1
|
Dudek I, Czerkies M, Kwiatek A. Differential expression of cytokines and elevated levels of MALAT1 - Long non-coding RNA in response to non-structural proteins of human respiratory syncytial virus. Virology 2024; 597:110127. [PMID: 38850893 DOI: 10.1016/j.virol.2024.110127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 05/10/2024] [Accepted: 05/27/2024] [Indexed: 06/10/2024]
Abstract
Human Respiratory Syncytial Virus (hRSV), a prevalent respiratory pathogen affecting various age groups, can trigger prolonged and intense inflammation in humans. The severity and outcome of hRSV infection correlate with elevated levels of pro-inflammatory agents, yet the underlying reasons for this immune system overstimulation remain elusive. We focused on the impact of hRSV non-structural proteins, NS1 and NS2, on immune response within epithelial cells. Available data indicates that these proteins impair the interferon pathway. We reinforce that NS1 and NS2 induce heightened secretion of the pro-inflammatory cytokines IL-6 and CXCL8. We also indicate that hRSV non-structural proteins provoke differential gene expression of human host FosB and long non-coding RNAs (MALAT1, RP11-510N19.5). It suggests an impact of NS molecules beyond IFN pathways. Thus, new light is shed on the interplay between hRSV and host cells, uncovering unexplored avenues of viral interference, especially the NS2 role in cytokine expression and immune modulation.
Collapse
Affiliation(s)
- Inga Dudek
- Department of Molecular Virology, Institute of Microbiology, Faculty of Biology, University of Warsaw, Warsaw, Poland.
| | - Maciej Czerkies
- Department of Biosystems and Soft Matter, Institute of Fundamental Technological Research, Polish Academy of Sciences, Warsaw, Poland
| | - Agnieszka Kwiatek
- Department of Molecular Virology, Institute of Microbiology, Faculty of Biology, University of Warsaw, Warsaw, Poland.
| |
Collapse
|
2
|
Rani AQ, Bonam SR, Zhou J, Li J, Hu H, Liu X. BRD4 as a potential target for human papillomaviruses associated cancer. J Med Virol 2023; 95:e29294. [PMID: 38100650 PMCID: PMC11315413 DOI: 10.1002/jmv.29294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2023] [Revised: 11/20/2023] [Accepted: 11/21/2023] [Indexed: 12/17/2023]
Abstract
Around 99% of cervical cancer and 5%-10% of human cancer are associated with human papillomaviruses (HPV). Notably, the life-cycle of HPV begins by low-level infection of the basal cells of the stratified epithelium, where the viral genomes are replicated and passed on to the daughter proliferating basal cells. The production of new viral particles remains restricted to eventually differentiated cells. HPVs support their persistent infectious cycle by hijacking pivotal pathways and cellular processes. Bromodomain-containing protein 4 (BRD4) is one of the essential cellular factors involved in multiple stages of viral transcription and replication. In this review, we demonstrate the role of BRD4 in the multiple stages of HPV infectious cycle. Also, we provide an overview of the intense research about the cellular functions of BRD4, the mechanism of action of bromodomain and extra terminal inhibitors, and how it could lead to the development of antiviral/anticancer therapies.
Collapse
Affiliation(s)
- Abdul Qawee Rani
- Comprehensive Cancer Center, Ohio State University, Columbus, OH 43210, USA
| | - Srinivasa Reddy Bonam
- Department of Microbiology and Immunology, University of Texas Medical Branch (UTMB), 301 University Blvd, Galveston, TX 77555, USA
| | - Jia Zhou
- Department of Pharmacology and Toxicology, University of Texas Medical Branch (UTMB), 301 University Blvd, Galveston, TX 77555, USA
| | - Jenny Li
- Comprehensive Cancer Center, Ohio State University, Columbus, OH 43210, USA
| | - Haitao Hu
- Department of Microbiology and Immunology, University of Texas Medical Branch (UTMB), 301 University Blvd, Galveston, TX 77555, USA
| | - Xuefeng Liu
- Comprehensive Cancer Center, Ohio State University, Columbus, OH 43210, USA
- Departments of Pathology, Urology and Radiation Oncology, Wexner Medical Center, Ohio State University, Columbus, OH 43210, USA
| |
Collapse
|
3
|
Deregulation of host gene expression by HPV16 E8^E2 knock-out genomes is due to increased productive replication. Virology 2023; 581:39-47. [PMID: 36870121 DOI: 10.1016/j.virol.2023.02.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 02/06/2023] [Accepted: 02/13/2023] [Indexed: 02/24/2023]
Abstract
Productive replication of human papillomaviruses (HPV) only takes place in differentiating keratinocytes. The HPV16 E8^E2 protein acts as a repressor of viral gene expression and genome replication and HPV16 E8^E2 knock-out (E8-) genomes display enhanced viral late protein expression in differentiated cells. Global transcriptome analysis of differentiated HPV16 wild-type and E8-cell lines revealed a small number of differentially expressed genes which are not related to cell cycle, DNA metabolism or keratinocyte differentiation. The analysis of selected genes suggested that deregulation requires cell differentiation and positively correlated with the expression of viral late, not early transcripts. Consistent with this, the additional knock-out of the viral E4 and E5 genes, which are known to enhance productive replication, attenuated the deregulation of these host cell genes. In summary, these data reveal that productive HPV16 replication modulates host cell transcription.
Collapse
|
4
|
Lim J, Frecot DI, Stubenrauch F, Iftner T, Simon C. Cottontail rabbit papillomavirus E6 proteins: Interaction with MAML1 and modulation of the Notch signaling pathway. Virology 2022; 576:52-60. [PMID: 36155393 DOI: 10.1016/j.virol.2022.08.014] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 08/22/2022] [Accepted: 08/22/2022] [Indexed: 12/01/2022]
Abstract
Animal models are necessary to study how cutaneous human papillomaviruses (HPVs) are associated with carcinogenesis. The cottontail rabbit papillomavirus (CRPV) induces papilloma in the -cutaneous skin of rabbits and serves as an established animal model for HPVlinked carcinogenesis where viral E6 proteins play crucial roles. Several studies have reported the dysregulation of the Notch signaling pathway by cutaneous beta HPV, bovine PV and mouse PV E6 via their association with Mastermind-like 1 protein (MAML1), thus interfering with cell proliferation and differentiation. However, the CRPV E6 gene encodes an elongated E6 protein (long E6, LE6) and an N-terminally truncated product (short E6, SE6) making it unique from other E6 proteins. Here, we describe the interaction between both CRPV E6 proteins and MAML1 and their ability to downregulate the Notch signaling pathway which could be a way CRPV infection induces carcinogenesis similar to beta HPV.
Collapse
Affiliation(s)
- JiaWen Lim
- Institute of Medical Virology and Epidemiology of Viral Diseases, University Hospital Tuebingen, Tuebingen, Germany
| | - Desiree Isabella Frecot
- Institute of Medical Virology and Epidemiology of Viral Diseases, University Hospital Tuebingen, Tuebingen, Germany
| | - Frank Stubenrauch
- Institute of Medical Virology and Epidemiology of Viral Diseases, University Hospital Tuebingen, Tuebingen, Germany
| | - Thomas Iftner
- Institute of Medical Virology and Epidemiology of Viral Diseases, University Hospital Tuebingen, Tuebingen, Germany.
| | - Claudia Simon
- Institute of Medical Virology and Epidemiology of Viral Diseases, University Hospital Tuebingen, Tuebingen, Germany.
| |
Collapse
|
5
|
McBride AA, Warburton A, Khurana S. Multiple Roles of Brd4 in the Infectious Cycle of Human Papillomaviruses. Front Mol Biosci 2021; 8:725794. [PMID: 34386523 PMCID: PMC8353396 DOI: 10.3389/fmolb.2021.725794] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Accepted: 07/14/2021] [Indexed: 12/17/2022] Open
Abstract
Human Papillomaviruses (HPV) reproduce in stratified epithelia by establishing a reservoir of low- level infection in the dividing basal cells and restricting the production of viral particles to terminally differentiated cells. These small DNA viruses hijack pivotal cellular processes and pathways to support the persistent infectious cycle. One cellular factor that is key to multiple stages of viral replication and transcription is the BET (bromodomain and extra-terminal domain) protein, Brd4 (Bromodomain containing protein 4). Here we provide an overview of the multiple interactions of Brd4 that occur throughout the HPV infectious cycle.
Collapse
Affiliation(s)
- Alison A. McBride
- Laboratory of Viral Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, United States
| | | | | |
Collapse
|
6
|
Regulation of HPV18 Genome Replication, Establishment and Persistence by Sequences in the Viral Upstream Regulatory Region. J Virol 2021; 95:e0068621. [PMID: 34232709 DOI: 10.1128/jvi.00686-21] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
During persistent human papillomavirus infection, the viral genome replicates as an extrachromosomal plasmid that is efficiently partitioned to daughter cells during cell division. We have previously shown that an element which overlaps the HPV18 transcriptional enhancer promotes stable DNA replication of replicons containing the viral replication origin. Here we perform comprehensive analyses to elucidate the function of this maintenance element. We conclude that no unique element or binding site in this region is absolutely required for persistent replication and partitioning, and instead propose that the overall chromatin architecture of this region is important to promote efficient use of the replication origin. These results have important implications on the genome partitioning mechanism of papillomaviruses. Importance Persistent infection with oncogenic HPVs is responsible for ∼5% human cancers. The viral DNA replicates as an extrachromosomal plasmid and is partitioned to daughter cells in dividing keratinocytes. Using a complementation assay that allows us to separate viral transcription and replication, we provide insight into viral sequences that are required for long term replication and persistence in keratinocytes. Understanding how viral genomes replicate persistently for such long periods of time will guide the development of anti-viral therapies.
Collapse
|
7
|
EXPRESSION OF E8^E2 IS REQUIRED FOR WART FORMATION BY MOUSE PAPILLOMAVIRUS 1 IN VIVO. J Virol 2021; 95:JVI.01930-20. [PMID: 33472931 PMCID: PMC8103706 DOI: 10.1128/jvi.01930-20] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Human papillomavirus (HPV) E1 and E2 proteins activate genome replication. E2 also modulates viral gene expression and is involved in the segregation of viral genomes. In addition to full length E2, almost all PV share the ability to encode an E8^E2 protein, that is a fusion of E8 with the C-terminal half of E2 which mediates specific DNA-binding and dimerization. HPV E8^E2 acts as a repressor of viral gene expression and genome replication. To analyze the function of E8^E2 in vivo, we used the Mus musculus PV1 (MmuPV1)-mouse model system. Characterization of the MmuPV1 E8^E2 protein revealed that it inhibits transcription from viral promoters in the absence and presence of E1 and E2 proteins and that this is partially dependent upon the E8 domain. MmuPV1 genomes, in which the E8 ATG start codon was disrupted (E8-), displayed a 10- to 25-fold increase in viral gene expression compared to wt genomes in cultured normal mouse tail keratinocytes in short-term experiments. This suggests that the function and mechanism of E8^E2 is conserved between MmuPV1 and HPVs. Surprisingly, challenge of athymic nude Foxn1nu/nu mice with MmuPV1 E8- genomes did not induce warts on the tail in contrast to wt MmuPV1. Furthermore, viral gene expression was completely absent at E8- MmuPV1 sites 20 - 22 weeks after DNA challenge on the tail or quasivirus challenge in the vaginal vault. This reveals that expression of E8^E2 is necessary to form tumors in vivo and that this is independent from the presence of T-cells.IMPORTANCE HPV encode an E8^E2 protein which acts as repressors of viral gene expression and genome replication. In cultured normal keratinocytes, E8^E2 is essential for long-term episomal maintenance of HPV31 genomes, but not for HPV16. To understand E8^E2's role in vivo, the Mus musculus PV1 (MmuPV1)-mouse model system was used. This revealed that E8^E2's function as a repressor of viral gene expression is conserved. Surprisingly, MmuPV1 E8^E2 knock out genomes did not induce warts in T-cell deficient mice. This shows for the first time that expression of E8^E2 is necessary for tumor formation in vivo independently of T cell immunity. This indicates that E8^E2 could be an interesting target for anti-viral therapy in vivo.
Collapse
|
8
|
Rasi Bonab F, Baghbanzadeh A, Ghaseminia M, Bolandi N, Mokhtarzadeh A, Amini M, Dadashzadeh K, Hajiasgharzadeh K, Baradaran B, Bannazadeh Baghi H. Molecular pathways in the development of HPV-induced cervical cancer. EXCLI JOURNAL 2021; 20:320-337. [PMID: 33746665 PMCID: PMC7975633 DOI: 10.17179/excli2021-3365] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Accepted: 02/10/2021] [Indexed: 12/11/2022]
Abstract
Recently, human papillomavirus (HPV) has gained considerable attention in cervical cancer research studies. It is one of the most important sexually transmitted diseases that can affect 160 to 289 out of 10000 persons every year. Due to the infectious nature of this virus, HPV can be considered a serious threat. The knowledge of viral structure, especially for viral oncoproteins like E6, E7, and their role in causing cancer is very important. This virus has different paths (PI3K/Akt, Wnt/β-catenin, ERK/MAPK, and JAK/STAT) that are involved in the transmission of signaling paths through active molecules like MEK (pMEK), ERK (pERK), and Akt (pAkt). It's eventually through these paths that cancer is developed. Precise knowledge of these paths and their signals give us the prognosis to adopt appropriate goals for prevention and control of these series of cancer.
Collapse
Affiliation(s)
- Farnaz Rasi Bonab
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Department of Laboratory Sciences, Marand Branch, Islamic Azad University, Marand, Iran
| | - Amir Baghbanzadeh
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Moslem Ghaseminia
- Department of Virology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Nadia Bolandi
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ahad Mokhtarzadeh
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mohammad Amini
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Kianoosh Dadashzadeh
- Department of Laboratory Sciences, Marand Branch, Islamic Azad University, Marand, Iran
| | | | - Behzad Baradaran
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Department of Immunology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Hossein Bannazadeh Baghi
- Department of Virology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
9
|
Inhibition of BRD4 Reduces Neutrophil Activation and Adhesion to the Vascular Endothelium Following Ischemia Reperfusion Injury. Int J Mol Sci 2020; 21:ijms21249620. [PMID: 33348732 PMCID: PMC7767067 DOI: 10.3390/ijms21249620] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Revised: 12/11/2020] [Accepted: 12/14/2020] [Indexed: 02/08/2023] Open
Abstract
Renal ischemia reperfusion injury (IRI) is associated with inflammation, including neutrophil infiltration that exacerbates the initial ischemic insult. The molecular pathways involved are poorly characterized and there is currently no treatment. We performed an in silico analysis demonstrating changes in NFκB-mediated gene expression in early renal IRI. We then evaluated NFκB-blockade with a BRD4 inhibitor on neutrophil adhesion to endothelial cells in vitro, and tested BRD4 inhibition in an in vivo IRI model. BRD4 inhibition attenuated neutrophil adhesion to activated endothelial cells. In vivo, IRI led to increased expression of cytokines and adhesion molecules at 6 h post-IRI with sustained up-regulated expression to 48 h post-IRI. These effects were attenuated, in part, with BRD4 inhibition. Absolute neutrophil counts increased significantly in the bone marrow, blood, and kidney 24 h post-IRI. Activated neutrophils increased in the blood and kidney at 6 h post-IRI and remained elevated in the kidney until 48 h post-IRI. BRD4 inhibition reduced both total and activated neutrophil counts in the kidney. IRI-induced tubular injury correlated with neutrophil accumulation and was reduced by BRD4 inhibition. In summary, BRD4 inhibition has important systemic and renal effects on neutrophils, and these effects are associated with reduced renal injury.
Collapse
|
10
|
Human Papillomavirus 16 (HPV16) E2 Repression of TWIST1 Transcription Is a Potential Mediator of HPV16 Cancer Outcomes. mSphere 2020; 5:5/6/e00981-20. [PMID: 33298572 PMCID: PMC7729257 DOI: 10.1128/msphere.00981-20] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
HPV16-positive cancers have a better clinical outcome that their non-HPV anatomical counterparts. Furthermore, the presence of HPV16 E2 RNA predicts a better outcome for HPV16-positive tumors; the reasons for this are not known. Human papillomaviruses (HPVs) are causative agents in around 5% of all cancers, including cervical and oropharyngeal. A feature of HPV cancers is their better clinical outcome compared with non-HPV anatomical counterparts. In turn, the presence of E2 predicts a better clinical outcome in HPV-positive cancers; the reason(s) for the better outcome of E2-positive patients is not fully understood. Previously, we demonstrated that HPV16 E2 regulates host gene transcription that is relevant to the HPV16 life cycle in N/Tert-1 cells. One of the genes repressed by E2 and the entire HPV16 genome in N/Tert-1 cells is TWIST1. Here, we demonstrate that TWIST1 RNA levels are reduced in HPV-positive versus HPV-negative head and neck cancer and that E2 and HPV16 downregulate both TWIST1 RNA and protein in our N/Tert-1 model; E6/E7 cannot repress TWIST1. E2 represses the TWIST1 promoter in transient assays and is localized to the TWIST1 promoter; E2 also induces repressive epigenetic changes on the TWIST1 promoter. TWIST1 is a master transcriptional regulator of the epithelial to mesenchymal transition (EMT), and a high level of TWIST1 is a prognostic marker indicative of poor cancer outcomes. We demonstrate that TWIST1 target genes are also downregulated in E2-positive N/Tert-1 cells and that E2 promotes a failure in wound healing, a phenotype of low TWIST1 levels. We propose that the presence of E2 in HPV-positive tumors leads to TWIST1 repression and that this plays a role in the better clinical response of E2-positive HPV tumors. IMPORTANCE HPV16-positive cancers have a better clinical outcome that their non-HPV anatomical counterparts. Furthermore, the presence of HPV16 E2 RNA predicts a better outcome for HPV16-positive tumors; the reasons for this are not known. Here, we demonstrate that E2 represses expression of the TWIST1 gene; an elevated level of this gene is a marker of poor prognosis for a variety of cancers. We demonstrate that E2 directly binds to the TWIST1 promoter and actively represses transcription. TWIST1 is a master regulator promoting EMT, and here, we demonstrate that the presence of E2 reduces the ability of N/Tert-1 cells to wound heal. Overall, we propose that the E2 repression of TWIST1 may contribute to the better clinical outcome of E2-positive HPV16-positive tumors.
Collapse
|
11
|
Orf Virus-Based Therapeutic Vaccine for Treatment of Papillomavirus-Induced Tumors. J Virol 2020; 94:JVI.00398-20. [PMID: 32404527 DOI: 10.1128/jvi.00398-20] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Accepted: 05/01/2020] [Indexed: 12/17/2022] Open
Abstract
Orf virus (ORFV) represents a suitable vector for the generation of efficient, prophylactic antiviral vaccines against different pathogens. The present study investigated for the first time the therapeutic application of ORFV vector-based vaccines against tumors induced by cottontail rabbit papillomavirus (CRPV). ORFV-CRPV recombinants were constructed expressing the early CRPV gene E1, E2, E7, or LE6. In two independent experiments we used in total 23 rabbits which were immunized with a mixture of the four ORFV-CRPV recombinants or empty ORFV vector as a control 5 weeks after the appearance of skin tumors. For the determination of the therapeutic efficacy, the subsequent growth of the tumors was recorded. In the first experiment, we could demonstrate that three immunizations of rabbits with high tumor burden with the combined four ORFV-CRPV recombinants resulted in significant growth retardation of the tumors compared to the control. A second experiment was performed to test the therapeutic effect of 5 doses of the combined vaccine in rabbits with a lower tumor burden than in nonimmunized rabbits. Tumor growth was significantly reduced after immunization, and one vaccinated rabbit even displayed complete tumor regression until the end of the observation period at 26 weeks. Results of delayed-type hypersensitivity (DTH) skin tests suggest the induction of a cellular immune response mediated by the ORFV-CRPV vaccine. The data presented show for the first time a therapeutic potential of the ORFV vector platform and encourage further studies for the development of a therapeutic vaccine against virus-induced tumors.IMPORTANCE Viral vectors are widely used for the development of therapeutic vaccines for the treatment of tumors. In our study we have used Orf virus (ORFV) strain D1701-V for the generation of recombinant vaccines expressing cottontail rabbit papillomavirus (CRPV) early proteins E1, E2, LE6, and E7. The therapeutic efficacy of the ORFV-CRPV vaccines was evaluated in two independent experiments using the outbred CRPV rabbit model. In both experiments the immunization achieved significant suppression of tumor growth. In total, 84.6% of all outbred animals benefited from the ORFV-CRPV vaccination, showing reduction in tumor size and significant tumor growth inhibition, including one animal with complete tumor regression without recurrence.
Collapse
|
12
|
Pan Z, Li X, Wang Y, Jiang Q, Jiang L, Zhang M, Zhang N, Wu F, Liu B, He G. Discovery of Thieno[2,3-d]pyrimidine-Based Hydroxamic Acid Derivatives as Bromodomain-Containing Protein 4/Histone Deacetylase Dual Inhibitors Induce Autophagic Cell Death in Colorectal Carcinoma Cells. J Med Chem 2020; 63:3678-3700. [PMID: 32153186 DOI: 10.1021/acs.jmedchem.9b02178] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Zhaoping Pan
- State Key Laboratory of Biotherapy and Department of Urology, West China Hospital, Sichuan University and Collaborative Innovation Center of Biotherapy, Chengdu, Sichuan 610041, PR China
| | - Xiang Li
- State Key Laboratory of Biotherapy and Department of Urology, West China Hospital, Sichuan University and Collaborative Innovation Center of Biotherapy, Chengdu, Sichuan 610041, PR China
| | - Yujia Wang
- State Key Laboratory of Biotherapy and Department of Urology, West China Hospital, Sichuan University and Collaborative Innovation Center of Biotherapy, Chengdu, Sichuan 610041, PR China
| | - Qinglin Jiang
- School of Pharmacy and Sichuan Province College Key Laboratory of Structure-Specific Small Molecule Drugs, Chengdu Medical College, Chengdu 610500, PR China
| | - Li Jiang
- School of Pharmacy and Sichuan Province College Key Laboratory of Structure-Specific Small Molecule Drugs, Chengdu Medical College, Chengdu 610500, PR China
| | - Min Zhang
- School of Pharmacy and Sichuan Province College Key Laboratory of Structure-Specific Small Molecule Drugs, Chengdu Medical College, Chengdu 610500, PR China
| | - Nan Zhang
- State Key Laboratory of Biotherapy and Department of Urology, West China Hospital, Sichuan University and Collaborative Innovation Center of Biotherapy, Chengdu, Sichuan 610041, PR China
| | - Fengbo Wu
- State Key Laboratory of Biotherapy and Department of Urology, West China Hospital, Sichuan University and Collaborative Innovation Center of Biotherapy, Chengdu, Sichuan 610041, PR China
| | - Bo Liu
- State Key Laboratory of Biotherapy and Department of Urology, West China Hospital, Sichuan University and Collaborative Innovation Center of Biotherapy, Chengdu, Sichuan 610041, PR China
| | - Gu He
- State Key Laboratory of Biotherapy and Department of Urology, West China Hospital, Sichuan University and Collaborative Innovation Center of Biotherapy, Chengdu, Sichuan 610041, PR China
| |
Collapse
|
13
|
AL-Eitan LN, Alghamdi MA, Tarkhan AH, Al-Qarqaz FA. Genome-Wide Tiling Array Analysis of HPV-Induced Warts Reveals Aberrant Methylation of Protein-Coding and Non-Coding Regions. Genes (Basel) 2019; 11:E34. [PMID: 31892232 PMCID: PMC7017144 DOI: 10.3390/genes11010034] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Revised: 12/18/2019] [Accepted: 12/22/2019] [Indexed: 12/18/2022] Open
Abstract
The human papillomaviruses (HPV) are a group of double-stranded DNA viruses that exhibit an exclusive tropism for squamous epithelia. HPV can either be low- or high-risk depending on its ability to cause benign lesions or cancer, respectively. Unsurprisingly, the majority of epigenetic research has focused on the high-risk HPV types, neglecting the low-risk types in the process. Therefore, the main objective of this study is to better understand the epigenetics of wart formation by investigating the differences in methylation between HPV-induced cutaneous warts and normal skin. A number of clear and very significant differences in methylation patterns were found between cutaneous warts and normal skin. Around 55% of the top-ranking 100 differentially methylated genes in warts were protein coding, including the EXOC4, KCNU, RTN1, LGI1, IRF2, and NRG1 genes. Additionally, non-coding RNA genes, such as the AZIN1-AS1, LINC02008, and MGC27382 genes, constituted 11% of the top-ranking 100 differentially methylated genes. Warts exhibited a unique pattern of methylation that is a possible explanation for their transient nature. Since the genetics of cutaneous wart formation are not completely known, the findings of the present study could contribute to a better understanding of how HPV infection modulates host methylation to give rise to warts in the skin.
Collapse
Affiliation(s)
- Laith N. AL-Eitan
- Department of Applied Biological Sciences, Jordan University of Science and Technology, Irbid 22110, Jordan;
- Department of Biotechnology and Genetic Engineering, Jordan University of Science and Technology, Irbid 22110, Jordan
| | - Mansour A. Alghamdi
- Department of Anatomy, College of Medicine, King Khalid University, Abha 61421, Saudi Arabia;
| | - Amneh H. Tarkhan
- Department of Applied Biological Sciences, Jordan University of Science and Technology, Irbid 22110, Jordan;
| | - Firas A. Al-Qarqaz
- Department of Internal Medicine, Jordan University of Science and Technology, Irbid 22110, Jordan;
- Division of Dermatology, Department of Internal Medicine, King Abdullah University Hospital, Jordan University of Science and Technology, Irbid 22110, Jordan
| |
Collapse
|
14
|
Alonso VL, Tavernelli LE, Pezza A, Cribb P, Ritagliati C, Serra E. Aim for the Readers! Bromodomains As New Targets Against Chagas’ Disease. Curr Med Chem 2019; 26:6544-6563. [DOI: 10.2174/0929867325666181031132007] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2018] [Revised: 10/04/2018] [Accepted: 10/08/2018] [Indexed: 12/11/2022]
Abstract
Bromodomains recognize and bind acetyl-lysine residues present in histone and non-histone
proteins in a specific manner. In the last decade they have raised as attractive targets for drug discovery
because the miss-regulation of human bromodomains was discovered to be involved in the development
of a large spectrum of diseases. However, targeting eukaryotic pathogens bromodomains
continues to be almost unexplored. We and others have reported the essentiality of diverse bromodomain-
containing proteins in protozoa, offering a new opportunity for the development of antiparasitic
drugs, especially for Trypansoma cruzi, the causative agent of Chagas’ disease. Mammalian bromodomains
were classified in eight groups based on sequence similarity but parasitic bromodomains are very
divergent proteins and are hard to assign them to any of these groups, suggesting that selective inhibitors
can be obtained. In this review, we describe the importance of lysine acetylation and bromodomains
in T. cruzi as well as the current knowledge on mammalian bromodomains. Also, we summarize
the myriad of small-molecules under study to treat different pathologies and which of them have been
tested in trypanosomatids and other protozoa. All the information available led us to propose that
T. cruzi bromodomains should be considered as important potential targets and the search for smallmolecules
to inhibit them should be empowered.
Collapse
Affiliation(s)
- Victoria Lucia Alonso
- Facultad de Ciencias Bioquimicas y Farmaceuticas, Universidad Nacional de Rosario, Rosario, Argentina
| | | | - Alejandro Pezza
- Instituto de Biologia Molecular y Celular de Rosario (IBR-CONICET), Rosario, Argentina
| | - Pamela Cribb
- Instituto de Biologia Molecular y Celular de Rosario (IBR-CONICET), Rosario, Argentina
| | - Carla Ritagliati
- Instituto de Biologia Molecular y Celular de Rosario (IBR-CONICET), Rosario, Argentina
| | - Esteban Serra
- Instituto de Biologia Molecular y Celular de Rosario (IBR-CONICET), Rosario, Argentina
| |
Collapse
|
15
|
Mirzaei H, Khodadad N, Karami C, Pirmoradi R, Khanizadeh S. The AP-1 pathway; A key regulator of cellular transformation modulated by oncogenic viruses. Rev Med Virol 2019; 30:e2088. [PMID: 31788897 DOI: 10.1002/rmv.2088] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2019] [Revised: 09/16/2019] [Accepted: 09/16/2019] [Indexed: 12/13/2022]
Abstract
Cancer progression is critically associated with modulation of host cell signaling pathways. Activator protein-1 (AP-1) signaling is one such pathway whose deregulation renders the host more susceptible to cancer development. Oncogenic viruses, including hepatitis B virus, hepatitis C virus, human papilloma virus, Epstein-Barr virus, human T-cell lymphotropic virus type 1, and Kaposi's sarcoma-associated herpes virus, are common causes of cancer. This review discusses how these oncoviruses by acting through various aspects of the host cell signaling machinery such as the AP-1 pathway might affect oncoviral tumorigenesis, replication, and pathogenesis. The review also briefly considers how the pathway might be targeted during infections with these oncogenic viruses.
Collapse
Affiliation(s)
- Habibollah Mirzaei
- Hepatitis Research Center, Lorestan University of Medical Sciences, Khorramabad, Iran.,Department of Virology, School of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Nastaran Khodadad
- Department of Virology, School of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.,Infectious and Tropical Disease Research Center, Health Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Chiman Karami
- Department of Virology, School of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.,Infectious and Tropical Disease Research Center, Health Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Roya Pirmoradi
- Department of Virology, School of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Sayyad Khanizadeh
- Hepatitis Research Center, Lorestan University of Medical Sciences, Khorramabad, Iran.,Department of Virology, School of Medicine, Lorestan University of Medical Sciences, Khorramabad, Iran
| |
Collapse
|
16
|
The Flavonoid Quercetin Induces AP-1 Activation in FRTL-5 Thyroid Cells. Antioxidants (Basel) 2019; 8:antiox8050112. [PMID: 31035637 PMCID: PMC6562732 DOI: 10.3390/antiox8050112] [Citation(s) in RCA: 67] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Revised: 04/17/2019] [Accepted: 04/23/2019] [Indexed: 12/19/2022] Open
Abstract
Previous studies have shown that quercetin inhibits thyroid function both in vitro and in vivo. An attempt to evaluate the effect of quercetin at the promoter level of the thyroid-specific genes led to the observation that this compound induces the basal activity of the reporter vector. Therefore, the action of quercetin has been evaluated on the basal activity of several reporter vectors: The PGL3 basic, promoter and control vectors from Promega, and a pSV-based chloramphenicol acetyltransferase (CAT) reporter vector. In the Fisher Rat Thyroid cell Line FRTL-5 thyroid cells transiently transfected, quercetin 10 μM increased the basal activity of all the reporter vectors evaluated, although the degree of the effect was significantly different among them. The analysis of the difference among the regulatory regions of these vectors identified the activator protein 1 (AP-1) binding site as one of the potential sites involved in the quercetin effect. Electromobility shift assay experiments showed that the treatment with quercetin induced the binding of a protein complex to an oligonucleotide containing the AP-1 consensus binding site. This is the first study showing an effect of quercetin on AP-1 activity in thyroid cells. Further studies are in progress to understand the role of AP-1 activation in the effects of quercetin on thyroid function.
Collapse
|
17
|
Evans MR, James CD, Bristol ML, Nulton TJ, Wang X, Kaur N, White EA, Windle B, Morgan IM. Human Papillomavirus 16 E2 Regulates Keratinocyte Gene Expression Relevant to Cancer and the Viral Life Cycle. J Virol 2019; 93:e01941-18. [PMID: 30518656 PMCID: PMC6364038 DOI: 10.1128/jvi.01941-18] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2018] [Accepted: 11/26/2018] [Indexed: 11/20/2022] Open
Abstract
Human papillomaviruses (HPVs) are causative agents in ano-genital and oropharyngeal cancers. The virus must reprogram host gene expression to promote infection, and E6 and E7 contribute to this via the targeting of cellular transcription factors, including p53 and pRb, respectively. The HPV16 E2 protein regulates host gene expression in U2OS cells, and in this study, we extend these observations into telomerase reverse transcriptase (TERT) immortalized oral keratinocytes (NOKs) that are capable of supporting late stages of the HPV16 life cycle. We observed repression of innate immune genes by E2 that are also repressed by the intact HPV16 genome in NOKs. Transcriptome sequencing (RNA-seq) data identified 167 up- and 395 downregulated genes by E2; there was a highly significant overlap of the E2-regulated genes with those regulated by the intact HPV16 genome in the same cell type. Small interfering RNA (siRNA) targeting of E2 reversed the repression of E2-targeted genes. The ability of E2 to repress innate immune genes was confirmed in an ano-genital immortalized keratinocyte cell line, N/Tert-1. We present the analysis of data from The Cancer Genome Atlas (TCGA) for HPV16-positive and -negative head and neck cancers (HNC) suggesting that E2 plays a role in the regulation of the host genome in cancers. Patients with HPV16-positive HNC with a loss of E2 expression exhibited a worse clinical outcome, and we discuss how this could, at least partially, be related to the loss of E2 host gene regulation.IMPORTANCE Human papillomavirus 16 (HPV16)-positive tumors that retain expression of E2 have a better clinical outcome than those that have lost E2 expression. It has been suggested that this is due to a loss of E2 repression of E6 and E7 expression, but this is not supported by data from tumors where there is not more E6 and E7 expression in the absence of E2. Here we report that E2 regulates host gene expression and place this regulation in the context of the HPV16 life cycle and HPV16-positive head and neck cancers (the majority of which retain E2 expression). We propose that this E2 function may play an important part in the increased response of HPV16-positive cancers to radiation therapy. Therefore, host gene regulation by E2 may be important for promotion of the HPV16 life cycle and also for the response of HPV16-positive tumors to radiation therapy.
Collapse
Affiliation(s)
- Michael R Evans
- VCU Philips Institute for Oral Health Research, Virginia Commonwealth University School of Dentistry, Department of Oral and Craniofacial Molecular Biology, Richmond, Virginia, USA
| | - Claire D James
- VCU Philips Institute for Oral Health Research, Virginia Commonwealth University School of Dentistry, Department of Oral and Craniofacial Molecular Biology, Richmond, Virginia, USA
| | - Molly L Bristol
- VCU Philips Institute for Oral Health Research, Virginia Commonwealth University School of Dentistry, Department of Oral and Craniofacial Molecular Biology, Richmond, Virginia, USA
| | - Tara J Nulton
- VCU Philips Institute for Oral Health Research, Virginia Commonwealth University School of Dentistry, Department of Oral and Craniofacial Molecular Biology, Richmond, Virginia, USA
| | - Xu Wang
- VCU Philips Institute for Oral Health Research, Virginia Commonwealth University School of Dentistry, Department of Oral and Craniofacial Molecular Biology, Richmond, Virginia, USA
| | - Namsimar Kaur
- VCU Philips Institute for Oral Health Research, Virginia Commonwealth University School of Dentistry, Department of Oral and Craniofacial Molecular Biology, Richmond, Virginia, USA
| | - Elizabeth A White
- Department of Otorhinolaryngology, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| | - Brad Windle
- VCU Philips Institute for Oral Health Research, Virginia Commonwealth University School of Dentistry, Department of Oral and Craniofacial Molecular Biology, Richmond, Virginia, USA
- VCU Massey Cancer Center, Richmond, Virginia, USA
| | - Iain M Morgan
- VCU Philips Institute for Oral Health Research, Virginia Commonwealth University School of Dentistry, Department of Oral and Craniofacial Molecular Biology, Richmond, Virginia, USA
- VCU Massey Cancer Center, Richmond, Virginia, USA
| |
Collapse
|
18
|
Córdova-Rivas S, Fraire-Soto I, Mercado-Casas Torres A, Servín-González LS, Granados-López AJ, López-Hernández Y, Reyes-Estrada CA, Gutiérrez-Hernández R, Castañeda-Delgado JE, Ramírez-Hernández L, Varela-Silva JA, López JA. 5p and 3p Strands of miR-34 Family Members Have Differential Effects in Cell Proliferation, Migration, and Invasion in Cervical Cancer Cells. Int J Mol Sci 2019; 20:E545. [PMID: 30696040 PMCID: PMC6387060 DOI: 10.3390/ijms20030545] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2018] [Revised: 01/16/2019] [Accepted: 01/19/2019] [Indexed: 12/24/2022] Open
Abstract
The micro RNA (miR)-34 family is composed of 5p and 3p strands of miR-34a, miR-34b, and miR-34c. The 5p strand's expression and function is studied in cervical cancer. The 3p strand's function and regulation remain to be elucidated. To study the function of the passenger strands of miR-34 family members, we overexpressed 5p and 3p strands using a synthetic miRNA in cervical cell lines. Cell proliferation was evaluated using crystal violet. Migration and invasion were tested using transwell assays, Western blot, and zymography. Possible specific targets and cell signaling were investigated for each strand. We found that miR-34a-5p inhibited proliferation, migration, and cell invasion accompanied by matrix metalloproteinase 9 (MMP9) activity and microtubule-associated protein 2 (MAP2) protein reduction. We also found that miR-34b-5p and miR-34c-5p inhibit proliferation and migration, but not invasion. In contrast, miR-34c-5p inhibits MMP9 activity and MAP2 protein, while miR-34b-5p has no effect on these genes. Furthermore, miR-34a-3p and miR-34b-3p inhibit proliferation and migration, but not invasion, despite the later reducing MMP2 activity, while miR-34c-3p inhibit proliferation, migration, and cell invasion accompanied by MMP9 activity and MAP2 protein inhibition. The difference in cellular processes, MMP2 and MMP9 activity, and MAP2 protein inhibition by miR-34 family members suggests the participation of other regulated genes. This study provides insights into the roles of passenger strands (strand*) of the miR-34 family in cervical cancer.
Collapse
Affiliation(s)
- Sergio Córdova-Rivas
- Laboratorio de microRNAs y Cáncer, Unidad Académica de Ciencias Biológicas, Universidad Autónoma de Zacatecas, Av. Preparatoria S/N, Zacatecas 98066, México.
| | - Ixamail Fraire-Soto
- Laboratorio de microRNAs y Cáncer, Unidad Académica de Ciencias Biológicas, Universidad Autónoma de Zacatecas, Av. Preparatoria S/N, Zacatecas 98066, México.
| | - Andrea Mercado-Casas Torres
- Laboratorio de microRNAs y Cáncer, Unidad Académica de Ciencias Biológicas, Universidad Autónoma de Zacatecas, Av. Preparatoria S/N, Zacatecas 98066, México.
| | | | - Angelica Judith Granados-López
- Laboratorio de microRNAs y Cáncer, Unidad Académica de Ciencias Biológicas, Universidad Autónoma de Zacatecas, Av. Preparatoria S/N, Zacatecas 98066, México.
| | - Yamilé López-Hernández
- Laboratorio de microRNAs y Cáncer, Unidad Académica de Ciencias Biológicas, Universidad Autónoma de Zacatecas, Av. Preparatoria S/N, Zacatecas 98066, México.
- Laboratorio de Metabolómica de la Unidad Académica de Ciencias Biológicas, CONACyT, Universidad Autónoma de Zacatecas, Av. Preparatoria S/N, Zacatecas 98066, México.
| | - Claudia Araceli Reyes-Estrada
- Laboratorio de Patología e Inmunohistoquímica de la Unidad Académica de Medicina Humana de la Universidad Autónoma de Zacatecas, Campus Siglo XXI, Kilómetro 6, Ejido la Escondida, Zacatecas CP 98160, Mexico.
| | - Rosalinda Gutiérrez-Hernández
- Laboratorio de Etnofarmacología Nutrición de la Unidad Académica de Enfermería de la Universidad Autónoma de Zacatecas, Campus Siglo XXI, Kilómetro 6, Ejido la Escondida, Zacatecas CP 98160, Mexico.
| | - Julio Enrique Castañeda-Delgado
- Catedrático-CONACYT, Unidad de Investigación Biomédica de Zacatecas, Instituto Mexicano del Seguro Social, Zacatecas CP 98000, Mexico.
| | - Leticia Ramírez-Hernández
- Unidad Académica de Matemáticas de la Universidad Autónoma de Zacatecas Av. Preparatoria S/N, Zacatecas 98066, México.
| | - José Antonio Varela-Silva
- Laboratorio de microRNAs y Cáncer, Unidad Académica de Ciencias Biológicas, Universidad Autónoma de Zacatecas, Av. Preparatoria S/N, Zacatecas 98066, México.
| | - Jesús Adrián López
- Laboratorio de microRNAs y Cáncer, Unidad Académica de Ciencias Biológicas, Universidad Autónoma de Zacatecas, Av. Preparatoria S/N, Zacatecas 98066, México.
| |
Collapse
|
19
|
Cottontail Rabbit Papillomavirus E1 and E2 Proteins Mutually Influence Their Subcellular Localizations. J Virol 2018; 92:JVI.00704-18. [PMID: 30135125 DOI: 10.1128/jvi.00704-18] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2018] [Accepted: 08/15/2018] [Indexed: 01/08/2023] Open
Abstract
The papillomavirus (PV) E2 protein is a nuclear, sequence-specific DNA-binding protein that regulates transcription and nuclear retention of viral genomes. E2 also interacts with the viral E1 protein to replicate the viral genome. E2 residue K111 is highly conserved among PV and has been implicated in contributing to nuclear transport, transcription, and replication. Cottontail rabbit (Sylvilagus floridanus) PV (CRPV or SfPV1) E2 K111R, A, or Q mutations are transcription deficient and localized to the cytoplasm, comparable to other PV types. The addition of a nuclear localization signal (NLS) resulted in nuclear E2 K111 mutant proteins but did not restore transcriptional activation, and this is most likely due to an impaired binding to the cellular Brd4 protein. Surprisingly, coexpression of E1 with E2 K111 mutations resulted in their nuclear localization and, for K111A and R mutations, the activation of an E1/E2-dependent reporter construct. Interestingly, the nuclear localization of E2 K111Q mutant protein was independent from the presence of the conserved bipartite NLS in E1 and the direct interaction between E1 and E2. On the other hand, the cytoplasmic E1 NLS mutation could be targeted to the nucleus by wild-type E2, and this was dependent upon an interaction between E1 and E2. In summary, our studies have uncovered that E1 and E2 control each other's subcellular localization: direct binding of E2 to E1 can direct E1 to the nucleus independently from the E1 NLS, and E1 can direct E2 to the nucleus without an intact NLS or direct binding to E2.IMPORTANCE Papillomaviruses encode the DNA-binding E1 and E2 proteins, which form a complex and are essential for genome replication. Both proteins are targeted to the nucleus via nuclear localization signals. Our studies have uncovered that cytoplasmic mutant E1 or E2 proteins can be localized to the nucleus when E1 or E2 is also present. An interaction between E1 and E2 is necessary to target cytoplasmic E1 mutant proteins to the nucleus, but cytoplasmic E2 mutant proteins can be targeted to the nucleus without a direct interaction, which points to a novel function of E1.
Collapse
|
20
|
Morse MA, Balogh KK, Brendle SA, Campbell CA, Chen MX, Furze RC, Harada IL, Holyer ID, Kumar U, Lee K, Prinjha RK, Rüdiger M, Seal JT, Taylor S, Witherington J, Christensen ND. BET bromodomain inhibitors show anti-papillomavirus activity in vitro and block CRPV wart growth in vivo. Antiviral Res 2018; 154:158-165. [PMID: 29653131 DOI: 10.1016/j.antiviral.2018.03.012] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2017] [Revised: 03/22/2018] [Accepted: 03/27/2018] [Indexed: 12/19/2022]
Abstract
The DNA papillomaviruses infect squamous epithelium and can cause persistent, benign and sometimes malignant hyperproliferative lesions. Effective antiviral drugs to treat human papillomavirus (HPV) infection are lacking and here we investigate the anti-papillomavirus activity of novel epigenetic targeting drugs, BET bromodomain inhibitors. Bromodomain and Extra-Terminal domain (BET) proteins are host proteins which regulate gene transcription, they bind acetylated lysine residues in histones and non-histone proteins via bromodomains, functioning as scaffold proteins in the formation of transcriptional complexes at gene regulatory regions. The BET protein BRD4 has been shown to be involved in the papillomavirus life cycle, as a co-factor for viral E2 and also mediating viral partitioning in some virus types. We set out to study the activity of small molecule BET bromodomain inhibitors in models of papillomavirus infection. Several BET inhibitors reduced HPV11 E1ˆE4 mRNA expression in vitro and topical therapeutic administration of an exemplar compound I-BET762, abrogated CRPV cutaneous wart growth in rabbits, demonstrating translation of anti-viral effects to efficacy in vivo. Additionally I-BET762 markedly reduced viability of HPV16 infected W12 cells compared to non-infected C33A cells. The molecular mechanism for the cytotoxicity to W12 cells is unknown but may be through blocking viral-dependent cell-survival factors. We conclude that these effects, across multiple papillomavirus types and in vivo, highlight the potential to target BET bromodomains to treat HPV infection.
Collapse
Affiliation(s)
- Mary A Morse
- GlaxoSmithKline Medicines Research Centre, Gunnels Wood Road, Stevenage, Hertfordshire, SG1 2NY, UK.
| | - Karla K Balogh
- The Jake Gittlen Cancer Research Foundation, H069, Department of Pathology, C7800, The Pennsylvania State University, College of Medicine, 500 University Drive, Hershey, PA 17033-0850, USA
| | - Sarah A Brendle
- The Jake Gittlen Cancer Research Foundation, H069, Department of Pathology, C7800, The Pennsylvania State University, College of Medicine, 500 University Drive, Hershey, PA 17033-0850, USA
| | - Colin A Campbell
- GlaxoSmithKline Medicines Research Centre, Gunnels Wood Road, Stevenage, Hertfordshire, SG1 2NY, UK
| | - Mao X Chen
- GlaxoSmithKline Medicines Research Centre, Gunnels Wood Road, Stevenage, Hertfordshire, SG1 2NY, UK
| | - Rebecca C Furze
- GlaxoSmithKline Medicines Research Centre, Gunnels Wood Road, Stevenage, Hertfordshire, SG1 2NY, UK
| | - Isobel L Harada
- GlaxoSmithKline Medicines Research Centre, Gunnels Wood Road, Stevenage, Hertfordshire, SG1 2NY, UK
| | - Ian D Holyer
- GlaxoSmithKline Medicines Research Centre, Gunnels Wood Road, Stevenage, Hertfordshire, SG1 2NY, UK
| | - Umesh Kumar
- GlaxoSmithKline Medicines Research Centre, Gunnels Wood Road, Stevenage, Hertfordshire, SG1 2NY, UK
| | - Kevin Lee
- GlaxoSmithKline Medicines Research Centre, Gunnels Wood Road, Stevenage, Hertfordshire, SG1 2NY, UK
| | - Rab K Prinjha
- GlaxoSmithKline Medicines Research Centre, Gunnels Wood Road, Stevenage, Hertfordshire, SG1 2NY, UK
| | - Martin Rüdiger
- GlaxoSmithKline Medicines Research Centre, Gunnels Wood Road, Stevenage, Hertfordshire, SG1 2NY, UK
| | - Jonathan T Seal
- GlaxoSmithKline Medicines Research Centre, Gunnels Wood Road, Stevenage, Hertfordshire, SG1 2NY, UK
| | - Simon Taylor
- GlaxoSmithKline Medicines Research Centre, Gunnels Wood Road, Stevenage, Hertfordshire, SG1 2NY, UK
| | - Jason Witherington
- GlaxoSmithKline Medicines Research Centre, Gunnels Wood Road, Stevenage, Hertfordshire, SG1 2NY, UK
| | - Neil D Christensen
- The Jake Gittlen Cancer Research Foundation, H069, Department of Pathology, C7800, The Pennsylvania State University, College of Medicine, 500 University Drive, Hershey, PA 17033-0850, USA
| |
Collapse
|
21
|
Wurdak M, Schneider M, Iftner T, Stubenrauch F. The contribution of SP100 to cottontail rabbit papillomavirus transcription and replication. J Gen Virol 2018; 99:344-354. [DOI: 10.1099/jgv.0.001012] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Affiliation(s)
- M. Wurdak
- Division of Experimental Virology, University Hospital Tuebingen, Institute for Medical Virology and Epidemiology of Viral Diseases, Tuebingen, Germany
| | - M. Schneider
- Division of Experimental Virology, University Hospital Tuebingen, Institute for Medical Virology and Epidemiology of Viral Diseases, Tuebingen, Germany
| | - T. Iftner
- Division of Experimental Virology, University Hospital Tuebingen, Institute for Medical Virology and Epidemiology of Viral Diseases, Tuebingen, Germany
| | - F. Stubenrauch
- Division of Experimental Virology, University Hospital Tuebingen, Institute for Medical Virology and Epidemiology of Viral Diseases, Tuebingen, Germany
| |
Collapse
|
22
|
Iftner T, Haedicke-Jarboui J, Wu SY, Chiang CM. Involvement of Brd4 in different steps of the papillomavirus life cycle. Virus Res 2016; 231:76-82. [PMID: 27965149 DOI: 10.1016/j.virusres.2016.12.006] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2016] [Revised: 12/02/2016] [Accepted: 12/02/2016] [Indexed: 12/16/2022]
Abstract
Bromodomain-containing protein 4 (Brd4) is a cellular chromatin-binding factor and transcriptional regulator that recruits sequence-specific transcription factors and chromatin modulators to control target gene transcription. Papillomaviruses (PVs) have evolved to hijack Brd4's activity in order to create a facilitating environment for the viral life cycle. Brd4, in association with the major viral regulatory protein E2, is involved in multiple steps of the PV life cycle including replication initiation, viral gene transcription, and viral genome segregation and maintenance. Phosphorylation of Brd4, regulated by casein kinase II (CK2) and protein phosphatase 2A (PP2A), is critical for viral gene transcription as well as E1- and E2-dependent origin replication. Thus, pharmacological agents regulating Brd4 phosphorylation and inhibitors blocking phospho-Brd4 functions are promising candidates for therapeutic intervention in treating human papillomavirus (HPV) infections as well as associated disease.
Collapse
Affiliation(s)
- Thomas Iftner
- Division of Experimental Virology, Institute for Medical Virology, University Hospital Tübingen, Elfriede-Aulhorn-Str. 6, 72076 Tübingen, Germany.
| | - Juliane Haedicke-Jarboui
- Division of Experimental Virology, Institute for Medical Virology, University Hospital Tübingen, Elfriede-Aulhorn-Str. 6, 72076 Tübingen, Germany
| | - Shwu-Yuan Wu
- Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390, USA; Department of Biochemistry, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390, USA
| | - Cheng-Ming Chiang
- Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390, USA; Department of Biochemistry, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390, USA; Department of Pharmacology, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390, USA.
| |
Collapse
|
23
|
Woodby B, Scott M, Bodily J. The Interaction Between Human Papillomaviruses and the Stromal Microenvironment. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2016; 144:169-238. [PMID: 27865458 PMCID: PMC5727914 DOI: 10.1016/bs.pmbts.2016.09.003] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Human papillomaviruses (HPVs) are small, double-stranded DNA viruses that replicate in stratified squamous epithelia and cause a variety of malignancies. Current efforts in HPV biology are focused on understanding the virus-host interactions that enable HPV to persist for years or decades in the tissue. The importance of interactions between tumor cells and the stromal microenvironment has become increasingly apparent in recent years, but how stromal interactions impact the normal, benign life cycle of HPVs, or progression of lesions to cancer is less understood. Furthermore, how productively replicating HPV impacts cells in the stromal environment is also unclear. Here we bring together some of the relevant literature on keratinocyte-stromal interactions and their impacts on HPV biology, focusing on stromal fibroblasts, immune cells, and endothelial cells. We discuss how HPV oncogenes in infected cells manipulate other cells in their environment, and, conversely, how neighboring cells may impact the efficiency or course of HPV infection.
Collapse
Affiliation(s)
- B Woodby
- Louisiana State University Health Sciences Center, Shreveport, LA, United States
| | - M Scott
- Louisiana State University Health Sciences Center, Shreveport, LA, United States
| | - J Bodily
- Louisiana State University Health Sciences Center, Shreveport, LA, United States.
| |
Collapse
|