional de Biotecnología CSIC, Calle Darwin 3, 28049, Madrid, Spain
| | - C Alonso
- Dpt. Biotechnology, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Ctra. de la Coruña Km 7.5, 28040, Madrid, Spain.
| |
Collapse
|
30
|
Cashman DP. Why the lower reported prevalence of asthma in patients diagnosed with COVID-19 validates repurposing EDTA solutions to prevent and manage treat COVID-19 disease. Med Hypotheses 2020; 144:110027. [PMID: 32758873 PMCID: PMC7319607 DOI: 10.1016/j.mehy.2020.110027] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Revised: 06/11/2020] [Accepted: 06/20/2020] [Indexed: 12/24/2022]
Abstract
There currently is no specific antiviral drug or a vaccine for SARS-CoV-2/COVID-19 infections; now exceeding 10,300,000 infections worldwide. In the absence of animal models to test drugs, we need to find molecular explanations for any unforeseen peculiarities in clinical data, especially the recent reports describing an unexpected asthma paradox. Asthma is considered a high medical risk factor for susceptibility to SARS-CoV-2/COVID-19 infection, yet asthma is not on the list of top 10 chronic health problems suffered by people who died from SARS-CoV-2/COVID-19. Resolving this paradox requires looking beyond the binary model of a viral receptor-binding domain (RBD) attaching to the ACE-2 receptor. A NCBI pBlast analysis revealed that the SARS-CoV-2 surface spike protein contains key two calcium-dependent fusion domains that are almost identical to those that were recently discovered SARS-CoV-1. These viral calcium-dependent binding domains can facilitate membrane fusion only after cleavage by the host surface protease TMPRSS2. Importantly, TMPRSS2 also requires calcium for its SRCR (scavenger receptor cysteine-rich) domain and its LDLRA (LDL receptor class A) domain. Thus, the presence of EDTA excipients in nebulized β2-agonist medicines can disrupt SARS-CoV-2/COVID-19 infection and can explain the asthma paradox. This model validates repurposing EDTA in nebulizer solutions from a passive excipient to an active drug for treating COVID-19 infections. Repurposed EDTA delivery to respiratory tissues at an initial target dose of 2.4 mg per aerosol treatment is readily achievable with standard nebulizer and mechanical ventilator equipment. EDTA warrants further investigation as a potential treatment for SARS-CoV-2/COVID-19 in consideration of the new calcium requirements for virus infection and the regular presence of EDTA excipients in common asthma medications such as Metaproterenol. Finally, the natural history of Coronavirus diseases and further analysis of the fusion loop homologies between the Betacorona SARS-CoV-2 virus and the less pathogenic Alphacorona HC0V-229E virus suggest how to engineer a hybrid virus suitable for an attenuated alpha-beta SARS-CoV-2/COVID-19 vaccine. Thus, replacing SARS-CoV-2 fusion loops (amino acids 816–855) with the less pathogenic HCoV-229E fusion loop (amino acids 923–982) may provide antigenicity of COVID-19, but limit the pathogenicity to the level of HCoV-229E.
Collapse
|
31
|
Straus MR, Tang T, Lai AL, Flegel A, Bidon M, Freed JH, Daniel S, Whittaker GR. Ca 2+ Ions Promote Fusion of Middle East Respiratory Syndrome Coronavirus with Host Cells and Increase Infectivity. J Virol 2020. [PMID: 32295925 DOI: 10.1101/2019.12.18.881391] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/26/2023] Open
Abstract
Fusion with, and subsequent entry into, the host cell is one of the critical steps in the life cycle of enveloped viruses. For Middle East respiratory syndrome coronavirus (MERS-CoV), the spike (S) protein is the main determinant of viral entry. Proteolytic cleavage of the S protein exposes its fusion peptide (FP), which initiates the process of membrane fusion. Previous studies on the related severe acute respiratory syndrome coronavirus (SARS-CoV) FP have shown that calcium ions (Ca2+) play an important role in fusogenic activity via a Ca2+ binding pocket with conserved glutamic acid (E) and aspartic acid (D) residues. SARS-CoV and MERS-CoV FPs share a high sequence homology, and here, we investigated whether Ca2+ is required for MERS-CoV fusion by screening a mutant array in which E and D residues in the MERS-CoV FP were substituted with neutrally charged alanines (A). Upon verifying mutant cell surface expression and proteolytic cleavage, we tested their ability to mediate pseudoparticle (PP) infection of host cells in modulating Ca2+ environments. Our results demonstrate that intracellular Ca2+ enhances MERS-CoV wild-type (WT) PP infection by approximately 2-fold and that E891 is a crucial residue for Ca2+ interaction. Subsequent electron spin resonance (ESR) experiments revealed that this enhancement could be attributed to Ca2+ increasing MERS-CoV FP fusion-relevant membrane ordering. Intriguingly, isothermal calorimetry showed an approximate 1:1 MERS-CoV FP to Ca2+ ratio, as opposed to an 1:2 SARS-CoV FP to Ca2+ ratio, suggesting significant differences in FP Ca2+ interactions of MERS-CoV and SARS-CoV FP despite their high sequence similarity.IMPORTANCE Middle East respiratory syndrome coronavirus (MERS-CoV) is a major emerging infectious disease with zoonotic potential and has reservoirs in dromedary camels and bats. Since its first outbreak in 2012, the virus has repeatedly transmitted from camels to humans, with 2,468 confirmed cases causing 851 deaths. To date, there are no efficacious drugs and vaccines against MERS-CoV, increasing its potential to cause a public health emergency. In order to develop novel drugs and vaccines, it is important to understand the molecular mechanisms that enable the virus to infect host cells. Our data have found that calcium is an important regulator of viral fusion by interacting with negatively charged residues in the MERS-CoV FP region. This information can guide therapeutic solutions to block this calcium interaction and also repurpose already approved drugs for this use for a fast response to MERS-CoV outbreaks.
Collapse
Affiliation(s)
- Marco R Straus
- Department of Microbiology and Immunology, Cornell University, Ithaca, New York, USA
| | - Tiffany Tang
- Robert Frederick Smith School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, New York, USA
| | - Alex L Lai
- ACERT, Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York, USA
| | - Annkatrin Flegel
- Department of Microbiology and Immunology, Cornell University, Ithaca, New York, USA
- Institute of Veterinary Biochemistry, Freie Universität Berlin, Berlin, Germany
| | - Miya Bidon
- Robert Frederick Smith School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, New York, USA
| | - Jack H Freed
- ACERT, Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York, USA
| | - Susan Daniel
- Robert Frederick Smith School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, New York, USA
| | - Gary R Whittaker
- Department of Microbiology and Immunology, Cornell University, Ithaca, New York, USA
| |
Collapse
|
32
|
Ca 2+ Ions Promote Fusion of Middle East Respiratory Syndrome Coronavirus with Host Cells and Increase Infectivity. J Virol 2020; 94:JVI.00426-20. [PMID: 32295925 DOI: 10.1128/jvi.00426-20] [Citation(s) in RCA: 73] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Accepted: 04/07/2020] [Indexed: 12/12/2022] Open
Abstract
Fusion with, and subsequent entry into, the host cell is one of the critical steps in the life cycle of enveloped viruses. For Middle East respiratory syndrome coronavirus (MERS-CoV), the spike (S) protein is the main determinant of viral entry. Proteolytic cleavage of the S protein exposes its fusion peptide (FP), which initiates the process of membrane fusion. Previous studies on the related severe acute respiratory syndrome coronavirus (SARS-CoV) FP have shown that calcium ions (Ca2+) play an important role in fusogenic activity via a Ca2+ binding pocket with conserved glutamic acid (E) and aspartic acid (D) residues. SARS-CoV and MERS-CoV FPs share a high sequence homology, and here, we investigated whether Ca2+ is required for MERS-CoV fusion by screening a mutant array in which E and D residues in the MERS-CoV FP were substituted with neutrally charged alanines (A). Upon verifying mutant cell surface expression and proteolytic cleavage, we tested their ability to mediate pseudoparticle (PP) infection of host cells in modulating Ca2+ environments. Our results demonstrate that intracellular Ca2+ enhances MERS-CoV wild-type (WT) PP infection by approximately 2-fold and that E891 is a crucial residue for Ca2+ interaction. Subsequent electron spin resonance (ESR) experiments revealed that this enhancement could be attributed to Ca2+ increasing MERS-CoV FP fusion-relevant membrane ordering. Intriguingly, isothermal calorimetry showed an approximate 1:1 MERS-CoV FP to Ca2+ ratio, as opposed to an 1:2 SARS-CoV FP to Ca2+ ratio, suggesting significant differences in FP Ca2+ interactions of MERS-CoV and SARS-CoV FP despite their high sequence similarity.IMPORTANCE Middle East respiratory syndrome coronavirus (MERS-CoV) is a major emerging infectious disease with zoonotic potential and has reservoirs in dromedary camels and bats. Since its first outbreak in 2012, the virus has repeatedly transmitted from camels to humans, with 2,468 confirmed cases causing 851 deaths. To date, there are no efficacious drugs and vaccines against MERS-CoV, increasing its potential to cause a public health emergency. In order to develop novel drugs and vaccines, it is important to understand the molecular mechanisms that enable the virus to infect host cells. Our data have found that calcium is an important regulator of viral fusion by interacting with negatively charged residues in the MERS-CoV FP region. This information can guide therapeutic solutions to block this calcium interaction and also repurpose already approved drugs for this use for a fast response to MERS-CoV outbreaks.
Collapse
|
33
|
Tang T, Bidon M, Jaimes JA, Whittaker GR, Daniel S. Coronavirus membrane fusion mechanism offers a potential target for antiviral development. Antiviral Res 2020. [PMID: 32272173 DOI: 10.1016/j.antiviral.2020] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/17/2023]
Abstract
The coronavirus disease 2019 (COVID-19) pandemic has focused attention on the need to develop effective therapies against the causative agent, SARS-CoV-2, and also against other pathogenic coronaviruses (CoV) that have emerged in the past or might appear in future. Researchers are therefore focusing on steps in the CoV replication cycle that may be vulnerable to inhibition by broad-spectrum or specific antiviral agents. The conserved nature of the fusion domain and mechanism across the CoV family make it a valuable target to elucidate and develop pan-CoV therapeutics. In this article, we review the role of the CoV spike protein in mediating fusion of the viral and host cell membranes, summarizing the results of research on SARS-CoV, MERS-CoV, and recent peer-reviewed studies of SARS-CoV-2, and suggest that the fusion mechanism be investigated as a potential antiviral target. We also provide a supplemental file containing background information on the biology, epidemiology, and clinical features of all human-infecting coronaviruses, along with a phylogenetic tree of these coronaviruses.
Collapse
Affiliation(s)
- Tiffany Tang
- Robert Frederick Smith School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, NY, 14853, USA
| | - Miya Bidon
- Robert Frederick Smith School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, NY, 14853, USA
| | - Javier A Jaimes
- Department of Microbiology and Immunology, Cornell University, Ithaca, NY, 14853, USA
| | - Gary R Whittaker
- Department of Microbiology and Immunology, Cornell University, Ithaca, NY, 14853, USA
| | - Susan Daniel
- Robert Frederick Smith School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, NY, 14853, USA.
| |
Collapse
|
34
|
Tang T, Bidon M, Jaimes JA, Whittaker GR, Daniel S. Coronavirus membrane fusion mechanism offers a potential target for antiviral development. Antiviral Res 2020; 178:104792. [PMID: 32272173 PMCID: PMC7194977 DOI: 10.1016/j.antiviral.2020.104792] [Citation(s) in RCA: 521] [Impact Index Per Article: 130.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2020] [Revised: 04/05/2020] [Accepted: 04/05/2020] [Indexed: 12/14/2022]
Abstract
The coronavirus disease 2019 (COVID-19) pandemic has focused attention on the need to develop effective therapies against the causative agent, SARS-CoV-2, and also against other pathogenic coronaviruses (CoV) that have emerged in the past or might appear in future. Researchers are therefore focusing on steps in the CoV replication cycle that may be vulnerable to inhibition by broad-spectrum or specific antiviral agents. The conserved nature of the fusion domain and mechanism across the CoV family make it a valuable target to elucidate and develop pan-CoV therapeutics. In this article, we review the role of the CoV spike protein in mediating fusion of the viral and host cell membranes, summarizing the results of research on SARS-CoV, MERS-CoV, and recent peer-reviewed studies of SARS-CoV-2, and suggest that the fusion mechanism be investigated as a potential antiviral target. We also provide a supplemental file containing background information on the biology, epidemiology, and clinical features of all human-infecting coronaviruses, along with a phylogenetic tree of these coronaviruses.
Collapse
Affiliation(s)
- Tiffany Tang
- Robert Frederick Smith School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, NY, 14853, USA
| | - Miya Bidon
- Robert Frederick Smith School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, NY, 14853, USA
| | - Javier A Jaimes
- Department of Microbiology and Immunology, Cornell University, Ithaca, NY, 14853, USA
| | - Gary R Whittaker
- Department of Microbiology and Immunology, Cornell University, Ithaca, NY, 14853, USA
| | - Susan Daniel
- Robert Frederick Smith School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, NY, 14853, USA.
| |
Collapse
|
35
|
Nathan L, Lai AL, Millet JK, Straus MR, Freed JH, Whittaker GR, Daniel S. Calcium Ions Directly Interact with the Ebola Virus Fusion Peptide To Promote Structure-Function Changes That Enhance Infection. ACS Infect Dis 2020; 6:250-260. [PMID: 31746195 DOI: 10.1021/acsinfecdis.9b00296] [Citation(s) in RCA: 61] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Ebola virus disease is a serious global health concern given its periodic occurrence, high lethality, and the lack of approved therapeutics. Certain drugs that alter intracellular calcium, particularly in endolysosomes, have been shown to inhibit Ebola virus infection; however, the underlying mechanism is unknown. Here, we provide evidence that Zaire ebolavirus (EBOV) infection is promoted in the presence of calcium as a result of the direct interaction of calcium with the EBOV fusion peptide (FP). We identify the glycoprotein residues D522 and E540 in the FP as functionally critical to EBOV's interaction with calcium. We show using spectroscopic and biophysical assays that interactions of the fusion peptide with Ca2+ ions lead to lipid ordering in the host membrane during membrane fusion, and these changes are promoted at low pH and can be correlated with infectivity. We further demonstrate using circular dichroism spectroscopy that calcium interaction with the fusion peptide promotes α-helical structure of the fusion peptide, a conformational change that enhances membrane fusion, as validated using functional assays of membrane fusion. This study shows that calcium directly targets the Ebola virus fusion peptide and influences its conformation. As these residues are highly conserved across the Filoviridae, calcium's impact on fusion, and subsequently infectivity, is a key interaction that can be leveraged for developing strategies to defend against Ebola infection. This mechanistic insight provides a rationale for the use of calcium-interfering drugs already approved by the FDA as therapeutics against Ebola and enables further development of novel drugs to combat the virus.
Collapse
Affiliation(s)
- Lakshmi Nathan
- Robert Frederick Smith School of Chemical and Biomolecular Engineering, Cornell University, 120 Olin Hall, Ithaca, New York 14853, United States
| | - Alex L. Lai
- Baker Laboratory, Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, United States
| | - Jean Kaoru Millet
- Department of Microbiology and Immunology, College of Veterinary Medicine, Cornell University, Ithaca, New York 14853, United States
| | - Marco R. Straus
- Department of Microbiology and Immunology, College of Veterinary Medicine, Cornell University, Ithaca, New York 14853, United States
| | - Jack H. Freed
- Baker Laboratory, Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, United States
| | - Gary R. Whittaker
- Department of Microbiology and Immunology, College of Veterinary Medicine, Cornell University, Ithaca, New York 14853, United States
| | - Susan Daniel
- Robert Frederick Smith School of Chemical and Biomolecular Engineering, Cornell University, 120 Olin Hall, Ithaca, New York 14853, United States
| |
Collapse
|
36
|
Das DK, Bulow U, Diehl WE, Durham ND, Senjobe F, Chandran K, Luban J, Munro JB. Conformational changes in the Ebola virus membrane fusion machine induced by pH, Ca2+, and receptor binding. PLoS Biol 2020; 18:e3000626. [PMID: 32040508 PMCID: PMC7034923 DOI: 10.1371/journal.pbio.3000626] [Citation(s) in RCA: 58] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Revised: 02/21/2020] [Accepted: 01/23/2020] [Indexed: 12/22/2022] Open
Abstract
The Ebola virus (EBOV) envelope glycoprotein (GP) is a membrane fusion machine required for virus entry into cells. Following endocytosis of EBOV, the GP1 domain is cleaved by cellular cathepsins in acidic endosomes, removing the glycan cap and exposing a binding site for the Niemann-Pick C1 (NPC1) receptor. NPC1 binding to cleaved GP1 is required for entry. How this interaction translates to GP2 domain-mediated fusion of viral and endosomal membranes is not known. Here, using a bulk fluorescence dequenching assay and single-molecule Förster resonance energy transfer (smFRET)-imaging, we found that acidic pH, Ca2+, and NPC1 binding synergistically induce conformational changes in GP2 and permit virus-liposome lipid mixing. Acidic pH and Ca2+ shifted the GP2 conformational equilibrium in favor of an intermediate state primed for NPC1 binding. Glycan cap cleavage on GP1 enabled GP2 to transition from a reversible intermediate to an irreversible conformation, suggestive of the postfusion 6-helix bundle; NPC1 binding further promoted transition to the irreversible conformation. Thus, the glycan cap of GP1 may allosterically protect against inactivation of EBOV by premature triggering of GP2. The Ebola virus envelope glycoprotein is a membrane fusion machine required for the virus to enter into host cells. This study presents direct observation of the conformational changes that the envelope glycoprotein undergoes during the membrane fusion process.
Collapse
Affiliation(s)
- Dibyendu Kumar Das
- Department of Molecular Biology and Microbiology, Tufts University School of Medicine and Sackler School of Graduate Biomedical Sciences, Boston, Massachusetts, United States of America
- Department of Biological Sciences and Bioengineering, Indian Institute of Technology, Kanpur, India
- * E-mail: (JBM); (DKD)
| | - Uriel Bulow
- Department of Molecular Biology and Microbiology, Tufts University School of Medicine and Sackler School of Graduate Biomedical Sciences, Boston, Massachusetts, United States of America
| | - William E. Diehl
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, Massachusetts, United States of America
| | - Natasha D. Durham
- Department of Molecular Biology and Microbiology, Tufts University School of Medicine and Sackler School of Graduate Biomedical Sciences, Boston, Massachusetts, United States of America
- Department of Microbiology and Physiological Systems, University of Massachusetts Medical School, Worcester, Massachusetts, United States of America
| | - Fernando Senjobe
- Department of Molecular Biology and Microbiology, Tufts University School of Medicine and Sackler School of Graduate Biomedical Sciences, Boston, Massachusetts, United States of America
| | - Kartik Chandran
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, New York, United States of America
| | - Jeremy Luban
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, Massachusetts, United States of America
| | - James B. Munro
- Department of Molecular Biology and Microbiology, Tufts University School of Medicine and Sackler School of Graduate Biomedical Sciences, Boston, Massachusetts, United States of America
- Department of Microbiology and Physiological Systems, University of Massachusetts Medical School, Worcester, Massachusetts, United States of America
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, Massachusetts, United States of America
- * E-mail: (JBM); (DKD)
| |
Collapse
|
37
|
Heat Shock Protein 90 Ensures the Integrity of Rubella Virus p150 Protein and Supports Viral Replication. J Virol 2019; 93:JVI.01142-19. [PMID: 31484751 DOI: 10.1128/jvi.01142-19] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2019] [Accepted: 08/21/2019] [Indexed: 12/18/2022] Open
Abstract
Two viral nonstructural proteins, p150 and p90, are expressed in rubella virus (RUBV)-infected cells and mediate viral genome replication, presumably using various host machineries. Molecular chaperones are critical host factors for the maintenance of cellular proteostasis, and certain viral proteins use this chaperone system. The RUBV p150 and p90 proteins are generated from a precursor polyprotein, p200, via processing by the protease activity of its p150 region. This processing is essential for RUBV genome replication. Here we show that heat shock protein 90 (HSP90), a molecular chaperone, is an important host factor for RUBV genome replication. The treatment of RUBV-infected cells with the HSP90 inhibitors 17-allylamino-17-desmethoxygeldanamycin (17-AAG) and ganetespib suppressed RUBV genome replication. HSP90α physically interacted with p150, but not p90. Further analyses into the mechanism of action of the HSP90 inhibitors revealed that HSP90 activity contributes to p150 functional integrity and promotes p200 processing. Collectively, our data demonstrate that RUBV p150 is a client of the HSP90 molecular chaperone and that HSP90 functions as a key host factor for RUBV replication.IMPORTANCE Accumulating evidence indicates that RNA viruses use numerous host factors during replication of their genomes. However, the host factors involved in rubella virus (RUBV) genome replication are largely unknown. In this study, we demonstrate that the HSP90 molecular chaperone is needed for the efficient replication of the RUBV genome. Further, we reveal that HSP90 interacts with RUBV nonstructural protein p150 and its precursor polyprotein, p200. HSP90 contributes to the stability of p150 and the processing of p200 via its protease domain in the p150 region. We conclude that the cellular molecular chaperone HSP90 is a key host factor for functional maturation of nonstructural proteins for RUBV genome replication. These findings provide novel insight into this host-virus interaction.
Collapse
|
38
|
Mittler E, Dieterle ME, Kleinfelter LM, Slough MM, Chandran K, Jangra RK. Hantavirus entry: Perspectives and recent advances. Adv Virus Res 2019; 104:185-224. [PMID: 31439149 DOI: 10.1016/bs.aivir.2019.07.002] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Hantaviruses are important zoonotic pathogens of public health importance that are found on all continents except Antarctica and are associated with hemorrhagic fever with renal syndrome (HFRS) in the Old World and hantavirus pulmonary syndrome (HPS) in the New World. Despite the significant disease burden they cause, no FDA-approved specific therapeutics or vaccines exist against these lethal viruses. The lack of available interventions is largely due to an incomplete understanding of hantavirus pathogenesis and molecular mechanisms of virus replication, including cellular entry. Hantavirus Gn/Gc glycoproteins are the only viral proteins exposed on the surface of virions and are necessary and sufficient to orchestrate virus attachment and entry. In vitro studies have implicated integrins (β1-3), DAF/CD55, and gC1qR as candidate receptors that mediate viral attachment for both Old World and New World hantaviruses. Recently, protocadherin-1 (PCDH1) was demonstrated as a requirement for cellular attachment and entry of New World hantaviruses in vitro and lethal HPS in vivo, making it the first clade-specific host factor to be identified. Attachment of hantavirus particles to cellular receptors induces their internalization by clathrin-mediated, dynamin-independent, or macropinocytosis-like mechanisms, followed by particle trafficking to an endosomal compartment where the fusion of viral and endosomal membranes can occur. Following membrane fusion, which requires cholesterol and acid pH, viral nucleocapsids escape into the cytoplasm and launch genome replication. In this review, we discuss the current mechanistic understanding of hantavirus entry, highlight gaps in our existing knowledge, and suggest areas for future inquiry.
Collapse
Affiliation(s)
- Eva Mittler
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY, United States
| | - Maria Eugenia Dieterle
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY, United States
| | - Lara M Kleinfelter
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY, United States
| | - Megan M Slough
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY, United States
| | - Kartik Chandran
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY, United States.
| | - Rohit K Jangra
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY, United States.
| |
Collapse
|
39
|
Fénéant L, Szymańska-de Wijs KM, Nelson EA, White JM. An exploration of conditions proposed to trigger the Ebola virus glycoprotein for fusion. PLoS One 2019; 14:e0219312. [PMID: 31276481 PMCID: PMC6611598 DOI: 10.1371/journal.pone.0219312] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Accepted: 06/20/2019] [Indexed: 01/06/2023] Open
Abstract
Ebolaviruses continue to inflict horrific disease and instill fear. The 2013-2016 outbreak in Western Africa caused unfathomable morbidity and mortality (over 11,000 deaths), and the second largest outbreak is on-going in the Democratic Republic of the Congo. The first stage of an Ebolavirus infection is entry, culminating in delivery of the viral genome into the cytoplasm to initiate replication. Among enveloped viruses, Ebolaviruses use a complex entry pathway: they bind to attachment factors on cell surfaces, are engulfed by macropinocytosis, and traffic through the endosomal system. En route, the receptor binding subunit of the glycoprotein (GP) is reduced from ~130 to ~19 kDa by cathepsins. This event allows cleaved GP (GPcl) to bind to Niemann-Pick C1 (NPC1), its endosomal receptor. The virus then fuses with a late endosomal membrane, but how this occurs remains a subject of debate. An early, but standing, observation is that entry of particles bearing GPcl is inhibited by agents that raise endosomal pH or inhibit cysteine proteases, suggesting the need for an additional factor(s). Yet, some have concluded that NPC1 is sufficient to trigger the fusion activity of GPcl. Here, we re-examined this question using sensitive cell-cell and pseudovirus-cell fusion assays. We did not observe detectable GPcl-mediated fusion with NPC1 or its GPcl binding domain at any pH tested, while robust fusion was consistently observed with GP from lymphocytic choriomeningitis virus at low pH. Addition of proposed fusion-enhancing factors-cations (Ca++ and K+), a reducing agent, the anionic lipid Bis(Monoacylglycero)Phosphate, and a mixture of cathepsins B and L-did not induce detectable fusion. Our findings are in line with the earlier proposal that an additional factor is required to trigger the full fusion activity of GPcl after binding to NPC1. We discuss caveats to our study and what the missing factor(s) might be.
Collapse
Affiliation(s)
- Lucie Fénéant
- Department of Cell Biology, University of Virginia, Charlottesville, Virginia, United States of America
| | | | - Elizabeth A. Nelson
- Department of Cell Biology, University of Virginia, Charlottesville, Virginia, United States of America
| | - Judith M. White
- Department of Cell Biology, University of Virginia, Charlottesville, Virginia, United States of America
- Department of Microbiology, University of Virginia, Charlottesville, Virginia, United States of America
| |
Collapse
|
40
|
Saito K, Otsuki N, Takeda M, Hanada K. Liposome Flotation Assay for Studying Interactions Between Rubella Virus Particles and Lipid Membranes. Bio Protoc 2018; 8:e2983. [PMID: 34395782 DOI: 10.21769/bioprotoc.2983] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2018] [Revised: 08/05/2018] [Accepted: 08/10/2018] [Indexed: 11/02/2022] Open
Abstract
Rubella virus (RuV) is an enveloped, positive-sense single-stranded RNA virus that is pathogenic to humans. RuV binds to the target cell via the viral envelope protein E1, but the specific receptor molecules on the target cell are yet to be fully elucidated. Here, we describe a protocol for liposome flotation assay to study direct interactions between RuV particles and lipid membranes in a qualitative manner. Interactions are examined by a Nycodenz density gradient fractionation using UV-inactivated RuV particles and fluorescent-labeled liposomes consisting of pure lipids. Fractionated RuV particles are detected using standard sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) followed by Western blot analysis for viral proteins. On the Nycodenz gradient, RuV particles bound to liposomes shift to lower density fractions than unbound RuV particles. Using this protocol, we provide compelling evidence that, at neutral pH in a calcium-dependent manner, RuV particles bind to lipid membranes containing both sphingomyelin (SM) and cholesterol in certain cell types.
Collapse
Affiliation(s)
- Kyoko Saito
- Department of Biochemistry and Cell Biology, National Institute of Infectious Diseases, Tokyo, Japan
| | - Noriyuki Otsuki
- Department of Virology 3, National Institute of Infectious Diseases, Tokyo, Japan
| | - Makoto Takeda
- Department of Virology 3, National Institute of Infectious Diseases, Tokyo, Japan
| | - Kentaro Hanada
- Department of Biochemistry and Cell Biology, National Institute of Infectious Diseases, Tokyo, Japan
| |
Collapse
|
41
|
Millet JK, Whittaker GR. Physiological and molecular triggers for SARS-CoV membrane fusion and entry into host cells. Virology 2017; 517:3-8. [PMID: 29275820 PMCID: PMC7112017 DOI: 10.1016/j.virol.2017.12.015] [Citation(s) in RCA: 189] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Revised: 12/13/2017] [Accepted: 12/15/2017] [Indexed: 11/17/2022]
Abstract
During viral entry, enveloped viruses require the fusion of their lipid envelope with host cell membranes. For coronaviruses, this critical step is governed by the virally-encoded spike (S) protein, a class I viral fusion protein that has several unique features. Coronavirus entry is unusual in that it is often biphasic in nature, and can occur at or near the cell surface or in late endosomes. Recent advances in structural, biochemical and molecular biology of the coronavirus S protein has shed light on the intricacies of coronavirus entry, in particular the molecular triggers of coronavirus S-mediated membrane fusion. Furthermore, characterization of the coronavirus fusion peptide (FP), the segment of the fusion protein that inserts to a target lipid bilayer during membrane fusion, has revealed its particular attributes which imparts some of the unusual properties of the S protein, such as Ca2+-dependency. These unusual characteristics can explain at least in part the biphasic nature of coronavirus entry. In this review, using severe acute respiratory syndrome coronavirus (SARS-CoV) as model virus, we give an overview of advances in research on the coronavirus fusion peptide with an emphasis on its role and properties within the biological context of host cell entry.
Collapse
Affiliation(s)
- Jean Kaoru Millet
- Department of Microbiology and Immunology, College of Veterinary Medicine, Cornell University, Ithaca, NY 14853, United States
| | - Gary R Whittaker
- Department of Microbiology and Immunology, College of Veterinary Medicine, Cornell University, Ithaca, NY 14853, United States.
| |
Collapse
|
42
|
Both Sphingomyelin and Cholesterol in the Host Cell Membrane Are Essential for Rubella Virus Entry. J Virol 2017; 92:JVI.01130-17. [PMID: 29070689 DOI: 10.1128/jvi.01130-17] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2017] [Accepted: 10/17/2017] [Indexed: 11/20/2022] Open
Abstract
Rubella virus (RuV) causes a systemic infection, and transplacental fetal infection causes congenital rubella syndrome. In this study, we showed that treatment of cells with sphingomyelinase inhibited RuV infection. Assays using inhibitors of serine palmitoyl transferase and ceramide transport protein demonstrated the contribution of sphingomyelin (SM) to RuV infection. Compelling evidence for direct binding of RuV to lipid membranes at neutral pH was obtained using liposome coflotation assays. The absence of either SM or cholesterol (Chol) abrogated the RuV-liposome interaction. SM and Chol (SM/Chol) were also critical for RuV binding to erythrocytes and lymphoid cells. Removal of Ca2+ from the assay buffer or mutation of RuV envelope E1 protein Ca2+-binding sites abrogated RuV binding to liposomes, erythrocytes, and lymphoid cells. However, RuV bound to various nonlymphoid adherent cell lines independently of extracellular Ca2+ or SM/Chol. Even in these adherent cell lines, both the E1 protein Ca2+-binding sites and cellular SM/Chol were essential for the early stage of RuV infection, possibly affecting envelope-membrane fusion in acidic compartments. Myelin oligodendrocyte glycoprotein (MOG) has recently been identified as a cellular receptor for RuV. However, RuV bound to MOG-negative cells in a Ca2+-independent manner. Collectively, our data demonstrate that RuV has two distinct binding mechanisms: one is Ca2+ dependent and the other is Ca2+ independent. Ca2+-dependent binding observed in lymphoid cells occurs by the direct interaction between E1 protein fusion loops and SM/Chol-enriched membranes. Clarification of the mechanism of Ca2+-independent RuV binding is an important next step in understanding the pathology of RuV infection.IMPORTANCE Rubella has a significant impact on public health as infection during early pregnancy can result in babies being born with congenital rubella syndrome. Even though effective rubella vaccines are available, rubella outbreaks still occur in many countries. We studied the entry mechanism of rubella virus (RuV) and found that RuV binds directly to the host plasma membrane in the presence of Ca2+ at neutral pH. This Ca2+-dependent binding is specifically directed to membranes enriched in sphingomyelin and cholesterol and is critical for RuV infection. Importantly, RuV also binds to many cell lines in a Ca2+-independent manner. An unidentified RuV receptor(s) is involved in this Ca2+-independent binding. We believe that the data presented here may aid the development of the first anti-RuV drug.
Collapse
|
43
|
Lai AL, Millet JK, Daniel S, Freed JH, Whittaker GR. The SARS-CoV Fusion Peptide Forms an Extended Bipartite Fusion Platform that Perturbs Membrane Order in a Calcium-Dependent Manner. J Mol Biol 2017; 429:3875-3892. [PMID: 29056462 PMCID: PMC5705393 DOI: 10.1016/j.jmb.2017.10.017] [Citation(s) in RCA: 143] [Impact Index Per Article: 20.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2017] [Revised: 10/02/2017] [Accepted: 10/12/2017] [Indexed: 01/12/2023]
Abstract
Coronaviruses (CoVs) are a major infectious disease threat and include the pathogenic human pathogens of zoonotic origin: severe acute respiratory syndrome CoV (SARS-CoV) and Middle East respiratory syndrome CoV (MERS-CoV). Entry of CoVs into host cells is mediated by the viral spike (S) protein, which is structurally categorized as a class I viral fusion protein, within the same group as influenza virus and HIV. However, S proteins have two distinct cleavage sites that can be activated by a much wider range of proteases. The exact location of the CoV fusion peptide (FP) has been disputed. However, most evidence suggests that the domain immediately downstream of the S2' cleavage site is the FP (amino acids 798-818 SFIEDLLFNKVTLADAGFMKQY for SARS-CoV, FP1). In our previous electron spin resonance spectroscopic studies, the membrane-ordering effect of influenza virus, HIV, and Dengue virus FPs has been consistently observed. In this study, we used this effect as a criterion to identify and characterize the bona fide SARS-CoV FP. Our results indicate that both FP1 and the region immediately downstream (amino acids 816-835 KQYGECLGDINARDLICAQKF, FP2) induce significant membrane ordering. Furthermore, their effects are calcium dependent, which is consistent with in vivo data showing that calcium is required for SARS-CoV S-mediated fusion. Isothermal titration calorimetry showed a direct interaction between calcium cations and both FPs. This Ca2+-dependency membrane ordering was not observed with influenza FP, indicating that the CoV FP exhibits a mechanistically different behavior. Membrane-ordering effects are greater and penetrate deeper into membranes when FP1 and FP2 act in a concerted manner, suggesting that they form an extended fusion "platform."
Collapse
Affiliation(s)
- Alex L Lai
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY 14853, United States
| | - Jean K Millet
- Department of Microbiology and Immunology, Cornell University, Ithaca, NY 14853, United States
| | - Susan Daniel
- School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, NY 14853, United States
| | - Jack H Freed
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY 14853, United States
| | - Gary R Whittaker
- Department of Microbiology and Immunology, Cornell University, Ithaca, NY 14853, United States.
| |
Collapse
|
44
|
Analysis of VSV pseudotype virus infection mediated by rubella virus envelope proteins. Sci Rep 2017; 7:11607. [PMID: 28912595 PMCID: PMC5599607 DOI: 10.1038/s41598-017-10865-2] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2016] [Accepted: 08/16/2017] [Indexed: 01/20/2023] Open
Abstract
Rubella virus (RV) generally causes a systemic infection in humans. Viral cell tropism is a key determinant of viral pathogenesis, but the tropism of RV is currently poorly understood. We analyzed various human cell lines and determined that RV only establishes an infection efficiently in particular non-immune cell lines. To establish an infection the host cells must be susceptible and permissible. To assess the susceptibility of individual cell lines, we generated a pseudotype vesicular stomatitis virus bearing RV envelope proteins (VSV-RV/CE2E1). VSV-RV/CE2E1 entered cells in an RV envelope protein-dependent manner, and thus the infection was neutralized completely by an RV-specific antibody. The infection was Ca2+-dependent and inhibited by endosomal acidification inhibitors, further confirming the dependency on RV envelope proteins for the VSV-RV/CE2E1 infection. Human non-immune cell lines were mostly susceptible to VSV-RV/CE2E1, while immune cell lines were much less susceptible than non-immune cell lines. However, susceptibility of immune cells to VSV-RV/CE2E1 was increased upon stimulation of these cells. Our data therefore suggest that immune cells are generally less susceptible to RV infection than non-immune cells, but the susceptibility of immune cells is enhanced upon stimulation.
Collapse
|
45
|
Zhu L, Yuan C, Ding X, Jones C, Zhu G. The role of phospholipase C signaling in bovine herpesvirus 1 infection. Vet Res 2017; 48:45. [PMID: 28882164 PMCID: PMC5590182 DOI: 10.1186/s13567-017-0450-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2017] [Accepted: 06/01/2017] [Indexed: 02/04/2023] Open
Abstract
Bovine herpesvirus 1 (BoHV-1) infection enhanced the generation of inflammatory mediator reactive oxidative species (ROS) and stimulated MAPK signaling that are highly possibly related to virus induced inflammation. In this study, for the first time we show that BoHV-1 infection manipulated phospholipase C (PLC) signaling, as demonstrated by the activation of PLCγ-1 at both early stages [at 0.5 h post-infection (hpi)] and late stages (4-12 hpi) during the virus infection of MDBK cells. Viral entry, and de novo protein expression and/or DNA replication were potentially responsible for the activation of PLCγ-1 signaling. PLC signaling inhibitors of both U73122 and edelfosine significantly inhibited BoHV-1 replication in both bovine kidney cells (MDBK) and rabbit skin cells (RS-1) in a dose-dependent manner by affecting the virus entry stage(s). In addition, the activation of Erk1/2 and p38MAPK signaling, and the enhanced generation of ROS by BoHV-1 infection were obviously ameliorated by chemical inhibition of PLC signaling, implying the requirement of PLC signaling in ROS production and these MAPK pathway activation. These results suggest that the activation of PLC signaling is a potential pathogenic mechanism for BoHV-1 infection.
Collapse
Affiliation(s)
- Liqian Zhu
- College of Veterinary Medicine, Yangzhou University, 48 Wenhui East Road, Yangzhou, 225009, Jiangsu, China. .,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, 48 Wenhui East Road, Yangzhou, 225009, Jiangsu, China. .,Department of Veterinary Pathobiology, Oklahoma State University, Center for Veterinary Health Sciences, Stillwater, OK, 74078, USA.
| | - Chen Yuan
- College of Veterinary Medicine, Yangzhou University, 48 Wenhui East Road, Yangzhou, 225009, Jiangsu, China.,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, 48 Wenhui East Road, Yangzhou, 225009, Jiangsu, China
| | - Xiuyan Ding
- College of Veterinary Medicine, Yangzhou University, 48 Wenhui East Road, Yangzhou, 225009, Jiangsu, China.,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, 48 Wenhui East Road, Yangzhou, 225009, Jiangsu, China.,Test Center, Yangzhou University, 48 Wenhui East Road, Yangzhou, 225009, Jiangsu, China
| | - Clinton Jones
- Department of Veterinary Pathobiology, Oklahoma State University, Center for Veterinary Health Sciences, Stillwater, OK, 74078, USA
| | - Guoqiang Zhu
- College of Veterinary Medicine, Yangzhou University, 48 Wenhui East Road, Yangzhou, 225009, Jiangsu, China. .,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, 48 Wenhui East Road, Yangzhou, 225009, Jiangsu, China.
| |
Collapse
|
46
|
Mori Y, Miyoshi M, Kikuchi M, Sekine M, Umezawa M, Saikusa M, Matsushima Y, Itamochi M, Yasui Y, Kanbayashi D, Miyoshi T, Akiyoshi K, Tatsumi C, Zaitsu S, Kadoguchi M, Otsuki N, Okamoto K, Sakata M, Komase K, Takeda M. Molecular Epidemiology of Rubella Virus Strains Detected Around the Time of the 2012-2013 Epidemic in Japan. Front Microbiol 2017; 8:1513. [PMID: 28848523 PMCID: PMC5553008 DOI: 10.3389/fmicb.2017.01513] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2017] [Accepted: 07/27/2017] [Indexed: 11/18/2022] Open
Abstract
A nationwide rubella epidemic occurred from 2012 to 2013 in Japan, resulting in around 17,000 rubella cases and the birth of 45 infants with congenital rubella syndrome. The aim of this study was to genetically characterize the rubella viruses (RVs) circulating around the time of the epidemic in Japan. In total, 221 RV strains detected from 14 prefectures in Japan between 2010 and 2014 were sequenced in the 739 nucleotide-window region within the E1 gene. The virus strains were chronologically and geographically characterized into groups based on phylogenetic analysis. Among the 221 strains analyzed, 192 (87%), 26 (12%), and 3 (1%) strains were classified into genotypes 2B, 1E, and 1J, respectively. The majority (n = 184) of the genotype 2B strains belonged to lineage 2B-L1 and shared nucleotide homology with the strains detected in Southeast and East Asian countries. Phylogenetic analyses demonstrated that at least six distinct clusters of RV strains (clusters 1-6) induced outbreaks in Japan between 2010 and 2014. Among them, strains from clusters 3, 4, and 6 circulated almost simultaneously during 2012-2013. The cluster 3 strains circulated locally, whereas strains from cluster 4 spread nationwide. The findings suggest that RVs were introduced into Japan many times from neighboring countries. The 2012-2013 epidemic was a complex of outbreaks induced by at least three clusters of RV strains.
Collapse
Affiliation(s)
- Yoshio Mori
- Department of Virology 3, National Institute of Infectious DiseasesTokyo, Japan
| | | | | | - Masao Sekine
- Sendai City Institute of Public HealthSendai, Japan
| | | | | | | | | | | | | | | | | | - Chika Tatsumi
- Shimane Prefectural Institute of Public Health and Environmental ScienceShimane, Japan
| | - Shuichi Zaitsu
- Fukuoka City Institute of Health and EnvironmentFukuoka, Japan
| | - Mayumi Kadoguchi
- Kumamoto City Environmental Research CenterKumamoto, Japan
- Kumamoto City HospitalKumamoto, Japan
| | - Noriyuki Otsuki
- Department of Virology 3, National Institute of Infectious DiseasesTokyo, Japan
| | - Kiyoko Okamoto
- Department of Virology 3, National Institute of Infectious DiseasesTokyo, Japan
| | - Masafumi Sakata
- Department of Virology 3, National Institute of Infectious DiseasesTokyo, Japan
| | - Katsuhiro Komase
- Department of Virology 3, National Institute of Infectious DiseasesTokyo, Japan
- Infectious Disease Surveillance Center, National Institute of Infectious DiseasesTokyo, Japan
| | - Makoto Takeda
- Department of Virology 3, National Institute of Infectious DiseasesTokyo, Japan
| |
Collapse
|
47
|
Mangala Prasad V, Klose T, Rossmann MG. Assembly, maturation and three-dimensional helical structure of the teratogenic rubella virus. PLoS Pathog 2017; 13:e1006377. [PMID: 28575072 PMCID: PMC5470745 DOI: 10.1371/journal.ppat.1006377] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2017] [Revised: 06/14/2017] [Accepted: 04/25/2017] [Indexed: 01/24/2023] Open
Abstract
Viral infections during pregnancy are a significant cause of infant morbidity and mortality. Of these, rubella virus infection is a well-substantiated example that leads to miscarriages or severe fetal defects. However, structural information about the rubella virus has been lacking due to the pleomorphic nature of the virions. Here we report a helical structure of rubella virions using cryo-electron tomography. Sub-tomogram averaging of the surface spikes established the relative positions of the viral glycoproteins, which differed from the earlier icosahedral models of the virus. Tomographic analyses of in vitro assembled nucleocapsids and virions provide a template for viral assembly. Comparisons of immature and mature virions show large rearrangements in the glycoproteins that may be essential for forming the infectious virions. These results present the first known example of a helical membrane-enveloped virus, while also providing a structural basis for its assembly and maturation pathway. Rubella virus (RV) causes serious fetal defects when contracted during pregnancy. Despite its medical importance, due to the irregular shapes and different sizes of the virions, the RV structure has remained unknown. Using cryo-electron tomography, we have determined the RV structure, which shows a unique, helical outer surface. Subsequent local averaging of the RV surface spikes has established the conformations of its immunogenic glycoproteins. In vitro assembly studies on the virus capsid protein have provided insights into the interactions necessary for virus assembly. Comparisons between mature and immature RV show large conformational changes in the virion structure that are essential for virus maturation. These results help to gain a structural understanding of RV pathogenicity, which may also be relevant to other teratogenic viruses.
Collapse
Affiliation(s)
- Vidya Mangala Prasad
- Department of Biological Sciences, 240 S. Martin Jischke Drive, Purdue University, West Lafayette, IN, United States of America
| | - Thomas Klose
- Department of Biological Sciences, 240 S. Martin Jischke Drive, Purdue University, West Lafayette, IN, United States of America
| | - Michael G. Rossmann
- Department of Biological Sciences, 240 S. Martin Jischke Drive, Purdue University, West Lafayette, IN, United States of America
- * E-mail:
| |
Collapse
|
48
|
Mechanistic Insight into Bunyavirus-Induced Membrane Fusion from Structure-Function Analyses of the Hantavirus Envelope Glycoprotein Gc. PLoS Pathog 2016; 12:e1005813. [PMID: 27783711 PMCID: PMC5082683 DOI: 10.1371/journal.ppat.1005813] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2016] [Accepted: 07/17/2016] [Indexed: 01/03/2023] Open
Abstract
Hantaviruses are zoonotic viruses transmitted to humans by persistently infected rodents, giving rise to serious outbreaks of hemorrhagic fever with renal syndrome (HFRS) or of hantavirus pulmonary syndrome (HPS), depending on the virus, which are associated with high case fatality rates. There is only limited knowledge about the organization of the viral particles and in particular, about the hantavirus membrane fusion glycoprotein Gc, the function of which is essential for virus entry. We describe here the X-ray structures of Gc from Hantaan virus, the type species hantavirus and responsible for HFRS, both in its neutral pH, monomeric pre-fusion conformation, and in its acidic pH, trimeric post-fusion form. The structures confirm the prediction that Gc is a class II fusion protein, containing the characteristic β-sheet rich domains termed I, II and III as initially identified in the fusion proteins of arboviruses such as alpha- and flaviviruses. The structures also show a number of features of Gc that are distinct from arbovirus class II proteins. In particular, hantavirus Gc inserts residues from three different loops into the target membrane to drive fusion, as confirmed functionally by structure-guided mutagenesis on the HPS-inducing Andes virus, instead of having a single "fusion loop". We further show that the membrane interacting region of Gc becomes structured only at acidic pH via a set of polar and electrostatic interactions. Furthermore, the structure reveals that hantavirus Gc has an additional N-terminal "tail" that is crucial in stabilizing the post-fusion trimer, accompanying the swapping of domain III in the quaternary arrangement of the trimer as compared to the standard class II fusion proteins. The mechanistic understandings derived from these data are likely to provide a unique handle for devising treatments against these human pathogens.
Collapse
|
49
|
Klase ZA, Khakhina S, Schneider ADB, Callahan MV, Glasspool-Malone J, Malone R. Zika Fetal Neuropathogenesis: Etiology of a Viral Syndrome. PLoS Negl Trop Dis 2016; 10:e0004877. [PMID: 27560129 PMCID: PMC4999274 DOI: 10.1371/journal.pntd.0004877] [Citation(s) in RCA: 61] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
The ongoing Zika virus epidemic in the Americas and the observed association with both fetal abnormalities (primary microcephaly) and adult autoimmune pathology (Guillain-Barré syndrome) has brought attention to this neglected pathogen. While initial case studies generated significant interest in the Zika virus outbreak, larger prospective epidemiology and basic virology studies examining the mechanisms of Zika viral infection and associated pathophysiology are only now starting to be published. In this review, we analyze Zika fetal neuropathogenesis from a comparative pathology perspective, using the historic metaphor of "TORCH" viral pathogenesis to provide context. By drawing parallels to other viral infections of the fetus, we identify common themes and mechanisms that may illuminate the observed pathology. The existing data on the susceptibility of various cells to both Zika and other flavivirus infections are summarized. Finally, we highlight relevant aspects of the known molecular mechanisms of flavivirus replication.
Collapse
Affiliation(s)
- Zachary A Klase
- Department of Biological Sciences, University of the Sciences, Philadelphia, Pennsylvania, United States of America
| | - Svetlana Khakhina
- Department of Biological Sciences, University of the Sciences, Philadelphia, Pennsylvania, United States of America
| | - Adriano De Bernardi Schneider
- Department of Bioinformatics and Genomics, University of North Carolina at Charlotte, Charlotte, North Carolina, United States of America
| | - Michael V Callahan
- Department of Medicine, Division of Infectious Diseases, Massachusetts General Hospital, Boston, Massachusetts, United States of America
- Zika Foundation, College Station, Texas, United States of America
| | - Jill Glasspool-Malone
- Atheric Pharmaceutical, Scottsville, Virginia, United States of America
- Global Clinical Scholars Research Training Program, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Robert Malone
- Atheric Pharmaceutical, Scottsville, Virginia, United States of America
- Global Clinical Scholars Research Training Program, Harvard Medical School, Boston, Massachusetts, United States of America
| |
Collapse
|
50
|
Calcium-Dependent Rubella Virus Fusion Occurs in Early Endosomes. J Virol 2016; 90:6303-6313. [PMID: 27122589 DOI: 10.1128/jvi.00634-16] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2016] [Accepted: 04/25/2016] [Indexed: 12/12/2022] Open
Abstract
UNLABELLED The E1 membrane protein of rubella virus (RuV) is a class II membrane fusion protein structurally related to the fusion proteins of the alphaviruses, flaviviruses, and phleboviruses. Virus entry is mediated by a low pH-dependent fusion reaction through E1's insertion into the cell membrane and refolding to a stable homotrimer. Unlike the other described class II proteins, RuV E1 contains 2 fusion loops, which complex a metal ion between them by interactions with residues N88 and D136. Insertion of the E1 protein into the target membrane, fusion, and infection require calcium and are blocked by alanine substitution of N88 or D136. Here we addressed the requirements of E1 for calcium binding and the intracellular location of the calcium requirement during virus entry. Our results demonstrated that N88 and D136 are optimally configured to support RuV fusion and are strongly selected for during the virus life cycle. While E1 has some similarities with cellular proteins that bind calcium and anionic lipids, RuV binding to the membrane was independent of anionic lipids. Virus fusion occurred within early endosomes, and chelation of intracellular calcium showed that calcium within the early endosome was required for virus fusion and infection. Calcium triggered the reversible insertion of E1 into the target membrane at neutral pH, but E1 homotrimer formation and fusion required a low pH. Thus, RuV E1, unlike other known class II fusion proteins, has distinct triggers for membrane insertion and fusion protein refolding mediated, respectively, by endosomal calcium and low pH. IMPORTANCE Rubella virus causes a mild disease of childhood, but infection of pregnant women frequently results in miscarriage or severe birth defects. In spite of an effective vaccine, RuV disease remains a serious problem in many developing countries. RuV infection of host cells involves endocytic uptake and low pH-triggered membrane fusion and is unusual in its requirement for calcium binding by the membrane fusion protein. Here we addressed the mechanism of the calcium requirement and the required location of calcium during virus entry. Both calcium and low pH were essential during the virus fusion reaction, which was shown to occur in the early endosome compartment.
Collapse
|