1
|
Hsieh LTH, Hall BS, Newcombe J, Mendum TA, Santana-Varela S, Umrania Y, Deery MJ, Shi WQ, Diaz-Delgado J, Salguero FJ, Simmonds RE. Mycolactone causes destructive Sec61-dependent loss of the endothelial glycocalyx and vessel basement membrane: a new indirect mechanism driving tissue necrosis in Mycobacterium ulcerans infection. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.02.21.529382. [PMID: 36865118 PMCID: PMC9980099 DOI: 10.1101/2023.02.21.529382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/23/2023]
Abstract
The drivers of tissue necrosis in Mycobacterium ulcerans infection (Buruli ulcer disease) have historically been ascribed solely to the directly cytotoxic action of the diffusible exotoxin, mycolactone. However, its role in the clinically-evident vascular component of disease aetiology remains poorly explained. We have now dissected mycolactone's effects on primary vascular endothelial cells in vitro and in vivo. We show that mycolactone-induced changes in endothelial morphology, adhesion, migration, and permeability are dependent on its action at the Sec61 translocon. Unbiased quantitative proteomics identified a profound effect on proteoglycans, driven by rapid loss of type II transmembrane proteins of the Golgi, including enzymes required for glycosaminoglycan (GAG) synthesis, combined with a reduction in the core proteins themselves. Loss of the glycocalyx is likely to be of particular mechanistic importance, since knockdown of galactosyltransferase II (beta-1,3-galactotransferase 6; B3GALT6), the GAG linker-building enzyme, phenocopied the permeability and phenotypic changes induced by mycolactone. Additionally, mycolactone depleted many secreted basement membrane components and microvascular basement membranes were disrupted in vivo. Remarkably, exogenous addition of laminin-511 reduced endothelial cell rounding, restored cell attachment and reversed the defective migration caused by mycolactone. Hence supplementing mycolactone-depleted extracellular matrix may be a future therapeutic avenue, to improve wound healing rates.
Collapse
Affiliation(s)
| | - Belinda S Hall
- Dept of Microbial Sciences, School of Bioscience and Medicine, University of Surrey
| | - Jane Newcombe
- Dept of Microbial Sciences, School of Bioscience and Medicine, University of Surrey
| | - Tom A Mendum
- Dept of Microbial Sciences, School of Bioscience and Medicine, University of Surrey
| | - Sonia Santana-Varela
- Dept of Microbial Sciences, School of Bioscience and Medicine, University of Surrey
| | - Yagnesh Umrania
- Cambridge Centre for Proteomics, University of Cambridge, Cambridge, UK
| | - Michael J Deery
- Cambridge Centre for Proteomics, University of Cambridge, Cambridge, UK
| | - Wei Q Shi
- Department of Chemistry, Ball State University, Muncie, IN 47306, USA
| | - Josué Diaz-Delgado
- Texas A&M Veterinary Medical Diagnostic Laboratory, College Station, Texas, USA
| | | | - Rachel E Simmonds
- Dept of Microbial Sciences, School of Bioscience and Medicine, University of Surrey
| |
Collapse
|
2
|
Fukano H, Nakanaga K, Goto M, Yoshida M, Ishii N, Hoshino Y. Therapeutic efficacy of rifalazil (KRM-1648) in a M. ulcerans-induced Buruli ulcer mouse model. PLoS One 2022; 17:e0274742. [PMID: 36201529 PMCID: PMC9536621 DOI: 10.1371/journal.pone.0274742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Accepted: 09/05/2022] [Indexed: 11/07/2022] Open
Abstract
Buruli ulcer (BU) is a skin disease caused by Mycobacterium ulcerans infection that requires long-term antibiotic treatment and/or surgical excision. In this study, we investigated the therapeutic efficacy of the rifamycin derivative, rifalazil (RLZ) (also known as KRM-1648), in an advanced M. ulcerans infection model. Six-week-old female BALB/c mice were infected with 3.25 x 104 colony-forming units (CFU) of M. ulcerans subcutaneously into the bilateral hind footpads. At 33 days post-infection, when the footpads exhibited significant redness and swelling, mice were treated orally with 5 or 10 mg/kg of RLZ for up to 15 weeks. Mice were followed for an additional 15 weeks following treatment cessation. Untreated mice exhibited a progressive increase in footpad redness, swelling, and erosion over time, and all untreated mice reached to endpoint within 5–8 weeks post-bacterial injection. In the RLZ-treated mice, footpad redness and swelling and general condition improved or completely healed, and no recurrence occurred following treatment cessation. After 3 weeks of treatment, the CFU counts from the footpads of recovered RLZ-treated mice showed a 104 decrease compared with those of untreated mice. We observed a further reduction in CFU counts to the detection limit following 6 to 15 weeks of treatment, which did not increase 15 weeks after discontinuing the treatment. Histopathologically, bacteria in the treated mice became fragmented one week after RLZ-treatment. At the final point of the experiment, all the treated mice (5mg/kg/day; n = 6, 10mg/kg/day; n = 7) survived and had no signs of M. ulcerans infection. These results indicate that the rifamycin analogue, RLZ, is efficacious in the treatment of an advanced M. ulcerans infection mouse model.
Collapse
Affiliation(s)
- Hanako Fukano
- Department of Mycobacteriology, Leprosy Research Center, National Institute of Infectious Diseases, Tokyo, Japan
| | - Kazue Nakanaga
- Department of Mycobacteriology, Leprosy Research Center, National Institute of Infectious Diseases, Tokyo, Japan
| | - Masamichi Goto
- Department of Pathology, Field of Oncology, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan
| | - Mitsunori Yoshida
- Department of Mycobacteriology, Leprosy Research Center, National Institute of Infectious Diseases, Tokyo, Japan
| | - Norihisa Ishii
- Department of Mycobacteriology, Leprosy Research Center, National Institute of Infectious Diseases, Tokyo, Japan
- National Sanatorium Tamazenshoen, Tokyo, Japan
| | - Yoshihiko Hoshino
- Department of Mycobacteriology, Leprosy Research Center, National Institute of Infectious Diseases, Tokyo, Japan
- * E-mail:
| |
Collapse
|
3
|
Hall BS, Hsieh LTH, Sacre S, Simmonds RE. The One That Got Away: How Macrophage-Derived IL-1β Escapes the Mycolactone-Dependent Sec61 Blockade in Buruli Ulcer. Front Immunol 2022; 12:788146. [PMID: 35154073 PMCID: PMC8826060 DOI: 10.3389/fimmu.2021.788146] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Accepted: 12/27/2021] [Indexed: 11/13/2022] Open
Abstract
Buruli ulcer (BU), caused by Mycobacterium ulcerans, is a devastating necrotizing skin disease. Key to its pathogenesis is mycolactone, the exotoxin virulence factor that is both immunosuppressive and cytotoxic. The discovery that the essential Sec61 translocon is the major cellular target of mycolactone explains much of the disease pathology, including the immune blockade. Sec61 inhibition leads to a loss in production of nearly all cytokines from monocytes, macrophages, dendritic cells and T cells, as well as antigen presentation pathway proteins and costimulatory molecules. However, there has long been evidence that the immune system is not completely incapable of responding to M. ulcerans infection. In particular, IL-1β was recently shown to be present in BU lesions, and to be induced from M. ulcerans-exposed macrophages in a mycolactone-dependent manner. This has important implications for our understanding of BU, showing that mycolactone can act as the "second signal" for IL-1β production without inhibiting the pathways of unconventional secretion it uses for cellular release. In this Perspective article, we validate and discuss this recent advance, which is entirely in-line with our understanding of mycolactone's inhibition of the Sec61 translocon. However, we also show that the IL-1 receptor, which uses the conventional secretory pathway, is sensitive to mycolactone blockade at Sec61. Hence, a more complete understanding of the mechanisms regulating IL-1β function in skin tissue, including the transient intra-macrophage stage of M. ulcerans infection, is urgently needed to uncover the double-edged sword of IL-1β in BU pathogenesis, treatment and wound healing.
Collapse
Affiliation(s)
- Belinda S Hall
- Department of Microbial Sciences, School of Bioscience and Medicine, Faculty of Health and Medical Sciences, University of Surrey, Guildford, United Kingdom
| | - Louise Tzung-Harn Hsieh
- Department of Microbial Sciences, School of Bioscience and Medicine, Faculty of Health and Medical Sciences, University of Surrey, Guildford, United Kingdom
| | - Sandra Sacre
- Brighton and Sussex Medical School, University of Sussex, Brighton, United Kingdom
| | - Rachel E Simmonds
- Department of Microbial Sciences, School of Bioscience and Medicine, Faculty of Health and Medical Sciences, University of Surrey, Guildford, United Kingdom
| |
Collapse
|
4
|
Receveur JP, Bauer A, Pechal JL, Picq S, Dogbe M, Jordan HR, Rakestraw AW, Fast K, Sandel M, Chevillon C, Guégan JF, Wallace JR, Benbow ME. A need for null models in understanding disease transmission: the example of Mycobacterium ulcerans (Buruli ulcer disease). FEMS Microbiol Rev 2022; 46:fuab045. [PMID: 34468735 PMCID: PMC8767449 DOI: 10.1093/femsre/fuab045] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Accepted: 08/12/2021] [Indexed: 01/19/2023] Open
Abstract
Understanding the interactions of ecosystems, humans and pathogens is important for disease risk estimation. This is particularly true for neglected and newly emerging diseases where modes and efficiencies of transmission leading to epidemics are not well understood. Using a model for other emerging diseases, the neglected tropical skin disease Buruli ulcer (BU), we systematically review the literature on transmission of the etiologic agent, Mycobacterium ulcerans (MU), within a One Health/EcoHealth framework and against Hill's nine criteria and Koch's postulates for making strong inference in disease systems. Using this strong inference approach, we advocate a null hypothesis for MU transmission and other understudied disease systems. The null should be tested against alternative vector or host roles in pathogen transmission to better inform disease management. We propose a re-evaluation of what is necessary to identify and confirm hosts, reservoirs and vectors associated with environmental pathogen replication, dispersal and transmission; critically review alternative environmental sources of MU that may be important for transmission, including invertebrate and vertebrate species, plants and biofilms on aquatic substrates; and conclude with placing BU within the context of other neglected and emerging infectious diseases with intricate ecological relationships that lead to disease in humans, wildlife and domestic animals.
Collapse
Affiliation(s)
- Joseph P Receveur
- Department of Entomology, Michigan State University, East Lansing, MI 48824, USA
| | - Alexandra Bauer
- Department of Entomology, Michigan State University, East Lansing, MI 48824, USA
| | - Jennifer L Pechal
- Department of Entomology, Michigan State University, East Lansing, MI 48824, USA
| | - Sophie Picq
- Department of Entomology, Michigan State University, East Lansing, MI 48824, USA
| | - Magdalene Dogbe
- Department of Biological Sciences, Mississippi State University, Starkville, MS, USA
| | - Heather R Jordan
- Department of Biological Sciences, Mississippi State University, Starkville, MS, USA
| | - Alex W Rakestraw
- Department of Biological and Environmental Sciences, The University of West Alabama, Livingston, AL, USA
| | - Kayla Fast
- Department of Biological and Environmental Sciences, The University of West Alabama, Livingston, AL, USA
| | - Michael Sandel
- Department of Biological and Environmental Sciences, The University of West Alabama, Livingston, AL, USA
| | - Christine Chevillon
- Maladies Infectieuses et Vecteurs : Ecologie, Génétique, Evolution et Contrôle (MIVEGEC), Université de Montpellier (UM), Centre National de la Recherche Scientifique (CNRS), Institut pour la Recherche et le Développement, Montpellier, France
| | - Jean-François Guégan
- Maladies Infectieuses et Vecteurs : Ecologie, Génétique, Evolution et Contrôle (MIVEGEC), Université de Montpellier (UM), Centre National de la Recherche Scientifique (CNRS), Institut pour la Recherche et le Développement, Montpellier, France
- UMR Animal, santé, territoires, risques et écosystèmes, Institut national de recherche pour l'agriculture, l'alimentation et l'environnement (INRAE), Centre de coopération internationale en recherche agronomique pour le développement (Cirad), Université de Montpellier (UM), Montpellier, France
| | - John R Wallace
- Department of Biology, Millersville University, Millersville, PA, USA
| | - M Eric Benbow
- Department of Entomology, Michigan State University, East Lansing, MI 48824, USA
- Ecology, Evolution and Behavior Program, Michigan State University, East Lansing, MI, USA
- AgBioResearch, Michigan State University, East Lansing, MI, USA
- Department of Osteopathic Medical Specialties, Michigan State University, East Lansing, MI, USA
| |
Collapse
|
5
|
Aberrant stromal tissue factor localisation and mycolactone-driven vascular dysfunction, exacerbated by IL-1β, are linked to fibrin formation in Buruli ulcer lesions. PLoS Pathog 2022; 18:e1010280. [PMID: 35100311 PMCID: PMC8846541 DOI: 10.1371/journal.ppat.1010280] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 02/15/2022] [Accepted: 01/13/2022] [Indexed: 12/23/2022] Open
Abstract
Buruli ulcer (BU) is a neglected tropical disease caused by subcutaneous infection with Mycobacterium ulcerans and its exotoxin mycolactone. BU displays coagulative necrosis and widespread fibrin deposition in affected skin tissues. Despite this, the role of the vasculature in BU pathogenesis remains almost completely unexplored. We hypothesise that fibrin-driven ischemia can be an ‘indirect’ route to mycolactone-dependent tissue necrosis by a mechanism involving vascular dysfunction. Here, we tracked >900 vessels within contiguous tissue sections from eight BU patient biopsies. Our aim was to evaluate their vascular and coagulation biomarker phenotype and explore potential links to fibrin deposition. We also integrated this with our understanding of mycolactone’s mechanism of action at Sec61 and its impact on proteins involved in maintaining normal vascular function. Our findings showed that endothelial cell dysfunction is common in skin tissue adjacent to necrotic regions. There was little evidence of primary haemostasis, perhaps due to mycolactone-dependent depletion of endothelial von Willebrand factor. Instead, fibrin staining appeared to be linked to the extrinsic pathway activator, tissue factor (TF). There was significantly greater than expected fibrin staining around vessels that had TF staining within the stroma, and this correlated with the distance it extended from the vessel basement membrane. TF-induced fibrin deposition in these locations would require plasma proteins outside of vessels, therefore we investigated whether mycolactone could increase vascular permeability in vitro. This was indeed the case, and leakage was further exacerbated by IL-1β. Mycolactone caused the loss of endothelial adherens and tight junctions by the depletion of VE-cadherin, TIE-1, TIE-2 and JAM-C; all Sec61-dependent proteins. Taken together, our findings suggest that both vascular and lymphatic vessels in BU lesions become “leaky” during infection, due to the unique action of mycolactone, allowing TF-containing structures and plasma proteins into skin tissue, ultimately leading to local coagulopathy and tissue ischemia. To date, the debilitating skin disease Buruli ulcer remains a public health concern and financial burden in low or middle-income countries, especially in tropical regions. Late diagnosis is frequent in remote areas, perhaps due to the painlessness of the disease. Hence patients often present with large, destructive opened ulcers leading to delayed wound closure or even lifelong disability. The infectious agent produces a toxin called mycolactone that drives the disease. We previously found evidence that the vascular system is disrupted by mycolactone in these lesions, and now we have further explored potential explanations for these findings by looking at the expression of vascular markers in BU. In a detailed analysis of patient skin punch biopsies, we identified distinct expression patterns of certain proteins and found that tissue factor, which initiates the so-called extrinsic pathway of blood clotting, is particularly important. Mycolactone is able to disrupt the barrier function of the endothelium, further aggravating the diseased phenotype, which may explain how clotting factors access the tissue. Altogether, such localised hypercoagulation in Buruli ulcer skin lesions may contribute to the development of the lesion.
Collapse
|
6
|
Mycolactone enhances the Ca2+ leak from endoplasmic reticulum by trapping Sec61 translocons in a Ca2+ permeable state. Biochem J 2021; 478:4005-4024. [PMID: 34726690 PMCID: PMC8650850 DOI: 10.1042/bcj20210345] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Revised: 10/19/2021] [Accepted: 11/02/2021] [Indexed: 01/17/2023]
Abstract
The Mycobacterium ulcerans exotoxin, mycolactone, is an inhibitor of co-translational translocation via the Sec61 complex. Mycolactone has previously been shown to bind to, and alter the structure of the major translocon subunit Sec61α, and change its interaction with ribosome nascent chain complexes. In addition to its function in protein translocation into the ER, Sec61 also plays a key role in cellular Ca2+ homeostasis, acting as a leak channel between the endoplasmic reticulum (ER) and cytosol. Here, we have analysed the effect of mycolactone on cytosolic and ER Ca2+ levels using compartment-specific sensors. We also used molecular docking analysis to explore potential interaction sites for mycolactone on translocons in various states. These results show that mycolactone enhances the leak of Ca2+ ions via the Sec61 translocon, resulting in a slow but substantial depletion of ER Ca2+. This leak was dependent on mycolactone binding to Sec61α because resistance mutations in this protein completely ablated the increase. Molecular docking supports the existence of a mycolactone-binding transient inhibited state preceding translocation and suggests mycolactone may also bind Sec61α in its idle state. We propose that delayed ribosomal release after translation termination and/or translocon ‘breathing' during rapid transitions between the idle and intermediate-inhibited states allow for transient Ca2+ leak, and mycolactone's stabilisation of the latter underpins the phenotype observed.
Collapse
|
7
|
Hall BS, Dos Santos SJ, Hsieh LTH, Manifava M, Ruf MT, Pluschke G, Ktistakis N, Simmonds RE. Inhibition of the SEC61 translocon by mycolactone induces a protective autophagic response controlled by EIF2S1-dependent translation that does not require ULK1 activity. Autophagy 2021; 18:841-859. [PMID: 34424124 PMCID: PMC9037441 DOI: 10.1080/15548627.2021.1961067] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
The Mycobacterium ulcerans exotoxin, mycolactone, is responsible for the immunosuppression and tissue necrosis that characterizes Buruli ulcer. Mycolactone inhibits SEC61-dependent co-translational translocation of proteins into the endoplasmic reticulum and the resultant cytosolic translation triggers degradation of mislocalized proteins by the ubiquitin-proteasome system. Inhibition of SEC61 by mycolactone also activates multiple EIF2S1/eIF2α kinases in the integrated stress response (ISR). Here we show mycolactone increased canonical markers of selective macroautophagy/autophagy LC3B-II, ubiquitin and SQSTM1/p62 in diverse disease-relevant primary cells and cell lines. Increased formation of puncta positive for the early autophagy markers WIPI2, RB1CC1/FIP200 and ATG16L1 indicates increased initiation of autophagy. The mycolactone response was SEC61A1-dependent and involved a pathway that required RB1CC1 but not ULK. Deletion of Sqstm1 reduced cell survival in the presence of mycolactone, suggesting this response protects against the increased cytosolic protein burden caused by the toxin. However, reconstitution of baseline SQSTM1 expression in cells lacking all autophagy receptor proteins could not rescue viability. Translational regulation by EIF2S1 in the ISR plays a key role in the autophagic response to mycolactone. Mycolactone-dependent induction of SQSTM1 was reduced in eif2ak3−/-/perk−/- cells while the p-EIF2S1 antagonist ISRIB reversed the upregulation of SQSTM1 and reduced RB1CC1, WIPI2 and LC3B puncta formation. Increased SQSTM1 staining could be seen in Buruli ulcer patient skin biopsy samples, reinforcing genetic data that suggests autophagy is relevant to disease pathology. Since selective autophagy and the ISR are both implicated in neurodegeneration, cancer and inflammation, the pathway uncovered here may have a broad relevance to human disease. Abbreviations: ATF4: activating transcription factor 4; ATG: autophagy related; BAF: bafilomycin A1; ATG16L1: autophagy related 16 like 1; BU: Buruli ulcer; CQ: chloroquine; EIF2AK3: eukaryotic translation initiation factor 2 alpha kinase 3; CALCOCO2: calcium binding and coiled-coil domain 2; DMSO: dimethyl sulfoxide; EIF2S1: eukaryotic translation initiation factor 2 subunit alpha; ER: endoplasmic reticulum; GFP: green fluorescent protein; HDMEC: human dermal microvascular endothelial cells; HFFF: human fetal foreskin fibroblasts; ISR: integrated stress response; ISRIB: integrated stress response inhibitor; MAP1LC3B/LC3B: microtubule associated protein 1 light chain 3 beta; MEF: mouse embryonic fibroblast; Myco: mycolactone; NBR1: NBR1 autophagy cargo receptor; NFE2L2: nuclear factor, erythroid 2 like 2; OPTN: optineurin; PFA: paraformaldehyde; PtdIns3P: phosphatidylinositol-3-phosphate; RB1CC1: RB1-inducible coiled coil 1; SQSTM1: sequestosome 1; TAX1BP1: Tax1 binding protein 1; ULK: unc-51 like autophagy activating kinase; UPS: ubiquitin-proteasome system; WIPI: WD repeat domain, phosphoinositide interacting; WT: wild type.
Collapse
Affiliation(s)
- Belinda S Hall
- Department of Microbial Sciences, School of Biosciences and Medicine, University of Surrey, Guildford, UK
| | - Scott J Dos Santos
- Department of Microbial Sciences, School of Biosciences and Medicine, University of Surrey, Guildford, UK
| | - Louise Tzung-Harn Hsieh
- Department of Microbial Sciences, School of Biosciences and Medicine, University of Surrey, Guildford, UK
| | | | - Marie-Thérèse Ruf
- Molecular Immunology, Swiss Tropical and Public Health Institute, Basel, Switzerland.,Medical Parasitology and Infection Biology Department, University of Basel, Basel, Switzerland
| | - Gerd Pluschke
- Molecular Immunology, Swiss Tropical and Public Health Institute, Basel, Switzerland.,Medical Parasitology and Infection Biology Department, University of Basel, Basel, Switzerland
| | | | - Rachel E Simmonds
- Department of Microbial Sciences, School of Biosciences and Medicine, University of Surrey, Guildford, UK
| |
Collapse
|
8
|
Kwaffo YA, Sarpong-Duah M, Owusu-Boateng K, Gbewonyo WS, Adjimani JP, Mosi L. Natural antioxidants attenuate mycolactone toxicity to RAW 264.7 macrophages. Exp Biol Med (Maywood) 2021; 246:1884-1894. [PMID: 34038223 DOI: 10.1177/15353702211015628] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Mycobacterium ulcerans produces a macrolide exotoxin, mycolactone which suppresses immune cells activity, is toxic to most cells and the key virulence factor in the pathogenesis of Buruli ulcer disease. Mycolactone is reported to mediate the production of reactive oxygen species in keratinocytes; cells that play critical role in wound healing. Increased levels of reactive oxygen species have been shown to disrupt the well-ordered process of wound repair; hence, the function of wound-healing cells such as macrophages, keratinocytes, and fibroblast could be impaired in the presence of the reactive oxygen species mediator, mycolactone. To ensure regeneration of tissues in chronic ulcers, with proper and timely healing of the wounds, natural antioxidants that can combat the effects of induced reactive oxygen species in wound-healing cells ought to be investigated. Reactive oxygen species activity was determined in mycolactone-treated RAW 264.7 macrophages and the scavenging ability of the antioxidants (ascorbic acid, gallic acid, and green tea kombucha) against mycolactone-induced reactive oxygen species (superoxide anions) was assessed using fluorescein probe (DCF-DA) and nitroblue tetrazolium dye. Cytotoxicity of the antioxidants, mycolactone, and the protective effect of the antioxidants on the cells upon treatment with mycolactone were determined using the Alamar blue assay. The expression levels of endogenous antioxidant enzyme genes (superoxide dismutase, catalase, and glutathione peroxidase) in response to mycolactone-mediated reactive oxygen species were determined using RT-qPCR. Mycolactone induced the production of reactive oxygen species in RAW 264.7 macrophages, and the resulting superoxide anions were scavenged by some of the antioxidants. The selected endogenous antioxidant enzyme genes in the macrophages were upregulated in the presence of the antioxidants and mycolactone. The exogenously supplied ascorbic acid and green tea kombucha offered moderate protection to the macrophages against the toxicity of mycolactone. We conclude that the results provide insights into alternate and adjunct therapeutic approaches in Buruli ulcer treatment, which could significantly attenuate the toxicity of the pathogenic factor; mycolactone.
Collapse
Affiliation(s)
- Yvonne A Kwaffo
- West African Centre for Cell Biology of Infectious Disease (WACCBIP), Department of Biochemistry, Cell and Molecular Biology, University of Ghana, Accra 0000, Ghana.,Department of Biochemistry, Cell and Molecular Biology, University of Ghana, Accra 0000, Ghana
| | - Mabel Sarpong-Duah
- Department of Biochemistry, Cell and Molecular Biology, University of Ghana, Accra 0000, Ghana
| | - Kwabena Owusu-Boateng
- West African Centre for Cell Biology of Infectious Disease (WACCBIP), Department of Biochemistry, Cell and Molecular Biology, University of Ghana, Accra 0000, Ghana.,Department of Biochemistry, Cell and Molecular Biology, University of Ghana, Accra 0000, Ghana
| | - Winfred Sk Gbewonyo
- Department of Biochemistry, Cell and Molecular Biology, University of Ghana, Accra 0000, Ghana
| | - Jonathan P Adjimani
- Department of Biochemistry, Cell and Molecular Biology, University of Ghana, Accra 0000, Ghana
| | - Lydia Mosi
- West African Centre for Cell Biology of Infectious Disease (WACCBIP), Department of Biochemistry, Cell and Molecular Biology, University of Ghana, Accra 0000, Ghana.,Department of Biochemistry, Cell and Molecular Biology, University of Ghana, Accra 0000, Ghana
| |
Collapse
|
9
|
Pang M, Zhao F, Yu P, Zhang X, Xiao H, Qiang W, Zhu H, Zhao L. The significance of coagulation and fibrinolysis-related parameters in predicting postoperative venous thrombosis in patients with breast cancer. Gland Surg 2021; 10:1439-1446. [PMID: 33968695 DOI: 10.21037/gs-21-117] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Background To explore the expression level of coagulation and fibrinolysis-related indexes in the plasma of breast cancer patients after surgery, and explore their predictive value for deep venous thrombosis (DVT). Methods From May 2016 to May 2019, 63 patients with lower extremity DVT after radical mastectomy in our hospital were selected as the thrombus group, and 69 patients without venous thrombosis after radical mastectomy were selected as the control group. The levels of D-dimer (D-D) and fibrinolytic product (FDP) were measured by latex enhanced immunoturbidimetry, Fibrinogen (FIB) levels were measured using the von Clauss method, thrombin antithrombin complex (TAT) and thrombomodulin (TM) levels were measured by enzyme-linked immunosorbent assay (ELISA), and the evaluation value of coagulation markers on tumor thrombosis was analyzed by receiver operating characteristic curve (ROC) curve analysis. Results There were significant differences in blood pressure, platelet count (PLT) level, diabetes history, and tumor metastasis between the two groups (P<0.05). The levels of PT, D-D, FDP, TAT, and TM in the thrombus group were significantly higher than those in control group (P<0.05). The area under the curve (AUC) of D-D, FDP, and TAT were 0.790, 0.881, and 0.672, respectively and there was a marked difference among the indexes (P<0.05). The AUC of FDP was the largest, and the sensitivity and diagnostic value of FDP were the highest. Conclusions The plasma levels of FDP, D-D, TAT, and TM in breast cancer patients with DVT after radical mastectomy were significantly increased, which is related to imbalanced coagulation and fibrinolysis functioning in patients. FDP had the highest predictive value for DVT after radical mastectomy.
Collapse
Affiliation(s)
- Mengyu Pang
- Department of Laboratory, The Second Hospital of Jilin University, Changchun, China
| | - Fenglian Zhao
- Department of Laboratory, The Second Hospital of Jilin University, Changchun, China
| | - Pengyue Yu
- Department of Laboratory, The Second Hospital of Jilin University, Changchun, China
| | - Xiaohua Zhang
- Department of Laboratory, The Second Hospital of Jilin University, Changchun, China
| | - Hexin Xiao
- Department of Laboratory, The Second Hospital of Jilin University, Changchun, China
| | - Wang Qiang
- Business Department, Sekisui Medical Technology (China) Ltd., Beijing, China
| | - Hongquan Zhu
- Department of Laboratory, The Second Hospital of Jilin University, Changchun, China
| | - Liyan Zhao
- Department of Laboratory, The Second Hospital of Jilin University, Changchun, China
| |
Collapse
|
10
|
Fevereiro J, Fraga AG, Pedrosa J. Genetics in the Host-Mycobacterium ulcerans interaction. Immunol Rev 2021; 301:222-241. [PMID: 33682158 DOI: 10.1111/imr.12958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Revised: 01/30/2021] [Accepted: 02/01/2021] [Indexed: 11/30/2022]
Abstract
Buruli ulcer is an emerging infectious disease associated with high morbidity and unpredictable outbreaks. It is caused by Mycobacterium ulcerans, a slow-growing pathogen evolutionarily shaped by the acquisition of a plasmid involved in the production of a potent macrolide-like cytotoxin and by genome rearrangements and downsizing. These events culminated in an uncommon infection pattern, whereby M. ulcerans is both able to induce the initiation of the inflammatory cascade and the cell death of its proponents, as well as to survive within the phagosome and in the extracellular milieu. In such extreme conditions, the host is sentenced to rely on a highly orchestrated genetic landscape to be able to control the infection. We here revisit the dynamics of M. ulcerans infection, drawing parallels from other mycobacterioses and integrating the most recent knowledge on its evolution and pathogenicity in its interaction with the host immune response.
Collapse
Affiliation(s)
- João Fevereiro
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal.,ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Alexandra G Fraga
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal.,ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Jorge Pedrosa
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal.,ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal
| |
Collapse
|
11
|
Röltgen K, Pluschke G. Buruli ulcer: The Efficacy of Innate Immune Defense May Be a Key Determinant for the Outcome of Infection With Mycobacterium ulcerans. Front Microbiol 2020; 11:1018. [PMID: 32523571 PMCID: PMC7261859 DOI: 10.3389/fmicb.2020.01018] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Accepted: 04/24/2020] [Indexed: 12/18/2022] Open
Abstract
Buruli ulcer (BU) is a neglected, tropical infectious disease of the skin and the subcutaneous tissue caused by Mycobacterium ulcerans. This pathogen has emerged as a new species from a common ancestor with Mycobacterium marinum by acquisition of the virulence plasmid pMUM. The plasmid encodes enzymes required for the synthesis of the macrolide toxin mycolactone, which has cytotoxic and immunosuppressive activities. In advanced BU lesions, extracellular clusters of M. ulcerans reside in necrotic subcutaneous tissue and are protected from infiltrating leukocytes by the cytotoxic activity of secreted mycolactone. Several lines of evidence indicate that elements of the innate immune system eliminate in many cases the initial inoculum before bacterial clusters can form and that therefore exposure to M. ulcerans leads only in a minority of individuals to the characteristic chronic necrotizing BU lesions. It is assumed that phagocytes play a key role in early host defense against M. ulcerans. Antibodies against bacterial surface structures seem to have less potential to enhance innate immunity than TH1 cell responses. Precise innate and adaptive immune effector mechanisms leading to protective immunity are however unclear, complicating the development of effective vaccines, the most desired solution to control BU. The tuberculosis vaccine Mycobacterium bovis Bacillus Calmette–Guérin (BCG) has limited short-term protective activity against BU. Whether this effect is due to the broad antigenic cross-reactivity between M. bovis and M. ulcerans or is at least partly mediated by a non-specific enhanced responsiveness of innate immune cells to secondary stimulation, recently described as “trained immunity” or “innate immune memory” is unknown but has major implications for vaccine design. Current vaccine research and development activities are focusing on recombinant BCG, subunit vaccines with selected M. ulcerans proteins, and the neutralization of mycolactone.
Collapse
Affiliation(s)
- Katharina Röltgen
- Department of Pathology, Stanford School of Medicine, Stanford University, Stanford, CA, United States
| | - Gerd Pluschke
- Medical Parasitology and Infection Biology, Swiss Tropical and Public Health Institute, Basel, Switzerland.,University of Basel, Basel, Switzerland
| |
Collapse
|
12
|
Larsen MH, Lacourciere K, Parker TM, Kraigsley A, Achkar JM, Adams LB, Dupnik KM, Hall-Stoodley L, Hartman T, Kanipe C, Kurtz SL, Miller MA, Salvador LCM, Spencer JS, Robinson RT. The Many Hosts of Mycobacteria 8 (MHM8): A conference report. Tuberculosis (Edinb) 2020; 121:101914. [PMID: 32279870 PMCID: PMC7428850 DOI: 10.1016/j.tube.2020.101914] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Revised: 02/07/2020] [Accepted: 02/09/2020] [Indexed: 12/18/2022]
Abstract
Mycobacteria are important causes of disease in human and animal hosts. Diseases caused by mycobacteria include leprosy, tuberculosis (TB), nontuberculous mycobacteria (NTM) infections and Buruli Ulcer. To better understand and treat mycobacterial disease, clinicians, veterinarians and scientists use a range of discipline-specific approaches to conduct basic and applied research, including conducting epidemiological surveys, patient studies, wildlife sampling, animal models, genetic studies and computational simulations. To foster the exchange of knowledge and collaboration across disciplines, the Many Hosts of Mycobacteria (MHM) conference series brings together clinical, veterinary and basic scientists who are dedicated to advancing mycobacterial disease research. Started in 2007, the MHM series recently held its 8th conference at the Albert Einstein College of Medicine (Bronx, NY). Here, we review the diseases discussed at MHM8 and summarize the presentations on research advances in leprosy, NTM and Buruli Ulcer, human and animal TB, mycobacterial disease comorbidities, mycobacterial genetics and 'omics, and animal models. A mouse models workshop, which was held immediately after MHM8, is also summarized. In addition to being a resource for those who were unable to attend MHM8, we anticipate this review will provide a benchmark to gauge the progress of future research concerning mycobacteria and their many hosts.
Collapse
Affiliation(s)
- Michelle H Larsen
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Karen Lacourciere
- National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD 20892, USA
| | - Tina M Parker
- National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD 20892, USA
| | - Alison Kraigsley
- Center for Infectious Disease Research and Policy, University of Minnesota, Minneapolis, MN, USA
| | - Jacqueline M Achkar
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY, USA; Department of Medicine, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Linda B Adams
- Department of Health and Human Services, Health Resources and Services Administration, Healthcare Systems Bureau, National Hansen's Disease Programs, Baton Rouge, LA, USA
| | - Kathryn M Dupnik
- Center for Global Health, Department of Medicine, Weill Cornell Medicine, New York, NY, USA
| | - Luanne Hall-Stoodley
- Department of Microbial Infection and Immunity, The Ohio State University, Columbus, OH, USA
| | - Travis Hartman
- Center for Global Health, Department of Medicine, Weill Cornell Medicine, New York, NY, USA
| | - Carly Kanipe
- Department of Immunobiology, Iowa State University, Ames, IA, USA; Oak Ridge Institute for Science and Education, Oak Ridge, TN, USA; Bacterial Diseases of Livestock Research Unit, National Animal Disease Center, Agricultural Research Service, United States Department of Agriculture, Ames, IA, USA
| | - Sherry L Kurtz
- Laboratory of Mucosal Pathogens and Cellular Immunology, Division of Bacterial, Parasitic and Allergenic Products, Center for Biologics Evaluation and Research, Food and Drug Administration, Washington, DC, USA
| | - Michele A Miller
- DST-NRF Centre of Excellence for Biomedical Tuberculosis Research, South African Medical Research Council Centre for Tuberculosis Research, Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
| | - Liliana C M Salvador
- Department of Infectious Diseases, University of Georgia, Athens, GA, USA; Institute of Bioinformatics, University of Georgia, Athens, GA, USA; Center for the Ecology of Infectious Diseases, University of Georgia, Athens, GA, USA
| | - John S Spencer
- Department of Microbiology, Immunology, and Pathology, Mycobacteria Research Laboratories, Colorado State University, Fort Collins, CO, USA
| | - Richard T Robinson
- Department of Microbial Infection and Immunity, The Ohio State University, Columbus, OH, USA.
| |
Collapse
|
13
|
Vaccine-Specific Immune Responses against Mycobacterium ulcerans Infection in a Low-Dose Murine Challenge Model. Infect Immun 2020; 88:IAI.00753-19. [PMID: 31818964 DOI: 10.1128/iai.00753-19] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Accepted: 12/06/2019] [Indexed: 01/22/2023] Open
Abstract
The neglected tropical disease Buruli ulcer (BU) is an infection of subcutaneous tissue with Mycobacterium ulcerans There is no effective vaccine. Here, we assessed an experimental prime-boost vaccine in a low-dose murine tail infection model. We used the enoyl reductase (ER) domain of the M. ulcerans mycolactone polyketide synthases electrostatically coupled with a previously described Toll-like receptor 2 (TLR-2) agonist-based lipopeptide adjuvant, R4Pam2Cys. Mice were vaccinated and then challenged via tail inoculation with 14 to 20 CFU of a bioluminescent strain of M. ulcerans Mice receiving either the experimental ER vaccine or Mycobacterium bovis bacillus Calmette-Guérin (BCG) were equally protected, with both groups faring significantly better than nonvaccinated animals (P < 0.05). To explore potential correlates of protection, a suite of 29 immune parameters were assessed in the mice at the end of the experimental period. Multivariate statistical approaches were used to interrogate the immune response data to develop disease-prognostic models. High levels of interleukin 2 (IL-2) and low gamma interferon (IFN-γ) produced in the spleen best predicted control of infection across all vaccine groups. Univariate logistic regression revealed vaccine-specific profiles of protection. High titers of ER-specific IgG serum antibodies together with IL-2 and IL-4 in the draining lymph node (DLN) were associated with protection induced by the ER vaccine. In contrast, high titers of IL-6, tumor necrosis factor alpha (TNF-α), IFN-γ, and IL-10 in the DLN and low IFN-γ titers in the spleen were associated with protection following BCG vaccination. This study suggests that an effective BU vaccine must induce localized, tissue-specific immune profiles with controlled inflammatory responses at the site of infection.
Collapse
|
14
|
Reynaert ML, Dupoiron D, Yeramian E, Marsollier L, Brodin P. Could Mycolactone Inspire New Potent Analgesics? Perspectives and Pitfalls. Toxins (Basel) 2019; 11:toxins11090516. [PMID: 31487908 PMCID: PMC6783859 DOI: 10.3390/toxins11090516] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2019] [Revised: 08/26/2019] [Accepted: 09/03/2019] [Indexed: 12/20/2022] Open
Abstract
Pain currently represents the most common symptom for which medical attention is sought by patients. The available treatments have limited effectiveness and significant side-effects. In addition, most often, the duration of analgesia is short. Today, the handling of pain remains a major challenge. One promising alternative for the discovery of novel potent analgesics is to take inspiration from Mother Nature; in this context, the detailed investigation of the intriguing analgesia implemented in Buruli ulcer, an infectious disease caused by the bacterium Mycobacterium ulcerans and characterized by painless ulcerative lesions, seems particularly promising. More precisely, in this disease, the painless skin ulcers are caused by mycolactone, a polyketide lactone exotoxin. In fact, mycolactone exerts a wide range of effects on the host, besides being responsible for analgesia, as it has been shown notably to modulate the immune response or to provoke apoptosis. Several cellular mechanisms and different targets have been proposed to account for the analgesic effect of the toxin, such as nerve degeneration, the inhibition of inflammatory mediators and the activation of angiotensin II receptor 2. In this review, we discuss the current knowledge in the field, highlighting possible controversies. We first discuss the different pain-mimicking experimental models that were used to study the effect of mycolactone. We then detail the different variants of mycolactone that were used in such models. Overall, based on the results and the discussions, we conclude that the development of mycolactone-derived molecules can represent very promising perspectives for new analgesic drugs, which could be effective for specific pain indications.
Collapse
Affiliation(s)
- Marie-Line Reynaert
- France Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019-UMR8204-CIIL-Center for Infection and Immunity of Lille, F-59000 Lille, France
| | - Denis Dupoiron
- Institut de Cancérologie de l'Ouest Paul Papin, 15 rue André Boquel-49055 Angers, France
| | - Edouard Yeramian
- Unité de Microbiologie Structurale, Institut Pasteur, CNRS, Univ. Paris, F-75015 Paris, France
| | - Laurent Marsollier
- Equipe ATIP AVENIR, CRCINA, INSERM, Univ. Nantes, Univ. Angers, 4 rue Larrey, F-49933 Angers, France.
| | - Priscille Brodin
- France Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019-UMR8204-CIIL-Center for Infection and Immunity of Lille, F-59000 Lille, France.
| |
Collapse
|
15
|
Zong G, Hu Z, O’Keefe S, Tranter D, Iannotti MJ, Baron L, Hall B, Corfield K, Paatero AO, Henderson MJ, Roboti P, Zhou J, Sun X, Govindarajan M, Rohde JM, Blanchard N, Simmonds R, Inglese J, Du Y, Demangel C, High S, Paavilainen VO, Shi WQ. Ipomoeassin F Binds Sec61α to Inhibit Protein Translocation. J Am Chem Soc 2019; 141:8450-8461. [PMID: 31059257 PMCID: PMC6627486 DOI: 10.1021/jacs.8b13506] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Ipomoeassin F is a potent natural cytotoxin that inhibits growth of many tumor cell lines with single-digit nanomolar potency. However, its biological and pharmacological properties have remained largely unexplored. Building upon our earlier achievements in total synthesis and medicinal chemistry, we used chemical proteomics to identify Sec61α (protein transport protein Sec61 subunit alpha isoform 1), the pore-forming subunit of the Sec61 protein translocon, as a direct binding partner of ipomoeassin F in living cells. The interaction is specific and strong enough to survive lysis conditions, enabling a biotin analogue of ipomoeassin F to pull down Sec61α from live cells, yet it is also reversible, as judged by several experiments including fluorescent streptavidin staining, delayed competition in affinity pulldown, and inhibition of TNF biogenesis after washout. Sec61α forms the central subunit of the ER protein translocation complex, and the binding of ipomoeassin F results in a substantial, yet selective, inhibition of protein translocation in vitro and a broad ranging inhibition of protein secretion in live cells. Lastly, the unique resistance profile demonstrated by specific amino acid single-point mutations in Sec61α provides compelling evidence that Sec61α is the primary molecular target of ipomoeassin F and strongly suggests that the binding of this natural product to Sec61α is distinctive. Therefore, ipomoeassin F represents the first plant-derived, carbohydrate-based member of a novel structural class that offers new opportunities to explore Sec61α function and to further investigate its potential as a therapeutic target for drug discovery.
Collapse
Affiliation(s)
- Guanghui Zong
- †Department
of Chemistry and Biochemistry and ⬡Department of Biological Sciences, University of Arkansas, Fayetteville, Arkansas 72701, United States,Department
of Chemistry and Biochemistry, University
of Maryland, College Park, Maryland 20742, United States
| | - Zhijian Hu
- †Department
of Chemistry and Biochemistry and ⬡Department of Biological Sciences, University of Arkansas, Fayetteville, Arkansas 72701, United States
| | - Sarah O’Keefe
- School
of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, M13 9PT, United Kingdom
| | - Dale Tranter
- University
of Helsinki, HiLIFE, Helsinki, Finland,Institute
of Biotechnology, Helsinki, Finland
| | - Michael J. Iannotti
- National
Center for Advancing Translational Sciences, National
Institutes of Health, Rockville, Maryland 20850, United States
| | - Ludivine Baron
- Immunobiology
of Infection Unit, Institut Pasteur, 75015 Paris, France,INSERM, U1221, 75005 Paris, France
| | - Belinda Hall
- Department
of Microbial Sciences, School of Biosciences and Medicine, University of Surrey, Guildford, Surrey GU2 7XH, United Kingdom
| | - Katherine Corfield
- Department
of Microbial Sciences, School of Biosciences and Medicine, University of Surrey, Guildford, Surrey GU2 7XH, United Kingdom
| | - Anja O. Paatero
- University
of Helsinki, HiLIFE, Helsinki, Finland,Institute
of Biotechnology, Helsinki, Finland
| | - Mark J. Henderson
- National
Center for Advancing Translational Sciences, National
Institutes of Health, Rockville, Maryland 20850, United States
| | - Peristera Roboti
- School
of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, M13 9PT, United Kingdom
| | - Jianhong Zhou
- †Department
of Chemistry and Biochemistry and ⬡Department of Biological Sciences, University of Arkansas, Fayetteville, Arkansas 72701, United States
| | - Xianwei Sun
- †Department
of Chemistry and Biochemistry and ⬡Department of Biological Sciences, University of Arkansas, Fayetteville, Arkansas 72701, United States,Department
of Radiology, Baylor College of Medicine, Houston, Texas 77030, United States
| | - Mugunthan Govindarajan
- †Department
of Chemistry and Biochemistry and ⬡Department of Biological Sciences, University of Arkansas, Fayetteville, Arkansas 72701, United States,Emory
Institute for Drug Development, Emory University, 954 Gatewood Road, Atlanta, Georgia 30329, United States
| | - Jason M. Rohde
- National
Center for Advancing Translational Sciences, National
Institutes of Health, Rockville, Maryland 20850, United States
| | - Nicolas Blanchard
- Université
de Haute-Alsace, Université de Strasbourg, CNRS, LIMA, UMR 7042, 68000 Mulhouse, France
| | - Rachel Simmonds
- Department
of Microbial Sciences, School of Biosciences and Medicine, University of Surrey, Guildford, Surrey GU2 7XH, United Kingdom,
| | - James Inglese
- National
Center for Advancing Translational Sciences, National
Institutes of Health, Rockville, Maryland 20850, United States,
| | - Yuchun Du
- †Department
of Chemistry and Biochemistry and ⬡Department of Biological Sciences, University of Arkansas, Fayetteville, Arkansas 72701, United States,
| | - Caroline Demangel
- Immunobiology
of Infection Unit, Institut Pasteur, 75015 Paris, France,INSERM, U1221, 75005 Paris, France,
| | - Stephen High
- School
of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, M13 9PT, United Kingdom,
| | - Ville O. Paavilainen
- University
of Helsinki, HiLIFE, Helsinki, Finland,Institute
of Biotechnology, Helsinki, Finland,
| | - Wei Q. Shi
- †Department
of Chemistry and Biochemistry and ⬡Department of Biological Sciences, University of Arkansas, Fayetteville, Arkansas 72701, United States,Department
of Chemistry, Ball State University, Muncie, Indiana 47306, United States,;
| |
Collapse
|
16
|
Molecular Docking and Dynamics Simulation Studies Predict Munc18b as a Target of Mycolactone: A Plausible Mechanism for Granule Exocytosis Impairment in Buruli Ulcer Pathogenesis. Toxins (Basel) 2019; 11:toxins11030181. [PMID: 30934618 PMCID: PMC6468854 DOI: 10.3390/toxins11030181] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Revised: 03/15/2019] [Accepted: 03/20/2019] [Indexed: 12/18/2022] Open
Abstract
Ulcers due to infections with Mycobacterium ulcerans are characterized by complete lack of wound healing processes, painless, an underlying bed of host dead cells and undermined edges due to necrosis. Mycolactone, a macrolide produced by the mycobacterium, is believed to be the toxin responsible. Of interest and relevance is the knowledge that Buruli ulcer (BU) patients remember experiencing trauma previously at the site of the ulcers, suggesting an impairment of wound healing processes, the plausible effect due to the toxin. Wound healing processes involve activation of the blood platelets to release the contents of the dense granules mainly serotonin, calcium ions, and ADP/ATP by exocytosis into the bloodstream. The serotonin release results in attracting more platelets and mast cells to the wound site, with the mast cells also undergoing degranulation, releasing compounds into the bloodstream by exocytosis. Recent work has identified interference in the co-translational translocation of many secreted proteins via the endoplasmic reticulum and cell death involving Wiskott-Aldrich syndrome protein (WASP), Sec61, and angiotensin II receptors (AT2R). We hypothesized that mycolactone by being lipophilic, passively crosses cell membranes and binds to key proteins that are involved in exocytosis by platelets and mast cells, thus inhibiting the initiation of wound healing processes. Based on this, molecular docking studies were performed with mycolactone against key soluble n-ethylmaleimide-sensitive factor attachment protein receptor (SNARE) proteins and regulators, namely Vesicle-associated membrane protein (VAMP8), Synaptosomal-associated protein (SNAP23, syntaxin 11, Munc13-4 (its isoform Munc13-1 was used), and Munc18b; and also against known mycolactone targets (Sec61, AT2R, and WASP). Munc18b was shown to be a plausible mycolactone target after the molecular docking studies with binding affinity of -8.5 kcal/mol. Structural studies and molecular mechanics Poisson-Boltzmann surface area (MM-PBSA) binding energy calculations of the mycolactone and Munc18b complex was done with 100 ns molecular dynamics simulations using GROMACS. Mycolactone binds strongly to Munc18b with an average binding energy of -247.571 ± 37.471 kJ/mol, and its presence elicits changes in the structural conformation of the protein. Analysis of the binding interactions also shows that mycolactone interacts with Arg405, which is an important residue of Munc18b, whose mutation could result in impaired granule exocytosis. These findings consolidate the possibility that Munc18b could be a target of mycolactone. The implication of the interaction can be experimentally evaluated to further understand its role in granule exocytosis impairment in Buruli ulcer.
Collapse
|
17
|
Aboagye SY, Kpeli G, Tuffour J, Yeboah‐Manu D. Challenges associated with the treatment of Buruli ulcer. J Leukoc Biol 2018; 105:233-242. [PMID: 30168876 DOI: 10.1002/jlb.mr0318-128] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2018] [Accepted: 07/19/2018] [Indexed: 12/30/2022] Open
Affiliation(s)
- Sammy Yaw Aboagye
- Noguchi Memorial Institute for Medical ResearchUniversity of Ghana Accra Ghana
| | - Grace Kpeli
- University of Allied Health Sciences Ho Ghana
| | | | - Dorothy Yeboah‐Manu
- Noguchi Memorial Institute for Medical ResearchUniversity of Ghana Accra Ghana
| |
Collapse
|
18
|
Demangel C, High S. Sec61 blockade by mycolactone: A central mechanism in Buruli ulcer disease. Biol Cell 2018; 110:237-248. [PMID: 30055020 DOI: 10.1111/boc.201800030] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2018] [Accepted: 07/19/2018] [Indexed: 12/14/2022]
Abstract
Infection with Mycobacterium ulcerans results in a necrotising skin disease known as a Buruli ulcer, the pathology of which is directly linked to the bacterial production of the toxin mycolactone. Recent studies have identified the protein translocation machinery of the endoplasmic reticulum (ER) membrane as the primary cellular target of mycolactone, and shown that the toxin binds to the core subunit of the Sec61 complex. Mycolactone binding strongly inhibits the capacity of the Sec61 translocon to transport newly synthesised membrane and secretory proteins into and across the ER membrane. Since the ER acts as the entry point for the mammalian secretory pathway, and hence regulates initial access to the entire endomembrane system, mycolactone-treated cells have a reduced ability to produce a range of proteins including secretory cytokines and plasma membrane receptors. The global effect of this molecular blockade of protein translocation at the ER is that the host is unable to mount an effective immune response to the underlying mycobacterial infection. Prolonged exposure to mycolactone is normally cytotoxic, since it triggers stress responses activating the transcription factor ATF4 and ultimately inducing apoptosis.
Collapse
Affiliation(s)
- Caroline Demangel
- Immunobiology of Infection Unit, Institut Pasteur, Paris, France.,INSERM, U1221, Paris, France
| | - Stephen High
- Division of Molecular and Cellular Function, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, M13 9PT, UK
| |
Collapse
|
19
|
Loglo AD, Frimpong M, Sarpong Duah M, Sarfo F, Sarpong FN, Agbavor B, Boakye-Appiah JK, Abass KM, Dongyele M, Frempong M, Pidot S, Wansbrough-Jones M, Stinear TP, Roupie V, Huygen K, Phillips RO. IFN-γ and IL-5 whole blood response directed against mycolactone polyketide synthase domains in patients with Mycobacterium ulcerans infection. PeerJ 2018; 6:e5294. [PMID: 30090691 PMCID: PMC6078848 DOI: 10.7717/peerj.5294] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2018] [Accepted: 07/02/2018] [Indexed: 01/04/2023] Open
Abstract
Background Buruli ulcer is a disease of the skin and soft tissues caused by infection with a slow growing pathogen, Mycobacterium ulcerans. A vaccine for this disease is not available but M. ulcerans possesses a giant plasmid pMUM001 that harbours the polyketide synthase (PKS) genes encoding a multi-enzyme complex needed for the production of its unique lipid toxin called mycolactone, which is central to the pathogenesis of Buruli ulcer. We have studied the immunogenicity of enzymatic domains in humans with M. ulcerans disease, their contacts, as well as non-endemic areas controls. Methods Between March 2013 and August 2015, heparinized whole blood was obtained from patients confirmed with Buruli ulcer. The blood samples were diluted 1 in 10 in Roswell Park Memorial Institute (RPMI) medium and incubated for 5 days with recombinant mycolactone PKS domains and mycolyltransferase antigen 85A (Ag85A). Blood samples were obtained before and at completion of antibiotic treatment for 8 weeks and again 8 weeks after completion of treatment. Supernatants were assayed for interferon-γ (IFN-γ) and interleukin-5 (IL-5) by enzyme-linked immunosorbent assay. Responses were compared with those of contacts and non-endemic controls. Results More than 80% of patients and contacts from endemic areas produced IFN-γ in response to all the antigens except acyl carrier protein type 3 (ACP3) to which only 47% of active Buruli ulcer cases and 71% of contacts responded. The highest proportion of responders in cases and contacts was to load module ketosynthase domain (Ksalt) (100%) and enoylreductase (100%). Lower IL-5 responses were induced in a smaller proportion of patients ranging from 54% after ketoreductase type B stimulation to only 21% with ketosynthase type C (KS C). Among endemic area contacts, the, highest proportion was 73% responding to KS C and the lowest was 40% responding to acyltransferase with acetate specificity type 2. Contacts of Buruli ulcer patients produced significantly higher IFN-γ and IL-5 responses compared with those of patients to PKS domain antigens and to mycolyltransferase Ag85A of M. ulcerans. There was low or no response to all the antigens in non-endemic areas controls. IFN-γ and IL-5 responses of patients improved after treatment when compared to baseline results. Discussion The major response to PKS antigen stimulation was IFN-γ and the strongest responses were observed in healthy contacts of patients living in areas endemic for Buruli ulcer. Patients elicited lower responses than healthy contacts, possibly due to the immunosuppressive effect of mycolactone, but the responses were enhanced after antibiotic treatment. A vaccine made up of the most immunogenic PKS domains combined with the mycolyltransferase Ag85A warrants further investigation.
Collapse
Affiliation(s)
- Aloysius D Loglo
- Kumasi Centre for Collaborative Research in Tropical Medicine, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana
| | - Michael Frimpong
- Kumasi Centre for Collaborative Research in Tropical Medicine, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana
| | - Mabel Sarpong Duah
- Kumasi Centre for Collaborative Research in Tropical Medicine, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana
| | - Fred Sarfo
- School of Medical Sciences, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana
| | - Francisca N Sarpong
- Kumasi Centre for Collaborative Research in Tropical Medicine, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana
| | - Bernadette Agbavor
- Kumasi Centre for Collaborative Research in Tropical Medicine, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana
| | | | | | | | - Margaret Frempong
- School of Medical Sciences, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana
| | - Sacha Pidot
- Department of Microbiology and Immunology, Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, VIC, Australia
| | | | - Timothy P Stinear
- Department of Microbiology and Immunology, Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, VIC, Australia
| | - Virginie Roupie
- Service Immunology, Scientific Institute of Public Health, Brussels, Belgium
| | - Kris Huygen
- Service Immunology, Scientific Institute of Public Health, Brussels, Belgium
| | - Richard O Phillips
- Kumasi Centre for Collaborative Research in Tropical Medicine, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana.,School of Medical Sciences, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana
| |
Collapse
|
20
|
Ogbechi J, Hall BS, Sbarrato T, Taunton J, Willis AE, Wek RC, Simmonds RE. Inhibition of Sec61-dependent translocation by mycolactone uncouples the integrated stress response from ER stress, driving cytotoxicity via translational activation of ATF4. Cell Death Dis 2018. [PMID: 29540678 PMCID: PMC5852046 DOI: 10.1038/s41419-018-0427-y] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Mycolactone is the exotoxin virulence factor of Mycobacterium ulcerans that causes the neglected tropical disease Buruli ulcer. We recently showed it to be a broad spectrum inhibitor of Sec61-dependent co-translational translocation of proteins into the endoplasmic reticulum (ER). An outstanding question is the molecular pathway linking this to its known cytotoxicity. We have now used translational profiling to better understand the reprogramming that occurs in cells exposed to mycolactone. Gene ontology identified enrichment in genes involved in cellular response to stress, and apoptosis signalling among those showing enhanced translation. Validation of these results supports a mechanism by which mycolactone activates an integrated stress response meditated by phosphorylation of eIF2α via multiple kinases (PERK, GCN, PKR) without activation of the ER stress sensors IRE1 or ATF6. The response therefore uncouples the integrated stress response from ER stress, and features translational and transcriptional modes of genes expression that feature the key regulatory transcription factor ATF4. Emphasising the importance of this uncoupled response in cytotoxicity, downstream activation of this pathway is abolished in cells expressing mycolactone-resistant Sec61α variants. Using multiple genetic and biochemical approaches, we demonstrate that eIF2α phosphorylation is responsible for mycolactone-dependent translation attenuation, which initially protects cells from cell death. However, chronic activation without stress remediation enhances autophagy and apoptosis of cells by a pathway facilitated by ATF4 and CHOP. Our findings demonstrate that priming events at the ER can result in the sensing of stress within different cellular compartments.
Collapse
Affiliation(s)
- Joy Ogbechi
- Department of Microbial Sciences, School of Biosciences and Medicine, University of Surrey, Guildford, Surrey, GU2 7XH, UK
| | - Belinda S Hall
- Department of Microbial Sciences, School of Biosciences and Medicine, University of Surrey, Guildford, Surrey, GU2 7XH, UK
| | | | - Jack Taunton
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA, 94158, USA
| | - Anne E Willis
- MRC Toxicology Unit, Lancaster Rd, Leicester, LE1 9HN, UK
| | - Ronald C Wek
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN, 46202-5126, USA
| | - Rachel E Simmonds
- Department of Microbial Sciences, School of Biosciences and Medicine, University of Surrey, Guildford, Surrey, GU2 7XH, UK.
| |
Collapse
|
21
|
Nitenberg M, Bénarouche A, Maniti O, Marion E, Marsollier L, Géan J, Dufourc EJ, Cavalier JF, Canaan S, Girard-Egrot AP. The potent effect of mycolactone on lipid membranes. PLoS Pathog 2018; 14:e1006814. [PMID: 29320578 PMCID: PMC5779694 DOI: 10.1371/journal.ppat.1006814] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2017] [Revised: 01/23/2018] [Accepted: 12/14/2017] [Indexed: 12/15/2022] Open
Abstract
Mycolactone is a lipid-like endotoxin synthesized by an environmental human pathogen, Mycobacterium ulcerans, the causal agent of Buruli ulcer disease. Mycolactone has pleiotropic effects on fundamental cellular processes (cell adhesion, cell death and inflammation). Various cellular targets of mycolactone have been identified and a literature survey revealed that most of these targets are membrane receptors residing in ordered plasma membrane nanodomains, within which their functionalities can be modulated. We investigated the capacity of mycolactone to interact with membranes, to evaluate its effects on membrane lipid organization following its diffusion across the cell membrane. We used Langmuir monolayers as a cell membrane model. Experiments were carried out with a lipid composition chosen to be as similar as possible to that of the plasma membrane. Mycolactone, which has surfactant properties, with an apparent saturation concentration of 1 μM, interacted with the membrane at very low concentrations (60 nM). The interaction of mycolactone with the membrane was mediated by the presence of cholesterol and, like detergents, mycolactone reshaped the membrane. In its monomeric form, this toxin modifies lipid segregation in the monolayer, strongly affecting the formation of ordered microdomains. These findings suggest that mycolactone disturbs lipid organization in the biological membranes it crosses, with potential effects on cell functions and signaling pathways. Microdomain remodeling may therefore underlie molecular events, accounting for the ability of mycolactone to attack multiple targets and providing new insight into a single unifying mechanism underlying the pleiotropic effects of this molecule. This membrane remodeling may act in synergy with the other known effects of mycolactone on its intracellular targets, potentiating these effects.
Collapse
Affiliation(s)
- Milène Nitenberg
- Univ. Lyon, Université Lyon 1, CNRS, Institut de Chimie et Biochimie Moléculaires et Supramoléculaires, ICBMS—UMR 5246, GEMBAS team, Lyon, France
| | | | - Ofelia Maniti
- Univ. Lyon, Université Lyon 1, CNRS, Institut de Chimie et Biochimie Moléculaires et Supramoléculaires, ICBMS—UMR 5246, GEMBAS team, Lyon, France
| | - Estelle Marion
- CRCINA, INSERM, Université de Nantes, Université d'Angers, Angers, France
| | - Laurent Marsollier
- CRCINA, INSERM, Université de Nantes, Université d'Angers, Angers, France
| | - Julie Géan
- Univ. Bordeaux, CNRS, Bordeaux INP, Chemistry and Biology of Membranes and Nano-objects, CBMN UMR 5248, Pessac, France
| | - Erick J. Dufourc
- Univ. Bordeaux, CNRS, Bordeaux INP, Chemistry and Biology of Membranes and Nano-objects, CBMN UMR 5248, Pessac, France
| | - Jean-François Cavalier
- Aix-Marseille Univ, CNRS, EIPL, Marseille, France
- Aix-Marseille Univ, CNRS, LISM, Marseille, France
| | - Stéphane Canaan
- Aix-Marseille Univ, CNRS, EIPL, Marseille, France
- Aix-Marseille Univ, CNRS, LISM, Marseille, France
| | - Agnès P. Girard-Egrot
- Univ. Lyon, Université Lyon 1, CNRS, Institut de Chimie et Biochimie Moléculaires et Supramoléculaires, ICBMS—UMR 5246, GEMBAS team, Lyon, France
| |
Collapse
|
22
|
Buruli Ulcer, a Prototype for Ecosystem-Related Infection, Caused by Mycobacterium ulcerans. Clin Microbiol Rev 2017; 31:31/1/e00045-17. [PMID: 29237707 DOI: 10.1128/cmr.00045-17] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Buruli ulcer is a noncontagious disabling cutaneous and subcutaneous mycobacteriosis reported by 33 countries in Africa, Asia, Oceania, and South America. The causative agent, Mycobacterium ulcerans, derives from Mycobacterium marinum by genomic reduction and acquisition of a plasmid-borne, nonribosomal cytotoxin mycolactone, the major virulence factor. M. ulcerans-specific sequences have been readily detected in aquatic environments in food chains involving small mammals. Skin contamination combined with any type of puncture, including insect bites, is the most plausible route of transmission, and skin temperature of <30°C significantly correlates with the topography of lesions. After 30 years of emergence and increasing prevalence between 1970 and 2010, mainly in Africa, factors related to ongoing decreasing prevalence in the same countries remain unexplained. Rapid diagnosis, including laboratory confirmation at the point of care, is mandatory in order to reduce delays in effective treatment. Parenteral and potentially toxic streptomycin-rifampin is to be replaced by oral clarithromycin or fluoroquinolone combined with rifampin. In the absence of proven effective primary prevention, avoiding skin contamination by means of clothing can be implemented in areas of endemicity. Buruli ulcer is a prototype of ecosystem pathology, illustrating the impact of human activities on the environment as a source for emerging tropical infectious diseases.
Collapse
|
23
|
Gehringer M, Altmann KH. The chemistry and biology of mycolactones. Beilstein J Org Chem 2017; 13:1596-1660. [PMID: 28904608 PMCID: PMC5564285 DOI: 10.3762/bjoc.13.159] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2017] [Accepted: 07/21/2017] [Indexed: 12/21/2022] Open
Abstract
Mycolactones are a group of macrolides excreted by the human pathogen Mycobacterium ulcerans, which exhibit cytotoxic, immunosuppressive and analgesic properties. As the virulence factor of M. ulcerans, mycolactones are central to the pathogenesis of the neglected disease Buruli ulcer, a chronic and debilitating medical condition characterized by necrotic skin ulcers. Due to their complex structure and fascinating biology, mycolactones have inspired various total synthesis endeavors and structure-activity relationship studies. Although this review intends to cover all synthesis efforts in the field, special emphasis is given to the comparison of conceptually different approaches and to the discussion of more recent contributions. Furthermore, a detailed discussion of molecular targets and structure-activity relationships is provided.
Collapse
Affiliation(s)
- Matthias Gehringer
- Department of Chemistry and Applied Biosciences, Institute of Pharmaceutical Sciences, ETH Zürich, Vladimir-Prelog-Weg 4, 8093 Zürich, Switzerland
| | - Karl-Heinz Altmann
- Department of Chemistry and Applied Biosciences, Institute of Pharmaceutical Sciences, ETH Zürich, Vladimir-Prelog-Weg 4, 8093 Zürich, Switzerland
| |
Collapse
|
24
|
En J, Kitamoto S, Kawashima A, Yonezawa S, Kishi Y, Ishii N, Goto M. Mycolactone cytotoxicity in Schwann cells could explain nerve damage in Buruli ulcer. PLoS Negl Trop Dis 2017; 11:e0005834. [PMID: 28783752 PMCID: PMC5559071 DOI: 10.1371/journal.pntd.0005834] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2016] [Revised: 08/16/2017] [Accepted: 07/25/2017] [Indexed: 01/11/2023] Open
Abstract
Buruli ulcer is a chronic painless skin disease caused by Mycobacterium ulcerans. The local nerve damage induced by M. ulcerans invasion is similar to the nerve damage evoked by the injection of mycolactone in a Buruli ulcer mouse model. In order to elucidate the mechanism of this nerve damage, we tested and compared the cytotoxic effect of synthetic mycolactone A/B on cultured Schwann cells, fibroblasts and macrophages. Mycolactone induced much higher cell death and apoptosis in Schwann cell line SW10 than in fibroblast line L929. These results suggest that mycolactone is a key substance in the production of nerve damage of Buruli ulcer. Buruli ulcer is a chronic skin disease caused by Mycobacterium ulcerans, and the disease is characterized by the painless nature of its lesion. Similar to leprosy, loss of pain often hinders the patients from taking proper medical care, resulting in gross deformities. A toxic lipid mycolactone produced from Mycobacterium ulcerans was thought to block the sensory system of the lesion, either by direct cellular damage (cytotoxicity) to the regional nerve tissue, or by a more sophisticated, non-toxic paralyzing mechanism. In the peripheral nerve, Schwann cells nourish axons and accelerate nerve conduction. In this study, we have compared the cytotoxic potential of mycolactone on cultured Schwann cells and that on fibroblasts, and found that mycolactone A/B induced much higher cell death and apoptosis in Schwann cell line SW10 than in fibroblast line L929. These results support the cytotoxic theory and suggest that mycolactone is a key substance in the production of nerve damage of Buruli ulcer.
Collapse
Affiliation(s)
- Junichiro En
- Department of Pathology, Kagoshima University, Kagoshima, Japan
- National Sanatorium Hoshizuka-Keiaien, Kanoya, Kagoshima, Japan
- International University of Health and Welfare, Narita, Chiba, Japan
- * E-mail:
| | - Sho Kitamoto
- Department of Pathology, Kagoshima University, Kagoshima, Japan
- Division of Gastroenterology, Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, Michigan, United States of America
| | - Akira Kawashima
- Department of Clinical Laboratory Science, Faculty of Medical Technology, Teikyo University, Itabashi, Tokyo, Japan
| | - Suguru Yonezawa
- Department of Pathology, Kagoshima University, Kagoshima, Japan
| | - Yoshito Kishi
- Department of Chemistry and Chemical Biology, Harvard University, Boston, Massachusetts, United States of America
| | - Norihisa Ishii
- Leprosy Research Center, National Institute of Infectious Diseases, Higashimurayama, Tokyo, Japan
| | - Masamichi Goto
- Department of Pathology, Kagoshima University, Kagoshima, Japan
- National Sanatorium Hoshizuka-Keiaien, Kanoya, Kagoshima, Japan
| |
Collapse
|
25
|
A Bacterial Toxin with Analgesic Properties: Hyperpolarization of DRG Neurons by Mycolactone. Toxins (Basel) 2017; 9:toxins9070227. [PMID: 28718822 PMCID: PMC5535174 DOI: 10.3390/toxins9070227] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2017] [Revised: 07/10/2017] [Accepted: 07/13/2017] [Indexed: 12/20/2022] Open
Abstract
Mycolactone, a polyketide molecule produced by Mycobacterium ulcerans, is the etiological agent of Buruli ulcer. This lipid toxin is endowed with pleiotropic effects, presents cytotoxic effects at high doses, and notably plays a pivotal role in host response upon colonization by the bacillus. Most remarkably, mycolactone displays intriguing analgesic capabilities: the toxin suppresses or alleviates the pain of the skin lesions it inflicts. We demonstrated that the analgesic capability of mycolactone was not attributable to nerve damage, but instead resulted from the triggering of a cellular pathway targeting AT₂ receptors (angiotensin II type 2 receptors; AT₂R), and leading to potassium-dependent hyperpolarization. This demonstration paves the way to new nature-inspired analgesic protocols. In this direction, we assess here the hyperpolarizing properties of mycolactone on nociceptive neurons. We developed a dedicated medium-throughput assay based on membrane potential changes, and visualized by confocal microscopy of bis-oxonol-loaded Dorsal Root Ganglion (DRG) neurons. We demonstrate that mycolactone at non-cytotoxic doses triggers the hyperpolarization of DRG neurons through AT₂R, with this action being not affected by known ligands of AT₂R. This result points towards novel AT₂R-dependent signaling pathways in DRG neurons underlying the analgesic effect of mycolactone, with the perspective for the development of new types of nature-inspired analgesics.
Collapse
|
26
|
Graziola F, Colombo E, Tiberio R, Leigheb G, Bozzo C. Mycobacterium ulcerans mycolactone interferes with adhesion, migration and proliferation of primary human keratinocytes and HaCaT cell line. Arch Dermatol Res 2017; 309:179-189. [DOI: 10.1007/s00403-017-1719-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2015] [Revised: 05/24/2016] [Accepted: 01/18/2017] [Indexed: 11/24/2022]
|
27
|
McKenna M, Simmonds RE, High S. Mycolactone reveals the substrate-driven complexity of Sec61-dependent transmembrane protein biogenesis. J Cell Sci 2017; 130:1307-1320. [PMID: 28219954 PMCID: PMC5399781 DOI: 10.1242/jcs.198655] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2016] [Accepted: 02/02/2017] [Indexed: 12/22/2022] Open
Abstract
Mycolactone is the exotoxin virulence factor produced by Mycobacterium ulcerans, the pathogen responsible for Buruli ulcer. The skin lesions and immunosuppression that are characteristic of this disease result from the action of mycolactone, which targets the Sec61 complex and inhibits the co-translational translocation of secretory proteins into the endoplasmic reticulum. In this study, we investigate the effect of mycolactone on the Sec61-dependent biogenesis of different classes of transmembrane protein (TMP). Our data suggest that the effect of mycolactone on TMP biogenesis depends on how the nascent chain initially engages the Sec61 complex. For example, the translocation of TMP lumenal domains driven by an N-terminal cleavable signal sequence is efficiently inhibited by mycolactone. In contrast, the effect of mycolactone on protein translocation that is driven solely by a non-cleavable signal anchor/transmembrane domain depends on which flanking region is translocated. For example, while translocation of the region N-terminal to a signal anchor/transmembrane domain is refractive to mycolactone, C-terminal translocation is efficiently inhibited. Our findings highlight the diversity of Sec61-dependent translocation and provide a molecular basis for understanding the effect of mycolactone on the biogenesis of different TMPs. Highlighted Article: The exotoxin mycolactone interferes with the biogenesis of the majority of transmembrane proteins and its actions highlight differences in how distinct classes of these proteins initially engage the Sec61 translocon.
Collapse
Affiliation(s)
- Michael McKenna
- Division of Molecular and Cellular Function, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Michael Smith Building, Manchester M13 9PT, UK
| | - Rachel E Simmonds
- Department of Microbial Sciences, School of Bioscience and Medicine, Faculty of Health and Medical Sciences, University of Surrey, Guildford GU2 7XH, UK
| | - Stephen High
- Division of Molecular and Cellular Function, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Michael Smith Building, Manchester M13 9PT, UK
| |
Collapse
|
28
|
Sarfo FS, Phillips R, Wansbrough-Jones M, Simmonds RE. Recent advances: role of mycolactone in the pathogenesis and monitoring of Mycobacterium ulcerans infection/Buruli ulcer disease. Cell Microbiol 2016; 18:17-29. [PMID: 26572803 PMCID: PMC4705457 DOI: 10.1111/cmi.12547] [Citation(s) in RCA: 58] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2015] [Revised: 11/10/2015] [Accepted: 11/13/2015] [Indexed: 02/03/2023]
Abstract
Infection of subcutaneous tissue with Mycobacterium ulcerans can lead to chronic skin ulceration known as Buruli ulcer. The pathogenesis of this neglected tropical disease is dependent on a lipid‐like toxin, mycolactone, which diffuses through tissue away from the infecting organisms. Since its identification in 1999, this molecule has been intensely studied to elucidate its cytotoxic and immunosuppressive properties. Two recent major advances identifying the underlying molecular targets for mycolactone have been described. First, it can target scaffolding proteins (such as Wiskott Aldrich Syndrome Protein), which control actin dynamics in adherent cells and therefore lead to detachment and cell death by anoikis. Second, it prevents the co‐translational translocation (and therefore production) of many proteins that pass through the endoplasmic reticulum for secretion or placement in cell membranes. These pleiotropic effects underpin the range of cell‐specific functional defects in immune and other cells that contact mycolactone during infection. The dose and duration of mycolactone exposure for these different cells explains tissue necrosis and the paucity of immune cells in the ulcers. This review discusses recent advances in the field, revisits older findings in this context and highlights current developments in structure‐function studies as well as methodology that make mycolactone a promising diagnostic biomarker.
Collapse
Affiliation(s)
- Fred Stephen Sarfo
- Department of Medicine, Kwame Nkrumah University of Science & Technology, Kumasi, Ghana
| | - Richard Phillips
- Department of Medicine, Kwame Nkrumah University of Science & Technology, Kumasi, Ghana
| | - Mark Wansbrough-Jones
- Division of Cellular and Molecular Medicine, St George's, University of London, London, UK
| | - Rachel E Simmonds
- School of Biosciences and Medicine, University of Surrey, Guildford, UK
| |
Collapse
|
29
|
McKenna M, Simmonds RE, High S. Mechanistic insights into the inhibition of Sec61-dependent co- and post-translational translocation by mycolactone. J Cell Sci 2016; 129:1404-15. [PMID: 26869228 PMCID: PMC4852723 DOI: 10.1242/jcs.182352] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2015] [Accepted: 02/03/2016] [Indexed: 12/17/2022] Open
Abstract
The virulence factor mycolactone is responsible for the immunosuppression and tissue necrosis that characterise Buruli ulcer, a disease caused by infection with Mycobacterium ulcerans In this study, we confirm that Sec61, the protein-conducting channel that coordinates entry of secretory proteins into the endoplasmic reticulum, is a primary target of mycolactone, and characterise the nature of its inhibitory effect. We conclude that mycolactone constrains the ribosome-nascent-chain-Sec61 complex, consistent with its broad-ranging perturbation of the co-translational translocation of classical secretory proteins. In contrast, the effect of mycolactone on the post-translational ribosome-independent translocation of short secretory proteins through the Sec61 complex is dependent on both signal sequence hydrophobicity and the translocation competence of the mature domain. Changes to protease sensitivity strongly suggest that mycolactone acts by inducing a conformational change in the pore-forming Sec61α subunit. These findings establish that mycolactone inhibits Sec61-mediated protein translocation and highlight differences between the co- and post-translational routes that the Sec61 complex mediates. We propose that mycolactone also provides a useful tool for further delineating the molecular mechanisms of Sec61-dependent protein translocation.
Collapse
Affiliation(s)
- Michael McKenna
- Faculty of Life Sciences, University of Manchester, Michael Smith Building, Manchester M13 9PT, UK
| | - Rachel E Simmonds
- Department of Microbial Sciences, School of Bioscience and Medicine, Faculty of Health and Medical Sciences, University of Surrey, Guildford GU2 7XH, UK
| | - Stephen High
- Faculty of Life Sciences, University of Manchester, Michael Smith Building, Manchester M13 9PT, UK
| |
Collapse
|