1
|
Webb RJ, Vu AL, Skerratt LF, Berger L, De Jesús Andino F, Robert J. Stable in vitro fluorescence for enhanced live imaging of infection models for Batrachochytrium dendrobatidis. PLoS One 2024; 19:e0309192. [PMID: 39208240 PMCID: PMC11361592 DOI: 10.1371/journal.pone.0309192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Accepted: 07/10/2024] [Indexed: 09/04/2024] Open
Abstract
Realistic and modifiable infection models are required to study the pathogenesis of amphibian chytridiomycosis. Understanding the mechanism by which Batrachochytrium dendrobatidis (Bd) can infect and kill diverse amphibians is key to mitigating this pathogen and preventing further loss of biodiversity. In vitro studies of Bd typically rely on a tryptone based growth media, whereas the recent development of a kidney cell-line infection model has provided a more realistic alternative, without the need for live animals. Here we use expression of a fluorescent reporter to enhance the in vitro cell-line based growth assay, and show that transformed Bd cells are able to invade and grow in an amphibian kidney epithelial cell line (A6) as well as in a new system using a lung fibroblast cell line (DWJ). Both Bd and host cells were modified to express reporter fluorescent proteins, enabling immediate and continuous observation of the infection process without the need for destructive sampling for fixation and staining. Plasmid DNA conferring hygromycin resistance and TdTomato (RFP) expression was delivered to Bd zoospores via electroporation, and continuous antibiotic selection after recovery produced stable fluorescent Bd transformants. Host cells (A6 and DWJ) were transfected before each assay using lipofection to deliver plasmid DNA conferring green fluorescent protein (GFP) and containing an empty shRNA expression cassette. Bd RFP expression allowed easy localisation of fungal cells and identification of endobiotic growth was assisted by host GFP expression, by allowing visualization of the space in the host cell occupied by the invading fungal body. In addition to enabling enhanced live imaging, these methods will facilitate future genetic modification and characterisation of specific genes and their effect on Bd virulence.
Collapse
Affiliation(s)
- Rebecca J. Webb
- Faculty of Science, One Health Research Group, University of Melbourne, Victoria, Australia
- Department of Microbiology and Immunology, University of Rochester Medical Center, Rochester, New York, United States of America
| | - Andrea L. Vu
- Department of Microbiology and Immunology, University of Rochester Medical Center, Rochester, New York, United States of America
| | - Lee F. Skerratt
- Faculty of Science, One Health Research Group, University of Melbourne, Victoria, Australia
| | - Lee Berger
- Faculty of Science, One Health Research Group, University of Melbourne, Victoria, Australia
| | - Francisco De Jesús Andino
- Department of Microbiology and Immunology, University of Rochester Medical Center, Rochester, New York, United States of America
| | - Jacques Robert
- Department of Microbiology and Immunology, University of Rochester Medical Center, Rochester, New York, United States of America
| |
Collapse
|
2
|
Böning P, Lötters S, Barzaghi B, Bock M, Bok B, Bonato L, Ficetola GF, Glaser F, Griese J, Grabher M, Leroux C, Munimanda G, Manenti R, Ludwig G, Preininger D, Rödel MO, Seibold S, Smith S, Tiemann L, Thein J, Veith M, Plewnia A. Alpine salamanders at risk? The current status of an emerging fungal pathogen. PLoS One 2024; 19:e0298591. [PMID: 38758948 PMCID: PMC11101120 DOI: 10.1371/journal.pone.0298591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Accepted: 01/28/2024] [Indexed: 05/19/2024] Open
Abstract
Amphibians globally suffer from emerging infectious diseases like chytridiomycosis caused by the continuously spreading chytrid fungi. One is Batrachochytrium salamandrivorans (Bsal) and its disease ‒ the 'salamander plague' ‒ which is lethal to several caudate taxa. Recently introduced into Western Europe, long distance dispersal of Bsal, likely through human mediation, has been reported. Herein we study if Alpine salamanders (Salamandra atra and S. lanzai) are yet affected by the salamander plague in the wild. Members of the genus Salamandra are highly susceptible to Bsal leading to the lethal disease. Moreover, ecological modelling has shown that the Alps and Dinarides, where Alpine salamanders occur, are generally suitable for Bsal. We analysed skin swabs of 818 individuals of Alpine salamanders and syntopic amphibians at 40 sites between 2017 to 2022. Further, we compiled those with published data from 319 individuals from 13 sites concluding that Bsal infections were not detected. Our results suggest that the salamander plague so far is absent from the geographic ranges of Alpine salamanders. That means that there is still a chance to timely implement surveillance strategies. Among others, we recommend prevention measures, citizen science approaches, and ex situ conservation breeding of endemic salamandrid lineages.
Collapse
Affiliation(s)
- Philipp Böning
- Department of Biogeography, Trier University, Trier, Germany
| | - Stefan Lötters
- Department of Biogeography, Trier University, Trier, Germany
| | - Benedetta Barzaghi
- Department of Environmental Science and Policy, University of Milan, Milan, Italy
| | - Marvin Bock
- Department of Biogeography, Trier University, Trier, Germany
| | - Bobby Bok
- St. Michael College, Zaandam, Netherlands
| | - Lucio Bonato
- Department of Biology, University of Padova, Padova, Italy
- National Biodiversity Future Center, Palermo, Italy
| | | | | | | | | | - Camille Leroux
- Centre d’Ecologie et des Sciences de la Conservation (CESCO), Muséum National d’Histoire Naturelle, Centre National de la Recherche Scientifique, Sorbonne Université, Paris, France
- Auddicé Biodiversité–ZAC du Chevalement, Roost-Warendin, France
- Museo Nacional de Ciencias Naturales, CSIC, Madrid, Spain
| | - Gopikrishna Munimanda
- Konrad Lorenz Institute of Ethology, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Raoul Manenti
- Department of Environmental Science and Policy, University of Milan, Milan, Italy
| | | | | | - Mark-Oliver Rödel
- Museum für Naturkunde–Leibniz Institute for Evolution and Biodiversity Science, Berlin, Germany
| | - Sebastian Seibold
- Forest Zoology, Technische Universität Dresden, Tharandt, Germany
- Berchtesgaden National Park, Berchtesgaden, Germany
- Ecosystem Dynamics and Forest Management, Technical University of Munich, Freising, Germany
| | - Steve Smith
- Konrad Lorenz Institute of Ethology, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Laura Tiemann
- Department of Neurology, TUM School of Medicine, Technical University of Munich, Munich, Germany
| | - Jürgen Thein
- Büro für Faunistik und Umweltbildung, Haßfurt, Germany
| | - Michael Veith
- Department of Biogeography, Trier University, Trier, Germany
| | - Amadeus Plewnia
- Department of Biogeography, Trier University, Trier, Germany
| |
Collapse
|
3
|
Mulder KP, Savage AE, Gratwicke B, Longcore JE, Bronikowski E, Evans M, Longo AV, Kurata NP, Walsh T, Pasmans F, McInerney N, Murray S, Martel A, Fleischer RC. Sequence capture identifies fastidious chytrid fungi directly from host tissue. Fungal Genet Biol 2024; 170:103858. [PMID: 38101696 DOI: 10.1016/j.fgb.2023.103858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 12/04/2023] [Accepted: 12/12/2023] [Indexed: 12/17/2023]
Abstract
The chytrid fungus Batrachochytrium dendrobatidis (Bd) was discovered in 1998 as the cause of chytridiomycosis, an emerging infectious disease causing mass declines in amphibian populations worldwide. The rapid population declines of the 1970s-1990s were likely caused by the spread of a highly virulent lineage belonging to the Bd-GPL clade that was introduced to naïve susceptible populations. Multiple genetically distinct and regional lineages of Bd have since been isolated and sequenced, greatly expanding the known biological diversity within this fungal pathogen. To date, most Bd research has been restricted to the limited number of samples that could be isolated using culturing techniques, potentially causing a selection bias for strains that can grow on media and missing other unculturable or fastidious strains that are also present on amphibians. We thus attempted to characterize potentially non-culturable genetic lineages of Bd from distinct amphibian taxa using sequence capture technology on DNA extracted from host tissue and swabs. We focused our efforts on host taxa from two different regions that likely harbored distinct Bd clades: (1) wild-caught leopard frogs (Rana) from North America, and (2) a Japanese Giant Salamander (Andrias japonicus) at the Smithsonian Institution's National Zoological Park that exhibited signs of disease and tested positive for Bd using qPCR, but multiple attempts failed to isolate and culture the strain for physiological and genetic characterization. We successfully enriched for and sequenced thousands of fungal genes from both host clades, and Bd load was positively associated with number of recovered Bd sequences. Phylogenetic reconstruction placed all the Rana-derived strains in the Bd-GPL clade. In contrast, the A. japonicus strain fell within the Bd-Asia3 clade, expanding the range of this clade and generating additional genomic data to confirm its placement. The retrieved ITS locus matched public barcoding data from wild A. japonicus and Bd infections found on other amphibians in India and China, suggesting that this uncultured clade is widespread across Asia. Our study underscores the importance of recognizing and characterizing the hidden diversity of fastidious strains in order to reconstruct the spatiotemporal and evolutionary history of Bd. The success of the sequence capture approach highlights the utility of directly sequencing pathogen DNA from host tissue to characterize cryptic diversity that is missed by culture-reliant approaches.
Collapse
Affiliation(s)
- Kevin P Mulder
- Wildlife Health Ghent, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium; Center for Conservation Genomics, Smithsonian National Zoo and Conservation Biology Institute, Washington, DC, USA.
| | - Anna E Savage
- Department of Biology, University of Central Florida, Orlando, FL, USA
| | - Brian Gratwicke
- Smithsonian's National Zoo and Conservation Biology Institute, Washington, DC, USA
| | - Joyce E Longcore
- School of Biology and Ecology, University of Maine, Orono, ME, USA
| | - Ed Bronikowski
- Smithsonian's National Zoo and Conservation Biology Institute, Washington, DC, USA
| | - Matthew Evans
- Smithsonian's National Zoo and Conservation Biology Institute, Washington, DC, USA
| | - Ana V Longo
- Department of Biology, University of Florida, Gainesville, FL, USA
| | - Naoko P Kurata
- Center for Conservation Genomics, Smithsonian National Zoo and Conservation Biology Institute, Washington, DC, USA; Department of Natural Resources and the Environment, Cornell University, Ithaca, NY, USA; Department of Ichthyology, American Museum of Natural History, New York, NY, USA
| | - Tim Walsh
- Smithsonian's National Zoo and Conservation Biology Institute, Washington, DC, USA
| | - Frank Pasmans
- Wildlife Health Ghent, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | - Nancy McInerney
- Center for Conservation Genomics, Smithsonian National Zoo and Conservation Biology Institute, Washington, DC, USA
| | - Suzan Murray
- Smithsonian's National Zoo and Conservation Biology Institute, Washington, DC, USA
| | - An Martel
- Wildlife Health Ghent, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | - Robert C Fleischer
- Center for Conservation Genomics, Smithsonian National Zoo and Conservation Biology Institute, Washington, DC, USA
| |
Collapse
|
4
|
Erens J, Preissler K, Speybroeck J, Beukema W, Spitzen-van der Sluijs A, Stark T, Laudelout A, Kinet T, Schmidt BR, Martel A, Steinfartz S, Pasmans F. Divergent population responses following salamander mass mortalities and declines driven by the emerging pathogen Batrachochytrium salamandrivorans. Proc Biol Sci 2023; 290:20230510. [PMID: 37752840 PMCID: PMC10523083 DOI: 10.1098/rspb.2023.0510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Accepted: 08/31/2023] [Indexed: 09/28/2023] Open
Abstract
Understanding wildlife responses to novel threats is vital in counteracting biodiversity loss. The emerging pathogen Batrachochytrium salamandrivorans (Bsal) causes dramatic declines in European salamander populations, and is considered an imminent threat to global amphibian biodiversity. However, real-life disease outcomes remain largely uncharacterized. We performed a multidisciplinary assessment of the longer-term impacts of Bsal on highly susceptible fire salamander (Salamandra salamandra) populations, by comparing four of the earliest known outbreak sites to uninfected sites. Based on large-scale monitoring efforts, we found population persistence in strongly reduced abundances to over a decade after Bsal invasion, but also the extinction of an initially small-sized population. In turn, we found that host responses varied, and Bsal detection remained low, within surviving populations. Demographic analyses indicated an ongoing scarcity of large reproductive adults with potential for recruitment failure, while spatial comparisons indicated a population remnant persisting within aberrant habitat. Additionally, we detected no early signs of severe genetic deterioration, yet nor of increased host resistance. Beyond offering additional context to Bsal-driven salamander declines, results highlight how the impacts of emerging hypervirulent pathogens can be unpredictable and vary across different levels of biological complexity, and how limited pathogen detectability after population declines may complicate surveillance efforts.
Collapse
Affiliation(s)
- Jesse Erens
- Wildlife Health Ghent, Faculty of Veterinary Medicine, Ghent University, Ghent, Belgium
| | | | | | - Wouter Beukema
- Wildlife Health Ghent, Faculty of Veterinary Medicine, Ghent University, Ghent, Belgium
- Reptile, Amphibian & Fish Conservation Netherlands (RAVON), Nijmegen, the Netherlands
| | - Annemarieke Spitzen-van der Sluijs
- Reptile, Amphibian & Fish Conservation Netherlands (RAVON), Nijmegen, the Netherlands
- Institute for Water and Wetland Research, Animal Ecology and Physiology, Radboud University, Nijmegen, the Netherlands
| | - Tariq Stark
- Reptile, Amphibian & Fish Conservation Netherlands (RAVON), Nijmegen, the Netherlands
| | | | | | - Benedikt R. Schmidt
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, Zurich, Switzerland
- Info fauna karch, Neuchâtel, Switzerland
| | - An Martel
- Wildlife Health Ghent, Faculty of Veterinary Medicine, Ghent University, Ghent, Belgium
| | | | - Frank Pasmans
- Wildlife Health Ghent, Faculty of Veterinary Medicine, Ghent University, Ghent, Belgium
| |
Collapse
|
5
|
Basanta MD, Avila-Akerberg V, Byrne AQ, Castellanos-Morales G, González Martínez TM, Maldonado-López Y, Rosenblum EB, Suazo-Ortuño I, Parra Olea G, Rebollar EA. The fungal pathogen Batrachochytrium salamandrivorans is not detected in wild and captive amphibians from Mexico. PeerJ 2022; 10:e14117. [PMID: 36213512 PMCID: PMC9536319 DOI: 10.7717/peerj.14117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Accepted: 09/04/2022] [Indexed: 01/21/2023] Open
Abstract
The recent emergence of the pathogen Batrachochytrium salamandrivorans (Bsal) is associated with rapid population declines of salamanders in Europe and its arrival to new areas could cause dramatic negative effects on other amphibian populations and species. Amphibian species, present in areas with high amphibian diversity such as Mexico, could be highly threatened due to the arrival of Bsal, particularly salamander species which are more vulnerable to chytridiomycosis caused by this pathogen. Thus, immediate surveillance is needed as a strategy to efficiently contend with this emerging infectious disease. In this study, we analyzed 490 wild and captive amphibians from 48 species across 76 sites in the North, Central, and South of Mexico to evaluate the presence of Bsal. Amphibians were sampled in sites with variable degrees of amphibian richness and suitability for Bsal according to previous studies. From the 76 sampling sites, 10 of them were located in areas with high amphibian richness and potential moderate to high Bsal habitat suitability. We did not detect Bsal in any of the samples, and no signs of the disease were observed in any individual at the time of sampling. Our results suggest that Bsal has not yet arrived at the sampled sites or could be at low prevalence within populations with low occurrence probability. This is the first study that evaluates the presence of Bsal in different regions and amphibian species in Mexico, which is the second most diverse country in salamander species in the world. We highlight the risk and the importance of continuing surveillance of Bsal in Mexico and discuss control strategies to avoid the introduction and spread of Bsal in the country.
Collapse
Affiliation(s)
- M. Delia Basanta
- Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Cuernavaca, Morelos, Mexico,Facultad de Ciencias, Universidad Nacional Autónoma de México, Coyoacán, Ciudad de México, Mexico,Department of Biology, University of Nevada Reno, Reno, Nevada, United States of America
| | - Victor Avila-Akerberg
- Instituto de Ciencias Agropecuarias y Rurales, Universidad Autónoma del Estado de México, Toluca, Estado de México, Mexico
| | - Allison Q. Byrne
- Department of Environmental Science, Policy, and Management, University of California, Berkeley, CA, United States of America
| | - Gabriela Castellanos-Morales
- Departamento de Conservación de la Biodiversidad, Colegio de la Frontera Sur Unidad, Villahermosa, Tabasco, México
| | | | - Yurixhi Maldonado-López
- CONACYT-Instituto de Investigaciones sobre los Recursos Naturales, Universidad Michoacana de San Nicolás de Hidalgo, Morelia, Michoacán, Mexico
| | - Erica Bree Rosenblum
- Department of Environmental Science, Policy, and Management, University of California, Berkeley, CA, United States of America
| | - Ireri Suazo-Ortuño
- Instituto de Investigaciones sobre los Recursos Naturales, Universidad Michoacana de San Nicolás de Hidalgo, Morelia, Michoacán, Mexico
| | - Gabriela Parra Olea
- Instituto de Biología, Universidad Nacional Autónoma de México, Ciudad de México, Ciudad de México, Mexico
| | - Eria A. Rebollar
- Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Cuernavaca, Morelos, Mexico
| |
Collapse
|
6
|
Reeve RE, Quale K, Curtis GH, Crespi EJ. Evolutionary conservation of leptin effects on wound healing in vertebrates: Implications for veterinary medicine. Front Endocrinol (Lausanne) 2022; 13:938296. [PMID: 36093099 PMCID: PMC9453652 DOI: 10.3389/fendo.2022.938296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/07/2022] [Accepted: 07/29/2022] [Indexed: 11/17/2022] Open
Abstract
In mammals, the cytokine hormone leptin promotes wound healing by increasing inflammation, cellular recruitment, angiogenic regrowth, and re-epithelialization; however, it is not known whether leptin has conserved actions on wound healing in other vertebrates. Here, we tested the hypothesis that leptin promotes both the quality and speed of wound healing in the South African clawed frog, Xenopus laevis. First, fluorescent immunohistochemistry using a polyclonal antibody specific to Xenopus leptin showed that in juvenile dorsal skin, leptin protein is expressed in the dorsal epidermal layer, as well in blood vessel endothelial cells and sensory nerves that run along the base of the dermis. Injection of recombinant Xenopus leptin (rXleptin) stimulates phosphorylated STAT3 (pSTAT3), indicative of leptin-activated JAK/STAT signaling in the epidermis. Similar to mammals, leptin protein expression increases at the wound site after injury of the epidermis. We then cultured "punch-in-a-punch" full-thickness dorsal skin explants in three doses of rXleptin (0, 10, and 100 ng/ml) and showed that leptin treatment doubled the rate of wound closure after 48 h relative to skin punches cultured without leptin. Food restriction prior to wound explant culture reduced the amount of wound closure, but leptin injection prior to euthanasia rescued closure to similar control levels. Leptin treatment also significantly reduced bacterial infection of these epidermal punches by 48 h in culture. This study shows that leptin is likely an endogenous promoter of wound healing in amphibians. Leptin-based therapies have the potential to expedite healing and reduce the incidence of secondary infections without toxicity issues, the threat of antibiotic resistance, or environmental antibiotic contamination. The conservation of leptin's actions on wound healing also suggests that it may have similar veterinary applications for other exotic species.
Collapse
Affiliation(s)
| | | | | | - Erica J. Crespi
- School of Biological Sciences and Center for Reproductive Biology, Washington State University, Pullman, WA, United States
| |
Collapse
|
7
|
García‐Rodríguez A, Basanta MD, García‐Castillo MG, Zumbado‐Ulate H, Neam K, Rovito S, Searle CL, Parra‐Olea G. Anticipating the potential impacts of
Batrachochytrium salamandrivorans
on Neotropical salamander diversity. Biotropica 2021. [DOI: 10.1111/btp.13042] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Adrián García‐Rodríguez
- Departamento de Zoología Instituto de Biología Universidad Nacional Autónoma de México Ciudad de México México
- BioInvasions, Global Change, Macroecology‐Group Department of Botany and Biodiversity Research University of Vienna Vienna Austria
| | - M. Delia Basanta
- Departamento de Zoología Instituto de Biología Universidad Nacional Autónoma de México Ciudad de México México
- Centro de Ciencias Genómicas Universidad Nacional Autónoma de México Cuernavaca Morelos México
| | - Mirna G. García‐Castillo
- Universidad Politécnica de Huatusco Huatusco Veracruz México
- Facultad de Ciencias Biológicas y Agropecuarias Región: Orizaba–Córdoba Universidad Veracruzana Amatlán de los Reyes Veracruz México
| | | | - Kelsey Neam
- Global Wildlife Conservation Austin Texas USA
- Amphibian Specialist Group IUCN Species Survival Commission USA
| | - Sean Rovito
- Unidad de Genómica Avanzada (Langebio) CINVESTAV Irapuato México
| | - Catherine L. Searle
- Department of Biological Sciences Purdue University West Lafayette Indiana USA
| | - Gabriela Parra‐Olea
- Departamento de Zoología Instituto de Biología Universidad Nacional Autónoma de México Ciudad de México México
- Amphibian Specialist Group IUCN Species Survival Commission USA
| |
Collapse
|
8
|
Koo MS, Vredenburg VT, Deck JB, Olson DH, Ronnenberg KL, Wake DB. Tracking, Synthesizing, and Sharing Global Batrachochytrium Data at AmphibianDisease.org. Front Vet Sci 2021; 8:728232. [PMID: 34692807 PMCID: PMC8527349 DOI: 10.3389/fvets.2021.728232] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Accepted: 09/02/2021] [Indexed: 11/13/2022] Open
Abstract
Emerging infectious diseases have been especially devastating to amphibians, the most endangered class of vertebrates. For amphibians, the greatest disease threat is chytridiomycosis, caused by one of two chytridiomycete fungal pathogens Batrachochytrium dendrobatidis (Bd) and Batrachochytrium salamandrivorans (Bsal). Research over the last two decades has shown that susceptibility to this disease varies greatly with respect to a suite of host and pathogen factors such as phylogeny, geography (including abiotic factors), host community composition, and historical exposure to pathogens; yet, despite a growing body of research, a comprehensive understanding of global chytridiomycosis incidence remains elusive. In a large collaborative effort, Bd-Maps was launched in 2007 to increase multidisciplinary investigations and understanding using compiled global Bd occurrence data (Bsal was not discovered until 2013). As its database functions aged and became unsustainable, we sought to address critical needs utilizing new technologies to meet the challenges of aggregating data to facilitate research on both Bd and Bsal. Here, we introduce an advanced central online repository to archive, aggregate, and share Bd and Bsal data collected from around the world. The Amphibian Disease Portal (https://amphibiandisease.org) addresses several critical community needs while also helping to build basic biological knowledge of chytridiomycosis. This portal could be useful for other amphibian diseases and could also be replicated for uses with other wildlife diseases. We show how the Amphibian Disease Portal provides: (1) a new repository for the legacy Bd-Maps data; (2) a repository for sample-level data to archive datasets and host published data with permanent DOIs; (3) a flexible framework to adapt to advances in field, laboratory, and informatics technologies; and (4) a global aggregation of Bd and Bsal infection data to enable and accelerate research and conservation. The new framework for this project is built using biodiversity informatics best practices and metadata standards to ensure scientific reproducibility and linkages across other biological and biodiversity repositories.
Collapse
Affiliation(s)
- Michelle S Koo
- Museum of Vertebrate Zoology, University of California, Berkeley, Berkeley, CA, United States
| | - Vance T Vredenburg
- Museum of Vertebrate Zoology, University of California, Berkeley, Berkeley, CA, United States.,Department of Biology, San Francisco State University, San Francisco, CA, United States
| | - John B Deck
- Berkeley Natural History Museums, University of California, Berkeley, Berkeley, CA, United States
| | - Deanna H Olson
- US Department of Agriculture, Forest Service, Pacific Northwest Research Station, Corvallis, OR, United States
| | - Kathryn L Ronnenberg
- US Department of Agriculture, Forest Service, Pacific Northwest Research Station, Corvallis, OR, United States
| | - David B Wake
- Museum of Vertebrate Zoology, University of California, Berkeley, Berkeley, CA, United States
| |
Collapse
|
9
|
Bletz MC, LaBumbard BC, Le Sage EH, Woodhams DC. Extraction-free detection of amphibian pathogens from water baths. DISEASES OF AQUATIC ORGANISMS 2021; 146:81-89. [PMID: 34617514 DOI: 10.3354/dao03621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Detecting and quantifying pathogens with quick, cost-efficient and sensitive methods is needed across disease systems for addressing pertinent epidemiological questions. Typical methods rely on extracting DNA from collected samples. Here we develop and test an extraction-free method from water bath samples that is both sensitive and efficient for 2 major amphibian pathogens-Batrachochytrium dendrobatidis and B. salamandrivorans. We tested mock samples with known pathogen quantities as well as comparatively assessed detection from skin swabs and water baths from field sampled amphibians. Quantitative PCR (qPCR) directly on lyophilized water baths was able to reliably detect low loads of 10 and 1 zoospores for both pathogens, and detection rates were greater than those of swabs from field samples. Further concentration of samples did not improve detection, and collection container type did not influence pathogen load estimates. This method of lyophilization (i.e. freeze-drying) followed by direct qPCR offers an effective and efficient tool from detecting amphibian pathogens, which is crucial for surveillance efforts and estimating shedding rates for robust epidemiological understanding of transmission dynamics. Furthermore, water bath samples have multiple functions and can be used to evaluate mucosal function against pathogens and characterize mucosal components. The multifunctionality of water bath samples and reduced monetary costs and time expenditures make this method an optimal tool for amphibian disease research and may also prove to be useful in other wildlife disease systems.
Collapse
Affiliation(s)
- Molly C Bletz
- University of Massachusetts Boston, Department of Biology, 100 Morrissey Blvd, Boston, MA 02125, USA
| | | | | | | |
Collapse
|
10
|
Vasconcelos IAD, Souza JOD, de Castro JS, Santana CJCD, Magalhães ACM, Castro MDS, Pires Júnior OR. Salamanders and caecilians, neglected from the chemical point of view. TOXIN REV 2021. [DOI: 10.1080/15569543.2021.1977326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Affiliation(s)
| | | | | | - Carlos José Correia de Santana
- Department of Physiological Sciences, University of Brasilia, Brasilia, Brazil
- Department of Cell Biology, University of Brasilia, Brasilia, Brazil
| | | | - Mariana de Souza Castro
- Department of Physiological Sciences, University of Brasilia, Brasilia, Brazil
- Department of Cell Biology, University of Brasilia, Brasilia, Brazil
| | | |
Collapse
|
11
|
ABSENCE OF BATRACHOCHYTRIUM SALAMANDRIVORANS IN A GLOBAL HOTSPOT FOR SALAMANDER BIODIVERSITY. J Wildl Dis 2021; 57:553-560. [PMID: 33984856 DOI: 10.7589/jwd-d-20-00218] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Accepted: 03/08/2021] [Indexed: 11/20/2022]
Abstract
Batrachochytrium salamandrivorans (Bsal) is an emerging fungal pathogen that affects salamander and newt populations in Asia and Europe. In the Western Hemisphere, Bsal represents a major threat to endemic amphibian populations, which have not evolved resistance to infection, and which could experience local extinction events such as those observed in European fire salamanders (Salamandra salamandra). We report findings of a survey focusing specifically on wild lungless salamanders in the southeastern US, the most biodiverse location for salamander species globally. Between May 2016 and July 2018, we conducted 25 surveys at 10 sites across three ecoregions in Tennessee, US. Using quantitative (q)PCR, we screened water samples and skin swabs from 137 salamanders in five plethodontid genera. Although single replicates of six samples amplified during qPCR cycling, no samples could be confirmed as positive for the presence of Bsal with 28S rRNA PCR and independent laboratory screening. It is probable that we found false positive results, as reported by other researchers using the same assay. We offer recommendations for future monitoring efforts.
Collapse
|
12
|
Bernard RF, Grant EHC. Rapid Assessment Indicates Context‐Dependent Mitigation for Amphibian Disease Risk. WILDLIFE SOC B 2021. [DOI: 10.1002/wsb.1198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Riley F. Bernard
- Department of Zoology and Physiology University of Wyoming Laramie WY 82071 USA
| | - Evan H. Campbell Grant
- United States Geological Survey, Eastern Ecological Science Center S. O. Conte Anadromous Fish Laboratory Turners Falls MA 01376 USA
| |
Collapse
|
13
|
Plethodontid salamanders show variable disease dynamics in response to Batrachochytrium salamandrivorans chytridiomycosis. Biol Invasions 2021. [DOI: 10.1007/s10530-021-02536-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
14
|
Borzée A, Kielgast J, Wren S, Angulo A, Chen S, Magellan K, Messenger KR, Hansen-Hendrikx CM, Baker A, Santos MMD, Kusrini M, Jiang J, Maslova IV, Das I, Park D, Bickford D, Murphy RW, Che J, Van Do T, Nguyen TQ, Chuang MF, Bishop PJ. Using the 2020 global pandemic as a springboard to highlight the need for amphibian conservation in eastern Asia. BIOLOGICAL CONSERVATION 2021; 255:108973. [PMID: 35125500 PMCID: PMC8798316 DOI: 10.1016/j.biocon.2021.108973] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Revised: 12/28/2020] [Accepted: 01/11/2021] [Indexed: 05/26/2023]
Abstract
Emerging infectious diseases are on the rise in many different taxa, including, among others, the amphibian batrachochytrids, the snake fungal disease and the Severe Acute Respiratory Syndrome coronavirus 2 (SARS-CoV-2) virus, responsible for Coronavirus disease 2019 (COVID-19) in mammals. Following the onset of the pandemic linked to COVID-19, eastern Asia has shown strong leadership, taking actions to regulate the trade of potential vector species in several regions. These actions were taken in response to an increase in public awareness, and the need for a quick reaction to mitigate against further pandemics. However, trade restrictions rarely affect amphibians, despite the risk of pathogen transmission, directly, or indirectly through habitat destruction and the loss of vector consumption. Thus, species that help alleviate the risk of zoonoses or provide biological control are not protected. Hence, in view of the global amphibian decline and the risk of zoonoses, we support the current wildlife trade regulations and support measures to safeguard wildlife from overexploitation. The current period of regulation overhaul should be used as a springboard for amphibian conservation. To mitigate risks, we suggest the following stipulations specifically for amphibians. I) Restrictions to amphibian farming in eastern Asia, in relation to pathogen transmission and the establishment of invasive species. II) Regulation of the amphibian pet trade, with a focus on potential vector species. III) Expansion of the wildlife trade ban, to limit the wildlife-human-pet interface. The resulting actions will benefit both human and wildlife populations, as they will lead to a decrease in the risk of zoonoses and better protection of the environment. SIGNIFICANCE STATEMENT There is an increasing number of emerging infectious diseases impacting all species, including amphibians, reptiles and mammals. The latest threat to humans is the virus responsible for COVID-19, and the resulting pandemic. Countries in eastern Asia have taken steps to regulate wildlife trade and prevent further zoonoses thereby decreasing the risk of pathogens arising from wild species. However, as amphibians are generally excluded from regulations we support specific trade restrictions: I) Restrictions to amphibian farming; II) regulation of the amphibian pet trade; III) expansion of the wildlife trade ban. These restrictions will benefit both human and wildlife populations by decreasing the risks of zoonoses and better protecting the environment.
Collapse
Affiliation(s)
- Amaël Borzée
- Laboratory of Animal Behaviour and Conservation, College of Biology and the Environment, Nanjing Forestry University, Nanjing, People's Republic of China
- IUCN SSC Amphibian Specialist Group, 3701 Lake Shore Blvd W, P.O. Box 48586, Toronto, Ontario M8W 1P5, Canada
| | - Jos Kielgast
- IUCN SSC Amphibian Specialist Group, 3701 Lake Shore Blvd W, P.O. Box 48586, Toronto, Ontario M8W 1P5, Canada
- Section for Freshwater Biology, Department of Biology, University of Copenhagen, Universitetsparken 4, DK-2100, Denmark
- Center for Macroecology, Evolution and Climate, Natural History Museum of Denmark, Universitetsparken, 15, DK-2100, Denmark
| | - Sally Wren
- IUCN SSC Amphibian Specialist Group, 3701 Lake Shore Blvd W, P.O. Box 48586, Toronto, Ontario M8W 1P5, Canada
- Department of Zoology, University of Otago, 340 Great King Street, Dunedin 9016, New Zealand
| | - Ariadne Angulo
- IUCN SSC Amphibian Specialist Group, 3701 Lake Shore Blvd W, P.O. Box 48586, Toronto, Ontario M8W 1P5, Canada
| | - Shu Chen
- Zoological Society of London, London NW1 4RY, United Kingdom
| | | | - Kevin R Messenger
- Herpetology and Applied Conservation Laboratory, College of Biology and the Environment, Nanjing Forestry University, Nanjing, People's Republic of China
| | | | - Anne Baker
- Amphibian Ark, Conservation Planning Specialist Group, Apple Valley, USA
| | - Marcileida M Dos Santos
- IUCN SSC Amphibian Specialist Group, 3701 Lake Shore Blvd W, P.O. Box 48586, Toronto, Ontario M8W 1P5, Canada
- Department of Zoology, University of Otago, 340 Great King Street, Dunedin 9016, New Zealand
| | - Mirza Kusrini
- Department of Forest Resources Conservation and Ecotourism, IPB University, Bogor, Indonesia
| | - Jianping Jiang
- CAS Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization & Ecological Restoration and Biodiversity Conservation Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, People's Republic of China
| | - Irina V Maslova
- Federal Scientific Center of the East Asia Terrestrial Biodiversity Far Eastern Branch of Russian Academy of Sciences, Vladivostok 690022, Russia
| | - Indraneil Das
- Institute of Biodiversity and Environmental Conservation, Universiti Malaysia Sarawak, Kota Samarahan 94300, Malaysia
| | - Daesik Park
- Division of Science Education, Kangwon National University, Chuncheon, Kangwon 24341, Republic of Korea
| | | | - Robert W Murphy
- Centre for Biodiversity, Royal Ontario Museum, Toronto, Canada
| | - Jing Che
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, People's Republic of China
- Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences, Kunming 650223, People's Republic of China
| | - Tu Van Do
- Institute of Ecology and Biological Resources, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet, Cau Giay, Hanoi, Viet Nam
- Graduate University of Science and Technology, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet, Cau Giay, Hanoi, Viet Nam
| | - Truong Quang Nguyen
- Institute of Ecology and Biological Resources, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet, Cau Giay, Hanoi, Viet Nam
- Graduate University of Science and Technology, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet, Cau Giay, Hanoi, Viet Nam
| | - Ming-Feng Chuang
- Department of Life Sciences and Research Center for Global Change Biology, National Chung Hsing University, Taichung, Taiwan
| | - Phillip J Bishop
- IUCN SSC Amphibian Specialist Group, 3701 Lake Shore Blvd W, P.O. Box 48586, Toronto, Ontario M8W 1P5, Canada
- Department of Zoology, University of Otago, 340 Great King Street, Dunedin 9016, New Zealand
| |
Collapse
|
15
|
Tompros A, Dean AD, Fenton A, Wilber MQ, Carter ED, Gray MJ. Frequency-dependent transmission of Batrachochytrium salamandrivorans in eastern newts. Transbound Emerg Dis 2021; 69:731-741. [PMID: 33617686 PMCID: PMC9290712 DOI: 10.1111/tbed.14043] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Revised: 02/11/2021] [Accepted: 02/19/2021] [Indexed: 12/25/2022]
Abstract
Transmission is the fundamental process whereby pathogens infect their hosts and spread through populations, and can be characterized using mathematical functions. The functional form of transmission for emerging pathogens can determine pathogen impacts on host populations and can inform the efficacy of disease management strategies. By directly measuring transmission between infected and susceptible adult eastern newts (Notophthalmus viridescens) in aquatic mesocosms, we identified the most plausible transmission function for the emerging amphibian fungal pathogen Batrachochytrium salamandrivorans (Bsal). Although we considered a range of possible transmission functions, we found that Bsal transmission was best explained by pure frequency dependence. We observed that >90% of susceptible newts became infected within 17 days post‐exposure to an infected newt across a range of host densities and initial infection prevalence treatments. Under these conditions, we estimated R0 = 4.9 for Bsal in an eastern newt population. Our results suggest that Bsal has the capability of driving eastern newt populations to extinction and that managing host density may not be an effective management strategy. Intervention strategies that prevent Bsal introduction or increase host resistance or tolerance to infection may be more effective. Our results add to the growing empirical evidence that transmission of wildlife pathogens can saturate and be functionally frequency‐dependent.
Collapse
Affiliation(s)
- Adrianna Tompros
- Center for Wildlife Health, Department of Forestry, Wildlife, and Fisheries, University of Tennessee Institute of Agriculture, Knoxville, TN, USA
| | - Andrew D Dean
- Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, UK
| | - Andy Fenton
- Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, UK
| | - Mark Q Wilber
- Center for Wildlife Health, Department of Forestry, Wildlife, and Fisheries, University of Tennessee Institute of Agriculture, Knoxville, TN, USA.,Department of Ecology, Evolution and Marine Biology, University of California-Santa Barbara, Santa Barbara, CA, USA
| | - Edward Davis Carter
- Center for Wildlife Health, Department of Forestry, Wildlife, and Fisheries, University of Tennessee Institute of Agriculture, Knoxville, TN, USA
| | - Matthew J Gray
- Center for Wildlife Health, Department of Forestry, Wildlife, and Fisheries, University of Tennessee Institute of Agriculture, Knoxville, TN, USA
| |
Collapse
|
16
|
Wilber MQ, Carter ED, Gray MJ, Briggs CJ. Putative resistance and tolerance mechanisms have little impact on disease progression for an emerging salamander pathogen. Funct Ecol 2021. [DOI: 10.1111/1365-2435.13754] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Affiliation(s)
- Mark Q. Wilber
- Department of Ecology Evolution and Marine Biology University of California Santa Barbara CA USA
- Center for Wildlife Health Department of Forestry, Wildlife and Fisheries University of Tennessee Institute of Agriculture Knoxville TN USA
| | - Edward Davis Carter
- Center for Wildlife Health Department of Forestry, Wildlife and Fisheries University of Tennessee Institute of Agriculture Knoxville TN USA
| | - Matthew J. Gray
- Center for Wildlife Health Department of Forestry, Wildlife and Fisheries University of Tennessee Institute of Agriculture Knoxville TN USA
| | - Cheryl J. Briggs
- Department of Ecology Evolution and Marine Biology University of California Santa Barbara CA USA
| |
Collapse
|
17
|
Pereira KE, Woodley SK. Skin defenses of North American salamanders against a deadly salamander fungus. Anim Conserv 2021. [DOI: 10.1111/acv.12666] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- K. E. Pereira
- Department of Biological Sciences Duquesne University Pittsburgh PA USA
| | - S. K. Woodley
- Department of Biological Sciences Duquesne University Pittsburgh PA USA
| |
Collapse
|
18
|
Islam MR, Gray MJ, Peace A. Identifying the Dominant Transmission Pathway in a Multi-stage Infection Model of the Emerging Fungal Pathogen Batrachochytrium Salamandrivorans on the Eastern Newt. INFECTIOUS DISEASES AND OUR PLANET 2021. [DOI: 10.1007/978-3-030-50826-5_7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
19
|
Bozzuto C, Schmidt BR, Canessa S. Active responses to outbreaks of infectious wildlife diseases: objectives, strategies and constraints determine feasibility and success. Proc Biol Sci 2020; 287:20202475. [PMID: 33234080 DOI: 10.1098/rspb.2020.2475] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Emerging wildlife diseases are taking a heavy toll on animal and plant species worldwide. Mitigation, particularly in the initial epidemic phase, is hindered by uncertainty about the epidemiology and management of emerging diseases, but also by vague or poorly defined objectives. Here, we use a quantitative analysis to assess how the decision context of mitigation objectives, available strategies and practical constraints influences the decision of whether and how to respond to epidemics in wildlife. To illustrate our approach, we parametrized the model for European fire salamanders affected by Batrachochytrium salamandrivorans, and explored different combinations of conservation, containment and budgetary objectives. We found that in approximately half of those scenarios, host removal strategies perform equal to or worse than no management at all during a local outbreak, particularly where removal cannot exclusively target infected individuals. Moreover, the window for intervention shrinks rapidly if an outbreak is detected late or if a response is delayed. Clearly defining the decision context is, therefore, vital to plan meaningful responses to novel outbreaks. Explicitly stating objectives, strategies and constraints, if possible before an outbreak occurs, avoids wasting precious resources and creating false expectations about what can and cannot be achieved during the epidemic phase.
Collapse
Affiliation(s)
- Claudio Bozzuto
- Wildlife Analysis GmbH, Oetlisbergstrasse 38, 8053 Zurich, Switzerland
| | - Benedikt R Schmidt
- Institut für Evolutionsbiologie und Umweltwissenschaften, Universität Zürich, Winterthurerstrasse 190, 8057 Zürich, Switzerland.,info fauna karch, UniMail, Bâtiment G, Bellevaux 51, 2000 Neuchâtel, Switzerland
| | - Stefano Canessa
- Wildlife Health Ghent, Department of Pathology, Bacteriology and Avian Diseases, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, 9820 Merelbeke, Belgium
| |
Collapse
|
20
|
Micheletti SJ, Storfer A. Mixed support for gene flow as a constraint to local adaptation and contributor to the limited geographic range of an endemic salamander. Mol Ecol 2020; 29:4091-4101. [PMID: 32920896 DOI: 10.1111/mec.15627] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Revised: 08/30/2020] [Accepted: 09/01/2020] [Indexed: 11/27/2022]
Abstract
Understanding mechanisms that underlie species range limits is at the core of evolutionary ecology. Asymmetric gene flow between larger core populations and smaller edge populations can swamp local adaptation at the range edge and inhibit further range expansion. However, empirical tests of this theory are exceedingly rare. We tested the hypothesis that asymmetric gene flow can constrain local adaptation and thereby species' range limits in an endemic US salamander (Ambystoma barbouri) by determining if gene flow is asymmetric between the core and peripheries of the species' geographic distribution and testing whether local adaptation is swamped at range edges with a reciprocal transplant experiment. Using putatively neutral loci from populations across three core-to-edge transects that covered nearly the entire species' geographic range, we found evidence for asymmetric, core-to-edge gene flow along western and northern transects, but not along a southern transect. Subsequently, the reciprocal transplant experiment suggested that northern and western edge populations are locally adapted despite experiencing asymmetric gene flow, yet have lower fitness in their respective home regions than those of centre population. Conversely, southern populations exhibit low deme quality, experiencing high mortality regardless of where they were reared, probably due to harsher edge habitat conditions. Consequently, we provide rare species-wide evidence that local adaptation can occur despite asymmetric gene flow, though migration from the core may prohibit range expansion by reducing fitness in edge populations. Further, our multitransect study shows that multiple, nonmutually exclusive mechanisms can lead to range limits within a single species.
Collapse
Affiliation(s)
- Steven J Micheletti
- School of Biological Sciences, Washington State University, Pullman, WA, USA
| | - Andrew Storfer
- School of Biological Sciences, Washington State University, Pullman, WA, USA
| |
Collapse
|
21
|
Kumar R, Malagon DA, Carter ED, Miller DL, Bohanon ML, Cusaac JPW, Peterson AC, Gray MJ. Experimental methodologies can affect pathogenicity of Batrachochytrium salamandrivorans infections. PLoS One 2020; 15:e0235370. [PMID: 32915779 PMCID: PMC7485798 DOI: 10.1371/journal.pone.0235370] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Accepted: 08/24/2020] [Indexed: 12/30/2022] Open
Abstract
Controlled experiments are one approach to understanding the pathogenicity of etiologic agents to susceptible hosts. The recently discovered fungal pathogen, Batrachochytrium salamandrivorans (Bsal), has resulted in a surge of experimental investigations because of its potential to impact global salamander biodiversity. However, variation in experimental methodologies could thwart knowledge advancement by introducing confounding factors that make comparisons difficult among studies. Thus, our objective was to evaluate if variation in experimental methods changed inferences made on the pathogenicity of Bsal. We tested whether passage duration of Bsal culture, exposure method of the host to Bsal (water bath vs. skin inoculation), Bsal culturing method (liquid vs. plated), host husbandry conditions (aquatic vs. terrestrial), and skin swabbing frequency influenced diseased-induced mortality in a susceptible host species, the eastern newt (Notophthalmus viridescens). We found that disease-induced mortality was faster for eastern newts when exposed to a low passage isolate, when newts were housed in terrestrial environments, and if exposure to zoospores occurred via water bath. We did not detect differences in disease-induced mortality between culturing methods or swabbing frequencies. Our results illustrate the need to standardize methods among Bsal experiments. We provide suggestions for future Bsal experiments in the context of hypothesis testing and discuss the ecological implications of our results.
Collapse
Affiliation(s)
- Rajeev Kumar
- Center for Wildlife Health, University of Tennessee Institute of Agriculture, Knoxville, Tennessee, United States of America
| | - Daniel A. Malagon
- Center for Wildlife Health, University of Tennessee Institute of Agriculture, Knoxville, Tennessee, United States of America
| | - Edward Davis Carter
- Center for Wildlife Health, University of Tennessee Institute of Agriculture, Knoxville, Tennessee, United States of America
| | - Debra L. Miller
- Center for Wildlife Health, University of Tennessee Institute of Agriculture, Knoxville, Tennessee, United States of America
- Department of Biomedical and Diagnostic Sciences, College of Veterinary Medicine, University of Tennessee, Knoxville, Tennessee, United States of America
| | - Markese L. Bohanon
- Center for Wildlife Health, University of Tennessee Institute of Agriculture, Knoxville, Tennessee, United States of America
| | - Joseph Patrick W. Cusaac
- Center for Wildlife Health, University of Tennessee Institute of Agriculture, Knoxville, Tennessee, United States of America
| | - Anna C. Peterson
- Center for Wildlife Health, University of Tennessee Institute of Agriculture, Knoxville, Tennessee, United States of America
| | - Matthew J. Gray
- Center for Wildlife Health, University of Tennessee Institute of Agriculture, Knoxville, Tennessee, United States of America
- * E-mail:
| |
Collapse
|
22
|
Burrowes PA, James TY, Jenkinson TS, De la Riva I. Genetic analysis of post-epizootic amphibian chytrid strains in Bolivia: Adding a piece to the puzzle. Transbound Emerg Dis 2020; 67:2163-2171. [PMID: 32277592 DOI: 10.1111/tbed.13568] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Revised: 02/11/2020] [Accepted: 03/14/2020] [Indexed: 12/26/2022]
Abstract
The evolutionary history and dispersal pattern of Batrachochytrium dendrobatidis (Bd), an emergent fungal pathogen responsible for the decline and extinctions of many species of amphibians worldwide, is still not well understood. In South America, the tropical Andes are known as an important site for amphibian diversification, but also for being a place where hosts are at greater risk of chytridiomycosis. In an attempt to understand the history and the geographic pattern of Bd-associated amphibian declines in Bolivia, we isolated Bd from hosts at two locations that differ in their chronology of Bd prevalence and host survival outcome, the cloud forests of the Amazonian slopes of the Andes and Lake Titicaca in the altiplano. We genotyped Bd from both locations and sequenced the genome from the cloud forest isolate and then compared them to reference sequences of other Bd strains across the world. We found that the Bolivian chytrid isolates were nearly genotypically identical and that they belong to the global panzootic lineage (Bd-GPL). The Bolivian Bd strain grouped with other tropical New World strains but was closest to those from the Brazilian Atlantic Forest. Our results extend the presence of Bd-GPL to the central Andes in South America and report this hypervirulent strain at Lago Titicaca, where Bd has been detected since 1863, without evidence of amphibian declines. These findings suggest a more complex evolutionary history for this pathogen in Bolivia and may point to the existence of an old lineage of Bd that has since been extirpated following the arrival of the panzootic Bd-GPL or that the timing of Bd-GPL emergence is earlier than generally acknowledged.
Collapse
Affiliation(s)
| | - Timothy Y James
- Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, MI, USA
| | - Thomas S Jenkinson
- Department of Environmental Science, Policy, and Management, University of California, Berkeley, CA, USA
| | | |
Collapse
|
23
|
Grisnik M, Bowers O, Moore AJ, Jones BF, Campbell JR, Walker DM. The cutaneous microbiota of bats has in vitro antifungal activity against the white nose pathogen. FEMS Microbiol Ecol 2020; 96:5710932. [PMID: 31960913 DOI: 10.1093/femsec/fiz193] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2019] [Accepted: 01/20/2020] [Indexed: 01/31/2023] Open
Abstract
Since its introduction into the USA, Pseudogymnoascus destructans (Pd), the fungal pathogen of white-nose syndrome, has killed millions of bats. Recently, bacteria capable of inhibiting the growth of Pd have been identified within bat microbial assemblages, leading to increased interest in elucidating bacterial assemblage-pathogen interactions. Our objectives were to determine if bat cutaneous bacteria have antifungal activity against Pd, and correlate differences in the bat cutaneous microbiota with the presence/absence of Pd. We hypothesized that the cutaneous microbiota of bats is enriched with antifungal bacteria, and that the skin assemblage will correlate with Pd status. To test this, we sampled bat microbiota, adjacent roost surfaces and soil from Pd positive caves to infer possible overlap of antifungal taxa, we tested these bacteria for bioactivity in vitro, and lastly compared bacterial assemblages using both amplicon and shotgun high-throughput DNA sequencing. Results suggest that the presence of Pd has an inconsistent influence on the bat cutaneous microbial assemblage across sites. Operational taxonomic units (OTUs) that corresponded with cultured antifungal bacteria were present within all sample types but were significantly more abundant on bat skin relative to the environment. Additionally, the microbial assemblage of Pd negative bats was found to have more OTUs that corresponded to antifungal taxa than positive bats, suggesting an interaction between the fungal pathogen and cutaneous microbial assemblage.
Collapse
Affiliation(s)
- Matthew Grisnik
- Middle Tennessee State University, Toxicology and Disease Group, Biology Department, 1672 Greenland Drive, Murfreesboro, Tennessee 37132, USA
| | - Olivia Bowers
- Middle Tennessee State University, Toxicology and Disease Group, Biology Department, 1672 Greenland Drive, Murfreesboro, Tennessee 37132, USA
| | - Andrew J Moore
- Tennessee Technological University, Department of Biological Sciences, 1100 N. Dixie Ave, Cookeville, Tennessee 38505, USA
| | - Benjamin F Jones
- Tennessee Technological University, Department of Biological Sciences, 1100 N. Dixie Ave, Cookeville, Tennessee 38505, USA
| | - Joshua R Campbell
- Tennessee Wildlife Resources Agency, 5105 Edmondson Pike, Nashville, Tennessee 37211, USA
| | - Donald M Walker
- Middle Tennessee State University, Toxicology and Disease Group, Biology Department, 1672 Greenland Drive, Murfreesboro, Tennessee 37132, USA
| |
Collapse
|
24
|
Batrachochytrium salamandrivorans (Bsal) not detected in an intensive survey of wild North American amphibians. Sci Rep 2020; 10:13012. [PMID: 32747670 PMCID: PMC7400573 DOI: 10.1038/s41598-020-69486-x] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2019] [Accepted: 05/22/2020] [Indexed: 11/22/2022] Open
Abstract
The salamander chytrid fungus (Batrachochytrium salamandrivorans [Bsal]) is causing massive mortality of salamanders in Europe. The potential for spread via international trade into North America and the high diversity of salamanders has catalyzed concern about Bsal in the U.S. Surveillance programs for invading pathogens must initially meet challenges that include low rates of occurrence on the landscape, low prevalence at a site, and imperfect detection of the diagnostic tests. We implemented a large-scale survey to determine if Bsal was present in North America designed to target taxa and localities where Bsal was determined highest risk to be present based on species susceptibility and geography. Our analysis included a Bayesian model to estimate the probability of occurrence of Bsal given our prior knowledge of the occurrence and prevalence of the pathogen. We failed to detect Bsal in any of 11,189 samples from 594 sites in 223 counties within 35 U.S. states and one site in Mexico. Our modeling indicates that Bsal is highly unlikely to occur within wild amphibians in the U.S. and suggests that the best proactive response is to continue mitigation efforts against the introduction and establishment of the disease and to develop plans to reduce impacts should Bsal establish.
Collapse
|
25
|
Bienentreu JF, Lesbarrères D. Amphibian Disease Ecology: Are We Just Scratching the Surface? HERPETOLOGICA 2020. [DOI: 10.1655/0018-0831-76.2.153] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Affiliation(s)
| | - David Lesbarrères
- Department of Biology, Laurentian University, Sudbury, ON P3E 2C6, Canada
| |
Collapse
|
26
|
Robinson KA, Pereira KE, Bletz MC, Carter ED, Gray MJ, Piovia-Scott J, Romansic JM, Woodhams DC, Fritz-Laylin L. Isolation and maintenance of Batrachochytrium salamandrivorans cultures. DISEASES OF AQUATIC ORGANISMS 2020; 140:1-11. [PMID: 32618283 DOI: 10.3354/dao03488] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Discovered in 2013, the chytrid fungus Batrachochytrium salamandrivorans (Bsal) is an emerging amphibian pathogen that causes ulcerative skin lesions and multifocal erosion. A closely related pathogen, B. dendrobatidis (Bd), has devastated amphibian populations worldwide, suggesting that Bsal poses a significant threat to global salamander biodiversity. To expedite research into this emerging threat, we seek to standardize protocols across the field so that results of laboratory studies are reproducible and comparable. We have collated data and experience from multiple labs to standardize culturing practices of Bsal. Here we outline common culture practices including a medium for standardized Bsal growth, standard culturing protocols, and a method for isolating Bsal from infected tissue.
Collapse
Affiliation(s)
- Kristyn A Robinson
- Department of Biology, University of Massachusetts, Amherst, MA 01003, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Flaive A, Cabelguen JM, Ryczko D. The serotonin reuptake blocker citalopram destabilizes fictive locomotor activity in salamander axial circuits through 5-HT 1A receptors. J Neurophysiol 2020; 123:2326-2342. [PMID: 32401145 DOI: 10.1152/jn.00179.2020] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Serotoninergic (5-HT) neurons are powerful modulators of spinal locomotor circuits. Most studies on 5-HT modulation focused on the effect of exogenous 5-HT and these studies provided key information about the cellular mechanisms involved. Less is known about the effects of increased release of endogenous 5-HT with selective serotonin reuptake inhibitors. In mammals, such molecules were shown to destabilize the fictive locomotor output of spinal limb networks through 5-HT1A receptors. However, in tetrapods little is known about the effects of increased 5-HT release on the locomotor output of axial networks, which are coordinated with limb circuits during locomotion from basal vertebrates to mammals. Here, we examined the effect of citalopram on fictive locomotion generated in axial segments of isolated spinal cords in salamanders, a tetrapod where raphe 5-HT reticulospinal neurons and intraspinal 5-HT neurons are present as in other vertebrates. Using electrophysiological recordings of ventral roots, we show that fictive locomotion generated by bath-applied glutamatergic agonists is destabilized by citalopram. Citalopram-induced destabilization was prevented by a 5-HT1A receptor antagonist, whereas a 5-HT1A receptor agonist destabilized fictive locomotion. Using immunofluorescence experiments, we found 5-HT-positive fibers and varicosities in proximity with motoneurons and glutamatergic interneurons that are likely involved in rhythmogenesis. Our results show that increasing 5-HT release has a deleterious effect on axial locomotor activity through 5-HT1A receptors. This is consistent with studies in limb networks of turtle and mouse, suggesting that this part of the complex 5-HT modulation of spinal locomotor circuits is common to limb and axial networks in limbed vertebrates.NEW & NOTEWORTHY Little is known about the modulation exerted by endogenous serotonin on axial locomotor circuits in tetrapods. Using axial ventral root recordings in salamanders, we found that a serotonin reuptake blocker destabilized fictive locomotor activity through 5-HT1A receptors. Our anatomical results suggest that serotonin is released on motoneurons and glutamatergic interneurons possibly involved in rhythmogenesis. Our study suggests that common serotoninergic mechanisms modulate axial motor circuits in amphibians and limb motor circuits in reptiles and mammals.
Collapse
Affiliation(s)
- Aurélie Flaive
- Département de Pharmacologie-Physiologie, Faculté de médecine et des sciences de la santé, Université de Sherbrooke, Sherbrooke, Quebec, Canada
| | - Jean-Marie Cabelguen
- Neurocentre Magendie, INSERM U 862, Université de Bordeaux, Bordeaux Cedex, France
| | - Dimitri Ryczko
- Département de Pharmacologie-Physiologie, Faculté de médecine et des sciences de la santé, Université de Sherbrooke, Sherbrooke, Quebec, Canada.,Centre de recherche du Centre Hospitalier Universitaire de Sherbrooke, Sherbrooke, Quebec, Canada.,Institut de Pharmacologie de Sherbrooke, Sherbrooke, Quebec, Canada.,Centre des neurosciences de Sherbrooke, Sherbrooke, Quebec, Canada
| |
Collapse
|
28
|
Malagon DA, Melara LA, Prosper OF, Lenhart S, Carter ED, Fordyce JA, Peterson AC, Miller DL, Gray MJ. Host density and habitat structure influence host contact rates and Batrachochytrium salamandrivorans transmission. Sci Rep 2020; 10:5584. [PMID: 32221329 PMCID: PMC7101388 DOI: 10.1038/s41598-020-62351-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2019] [Accepted: 03/11/2020] [Indexed: 12/22/2022] Open
Abstract
Batrachochytrium salamandrivorans (Bsal) is an emerging invasive pathogen that is highly pathogenic to salamander species. Modeling infection dynamics in this system can facilitate proactive efforts to mitigate this pathogen's impact on North American species. Given its widespread distribution and high abundance, the eastern newt (Notophthalmus viridescens) has the potential to significantly influence Bsal epidemiology. We designed experiments to 1) estimate contact rates given different host densities and habitat structure and 2) estimate the probability of transmission from infected to susceptible individuals. Using parameter estimates from data generated during these experiments, we modeled infection and disease outcomes for a population of newts using a system of differential equations. We found that host contact rates were density-dependent, and that adding habitat structure reduced contacts. The probability of Bsal transmission given contact between newts was very high (>90%) even at early stages of infection. Our simulations show rapid transmission of Bsal among individuals following pathogen introduction, with infection prevalence exceeding 90% within one month and >80% mortality of newts in three months. Estimates of basic reproductive rate (R0) of Bsal for eastern newts were 1.9 and 3.2 for complex and simple habitats, respectively. Although reducing host density and increasing habitat complexity might decrease transmission, these management strategies may be ineffective at stopping Bsal invasion in eastern newt populations due to this species’ hyper-susceptibility.
Collapse
Affiliation(s)
- Daniel A Malagon
- Center for Wildlife Health, Department of Forestry, Wildlife and Fisheries, University of Tennessee Institute of Agriculture, Knoxville, TN, 37996, USA
| | - Luis A Melara
- Department of Mathematics, Shippensburg University, Shippensburg, PA, 17257, USA
| | - Olivia F Prosper
- Department of Mathematics, University of Kentucky, Lexington, KY, 40506, USA.,Department of Mathematics, University of Tennessee, Knoxville, TN, 37996, USA
| | - Suzanne Lenhart
- Department of Mathematics, University of Tennessee, Knoxville, TN, 37996, USA
| | - Edward Davis Carter
- Center for Wildlife Health, Department of Forestry, Wildlife and Fisheries, University of Tennessee Institute of Agriculture, Knoxville, TN, 37996, USA
| | - J A Fordyce
- Department of Ecology and Evolutionary Biology, University of Tennessee, Knoxville, TN, 37996, USA
| | - Anna C Peterson
- Center for Wildlife Health, Department of Forestry, Wildlife and Fisheries, University of Tennessee Institute of Agriculture, Knoxville, TN, 37996, USA
| | - Debra L Miller
- Center for Wildlife Health, Department of Forestry, Wildlife and Fisheries, University of Tennessee Institute of Agriculture, Knoxville, TN, 37996, USA.,Department of Biomedical and Diagnostic Sciences, College of Veterinary Medicine, University of Tennessee, Knoxville, TN, 37996, USA
| | - Matthew J Gray
- Center for Wildlife Health, Department of Forestry, Wildlife and Fisheries, University of Tennessee Institute of Agriculture, Knoxville, TN, 37996, USA.
| |
Collapse
|
29
|
Barnhart KL, Bletz MC, LaBumbard BC, Tokash-Peters AG, Gabor CR, Woodhams DC. Batrachochytrium salamandrivorans ELICITS ACUTE STRESS RESPONSE IN SPOTTED SALAMANDERS BUT NOT INFECTION OR MORTALITY. Anim Conserv 2020; 23:533-546. [PMID: 33071596 DOI: 10.1111/acv.12565] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The emerging fungal pathogen Batrachochytrium salamandrivorans (Bsal) is a major threat to amphibian species worldwide with potential to infect many species if it invades salamander biodiversity hotspots in the Americas. Bsal can cause the disease chytridiomycosis, and it is important to assess the risk of Bsal-induced chytridiomycosis to species in North America. We evaluated the susceptibility to Bsal of the common and widespread spotted salamander, Ambystoma maculatum, across life history stages and monitored the effect of Bsal exposure on growth rate and response of the stress hormone, corticosterone. We conclude that spotted salamanders appear resistant to Bsal because they showed no indication of disease or infection, and experienced minor effects on growth upon exposure. While we focused on a single population for this study, results were consistent across conditions of exposure including high or repeated doses of Bsal, life-stage at exposure, environmental conditions including two temperatures and two substrates, and promoting pathogen infectivity by conditioning Bsal cultures with thyroid hormone. Exposure to high levels of Bsal elicited an acute but not chronic increase in corticosterone in spotted salamanders, and reduced growth. We hypothesize that the early acute increase in corticosterone facilitated mounting an immune response to the pathogen, perhaps through immunoredistribution to the skin, but further study is needed to determine immune responses to Bsal. These results will contribute to development of appropriate Bsal management plans to conserve species at risk of emerging disease.
Collapse
Affiliation(s)
- Kelly L Barnhart
- University of Massachusetts Boston, Department of Biology, 100 William T Morrissey Blvd, Boston, MA 02125
| | - Molly C Bletz
- University of Massachusetts Boston, Department of Biology, 100 William T Morrissey Blvd, Boston, MA 02125
| | - Brandon C LaBumbard
- University of Massachusetts Boston, Department of Biology, 100 William T Morrissey Blvd, Boston, MA 02125
| | - Amanda G Tokash-Peters
- University of Massachusetts Boston, Department of Biology, 100 William T Morrissey Blvd, Boston, MA 02125
| | - Caitlin R Gabor
- Texas State University, Department of Biology, 601 University Drive, San Marcos, TX 78666
| | - Douglas C Woodhams
- University of Massachusetts Boston, Department of Biology, 100 William T Morrissey Blvd, Boston, MA 02125
| |
Collapse
|
30
|
Eskew EA, White AM, Ross N, Smith KM, Smith KF, Rodríguez JP, Zambrana-Torrelio C, Karesh WB, Daszak P. United States wildlife and wildlife product imports from 2000-2014. Sci Data 2020; 7:22. [PMID: 31949168 PMCID: PMC6965094 DOI: 10.1038/s41597-020-0354-5] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Accepted: 12/13/2019] [Indexed: 11/17/2022] Open
Abstract
The global wildlife trade network is a massive system that has been shown to threaten biodiversity, introduce non-native species and pathogens, and cause chronic animal welfare concerns. Despite its scale and impact, comprehensive characterization of the global wildlife trade is hampered by data that are limited in their temporal or taxonomic scope and detail. To help fill this gap, we present data on 15 years of the importation of wildlife and their derived products into the United States (2000–2014), originally collected by the United States Fish and Wildlife Service. We curated and cleaned the data and added taxonomic information to improve data usability. These data include >2 million wildlife or wildlife product shipments, representing >60 biological classes and >3.2 billion live organisms. Further, the majority of species in the dataset are not currently reported on by CITES parties. These data will be broadly useful to both scientists and policymakers seeking to better understand the volume, sources, biological composition, and potential risks of the global wildlife trade. Measurement(s) | Import • wildlife • wildlife product | Technology Type(s) | digital curation | Sample Characteristic - Environment | wildlife trade network | Sample Characteristic - Location | United States of America |
Machine-accessible metadata file describing the reported data: 10.6084/m9.figshare.11439471
Collapse
Affiliation(s)
- Evan A Eskew
- EcoHealth Alliance, 460 West 34th Street - Suite 1701, New York, New York, 10001, USA.
| | - Allison M White
- EcoHealth Alliance, 460 West 34th Street - Suite 1701, New York, New York, 10001, USA
| | - Noam Ross
- EcoHealth Alliance, 460 West 34th Street - Suite 1701, New York, New York, 10001, USA
| | - Kristine M Smith
- EcoHealth Alliance, 460 West 34th Street - Suite 1701, New York, New York, 10001, USA
| | - Katherine F Smith
- Department of Ecology and Evolutionary Biology, Division of Biology and Medicine, Brown University, Providence, Rhode Island, 02912, USA
| | - Jon Paul Rodríguez
- IUCN Species Survival Commission, Rue Mauverney 28, 1196, Gland, Switzerland.,Centro de Ecología, Instituto Venezolano de Investigaciones Científicas, Apartado 20632, Caracas, 1020-A, Venezuela.,Provita, Apartado 47552, Caracas 1041-A, Venezuela
| | | | - William B Karesh
- EcoHealth Alliance, 460 West 34th Street - Suite 1701, New York, New York, 10001, USA
| | - Peter Daszak
- EcoHealth Alliance, 460 West 34th Street - Suite 1701, New York, New York, 10001, USA.
| |
Collapse
|
31
|
Carter ED, Miller DL, Peterson AC, Sutton WB, Cusaac JPW, Spatz JA, Rollins‐Smith L, Reinert L, Bohanon M, Williams LA, Upchurch A, Gray MJ. Conservation risk of
Batrachochytrium salamandrivorans
to endemic lungless salamanders. Conserv Lett 2019. [DOI: 10.1111/conl.12675] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Affiliation(s)
- Edward Davis Carter
- Center for Wildlife Health, Department of ForestryWildlife and FisheriesUniversity of Tennessee Institute of Agriculture Knoxville Tennessee
| | - Debra L. Miller
- Center for Wildlife Health, Department of ForestryWildlife and FisheriesUniversity of Tennessee Institute of Agriculture Knoxville Tennessee
- Department of Biomedical and Diagnostic Sciences, College of Veterinary MedicineUniversity of Tennessee Institute of Agriculture Knoxville Tennessee
| | - Anna C. Peterson
- Center for Wildlife Health, Department of ForestryWildlife and FisheriesUniversity of Tennessee Institute of Agriculture Knoxville Tennessee
| | - William B. Sutton
- Department of Agricultural and Environmental SciencesTennessee State University Nashville Tennessee
| | - Joseph Patrick W. Cusaac
- Center for Wildlife Health, Department of ForestryWildlife and FisheriesUniversity of Tennessee Institute of Agriculture Knoxville Tennessee
| | - Jennifer A. Spatz
- Center for Wildlife Health, Department of ForestryWildlife and FisheriesUniversity of Tennessee Institute of Agriculture Knoxville Tennessee
| | - Louise Rollins‐Smith
- Department of PathologyMicrobiology & ImmunologyVanderbilt University Nashville Tennessee
| | - Laura Reinert
- Department of PathologyMicrobiology & ImmunologyVanderbilt University Nashville Tennessee
| | - Markese Bohanon
- Center for Wildlife Health, Department of ForestryWildlife and FisheriesUniversity of Tennessee Institute of Agriculture Knoxville Tennessee
| | - Lori A. Williams
- North Carolina Wildlife Resources Commission Raleigh North Carolina
| | | | - Matthew J. Gray
- Center for Wildlife Health, Department of ForestryWildlife and FisheriesUniversity of Tennessee Institute of Agriculture Knoxville Tennessee
| |
Collapse
|
32
|
Ossiboff RJ, Towe AE, Brown MA, Longo AV, Lips KR, Miller DL, Carter ED, Gray MJ, Frasca S. Differentiating Batrachochytrium dendrobatidis and B. salamandrivorans in Amphibian Chytridiomycosis Using RNAScope ® in situ Hybridization. Front Vet Sci 2019; 6:304. [PMID: 31572738 PMCID: PMC6751264 DOI: 10.3389/fvets.2019.00304] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Accepted: 08/28/2019] [Indexed: 12/25/2022] Open
Abstract
Batrachochytrium dendrobatidis and B. salamandrivorans are important amphibian pathogens responsible for morbidity and mortality in free-ranging and captive frogs, salamanders, and caecilians. While B. dendrobatidis has a widespread global distribution, B. salamandrivorans has only been detected in amphibians in Asia and Europe. Although molecular detection methods for these fungi are well-characterized, differentiation of the morphologically similar organisms in the tissues of affected amphibians is incredibly difficult. Moreover, an accurate tool to identify and differentiate Batrachochytrium in affected amphibian tissues is essential for a specific diagnosis of the causative agent in chytridiomycosis cases. To address this need, an automated dual-plex chromogenic RNAScope®in situ hybridization (ISH) assay was developed and characterized for simultaneous detection and differentiation of B. dendrobatidis and B. salamandrivorans. The assay, utilizing double Z target probe pairs designed to hybridize to 28S rRNA sequences, was specific for the identification of both organisms in culture and in formalin-fixed paraffin-embedded amphibian tissues. The assay successfully identified organisms in tissue samples from five salamander and one frog species preserved in formalin for up to 364 days and was sensitive for the detection of Batrachochytrium in animals with qPCR loads as low as 1.1 × 102 zoospores/microliter. ISH staining of B. salamandrivorans also highlighted the infection of dermal cutaneous glands, a feature not observed in amphibian B. dendrobatidis cases and which may play an important role in B. salamandrivorans pathogenesis in salamanders. The developed ISH assay will benefit both amphibian chytridiomycosis surveillance projects and pathogenesis studies by providing a reliable tool for Batrachochytrium differentiation in tissues.
Collapse
Affiliation(s)
- Robert J Ossiboff
- Department of Comparative, Diagnostic, and Population Medicine, College of Veterinary Medicine, University of Florida, Gainesville, FL, United States
| | - Anastasia E Towe
- Department of Biomedical and Diagnostic Sciences, College of Veterinary Medicine, University of Tennessee, Knoxville, Knoxville, TN, United States
| | - Melissa A Brown
- Department of Comparative, Diagnostic, and Population Medicine, College of Veterinary Medicine, University of Florida, Gainesville, FL, United States
| | - Ana V Longo
- Department of Biology, University of Florida, Gainesville, FL, United States.,Department of Biology, University of Maryland College Park, College Park, MD, United States
| | - Karen R Lips
- Department of Biology, University of Maryland College Park, College Park, MD, United States
| | - Debra L Miller
- Department of Biomedical and Diagnostic Sciences, College of Veterinary Medicine, University of Tennessee, Knoxville, Knoxville, TN, United States.,Center for Wildlife Health, University of Tennessee Institute of Agriculture, Knoxville, TN, United States
| | - E Davis Carter
- Center for Wildlife Health, University of Tennessee Institute of Agriculture, Knoxville, TN, United States
| | - Matthew J Gray
- Center for Wildlife Health, University of Tennessee Institute of Agriculture, Knoxville, TN, United States
| | - Salvatore Frasca
- Department of Comparative, Diagnostic, and Population Medicine, College of Veterinary Medicine, University of Florida, Gainesville, FL, United States
| |
Collapse
|
33
|
Naranjo‐Ortiz MA, Gabaldón T. Fungal evolution: major ecological adaptations and evolutionary transitions. Biol Rev Camb Philos Soc 2019; 94:1443-1476. [PMID: 31021528 PMCID: PMC6850671 DOI: 10.1111/brv.12510] [Citation(s) in RCA: 127] [Impact Index Per Article: 25.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2018] [Revised: 03/10/2019] [Accepted: 03/13/2019] [Indexed: 12/13/2022]
Abstract
Fungi are a highly diverse group of heterotrophic eukaryotes characterized by the absence of phagotrophy and the presence of a chitinous cell wall. While unicellular fungi are far from rare, part of the evolutionary success of the group resides in their ability to grow indefinitely as a cylindrical multinucleated cell (hypha). Armed with these morphological traits and with an extremely high metabolical diversity, fungi have conquered numerous ecological niches and have shaped a whole world of interactions with other living organisms. Herein we survey the main evolutionary and ecological processes that have guided fungal diversity. We will first review the ecology and evolution of the zoosporic lineages and the process of terrestrialization, as one of the major evolutionary transitions in this kingdom. Several plausible scenarios have been proposed for fungal terrestralization and we here propose a new scenario, which considers icy environments as a transitory niche between water and emerged land. We then focus on exploring the main ecological relationships of Fungi with other organisms (other fungi, protozoans, animals and plants), as well as the origin of adaptations to certain specialized ecological niches within the group (lichens, black fungi and yeasts). Throughout this review we use an evolutionary and comparative-genomics perspective to understand fungal ecological diversity. Finally, we highlight the importance of genome-enabled inferences to envision plausible narratives and scenarios for important transitions.
Collapse
Affiliation(s)
- Miguel A. Naranjo‐Ortiz
- Department of Genomics and Bioinformatics, Centre for Genomic Regulation (CRG)The Barcelona Institute of Science and TechnologyDr. Aiguader 88, Barcelona08003Spain
| | - Toni Gabaldón
- Department of Genomics and Bioinformatics, Centre for Genomic Regulation (CRG)The Barcelona Institute of Science and TechnologyDr. Aiguader 88, Barcelona08003Spain
- Department of Experimental and Health Sciences, Universitat Pompeu Fabra (UPF)08003BarcelonaSpain
- ICREA, Pg. Lluís Companys 2308010BarcelonaSpain
| |
Collapse
|
34
|
Campbell LJ, Garner TWJ, Hopkins K, Griffiths AGF, Harrison XA. Outbreaks of an Emerging Viral Disease Covary With Differences in the Composition of the Skin Microbiome of a Wild United Kingdom Amphibian. Front Microbiol 2019; 10:1245. [PMID: 31281291 PMCID: PMC6597677 DOI: 10.3389/fmicb.2019.01245] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2019] [Accepted: 05/20/2019] [Indexed: 12/19/2022] Open
Abstract
There is growing appreciation of the important role of commensal microbes in ensuring the normal function and health of their hosts, including determining how hosts respond to pathogens. A range of infectious diseases are threatening amphibians worldwide, and evidence is accumulating that the host-associated bacteria that comprise the microbiome may be key in mediating interactions between amphibian hosts and infectious pathogens. We used 16S rRNA amplicon sequencing to quantify the skin microbial community structure of over 200 individual wild adult European common frogs (Rana temporaria), from ten populations with contrasting history of the lethal disease ranavirosis, caused by emerging viral pathogens belonging to the genus Ranavirus. All populations had similar species richness irrespective of disease history, but populations that have experienced historical outbreaks of ranavirosis have a distinct skin microbiome structure (beta diversity) when compared to sites where no outbreaks of the disease have occurred. At the individual level, neither age, body length, nor sex of the frog could predict the structure of the skin microbiota. Our data potentially support the hypothesis that variation among individuals in skin microbiome structure drive differences in susceptibility to infection and lethal outbreaks of disease. More generally, our results suggest that population-level processes are more important for driving differences in microbiome structure than variation among individuals within populations in key life history traits such as age and body size.
Collapse
Affiliation(s)
- Lewis J Campbell
- Environment and Sustainability Institute, University of Exeter, Penryn, United Kingdom.,Institute of Zoology, Zoological Society of London, London, United Kingdom
| | - Trenton W J Garner
- Institute of Zoology, Zoological Society of London, London, United Kingdom
| | - Kevin Hopkins
- Institute of Zoology, Zoological Society of London, London, United Kingdom
| | | | - Xavier A Harrison
- Institute of Zoology, Zoological Society of London, London, United Kingdom.,College of Life and Environmental Sciences, University of Exeter, Exeter, United Kingdom
| |
Collapse
|
35
|
Bacigalupe LD, Vásquez IA, Estay SA, Valenzuela‐Sánchez A, Alvarado‐Rybak M, Peñafiel‐Ricaurte A, Cunningham AA, Soto‐Azat C. The amphibian‐killing fungus in a biodiversity hotspot: identifying and validating high‐risk areas and refugia. Ecosphere 2019. [DOI: 10.1002/ecs2.2724] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Affiliation(s)
- Leonardo D. Bacigalupe
- Facultad de Ciencias Instituto de Ciencias Ambientales y Evolutivas Universidad Austral de Chile Valdivia Chile
| | - Inao A. Vásquez
- Facultad de Ciencias Instituto de Ciencias Ambientales y Evolutivas Universidad Austral de Chile Valdivia Chile
| | - Sergio A. Estay
- Facultad de Ciencias Instituto de Ciencias Ambientales y Evolutivas Universidad Austral de Chile Valdivia Chile
- Center of Applied Ecology and Sustainability Pontificia Universidad Católica de Chile Santiago Chile
| | - Andrés Valenzuela‐Sánchez
- Facultad de Ciencias Instituto de Ciencias Ambientales y Evolutivas Universidad Austral de Chile Valdivia Chile
- ONG Ranita de Darwin Santiago Chile
| | - Mario Alvarado‐Rybak
- Centro de Investigación para la Sustentabilidad Facultad de Ciencias de la Vida & Doctorado en Medicina de la Conservación Universidad Andrés Bello Santiago Chile
- Institute of Zoology Zoological Society of London Regent's Park London NW1 4RY UK
| | - Alexandra Peñafiel‐Ricaurte
- Centro de Investigación para la Sustentabilidad Facultad de Ciencias de la Vida & Doctorado en Medicina de la Conservación Universidad Andrés Bello Santiago Chile
- Institute of Zoology Zoological Society of London Regent's Park London NW1 4RY UK
| | - Andrew A. Cunningham
- Institute of Zoology Zoological Society of London Regent's Park London NW1 4RY UK
| | - Claudio Soto‐Azat
- Centro de Investigación para la Sustentabilidad Facultad de Ciencias de la Vida & Doctorado en Medicina de la Conservación Universidad Andrés Bello Santiago Chile
| |
Collapse
|
36
|
Grant SA, Bienentreu JF, Vilaça ST, Brunetti CR, Lesbarrères D, Murray DL, Kyle CJ. Low intraspecific variation of Frog virus 3 with evidence for novel FV3-like isolates in central and northwestern Canada. DISEASES OF AQUATIC ORGANISMS 2019; 134:1-13. [PMID: 32132268 DOI: 10.3354/dao03354] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Frog virus 3 (FV3) and FV3-like ranaviruses can infect a variety of cold-blooded aquatic species and present a primary threat to amphibians across the globe. Previous studies of FV3-like viruses have largely investigated higher-level phylogenetic distinctions of these pathogens via portions of the conserved major capsid protein (MCP), and the putative virulence gene vIF-2α. Few studies, however, have investigated the spatial distribution of FV3 variants at the population level3-data that can be used to further understand the spatial epidemiology of this disease. In this study, we sequenced the MCP and vIF-2α of 127 FV3-positive amphibians sampled from Canadian water bodies in Ontario, northeastern Alberta, and southern Northwest Territories to explore whether intraspecific genetic variation exists within FV3. There was a lack of variation at the 2 markers across these regions, suggesting that there is a lack of FV3 sequence diversity in Canada, which may hint at a single source of infection that has spread. However, an undocumented variant termed Wood Buffalo ranavirus (WBRV) was detected in samples from 3 sites in Alberta and Northwest Territories that clustered within the FV3-like lineage with 99.3% sequence homology for MCP. For vIF-2α, all sequences were the expected truncated variant except for 6 samples in Ontario. These latter sequences were suggestive of recombination with common midwife toad virus (CMTV). The lack of variation suggests that higher-resolution genome analyses will be required to further explore the spatial spread and intraspecific variation of the disease.
Collapse
Affiliation(s)
- Samantha A Grant
- Environmental and Life Sciences Graduate Program, Trent University, Peterborough, Ontario K9J 7B8, Canada
| | | | | | | | | | | | | |
Collapse
|
37
|
Longo AV, Fleischer RC, Lips KR. Double trouble: co-infections of chytrid fungi will severely impact widely distributed newts. Biol Invasions 2019. [DOI: 10.1007/s10530-019-01973-3] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
38
|
Measey J, Basson A, Rebelo AD, Nunes AL, Vimercati G, Louw M, Mohanty NP. Why Have a Pet Amphibian? Insights From YouTube. Front Ecol Evol 2019. [DOI: 10.3389/fevo.2019.00052] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
|
39
|
Urbina J, Galeano SP, Bacigalupe LD, Flechas SV. Disease Ecology: Past and Present for a Better FutureXI Latin American Congress of Herpetology, Quito, Ecuador, July 24–28 2017. COPEIA 2019. [DOI: 10.1643/ch-18-053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Affiliation(s)
- Jenny Urbina
- Department of Fisheries and Wildlife, Oregon State University, 2820 SW Campus way, Corvallis, Oregon 97331; . Send reprint requests to this address
| | - Sandra P. Galeano
- Instituto de Investigación de Recursos Biológicos Alexander von Humboldt, Calle 28A 15-09, Bogotá, Colombia 111311
| | - Leonardo D. Bacigalupe
- Instituto de Ciencias Ambientales y Evolutivas, Facultad de Ciencias, Universidad Austral de Chile, Campus Isla Teja, Valdivia, Chile
| | - Sandra V. Flechas
- Instituto de Investigación de Recursos Biológicos Alexander von Humboldt, Calle 28A 15-09, Bogotá, Colombia 111311
| |
Collapse
|
40
|
Basanta MD, Rebollar EA, Parra-Olea G. Potential risk of Batrachochytrium salamandrivorans in Mexico. PLoS One 2019; 14:e0211960. [PMID: 30753218 PMCID: PMC6372179 DOI: 10.1371/journal.pone.0211960] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2018] [Accepted: 01/24/2019] [Indexed: 02/07/2023] Open
Abstract
The recent decline in populations of European salamanders caused by the chytrid fungus Batrachochytrium salamandrivorans (Bsal) has generated worldwide concern, as it is a major threat to amphibians. Evaluation of the areas most suitable for the establishment of Bsal combined with analysis of the distribution of salamander species could be used to generate and implement biosecurity measures and protect biodiversity at sites with high salamander diversity. In this study, we identified the areas most suitable for the establishment of Bsal in Mexico. Mexico has the second-highest salamander species diversity in the world; thus, we identified areas moderately to highly suitable for the establishment of Bsal with high salamander diversity as potential hotspots for surveillance. Central and Southern Mexico were identified as high-risk zones, with 13 hotspots where 30% of Mexican salamander species occur, including range-restricted species and endangered species. We propose that these hotspots should be thoroughly monitored for the presence of Bsal to prevent the spread of the pathogen if it is introduced to the country.
Collapse
Affiliation(s)
- M. Delia Basanta
- Departamento de Zoología, Instituto de Biología, Universidad Nacional Autónoma de México, AP, Tercer Circuito Exterior s/ n, Ciudad Universitaria, Ciudad de México, México
- Posgrado en Ciencias Biológicas, Unidad de Posgrado, Edificio A, 1° Piso, Circuito de Posgrados, Ciudad Universitaria, Coyoacán, C.P., Ciudad de México, México
| | - Eria A. Rebollar
- Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Cuernavaca, Morelos, México
| | - Gabriela Parra-Olea
- Departamento de Zoología, Instituto de Biología, Universidad Nacional Autónoma de México, AP, Tercer Circuito Exterior s/ n, Ciudad Universitaria, Ciudad de México, México
| |
Collapse
|
41
|
Fitzpatrick LD, Pasmans F, Martel A, Cunningham AA. Epidemiological tracing of Batrachochytrium salamandrivorans identifies widespread infection and associated mortalities in private amphibian collections. Sci Rep 2018; 8:13845. [PMID: 30218076 PMCID: PMC6138723 DOI: 10.1038/s41598-018-31800-z] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2018] [Accepted: 08/23/2018] [Indexed: 12/17/2022] Open
Abstract
The amphibian chytrid fungus Batrachochytrium salamandrivorans (Bsal) infects newts and salamanders (urodele amphibians), in which it can cause fatal disease. This pathogen has caused dramatic fire salamander population declines in Belgium, the Netherlands and Germany since its discovery in 2010. Thought to be native to Asia, it has been hypothesised that Bsal was introduced to Europe with the importation of infected amphibians for the commercial pet trade. Following the discovery of Bsal in captive amphibians in the United Kingdom in 2015, we used contact-tracing to identify epidemiologically-linked private amphibian collections in Western Europe. Of 16 linked collections identified, animals were tested from 11 and urodeles tested positive for Bsal in seven, including the identification of the pathogen in Spain for the first time. Mortality of Bsal-positive individuals was observed in five collections. Our results indicate that Bsal is likely widespread within the private amphibian trade, at least in Europe. These findings are important for informing policy regarding Bsal control strategies.
Collapse
Affiliation(s)
- Liam D Fitzpatrick
- Institute of Zoology, Zoological Society of London, Regent's Park, London, NW1 4RY, UK
| | - Frank Pasmans
- Department of Pathology, Bacteriology and Avian Diseases, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, 9820, Merelbeke, Belgium
| | - An Martel
- Department of Pathology, Bacteriology and Avian Diseases, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, 9820, Merelbeke, Belgium
| | - Andrew A Cunningham
- Institute of Zoology, Zoological Society of London, Regent's Park, London, NW1 4RY, UK.
| |
Collapse
|
42
|
Effects of Emerging Infectious Diseases on Amphibians: A Review of Experimental Studies. DIVERSITY-BASEL 2018. [DOI: 10.3390/d10030081] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Numerous factors are contributing to the loss of biodiversity. These include complex effects of multiple abiotic and biotic stressors that may drive population losses. These losses are especially illustrated by amphibians, whose populations are declining worldwide. The causes of amphibian population declines are multifaceted and context-dependent. One major factor affecting amphibian populations is emerging infectious disease. Several pathogens and their associated diseases are especially significant contributors to amphibian population declines. These include the fungi Batrachochytrium dendrobatidis and B. salamandrivorans, and ranaviruses. In this review, we assess the effects of these three pathogens on amphibian hosts as found through experimental studies. Such studies offer valuable insights to the causal factors underpinning broad patterns reported through observational studies. We summarize key findings from experimental studies in the laboratory, in mesocosms, and from the field. We also summarize experiments that explore the interactive effects of these pathogens with other contributors of amphibian population declines. Though well-designed experimental studies are critical for understanding the impacts of disease, inconsistencies in experimental methodologies limit our ability to form comparisons and conclusions. Studies of the three pathogens we focus on show that host susceptibility varies with such factors as species, host age, life history stage, population and biotic (e.g., presence of competitors, predators) and abiotic conditions (e.g., temperature, presence of contaminants), as well as the strain and dose of the pathogen, to which hosts are exposed. Our findings suggest the importance of implementing standard protocols and reporting for experimental studies of amphibian disease.
Collapse
|
43
|
Standish I, Leis E, Schmitz N, Credico J, Erickson S, Bailey J, Kerby J, Phillips K, Lewis T. Optimizing, validating, and field testing a multiplex qPCR for the detection of amphibian pathogens. DISEASES OF AQUATIC ORGANISMS 2018; 129:1-13. [PMID: 29916388 DOI: 10.3354/dao03230] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Amphibian populations worldwide are facing numerous threats, including the emergence and spread of infectious diseases. In the past 2 decades, Batrachochytrium dendrobatidis (Bd), a parasitic fungus, and a group of viruses comprising the genus Ranavirus have become widespread and resulted in mass mortality events and extirpations worldwide. In 2013, another novel fungus, B. salamandrivorans (Bsal), was attributed to dramatic declines in populations of fire salamander Salamandra salamandra in the Netherlands. Experimental infections demonstrated that Bsal is highly pathogenic to numerous salamander genera. In an effort to prevent the introduction of Bsal to North America, the US Fish and Wildlife Service (USFWS) listed 201 salamander species as injurious wildlife under the Lacey Act. To determine infection status and accurately assess amphibian health, the development of a sensitive and specific diagnostic assay was needed. We describe the optimization and validation of a multiplex quantitative polymerase chain reaction (qPCR) protocol for the simultaneous detection of Bd, Bsal, and frog virus 3-like ranaviruses. A synthetic genome template (gBlock®) containing the target genes from all 3 pathogens served as the positive control and allowed accurate quantification of pathogen genes. The assay was validated in the field using an established non-lethal swabbing technique to survey local amphibian populations throughout a range of habitats. This multiplex qPCR demonstrates high reproducibility, sensitivity, and was capable of detecting both Bd and ranavirus in numerous locations, species, and life stages. Bsal was not detected at any point during these sampling efforts.
Collapse
Affiliation(s)
- Isaac Standish
- US Fish and Wildlife Service, Midwest Fisheries Center, La Crosse Fish Health Center, Onalaska, WI 54650, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Affiliation(s)
- Karen Lips
- Department of Biology, University of Maryland, College Park, MD 20742, USA
| |
Collapse
|
45
|
Comparison of model selection technique performance in predicting the spread of newly invasive species: a case study with Batrachochytrium salamandrivorans. Biol Invasions 2018. [DOI: 10.1007/s10530-018-1690-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
46
|
Yap TA, Nguyen NT, Serr M, Shepack A, Vredenburg VT. Batrachochytrium salamandrivorans and the Risk of a Second Amphibian Pandemic. ECOHEALTH 2017; 14:851-864. [PMID: 29147975 DOI: 10.1007/s10393-017-1278-1] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2017] [Revised: 08/07/2017] [Accepted: 08/07/2017] [Indexed: 06/07/2023]
Abstract
Amphibians are experiencing devastating population declines globally. A major driver is chytridiomycosis, an emerging infectious disease caused by the fungal pathogens Batrachochytrium dendrobatidis (Bd) and Batrachochytrium salamandrivorans (Bsal). Bd was described in 1999 and has been linked with declines since the 1970s, while Bsal is a more recently discovered pathogen that was described in 2013. It is hypothesized that Bsal originated in Asia and spread via international trade to Europe, where it has been linked to salamander die-offs. Trade in live amphibians thus represents a significant threat to global biodiversity in amphibians. We review the current state of knowledge regarding Bsal and describe the risk of Bsal spread. We discuss regional responses to Bsal and barriers that impede a rapid, coordinated global effort. The discovery of a second deadly emerging chytrid fungal pathogen in amphibians poses an opportunity for scientists, conservationists, and governments to improve global biosecurity and further protect humans and wildlife from a growing number of emerging infectious diseases.
Collapse
Affiliation(s)
- Tiffany A Yap
- Department of Biology, San Francisco State University, Hensill Hall, 1600 Holloway Avenue, San Francisco, CA, 94132, USA.
- Museum of Vertebrate Zoology, University of California Berkeley, 3101 Valley Life Sciences Building, Berkeley, CA, 94720, USA.
| | - Natalie T Nguyen
- U.S. Geological Survey National Wildlife Health Center, 6006 Schroeder Rd., Madison, WI, 53711, USA
| | - Megan Serr
- Department of Biological Sciences, North Carolina State University, Thomas Hall, 1100 Brooks Avenue, Raleigh, NC, 27695, USA
| | - Alexander Shepack
- Zoology Department, Southern Illinois University Carbondale, 1125 Lincoln Drive, Carbondale, IL, 62901, USA
| | - Vance T Vredenburg
- Department of Biology, San Francisco State University, Hensill Hall, 1600 Holloway Avenue, San Francisco, CA, 94132, USA
- Museum of Vertebrate Zoology, University of California Berkeley, 3101 Valley Life Sciences Building, Berkeley, CA, 94720, USA
| |
Collapse
|
47
|
Garner TWJ, Schmidt BR, Martel A, Pasmans F, Muths E, Cunningham AA, Weldon C, Fisher MC, Bosch J. Mitigating amphibian chytridiomycoses in nature. Philos Trans R Soc Lond B Biol Sci 2017; 371:rstb.2016.0207. [PMID: 28080996 DOI: 10.1098/rstb.2016.0207] [Citation(s) in RCA: 90] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/12/2016] [Indexed: 12/11/2022] Open
Abstract
Amphibians across the planet face the threat of population decline and extirpation caused by the disease chytridiomycosis. Despite consensus that the fungal pathogens responsible for the disease are conservation issues, strategies to mitigate their impacts in the natural world are, at best, nascent. Reducing risk associated with the movement of amphibians, non-amphibian vectors and other sources of infection remains the first line of defence and a primary objective when mitigating the threat of disease in wildlife. Amphibian-associated chytridiomycete fungi and chytridiomycosis are already widespread, though, and we therefore focus on discussing options for mitigating the threats once disease emergence has occurred in wild amphibian populations. All strategies have shortcomings that need to be overcome before implementation, including stronger efforts towards understanding and addressing ethical and legal considerations. Even if these issues can be dealt with, all currently available approaches, or those under discussion, are unlikely to yield the desired conservation outcome of disease mitigation. The decision process for establishing mitigation strategies requires integrated thinking that assesses disease mitigation options critically and embeds them within more comprehensive strategies for the conservation of amphibian populations, communities and ecosystems.This article is part of the themed issue 'Tackling emerging fungal threats to animal health, food security and ecosystem resilience'.
Collapse
Affiliation(s)
- Trenton W J Garner
- Institute of Zoology, Zoological Society of London, Regents Park, NW1 4RY London, UK .,Unit for Environmental Research and Management, North-West University, Potchefstroom 2520, South Africa
| | - Benedikt R Schmidt
- Karch, Passage Maximilien-de-Meuron 6, 2000 Neuchâtel, Switzerland.,Department of Evolutionary Biology and Environmental Studies, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland
| | - An Martel
- Department of Pathology, Bacteriology and Avian Diseases, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, 9820 Merelbeke, Belgium
| | - Frank Pasmans
- Department of Pathology, Bacteriology and Avian Diseases, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, 9820 Merelbeke, Belgium
| | - Erin Muths
- U.S. Geological Survey, Fort Collins Science Fort Collins, 2150 Centre Avenue Building C, Fort Collins, CO 80526, USA
| | - Andrew A Cunningham
- Institute of Zoology, Zoological Society of London, Regents Park, NW1 4RY London, UK
| | - Che Weldon
- Unit for Environmental Research and Management, North-West University, Potchefstroom 2520, South Africa
| | - Matthew C Fisher
- Department of Infectious Disease Epidemiology, Imperial College London, London, UK
| | - Jaime Bosch
- Museo Nacional de Ciencias Naturales, CSIC, José Gutiérrez Abascal 2, 28006 Madrid, Spain
| |
Collapse
|
48
|
Klocke B, Becker M, Lewis J, Fleischer RC, Muletz-Wolz CR, Rockwood L, Aguirre AA, Gratwicke B. Batrachochytrium salamandrivorans not detected in U.S. survey of pet salamanders. Sci Rep 2017; 7:13132. [PMID: 29030586 PMCID: PMC5640657 DOI: 10.1038/s41598-017-13500-2] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2017] [Accepted: 09/25/2017] [Indexed: 02/01/2023] Open
Abstract
We engaged pet salamander owners in the United States to screen their animals for two amphibian chytrid fungal pathogens Batrachochytrium dendrobatidis (Bd) and B. salamandrivorans (Bsal). We provided pet owners with a sampling kit and instructional video to swab the skin of their animals. We received 639 salamander samples from 65 species by mail, and tested them for Bd and Bsal using qPCR. We detected Bd on 1.3% of salamanders (95% CI 0.0053–0.0267) and did not detect Bsal (95% CI 0.0000–0.0071). If Bsal is present in the U.S. population of pet salamanders, it occurs at a very low prevalence. The United States Fish and Wildlife Service listed 201 species of salamanders as “injurious wildlife” under the Lacey Act (18 U.S.C. § 42) on January 28, 2016, a precautionary action to prevent the introduction of Bsal to the U.S. through the importation of salamanders. This action reduced the number of salamanders imported to the U.S. from 2015 to 2016 by 98.4%. Our results indicate that continued precautions should be taken to prevent the introduction and establishment of Bsal in the U.S., which is a hotspot of salamander biodiversity.
Collapse
Affiliation(s)
- Blake Klocke
- Department of Environmental Science and Policy, George Mason University, Fairfax, Virginia, 22030, United States of America. .,Smithsonian Conservation Biology Institute, National Zoological Park, Washington, DC, 20008, United States of America. .,Center for Conservation Genomics, Smithsonian Conservation Biology Institute, National Zoological Park, Washington, DC, 20008, United States of America.
| | - Matthew Becker
- Center for Conservation Genomics, Smithsonian Conservation Biology Institute, National Zoological Park, Washington, DC, 20008, United States of America.,Department of Biology and Chemistry, Liberty University, Lynchburg, Virginia, 24515, United States of America
| | - James Lewis
- Rainforest Trust, Warrenton, VA, 20187, United States of America
| | - Robert C Fleischer
- Center for Conservation Genomics, Smithsonian Conservation Biology Institute, National Zoological Park, Washington, DC, 20008, United States of America
| | - Carly R Muletz-Wolz
- Center for Conservation Genomics, Smithsonian Conservation Biology Institute, National Zoological Park, Washington, DC, 20008, United States of America
| | - Larry Rockwood
- Department of Environmental Science and Policy, George Mason University, Fairfax, Virginia, 22030, United States of America.,Department of Biology, George Mason University, Fairfax, Virginia, 22030, United States of America
| | - A Alonso Aguirre
- Department of Environmental Science and Policy, George Mason University, Fairfax, Virginia, 22030, United States of America
| | - Brian Gratwicke
- Smithsonian Conservation Biology Institute, National Zoological Park, Washington, DC, 20008, United States of America
| |
Collapse
|
49
|
Parrott JC, Shepack A, Burkart D, LaBumbard B, Scimè P, Baruch E, Catenazzi A. Survey of Pathogenic Chytrid Fungi (Batrachochytrium dendrobatidis and B. salamandrivorans) in Salamanders from Three Mountain Ranges in Europe and the Americas. ECOHEALTH 2017; 14:296-302. [PMID: 27709310 DOI: 10.1007/s10393-016-1188-7] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2016] [Revised: 09/13/2016] [Accepted: 09/14/2016] [Indexed: 06/06/2023]
Abstract
Batrachochytrium salamandrivorans (Bsal) is a virulent fungal pathogen that infects salamanders. It is implicated in the recent collapse of several populations of fire salamanders in Europe. This pathogen seems much like that of its sister species, Batrachochytrium dendrobatidis (Bd), the agent responsible for anuran extinctions and extirpations worldwide, and is considered to be an emerging global threat to salamander communities. Bsal thrives at temperatures found in many mountainous regions rich in salamander species; because of this, we have screened specimens of salamanders representing 17 species inhabiting mountain ranges in three continents: The Smoky Mountains, the Swiss Alps, and the Peruvian Andes. We screened 509 salamanders, with 192 representing New World salamanders that were never tested for Bsal previously. Bsal was not detected, and Bd was mostly present at low prevalence except for one site in the Andes.
Collapse
Affiliation(s)
- Joshua Curtis Parrott
- Zoology Department, Southern Illinois University Carbondale, 1125 Lincoln drive, Carbondale, IL, 62901, USA.
| | - Alexander Shepack
- Zoology Department, Southern Illinois University Carbondale, 1125 Lincoln drive, Carbondale, IL, 62901, USA
| | - David Burkart
- Zoology Department, Southern Illinois University Carbondale, 1125 Lincoln drive, Carbondale, IL, 62901, USA
| | - Brandon LaBumbard
- Zoology Department, Southern Illinois University Carbondale, 1125 Lincoln drive, Carbondale, IL, 62901, USA
- University of Massachusetts Boston, Boston, MA, USA
| | | | - Ethan Baruch
- School of Life Sciences, Arizona State University, 427 E Tyler Mall, Tempe, AZ, 85281, USA
| | - Alessandro Catenazzi
- Zoology Department, Southern Illinois University Carbondale, 1125 Lincoln drive, Carbondale, IL, 62901, USA
| |
Collapse
|
50
|
Schmidt BR, Bozzuto C, Lötters S, Steinfartz S. Dynamics of host populations affected by the emerging fungal pathogen Batrachochytrium salamandrivorans. ROYAL SOCIETY OPEN SCIENCE 2017; 4:160801. [PMID: 28405365 PMCID: PMC5383822 DOI: 10.1098/rsos.160801] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/11/2016] [Accepted: 02/03/2017] [Indexed: 06/07/2023]
Abstract
Emerging infectious diseases cause extirpation of wildlife populations. We use an epidemiological model to explore the effects of a recently emerged disease caused by the salamander-killing chytrid fungus Batrachochytrium salamandrivorans (Bsal) on host populations, and to evaluate which mitigation measures are most likely to succeed. As individuals do not recover from Bsal, we used a model with the states susceptible, latent and infectious, and parametrized the model using data on host and pathogen taken from the literature and expert opinion. The model suggested that disease outbreaks can occur at very low host densities (one female per hectare). This density is far lower than host densities in the wild. Therefore, all naturally occurring populations are at risk. Bsal can lead to the local extirpation of the host population within a few months. Disease outbreaks are likely to fade out quickly. A spatial variant of the model showed that the pathogen could potentially spread rapidly. As disease mitigation during outbreaks is unlikely to be successful, control efforts should focus on preventing disease emergence and transmission between populations. Thus, this emerging wildlife disease is best controlled through prevention rather than subsequent actions.
Collapse
Affiliation(s)
- Benedikt R. Schmidt
- Institut für Evolutionsbiologie und Umweltwissenschaften, Universität Zürich, Winterthurerstrasse 190, 8057 Zürich, Switzerland
- karch, Passage Maximilien-de-Meuron 6, 2000 Neuchâtel, Switzerland
| | - Claudio Bozzuto
- Wildlife Analysis GmbH, Oetlisbergstrasse 38, 8053 Zürich, Switzerland
| | - Stefan Lötters
- Institut für Biogeographie, Universität Trier, Universitätsring 15, 54296 Trier, Germany
| | - Sebastian Steinfartz
- Department of Evolutionary Biology, Technische Universität Braunschweig, Zoological Institute, Mendelssohnstrasse 4, 38106 Braunschweig, Germany
| |
Collapse
|