1
|
Carias AM, Anderson M, McRaven M, Allen E, Fought AJ, Hope TJ. Transcytosis as a Mechanism of HIV-1 Entry into Columnar Epithelial Explants of the Female Reproductive Tract. AIDS Res Hum Retroviruses 2024. [PMID: 39665594 DOI: 10.1089/aid.2024.0045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2024] Open
Abstract
During male-to-female transmission, HIV-1 must cross the mucosal epithelium of the female reproductive tract to gain access to underlying target cells. Previously, we demonstrated that HIV-1 can penetrate intact columnar and squamous genital epithelia in both ex vivo and in vivo systems. We found that the virus enters the squamous epithelium via a diffusion-based mechanism, but the mechanism of entry in columnar epithelium remained elusive. Using a similar set of approaches, we now demonstrate that HIV enters the endocervical simple columnar epithelium via endocytosis. By exposing human endocervical explant tissue to small molecule endocytosis inhibitors prior to virus exposure, we show that virus penetration into the simple columnar barrier is impeded. These data suggest a transcytosis-based mechanism for HIV-1 penetration into the endocervical columnar barrier.
Collapse
Affiliation(s)
- Ann M Carias
- Department of Cell and Molecular Biology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | - Meegan Anderson
- Department of Cell and Molecular Biology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | - Michael McRaven
- Department of Cell and Molecular Biology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | - Edward Allen
- Department of Cell and Molecular Biology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | - Angela J Fought
- Division of Clinical Trials and Biostatistics, Mayo Clinic, Rochester, Minnesota, USA
| | - Thomas J Hope
- Department of Cell and Molecular Biology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| |
Collapse
|
2
|
Bradley F, Stern A, Franzén Boger M, Mousavian Z, Dethlefsen O, Kaldhusdal V, Lajoie J, Omollo K, Bergström S, Månberg A, Nilsson P, Kimani J, Burgener AD, Tjernlund A, Sundling C, Fowke KR, Broliden K. Estradiol-mediated enhancement of the human ectocervical epithelial barrier correlates with desmoglein-1 expression in the follicular menstrual phase. Front Endocrinol (Lausanne) 2024; 15:1454006. [PMID: 39439565 PMCID: PMC11493707 DOI: 10.3389/fendo.2024.1454006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Accepted: 09/16/2024] [Indexed: 10/25/2024] Open
Abstract
Background The cervicovaginal epithelial barrier is crucial for defending the female reproductive tract against sexually transmitted infections. Hormones, specifically estradiol and progesterone, along with their respective receptor expressions, play an important role in modulating this barrier. However, the influence of estradiol and progesterone on gene and protein expression in the ectocervical mucosa of naturally cycling women is not well understood. Methods Mucosal and blood samples were collected from Kenyan female sex workers at high risk of sexually transmitted infections. All samples were obtained at two time points, separated by two weeks, aiming for the follicular and luteal phases of the menstrual cycle. Ectocervical tissue biopsies were analyzed by RNA-sequencing and in situ immunofluorescence staining, cervicovaginal lavage samples (CVL) were evaluated using protein profiling, and plasma samples were analyzed for hormone levels. Results Unsupervised clustering of RNA-sequencing data was performed using Weighted gene co-expression network analysis (WGCNA). In the follicular phase, estradiol levels positively correlated with a gene module representing epithelial structure and function, and negatively correlated with a gene module representing cell cycle regulation. These correlations were confirmed using regression analysis including adjustment for bacterial vaginosis status. Using WGCNA, no gene module correlated with progesterone levels in the follicular phase. In the luteal phase, no gene module correlated with either estradiol or progesterone levels. Protein profiling on CVL revealed that higher levels of estradiol during the follicular phase correlated with increased expression of epithelial barrier integrity markers, including DSG1. This contrasted to the limited correlations of protein expression with estradiol levels in the luteal phase. In situ imaging analysis confirmed that higher estradiol levels during the follicular phase correlated with increased DSG1 expression. Conclusion We demonstrate that estradiol levels positively correlate with specific markers of ectocervical epithelial structure and function, particularly DSG1, during the follicular phase of the menstrual cycle. Neither progesterone levels during the follicular phase nor estradiol and progesterone levels during the luteal phase correlated with any specific sets of gene markers. These findings align with the expression of estradiol and progesterone receptors in the ectocervical epithelium during these menstrual phases.
Collapse
Affiliation(s)
- Frideborg Bradley
- Department of Medicine Solna, Division of Infectious Diseases, Karolinska Institutet, Department of Infectious Diseases, Karolinska University Hospital, Center for Molecular Medicine, Stockholm, Sweden
| | - Alexandra Stern
- Department of Medicine Solna, Division of Infectious Diseases, Karolinska Institutet, Department of Infectious Diseases, Karolinska University Hospital, Center for Molecular Medicine, Stockholm, Sweden
| | - Mathias Franzén Boger
- Department of Medicine Solna, Division of Infectious Diseases, Karolinska Institutet, Department of Infectious Diseases, Karolinska University Hospital, Center for Molecular Medicine, Stockholm, Sweden
| | - Zaynab Mousavian
- Department of Medicine Solna, Division of Infectious Diseases, Karolinska Institutet, Department of Infectious Diseases, Karolinska University Hospital, Center for Molecular Medicine, Stockholm, Sweden
| | - Olga Dethlefsen
- National Bioinformatics Infrastructure Sweden, Science for Life Laboratory, Stockholm University, Stockholm, Sweden
| | - Vilde Kaldhusdal
- Department of Medicine Solna, Division of Infectious Diseases, Karolinska Institutet, Department of Infectious Diseases, Karolinska University Hospital, Center for Molecular Medicine, Stockholm, Sweden
| | - Julie Lajoie
- Department of Medical Microbiology and Infectious Diseases, University of Manitoba, Winnipeg, MB, Canada
- Department of Medical Microbiology, University of Nairobi, Nairobi, Kenya
| | - Kenneth Omollo
- Department of Medical Microbiology and Infectious Diseases, University of Manitoba, Winnipeg, MB, Canada
- Partners for Health and Development in Africa, Nairobi, Kenya
| | - Sofia Bergström
- Division of Affinity Proteomics, Department of Protein Science, SciLifeLab, KTH Royal Institute of Technology, Stockholm, Sweden
| | - Anna Månberg
- Division of Affinity Proteomics, Department of Protein Science, SciLifeLab, KTH Royal Institute of Technology, Stockholm, Sweden
| | - Peter Nilsson
- Division of Affinity Proteomics, Department of Protein Science, SciLifeLab, KTH Royal Institute of Technology, Stockholm, Sweden
| | - Joshua Kimani
- Department of Medical Microbiology and Infectious Diseases, University of Manitoba, Winnipeg, MB, Canada
- Department of Medical Microbiology, University of Nairobi, Nairobi, Kenya
- Partners for Health and Development in Africa, Nairobi, Kenya
| | - Adam D. Burgener
- Department of Medicine Solna, Division of Infectious Diseases, Karolinska Institutet, Department of Infectious Diseases, Karolinska University Hospital, Center for Molecular Medicine, Stockholm, Sweden
- Center for Global Health and Diseases, Department of Pathology, Case Western Reserve University, Cleveland, OH, United States
- Department of Obstetrics and Gynecology, University of Manitoba, Winnipeg, MB, Canada
| | - Annelie Tjernlund
- Department of Medicine Solna, Division of Infectious Diseases, Karolinska Institutet, Department of Infectious Diseases, Karolinska University Hospital, Center for Molecular Medicine, Stockholm, Sweden
| | - Christopher Sundling
- Department of Medicine Solna, Division of Infectious Diseases, Karolinska Institutet, Department of Infectious Diseases, Karolinska University Hospital, Center for Molecular Medicine, Stockholm, Sweden
| | - Keith R. Fowke
- Department of Medical Microbiology and Infectious Diseases, University of Manitoba, Winnipeg, MB, Canada
- Department of Medical Microbiology, University of Nairobi, Nairobi, Kenya
- Partners for Health and Development in Africa, Nairobi, Kenya
- Department of Community Health Sciences, University of Manitoba, Winnipeg, MB, Canada
| | - Kristina Broliden
- Department of Medicine Solna, Division of Infectious Diseases, Karolinska Institutet, Department of Infectious Diseases, Karolinska University Hospital, Center for Molecular Medicine, Stockholm, Sweden
| |
Collapse
|
3
|
Ye Z, Jiang P, Zhu Q, Pei Z, Hu Y, Zhao G. Molecular stratification of the human fetal vaginal epithelium by spatial transcriptome analysis. Acta Biochim Biophys Sin (Shanghai) 2024; 56:1521-1536. [PMID: 38666303 PMCID: PMC11612642 DOI: 10.3724/abbs.2024063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 03/27/2024] [Indexed: 11/01/2024] Open
Abstract
The human vaginal epithelium is a crucial component of numerous reproductive processes and serves as a vital protective barrier against pathogenic invasion. Despite its significance, a comprehensive exploration of its molecular profiles, including molecular expression and distribution across its multiple layers, has not been performed. In this study, we perform a spatial transcriptomic analysis within the vaginal wall of human fetuses to fill this knowledge gap. We successfully categorize the vaginal epithelium into four distinct zones based on transcriptomic profiles and anatomical features. This approach reveals unique transcriptomic signatures within these regions, allowing us to identify differentially expressed genes and uncover novel markers for distinct regions of the vaginal epithelium. Additionally, our findings highlight the varied expressions of keratin ( KRT) genes across different zones of the vaginal epithelium, with a gradual shift in expression patterns observed from the basal layer to the surface/superficial layer. This suggests a potential differentiation trajectory of the human vaginal epithelium, shedding light on the dynamic nature of this tissue. Furthermore, abundant biological processes are found to be enriched in the basal zone by KEGG pathway analysis, indicating an active state of the basal zone cells. Subsequently, the expressions of latent stem cell markers in the basal zone are identified. In summary, our research provides a crucial understanding of human vaginal epithelial cells and the complex mechanisms of the vaginal mucosa, with potential applications in vaginal reconstruction and drug delivery, making this atlas a valuable tool for future research in women's health and reproductive medicine.
Collapse
Affiliation(s)
- Ziying Ye
- Department of Obstetrics and GynecologyAffiliated Drum Tower HospitalMedical SchoolNanjing UniversityNanjing210008China
| | - Peipei Jiang
- Department of Obstetrics and GynecologyAffiliated Drum Tower HospitalMedical SchoolNanjing UniversityNanjing210008China
| | - Qi Zhu
- Department of Obstetrics and GynecologyAffiliated Drum Tower HospitalMedical SchoolNanjing UniversityNanjing210008China
| | - Zhongrui Pei
- Nanjing Drum Tower Hospital Clinical College of Traditional Chinese and Western MedicineNanjing University of Chinese MedicineNanjing210008China
| | - Yali Hu
- Department of Obstetrics and GynecologyAffiliated Drum Tower HospitalMedical SchoolNanjing UniversityNanjing210008China
| | - Guangfeng Zhao
- Department of Obstetrics and GynecologyAffiliated Drum Tower HospitalMedical SchoolNanjing UniversityNanjing210008China
| |
Collapse
|
4
|
Schaefer A, Yang B, Schroeder HA, Harit D, Humphry MS, Ravel J, Lai SK. Broadly neutralizing antibodies consistently trap HIV-1 in fresh cervicovaginal mucus from select individuals. Acta Biomater 2023; 169:387-397. [PMID: 37499728 PMCID: PMC10619885 DOI: 10.1016/j.actbio.2023.07.031] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 06/27/2023] [Accepted: 07/20/2023] [Indexed: 07/29/2023]
Abstract
In addition to direct neutralization and other classical effector functions, IgG possesses a little recognized and thus under-utilized effector function at mucosal surfaces: Fc-mucin bonds enable IgG to trap viruses in mucus. Due to the paucity of envelope glycoproteins that limits the number of IgG that can bind HIV, it remains poorly understood whether IgG-mucin interactions can effectively immobilize HIV in human cervicovaginal mucus (CVM). Here, we obtained 54 fresh, undiluted CVM specimens from 17 different women, and employed high-resolution multiple particle tracking to quantify the mobility of fluorescent HIV virus-like-particles in CVM treated with various HIV-specific IgG. We observed consistent and effective trapping of HIV by broadly neutralizing antibodies (VRC01, PGT121, and 2F5) in a subset of women. While trapping efficacy was not affected by the menstrual cycle, it was positively correlated with appreciable L. Crispatus populations in the microbiome, and negatively correlated with appreciable L. Iners or G. Vaginalis populations. Our work demonstrates for the first time that IgG-mucin crosslinking is capable of reinforcing the mucosal barrier against HIV, and motivates further investigation of passive immunization against vaginal transmission of STIs. STATEMENT OF SIGNIFICANCE: HIV transmission in women primarily occurs vaginally, yet the 3-way interactions between mucins and HIV virions mediated by HIV-binding antibodies in cervicovaginal mucus (CVM) is not well understood. While IgG-Fc possess weak affinity to mucins that trap virus/IgG complexes in mucus, the effectiveness against HIV remains unclear, due to the low number of virion-bound IgG. Here, we discovered that IgG can trap HIV consistently in CVM from select individuals regardless of their birth control status or menstrual cycle phase. IgG-mediated trapping of HIV was moderately associated with microbiome composition. These results suggest that IgG-mucin interactions could potentially reduce HIV transmission and highlight the importance of mucosal secretions in antibody-mediated prevention of HIV and other sexually transmitted infections.
Collapse
Affiliation(s)
- Alison Schaefer
- UNC/NCSU Joint Department of Biomedical Engineering, Chapel Hill, NC 27519, USA
| | - Bing Yang
- Division of Pharmacoengineering and Molecular Pharmaceutics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27519,USA
| | - Holly A Schroeder
- Division of Pharmacoengineering and Molecular Pharmaceutics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27519,USA
| | - Dimple Harit
- Division of Pharmacoengineering and Molecular Pharmaceutics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27519,USA
| | - Mike S Humphry
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Jacques Ravel
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD 21201, USA; Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Samuel K Lai
- UNC/NCSU Joint Department of Biomedical Engineering, Chapel Hill, NC 27519, USA; Division of Pharmacoengineering and Molecular Pharmaceutics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27519,USA; Department of Microbiology & Immunology; University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA.
| |
Collapse
|
5
|
Wang Y, Noël-Romas L, Perner M, Knodel S, Molatlhegi R, Hoger S, Birse K, Zuend CF, McKinnon LR, Burgener AD. Non-Lactobacillus-Dominant and Polymicrobial Vaginal Microbiomes Are More Common in Younger South African Women and Predictive of Increased Risk of Human Immunodeficiency Virus Acquisition. Clin Infect Dis 2023; 76:1372-1381. [PMID: 36504254 PMCID: PMC10110272 DOI: 10.1093/cid/ciac938] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 11/29/2022] [Accepted: 08/12/2022] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Adolescent girls and young women aged 15‒24 years in sub-Saharan Africa are at disproportionate risk of human immunodeficiency virus (HIV) infection. Given the known association between vaginal microbial dysbiosis and HIV susceptibility, we performed an age-stratified analysis of the vaginal microbiome in South African women and compared this to their risk of HIV acquisition. METHODS Vaginal microbiome data were generated by mass spectrometry-based proteomic analysis of cervicovaginal lavages collected from participants (n = 688) in the Centre for the AIDS Programme of Research in South Africa (CAPRISA) 004 trial. Participants were grouped by age (18-19 years, n = 93; 20-24 years, n = 326; 25-41 years, n = 269). RESULTS Four microbiome types were identified based on predominant taxa, including Lactobacillus crispatus (CST-LC, 12.2%), Lactobacillus iners (CST-LI, 43.6%), Gardnerella vaginalis (CST-GV, 26.6%), or polymicrobial (CST-PM, 15.1%). Women aged 18-19 and 20-24 years had increased CST-PM and a non-Lactobacillus-dominant microbiome compared to those 25-41 years (odds ratio [OR], 3.14 [95% confidence interval {CI}, 1.12-7.87], P = .017; OR, 2.81 [95% CI, 1.07-7.09], P = .038, respectively; and OR, 1.65 [95% CI, 1.02-2.65], P = .028; OR, 1.40 [95% CI, 1.01-1.95], P = .030, respectively). The HIV incidence rate of women with CST-PM microbiome was 7.19-fold higher compared to women with CST-LC (hazard ratio [HR], 7.19 [95% CI, 2.11-24.5], P = .00162), which was also consistent in women aged 20-24 years (HR, 4.90 [95% CI, 1.10-21.9], P = .0375). CONCLUSIONS Younger women were more likely to have a higher-risk polymicrobial microbiome suggesting that vaginal microbiota are contributing to increased HIV-1 susceptibility in this group. CLINICAL TRIALS REGISTRATION NCT00441298.
Collapse
Affiliation(s)
- Yiran Wang
- Center for Global Health and Diseases, Case Western Reserve University School of Medicine, Cleveland, Ohio, USA
| | - Laura Noël-Romas
- Center for Global Health and Diseases, Case Western Reserve University School of Medicine, Cleveland, Ohio, USA
- Department of Obstetrics and Gynecology, University of Manitoba, Winnipeg, Canada
| | - Michelle Perner
- Sexually Transmitted Infectious and Bloodborne Pathogens Section, JC Wilt Infectious Disease Research Center, Public Health Agency of Canada, Winnipeg, Canada
| | - Samantha Knodel
- Center for Global Health and Diseases, Case Western Reserve University School of Medicine, Cleveland, Ohio, USA
- Department of Obstetrics and Gynecology, University of Manitoba, Winnipeg, Canada
| | - Refilwe Molatlhegi
- Department of Medical Microbiology, University of KwaZulu-Natal, Durban, South Africa
| | - Sarah Hoger
- Department of Medical Microbiology and Infectious Diseases, University of Manitoba, Winnipeg, Canada
| | - Kenzie Birse
- Center for Global Health and Diseases, Case Western Reserve University School of Medicine, Cleveland, Ohio, USA
- Department of Obstetrics and Gynecology, University of Manitoba, Winnipeg, Canada
| | - Christina Farr Zuend
- Center for Global Health and Diseases, Case Western Reserve University School of Medicine, Cleveland, Ohio, USA
| | - Lyle R McKinnon
- Department of Medical Microbiology and Infectious Diseases, University of Manitoba, Winnipeg, Canada
| | - Adam D Burgener
- Center for Global Health and Diseases, Case Western Reserve University School of Medicine, Cleveland, Ohio, USA
- Department of Obstetrics and Gynecology, University of Manitoba, Winnipeg, Canada
- Unit of Infectious Diseases, Department of Medicine Solna, Center for Molecular, Medicine, Karolinska Institute, Karolinska University Hospital, Stockholm, Sweden
| |
Collapse
|
6
|
Shapiro RL, DeLong K, Zulfiqar F, Carter D, Better M, Ensign LM. In vitro and ex vivo models for evaluating vaginal drug delivery systems. Adv Drug Deliv Rev 2022; 191:114543. [PMID: 36208729 PMCID: PMC9940824 DOI: 10.1016/j.addr.2022.114543] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 08/26/2022] [Accepted: 09/13/2022] [Indexed: 01/24/2023]
Abstract
Vaginal drug delivery systems are often preferred for treating a variety of diseases and conditions of the female reproductive tract (FRT), as delivery can be more targeted with less systemic side effects. However, there are many anatomical and biological barriers to effective treatment via the vaginal route. Further, biocompatibility with the local tissue and microbial microenvironment is desired. A variety of in vitro and ex vivo models are described herein for evaluating the physicochemical properties and toxicity profile of vaginal drug delivery systems. Deciding whether to utilize organoids in vitro or fresh human cervicovaginal mucus ex vivo requires careful consideration of the intended use and the formulation characteristics. Optimally, in vitro and ex vivo experimentation will inform or predict in vivo performance, and examples are given that describe utilization of a range of methods from in vitro to in vivo. Lastly, we highlight more advanced model systems for other mucosa as inspiration for the future in model development for the FRT.
Collapse
Affiliation(s)
- Rachel L Shapiro
- Center for Nanomedicine at the Wilmer Eye Institute, Johns Hopkins University School of Medicine, 400 N Broadway, Baltimore, MD 21231, USA; Department of Chemical & Biomolecular Engineering, Johns Hopkins University, 3400 N Charles St., Baltimore, MD 21218, USA.
| | - Kevin DeLong
- Center for Nanomedicine at the Wilmer Eye Institute, Johns Hopkins University School of Medicine, 400 N Broadway, Baltimore, MD 21231, USA; Department of Ophthalmology, Wilmer Eye Institute, Johns Hopkins University School of Medicine, 1800 Orleans St., Baltimore, MD 21287, USA.
| | - Fareeha Zulfiqar
- Center for Nanomedicine at the Wilmer Eye Institute, Johns Hopkins University School of Medicine, 400 N Broadway, Baltimore, MD 21231, USA; Department of Ophthalmology, Wilmer Eye Institute, Johns Hopkins University School of Medicine, 1800 Orleans St., Baltimore, MD 21287, USA.
| | - Davell Carter
- Center for Nanomedicine at the Wilmer Eye Institute, Johns Hopkins University School of Medicine, 400 N Broadway, Baltimore, MD 21231, USA; Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, 725 N Wolfe St., Baltimore, MD 21287, USA.
| | - Marina Better
- Center for Nanomedicine at the Wilmer Eye Institute, Johns Hopkins University School of Medicine, 400 N Broadway, Baltimore, MD 21231, USA; Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, 725 N Wolfe St., Baltimore, MD 21287, USA.
| | - Laura M Ensign
- Center for Nanomedicine at the Wilmer Eye Institute, Johns Hopkins University School of Medicine, 400 N Broadway, Baltimore, MD 21231, USA; Department of Ophthalmology, Wilmer Eye Institute, Johns Hopkins University School of Medicine, 1800 Orleans St., Baltimore, MD 21287, USA; Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, 725 N Wolfe St., Baltimore, MD 21287, USA; Department of Chemical & Biomolecular Engineering, Johns Hopkins University, 3400 N. Charles St., Baltimore, MD 21218, USA; Departments of Gynecology and Obstetrics, Infectious Diseases, and Oncology, Johns Hopkins University School of Medicine, 1800 Orleans St., Baltimore, MD 21287, USA; Department of Biomedical Engineering, Johns Hopkins University, 3400 N. Charles St., Baltimore, MD 21218, USA.
| |
Collapse
|
7
|
Bick AJ, Avenant C, Tomasicchio M, van der Spuy Z, Hapgood JP. Increased HIV-1 infection in PBMCs treated in vitro with menstrual cycle phase hormones or medroxyprogesterone acetate likely occurs via different mechanisms. Am J Reprod Immunol 2022; 88:e13643. [PMID: 36302121 PMCID: PMC9884997 DOI: 10.1111/aji.13643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 09/15/2022] [Accepted: 10/18/2022] [Indexed: 02/01/2023] Open
Abstract
PROBLEM Both luteal phase progesterone (P4) levels and use of the intramuscular (IM) injectable progestin-only contraceptive depo-medroxyprogesterone acetate (DMPA-IM) have been linked to increased S/HIV acquisition in animal, clinical and in vitro models. Several plausible mechanisms could explain MPA-induced HIV-1 acquisition while those for the luteal phase are underexplored. METHOD OF STUDY Peripheral blood mononuclear cells (PBMCs) were treated with P4 and estrogen at concentrations mimicking the luteal phase, follicular phase or with levels of MPA mimicking peak serum levels in DMPA-IM users. Cells were infected with an R5-tropic infectious molecular clone and HIV-1 infection was measured. A role for the glucocorticoid receptor (GR) was investigated using the GR/PR antagonist RU486. CCR5 protein levels and activation status, assessed by levels of the activation marker CD69, were measured by flow cytometry after treatment in vitro and in PBMCs from naturally-cycling women or DMPA-IM users. RESULTS Both MPA and luteal phase hormones significantly increased HIV-1 infection in vitro. However, MPA but not luteal phase hormones increased the CD4+/CD8+ T cell ratio, CCR5 protein expression on CD4+ T cells and increased expression of the activation marker CD69. The GR is involved in MPA-induced, but not luteal phase hormone-induced increased HIV-1 infection. In DMPA-IM users, the frequency of CCR5-expressing CD3+ and CD8+ cells was higher than for women in the luteal phase. CONCLUSIONS MPA increases HIV-1 infection in a manner different from that of luteal phase hormones, most likely involving the GR and at least in part changes in the frequency and/or expression of CCR5 and CD69.
Collapse
Affiliation(s)
- Alexis J. Bick
- Department of Molecular and Cell Biology, University of Cape, Cape Town, South Africa
| | - Chanel Avenant
- Department of Molecular and Cell Biology, University of Cape, Cape Town, South Africa
| | - Michele Tomasicchio
- Centre for Lung Infection and Immunity, Division of Pulmonology, Department of Medicine, University of Cape Town and UCT Lung Institute, South Africa.,South African MRC Centre for the Study of Antimicrobial Resistance, University of Cape Town, Cape Town, South Africa
| | - Zephne van der Spuy
- Department of Obstetrics and Gynaecology, University of Cape Town, Groote Schuur Hospital, Cape Town, South Africa
| | - Janet P. Hapgood
- Department of Molecular and Cell Biology, University of Cape, Cape Town, South Africa.,Institute of Infectious Disease and Molecular Medicine, University of Cape Town South Africa.,Corresponding author:
| |
Collapse
|
8
|
Delgado-Diaz DJ, Jesaveluk B, Hayward JA, Tyssen D, Alisoltani A, Potgieter M, Bell L, Ross E, Iranzadeh A, Allali I, Dabee S, Barnabas S, Gamieldien H, Blackburn JM, Mulder N, Smith SB, Edwards VL, Burgener AD, Bekker LG, Ravel J, Passmore JAS, Masson L, Hearps AC, Tachedjian G. Lactic acid from vaginal microbiota enhances cervicovaginal epithelial barrier integrity by promoting tight junction protein expression. MICROBIOME 2022; 10:141. [PMID: 36045402 PMCID: PMC9429363 DOI: 10.1186/s40168-022-01337-5] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/12/2022] [Accepted: 07/30/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND Women with a cervicovaginal microbiota dominated by Lactobacillus spp. are at reduced risk of acquiring sexually transmitted infections including HIV, but the biological mechanisms involved remain poorly defined. Here, we performed metaproteomics on vaginal swab samples from young South African women (n = 113) and transcriptomics analysis of cervicovaginal epithelial cell cultures to examine the ability of lactic acid, a metabolite produced by cervicovaginal lactobacilli, to modulate genital epithelial barrier function. RESULTS Compared to women with Lactobacillus-depleted microbiota, women dominated by vaginal lactobacilli exhibit higher abundance of bacterial lactate dehydrogenase, a key enzyme responsible for lactic acid production, which is independently associated with an increased abundance of epithelial barrier proteins. Physiological concentrations of lactic acid enhance epithelial cell culture barrier integrity and increase intercellular junctional molecule expression. CONCLUSIONS These findings reveal a novel ability of vaginal lactic acid to enhance genital epithelial barrier integrity that may help prevent invasion by sexually transmitted pathogens. Video abstract.
Collapse
Affiliation(s)
- David Jose Delgado-Diaz
- Life Sciences Discipline, Burnet Institute, 85 Commercial Road, Melbourne, VIC, 3004, Australia
- Department of Microbiology, Monash University, Clayton, VIC, 3168, Australia
| | - Brianna Jesaveluk
- Life Sciences Discipline, Burnet Institute, 85 Commercial Road, Melbourne, VIC, 3004, Australia
- Department of Microbiology, Monash University, Clayton, VIC, 3168, Australia
| | - Joshua A Hayward
- Life Sciences Discipline, Burnet Institute, 85 Commercial Road, Melbourne, VIC, 3004, Australia
- Department of Microbiology, Monash University, Clayton, VIC, 3168, Australia
| | - David Tyssen
- Life Sciences Discipline, Burnet Institute, 85 Commercial Road, Melbourne, VIC, 3004, Australia
| | - Arghavan Alisoltani
- Division of Medical Virology, Department of Pathology, University of Cape Town, Cape Town, 7925, South Africa
- Division of Biomedical Sciences, University of California Riverside School of Medicine, Riverside, CA, 92521, USA
| | - Matthys Potgieter
- Computational Biology Division, Department of Integrative Biomedical Sciences, University of Cape Town, Cape Town, 7925, South Africa
- Division of Chemical and Systems Biology, Department of Integrative Biomedical Sciences, University of Cape Town, Cape Town, 7925, South Africa
| | - Liam Bell
- Centre for Proteomic and Genomic Research, Cape Town, 7925, South Africa
| | - Elizabeth Ross
- Centre for Proteomic and Genomic Research, Cape Town, 7925, South Africa
| | - Arash Iranzadeh
- Computational Biology Division, Department of Integrative Biomedical Sciences, University of Cape Town, Cape Town, 7925, South Africa
| | - Imane Allali
- Laboratory of Human Pathologies Biology, Department of Biology, Faculty of Sciences, Mohammed V University in Rabat, 1014, Rabat, Morocco
| | - Smritee Dabee
- Center for Global Infectious Disease Research, Seattle Children's Research Institute, Seattle, WA, 98101, USA
| | - Shaun Barnabas
- Family Centre for Research with Ubuntu, Stellenbosch University, Cape Town, 7505, South Africa
| | - Hoyam Gamieldien
- Division of Medical Virology, Department of Pathology, University of Cape Town, Cape Town, 7925, South Africa
| | - Jonathan M Blackburn
- Division of Chemical and Systems Biology, Department of Integrative Biomedical Sciences, University of Cape Town, Cape Town, 7925, South Africa
- Institute of Infectious Disease and Molecular Medicine (IDM), University of Cape Town, Cape Town, 7925, South Africa
| | - Nicola Mulder
- Computational Biology Division, Department of Integrative Biomedical Sciences, University of Cape Town, Cape Town, 7925, South Africa
- Institute of Infectious Disease and Molecular Medicine (IDM), University of Cape Town, Cape Town, 7925, South Africa
- Centre for Infectious Diseases Research (CIDRI) in Africa Wellcome Trust Centre, University of Cape Town, Cape Town, 7925, South Africa
| | - Steven B Smith
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, MD, 21201, USA
| | - Vonetta L Edwards
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, MD, 21201, USA
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD, 21201, USA
| | - Adam D Burgener
- Center for Global Health and Diseases, Case Western Reserve University, Cleveland, OH, 44106, USA
- Department of Obstetrics and Gynecology, University of Manitoba, Winnipeg, Canada
- Department of Medicine Solna, Karolinska Institutet, Stockholm, Sweden
| | - Linda-Gail Bekker
- Institute of Infectious Disease and Molecular Medicine (IDM), University of Cape Town, Cape Town, 7925, South Africa
- Desmond Tutu HIV Centre, University of Cape Town, Cape Town, 7925, South Africa
| | - Jacques Ravel
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, MD, 21201, USA
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD, 21201, USA
| | - Jo-Ann S Passmore
- Division of Medical Virology, Department of Pathology, University of Cape Town, Cape Town, 7925, South Africa
- Institute of Infectious Disease and Molecular Medicine (IDM), University of Cape Town, Cape Town, 7925, South Africa
- Centre for the AIDS Programme of Research in South Africa, Durban, 4013, South Africa
- National Health Laboratory Service, Cape Town, 7925, South Africa
| | - Lindi Masson
- Life Sciences Discipline, Burnet Institute, 85 Commercial Road, Melbourne, VIC, 3004, Australia
- Division of Medical Virology, Department of Pathology, University of Cape Town, Cape Town, 7925, South Africa
- Institute of Infectious Disease and Molecular Medicine (IDM), University of Cape Town, Cape Town, 7925, South Africa
- Centre for the AIDS Programme of Research in South Africa, Durban, 4013, South Africa
- Central Clinical School, Monash University, Melbourne, 3004, Australia
| | - Anna C Hearps
- Life Sciences Discipline, Burnet Institute, 85 Commercial Road, Melbourne, VIC, 3004, Australia
- Central Clinical School, Monash University, Melbourne, 3004, Australia
| | - Gilda Tachedjian
- Life Sciences Discipline, Burnet Institute, 85 Commercial Road, Melbourne, VIC, 3004, Australia.
- Department of Microbiology, Monash University, Clayton, VIC, 3168, Australia.
- Department of Microbiology and Immunology at the Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, VIC, 3010, Australia.
| |
Collapse
|
9
|
Mohammadi A, Bagherichimeh S, Choi Y, Fazel A, Tevlin E, Huibner S, Good SV, Tharao W, Kaul R. Immune parameters of HIV susceptibility in the female genital tract before and after penile-vaginal sex. COMMUNICATIONS MEDICINE 2022; 2:60. [PMID: 35637661 PMCID: PMC9142516 DOI: 10.1038/s43856-022-00122-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Accepted: 05/03/2022] [Indexed: 11/09/2022] Open
Abstract
Background In women, most HIV infections are acquired through penile-vaginal sex. Inflammation in the female genital tract (FGT) increases the risk of HIV acquisition and transmission, likely through recruitment of HIV target cells and disruption of epithelial barrier integrity. Although sex may have important immune and epithelial effects, the impact of receptive penile-vaginal sex on the immune correlates of HIV susceptibility in the female genital tract is not well described. Methods STI-free heterosexual couples were recruited to the Sex, Couples and Science (SECS) Study, with the serial collection of cervical secretions (CVS), endocervical cytobrushes, blood and semen before and up to 72 h after either condomless (n = 29) or condom-protected (n = 8) penile-vaginal sex. Immune cells were characterized by flow cytometry, and immune factors including cytokines and soluble E-cadherin (sE-cad; a marker of epithelial disruption) were quantified by multiplex immunoassay. Co-primary endpoints were defined as levels of IP-10 and IL-1α, cytokines previously associated with increased HIV susceptibility. Results Here we show that cervicovaginal levels of vaginal IP-10, sE-cad and several other cytokines increase rapidly after sex, regardless of condom use. The proportion of endocervical HIV target cells, including Th17 cells, activated T cells, and activated or mature dendritic cells (DCs) also increase, particularly after condomless sex. Although most of these immune changes resolve within 72 h, increases in activated cervical CD4 + T cells and Tcm persist beyond this time. Conclusions Penile-vaginal sex induces multiple genital immune changes that may enhance HIV susceptibility during the 72 h post-sex window that is critical for virus acquisition. This has important implications for the mucosal immunopathogenesis of HIV transmission. Women who acquire HIV most commonly do so during penile-vaginal sex. Although the risk of HIV acquisition is higher when there is pre-existing inflammation in the female genital tract, the impact of receptive penile-vaginal sex itself on immune markers of HIV susceptibility in the genital tract has not been widely studied. We recruited heterosexual couples, without HIV or sexually-transmitted infections, and studied the impact of a single episode of penile-vaginal sex on immune cells and proteins in the female genital tract. We found that some markers within the cervix and vagina increased immediately after sex, then returned to normal. We noticed differences in these changes depending on whether the sex was condom-protected and whether the male partner was circumcised. Our findings might help us to understand how sex impacts the immune system and how this might contribute to HIV acquisition. Mohammadi et al. evaluate immune markers and cell types associated with HIV susceptibility in the female genital tract before and after penile-vaginal sex. The authors report that these immune parameters increase rapidly and transiently after sex, with condom use affecting some of the changes observed.
Collapse
|
10
|
Bradley F, Franzén Boger M, Kaldhusdal V, Åhlberg A, Edfeldt G, Lajoie J, Bergström S, Omollo K, Damdimopoulos A, Czarnewski P, Månberg A, Oyugi J, Kimani J, Nilsson P, Fowke K, Tjernlund A, Broliden K. Multi-omics analysis of the cervical epithelial integrity of women using depot medroxyprogesterone acetate. PLoS Pathog 2022; 18:e1010494. [PMID: 35533147 PMCID: PMC9119532 DOI: 10.1371/journal.ppat.1010494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Revised: 05/19/2022] [Accepted: 04/03/2022] [Indexed: 11/30/2022] Open
Abstract
Depot medroxyprogesterone acetate (DMPA) is an injectable hormonal contraceptive used by millions of women worldwide. However, experimental studies have associated DMPA use with genital epithelial barrier disruption and mucosal influx of human immunodeficiency virus (HIV) target cells. We explored the underlying molecular mechanisms of these findings. Ectocervical biopsies and cervicovaginal lavage (CVL) specimens were collected from HIV-seronegative Kenyan sex workers using DMPA (n = 32) or regularly cycling controls (n = 64). Tissue samples were assessed by RNA-sequencing and quantitative imaging analysis, whereas protein levels were measured in CVL samples. The results suggested a DMPA-associated upregulation of genes involved in immune regulation, including genes associated with cytokine-mediated signaling and neutrophil-mediated immunity. A transcription factor analysis further revealed DMPA-associated upregulation of RELA and NFKB1 which are involved in several immune activation pathways. Several genes significantly downregulated in the DMPA versus the control group were involved in epithelial structure and function, including genes encoding keratins, small proline-rich proteins, and cell-cell adhesion proteins. Pathway analyses indicated DMPA use was associated with immune activation and suppression of epithelium development, including keratinization and cornification processes. The cervicovaginal microbiome composition (Lactobacillus dominant and non-Lactobacillus dominant) had no overall interactional impact on the DMPA associated tissue gene expression. Imaging analysis verified that DMPA use was associated with an impaired epithelial layer as illustrated by staining for the selected epithelial junction proteins E-cadherin, desmoglein-1 and claudin-1. Additional staining for CD4+ cells revealed a more superficial location of these cells in the ectocervical epithelium of DMPA users versus controls. Altered protein levels of SERPINB1 and ITIH2 were further observed in the DMPA group. Identification of specific impaired epithelial barrier structures at the gene expression level, which were verified at the functional level by tissue imaging analysis, illustrates mechanisms by which DMPA adversely may affect the integrity of the genital mucosa. Sexual transmission accounts for the majority of all new HIV infections in women, and alterations to the mucosal environment of the female genital tract have been associated with an increase in the risk of acquiring HIV. Observational epidemiological studies have implied that the use of the injectable hormonal contraceptive depot medroxyprogesterone acetate (DMPA) may be associated with increased HIV-acquisition. However, a prospective clinical study has not confirmed this association and the controversial findings are currently evaluated in the context of international reproductive health policies. Several studies using various model systems indicate that DMPA affects the integrity of the genital epithelial barrier as well as the mucosal immune system, but the exact mechanisms remain largely unknown. To characterize the effect of DMPA on the genital mucosal environment, we used a multi-omics approach to assess paired genital secretions and cervical tissue samples from long-term regular DMPA users living in Kenya. This unique cohort represents a population at risk of HIV infection in which DMPA is one of the most commonly used hormonal contraceptives. We identified impaired cervical epithelial barrier structures, including DMPA-associated reduction in the expression of cell-cell adhesion molecules, keratins, small proline-rich proteins and a thinner upper epithelial layer with more superficially located CD4+ cells. Gene set enrichment pathway analyses indicated DMPA use was associated with immune activation and suppression of epithelium development including keratinization and cornification pathways. Protein analysis identified altered levels of selected anti-proteases. Our findings illustrate mechanisms by which DMPA adversely may affect the integrity of the genital mucosa.
Collapse
Affiliation(s)
- Frideborg Bradley
- Department of Medicine Solna, Division of Infectious Diseases, Karolinska Institutet, Department of Infectious Diseases, Karolinska University Hospital, Center for Molecular Medicine, Stockholm, Sweden
| | - Mathias Franzén Boger
- Department of Medicine Solna, Division of Infectious Diseases, Karolinska Institutet, Department of Infectious Diseases, Karolinska University Hospital, Center for Molecular Medicine, Stockholm, Sweden
| | - Vilde Kaldhusdal
- Department of Medicine Solna, Division of Infectious Diseases, Karolinska Institutet, Department of Infectious Diseases, Karolinska University Hospital, Center for Molecular Medicine, Stockholm, Sweden
| | - Alexandra Åhlberg
- Department of Medicine Solna, Division of Infectious Diseases, Karolinska Institutet, Department of Infectious Diseases, Karolinska University Hospital, Center for Molecular Medicine, Stockholm, Sweden
| | - Gabriella Edfeldt
- Department of Medicine Solna, Division of Infectious Diseases, Karolinska Institutet, Department of Infectious Diseases, Karolinska University Hospital, Center for Molecular Medicine, Stockholm, Sweden
| | - Julie Lajoie
- Department of Medical Microbiology and Infectious Diseases, University of Manitoba, Winnipeg, Canada
- Department of Medical Microbiology, University of Nairobi, Nairobi, Kenya
| | - Sofia Bergström
- Division of Affinity Proteomics, Department of Protein Science, SciLifeLab, KTH Royal Institute of Technology, Stockholm, Sweden
| | - Kenneth Omollo
- Department of Medical Microbiology, University of Nairobi, Nairobi, Kenya
| | - Anastasios Damdimopoulos
- Bioinformatics and Expression Analysis core facility, Department of Biosciences and Nutrition, Karolinska Institutet, Huddinge, Sweden
| | - Paulo Czarnewski
- Department of Biochemistry and Biophysics, National Bioinformatics Infrastructure Sweden, SciLifeLab, Stockholm University, Solna, Sweden
| | - Anna Månberg
- Division of Affinity Proteomics, Department of Protein Science, SciLifeLab, KTH Royal Institute of Technology, Stockholm, Sweden
| | - Julius Oyugi
- Department of Medical Microbiology and Infectious Diseases, University of Manitoba, Winnipeg, Canada
- Department of Medical Microbiology, University of Nairobi, Nairobi, Kenya
| | - Joshua Kimani
- Department of Medical Microbiology and Infectious Diseases, University of Manitoba, Winnipeg, Canada
- Department of Medical Microbiology, University of Nairobi, Nairobi, Kenya
- Partners for Health and Development in Africa, Nairobi, Kenya
| | - Peter Nilsson
- Division of Affinity Proteomics, Department of Protein Science, SciLifeLab, KTH Royal Institute of Technology, Stockholm, Sweden
| | - Keith Fowke
- Department of Medical Microbiology and Infectious Diseases, University of Manitoba, Winnipeg, Canada
- Department of Medical Microbiology, University of Nairobi, Nairobi, Kenya
- Partners for Health and Development in Africa, Nairobi, Kenya
- Department of Community Health Sciences, University of Manitoba, Winnipeg, Canada
| | - Annelie Tjernlund
- Department of Medicine Solna, Division of Infectious Diseases, Karolinska Institutet, Department of Infectious Diseases, Karolinska University Hospital, Center for Molecular Medicine, Stockholm, Sweden
| | - Kristina Broliden
- Department of Medicine Solna, Division of Infectious Diseases, Karolinska Institutet, Department of Infectious Diseases, Karolinska University Hospital, Center for Molecular Medicine, Stockholm, Sweden
- * E-mail:
| |
Collapse
|
11
|
Vishwanathan SA, Zhao C, Luthra R, Khalil GK, Morris MM, Dinh C, Gary MJ, Mitchell J, Spreen WR, Pereira LE, Heneine W, García-Lerma JG, McNicholl JM. Sexually transmitted infections and depot medroxyprogesterone acetate do not impact protection from simian HIV acquisition by long-acting cabotegravir in macaques. AIDS 2022; 36:169-176. [PMID: 34482355 PMCID: PMC8711602 DOI: 10.1097/qad.0000000000003059] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Revised: 08/12/2021] [Accepted: 08/16/2021] [Indexed: 11/25/2022]
Abstract
OBJECTIVE We had previously shown that long-acting cabotegravir (CAB-LA) injections fully protected macaques from vaginal simian HIV (SHIV) infection. Here, we reassessed CAB-LA efficacy in the presence of depot medroxyprogesterone acetate and multiple sexually transmitted infections (STIs) that are known to increase HIV susceptibility in women. DESIGN Two macaque models of increasing vaginal STI severity were used for efficacy assessment. METHODS The first study (n = 11) used a double STI model that had repeated exposures to two vaginal STI, Chlamydia trachomatis and Trichomonas vaginalis. Six animals were CAB-LA treated and five were controls. The second study (n = 9) included a triple STI model with repeated exposures to C. trachomatis, T. vaginalis and syphilis, and the contraceptive, depot medroxyprogesterone acetate (DMPA). Six animals were CAB-LA treated and three were controls. All animals received up to 14 vaginal SHIV challenges. A survival analysis was performed to compare the number of SHIV challenges to infection in the drug-treated group compared with untreated controls over time. RESULTS All six CAB-LA treated animals in both models, the double STI or the triple STI-DMPA model, remained protected after 14 SHIV vaginal challenges, while the untreated animals became SHIV-infected after a median of two challenges (log-rank P < 0.001) or one challenge (log-rank P = 0.002), respectively. Both models recapitulated human STI disease, with vaginal discharge, ulcers, and seroconversion. CONCLUSION In these high and sustained susceptibility models spanning more than 3 months, CAB-LA maintained complete efficacy, demonstrating robustness of the CAB-LA dose used in clinical trials, and suggesting its insensitivity to multiple STIs and DMPA.
Collapse
Affiliation(s)
| | - Chunxia Zhao
- Division of HIV Prevention, Centers for Disease Control and Prevention
| | | | - George K. Khalil
- Division of HIV Prevention, Centers for Disease Control and Prevention
| | - Monica M. Morris
- Division of STD Prevention, Centers for Disease Control and Prevention, Atlanta, Georgia
| | - Chuong Dinh
- Division of HIV Prevention, Centers for Disease Control and Prevention
| | | | - James Mitchell
- Division of HIV Prevention, Centers for Disease Control and Prevention
| | | | - Lara E. Pereira
- Division of STD Prevention, Centers for Disease Control and Prevention, Atlanta, Georgia
| | - Walid Heneine
- Division of HIV Prevention, Centers for Disease Control and Prevention
| | | | | |
Collapse
|
12
|
Patel MV, Rodriguez-Garcia M, Shen Z, Wira CR. Medroxyprogesterone acetate inhibits wound closure of human endometrial epithelial cells and stromal fibroblasts in vitro. Sci Rep 2021; 11:23246. [PMID: 34853394 PMCID: PMC8636475 DOI: 10.1038/s41598-021-02681-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Accepted: 11/15/2021] [Indexed: 01/13/2023] Open
Abstract
Mucosal integrity in the endometrium is essential for immune protection. Since breaches or injury to the epithelial barrier exposes underlying tissue and is hypothesized to increase infection risk, we determined whether endogenous progesterone or three exogenous progestins (medroxyprogesterone acetate (MPA), norethindrone (NET), and levonorgestrel (LNG)) used by women as contraceptives interfere with wound closure of endometrial epithelial cells and fibroblasts in vitro. Progesterone and LNG had no inhibitory effect on wound closure by either epithelial cells or fibroblasts. MPA significantly impaired wound closure in both cell types and delayed the reestablishment of transepithelial resistance by epithelial cells. In contrast to MPA, NET selectively decreased wound closure by stromal fibroblasts but not epithelial cells. Following epithelial injury, MPA but not LNG or NET, blocked the injury-induced upregulation of HBD2, a broad-spectrum antimicrobial implicated in wound healing, but had no effect on the secretion of RANTES, CCL20 and SDF-1α. This study demonstrates that, unlike progesterone and LNG, MPA and NET may interfere with wound closure following injury in the endometrium, potentially conferring a higher risk of pathogen transmission. Our findings highlight the importance of evaluating progestins for their impact on wound repair at mucosal surfaces.
Collapse
Affiliation(s)
- Mickey V Patel
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Lebanon, NH, 03756, USA.
| | | | - Zheng Shen
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Lebanon, NH, 03756, USA
| | - Charles R Wira
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Lebanon, NH, 03756, USA
| |
Collapse
|
13
|
Deese J, Heffron R, Jaspan H, Masson L, Smit JA, Sibeko S. Recent Advances and New Challenges in Cisgender Women's Gynecologic and Obstetric Health in the Context of HIV. Clin Obstet Gynecol 2021; 64:475-490. [PMID: 34323229 PMCID: PMC8322601 DOI: 10.1097/grf.0000000000000627] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Although rates of human immunodeficiency virus (HIV) have declined globally over the past 10 years, United Nations Programme on HIV/AIDS estimates 1.7 million new infections occurred in 2019, with cisgender women (cis women) and girls accounting for 48%. Acquired immune deficiency syndrome-related illnesses are the leading global cause of mortality in cis women aged 15 to 49, and in many sub-Saharan Africa countries, young women face substantially higher HIV risk than their male counterparts. Drivers of this increased risk include sexual and reproductive health characteristics unique to cis women. This review discusses the role of sexually transmitted infections, contraception and pregnancy in HIV risk, and biomedical HIV prevention technologies available and in development.
Collapse
Affiliation(s)
- Jennifer Deese
- Women's Global Health Imperative, RTI International, Research Triangle Park, Raleigh, North Carolina
| | | | - Heather Jaspan
- Departments of Global Health
- Pediatrics, University of Washington
- Seattle Children's Research Institute, Seattle, Washington
- Department of Pathology
- Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Cape Town
| | - Lindi Masson
- Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Cape Town
- Centre for the AIDS Programme of Research in South Africa (CAPRISA)
- Disease Elimination Program, Life Sciences Discipline, Burnet Institute
- Central Clinical School, Monash University, Melbourne, Victoria, Australia
| | - Jennifer A Smit
- MatCH Research Unit (MRU), Department of Obstetrics and Gynaecology, Faculty of Health Sciences, University of the Witwatersrand, Durban
| | - Sengeziwe Sibeko
- Department of Obstetrics and Gynaecology, Faculty of Medicine and Health Sciences, Stellenbosch University, Stellenbosch, South Africa
| |
Collapse
|
14
|
Taylor RA, Xiao S, Carias AM, McRaven MD, Thakkar DN, Araínga M, Allen EJ, Rogers KA, Kumarapperuma SC, Gong S, Fought AJ, Anderson MR, Thomas Y, Schneider JR, Goins B, Fox P, Villinger FJ, Ruprecht RM, Hope TJ. PET/CT targeted tissue sampling reveals virus specific dIgA can alter the distribution and localization of HIV after rectal exposure. PLoS Pathog 2021; 17:e1009632. [PMID: 34061907 PMCID: PMC8195437 DOI: 10.1371/journal.ppat.1009632] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Revised: 06/11/2021] [Accepted: 05/11/2021] [Indexed: 12/19/2022] Open
Abstract
Human immunodeficiency virus (HIV) vaccines have not been successful in clinical trials. Dimeric IgA (dIgA) in the form of secretory IgA is the most abundant antibody class in mucosal tissues, making dIgA a prime candidate for potential HIV vaccines. We coupled Positron Emission Tomography (PET) imaging and fluorescent microscopy of 64Cu-labeled, photoactivatable-GFP HIV (PA-GFP-BaL) and fluorescently labeled dIgA to determine how dIgA antibodies influence virus interaction with mucosal barriers and viral penetration in colorectal tissue. Our results show that HIV virions rapidly disseminate throughout the colon two hours after exposure. The presence of dIgA resulted in an increase in virions and penetration depth in the transverse colon. Moreover, virions were found in the mesenteric lymph nodes two hours after viral exposure, and the presence of dIgA led to an increase in virions in mesenteric lymph nodes. Taken together, these technologies enable in vivo and in situ visualization of antibody-virus interactions and detailed investigations of early events in HIV infection.
Collapse
Affiliation(s)
- Roslyn A. Taylor
- Department of Cell and Developmental Biology, Northwestern University Feinberg School of Medicine, Chicago, Illinois, United States of America
| | - Sixia Xiao
- Department of Cell and Developmental Biology, Northwestern University Feinberg School of Medicine, Chicago, Illinois, United States of America
| | - Ann M. Carias
- Department of Cell and Developmental Biology, Northwestern University Feinberg School of Medicine, Chicago, Illinois, United States of America
| | - Michael D. McRaven
- Department of Cell and Developmental Biology, Northwestern University Feinberg School of Medicine, Chicago, Illinois, United States of America
| | - Divya N. Thakkar
- Department of Cell and Developmental Biology, Northwestern University Feinberg School of Medicine, Chicago, Illinois, United States of America
| | - Mariluz Araínga
- New Iberia Research Center, University of Louisiana at Lafayette, Lafayette, Louisiana, United States of America
| | - Edward J. Allen
- Department of Cell and Developmental Biology, Northwestern University Feinberg School of Medicine, Chicago, Illinois, United States of America
| | - Kenneth A. Rogers
- New Iberia Research Center, University of Louisiana at Lafayette, Lafayette, Louisiana, United States of America
- Department of Biology, University of Louisiana at Lafayette, Lafayette, Louisiana, United States of America
| | - Sidath C. Kumarapperuma
- Research Imaging Institute, University of Texas Health San Antonio, San Antonio, Texas, United States of America
| | - Siqi Gong
- New Iberia Research Center, University of Louisiana at Lafayette, Lafayette, Louisiana, United States of America
- Department of Microbiology, Immunology, and Molecular Genetics, University of Texas Health San Antonio, San Antonio, Texas, United States of America
- Texas Biomedical Research Institute and Southwest National Primate Research Center, San Antonio, Texas, United States of America
| | - Angela J. Fought
- Department of Preventative Medicine, Division of Biostatistics, Northwestern University Feinberg School of Medicine, Chicago, Illinois, United States of America
| | - Meegan R. Anderson
- Department of Cell and Developmental Biology, Northwestern University Feinberg School of Medicine, Chicago, Illinois, United States of America
| | - Yanique Thomas
- Department of Cell and Developmental Biology, Northwestern University Feinberg School of Medicine, Chicago, Illinois, United States of America
| | - Jeffrey R. Schneider
- Department of Cell and Developmental Biology, Northwestern University Feinberg School of Medicine, Chicago, Illinois, United States of America
| | - Beth Goins
- Research Imaging Institute, University of Texas Health San Antonio, San Antonio, Texas, United States of America
| | - Peter Fox
- Research Imaging Institute, University of Texas Health San Antonio, San Antonio, Texas, United States of America
| | - Francois J. Villinger
- New Iberia Research Center, University of Louisiana at Lafayette, Lafayette, Louisiana, United States of America
- Department of Biology, University of Louisiana at Lafayette, Lafayette, Louisiana, United States of America
| | - Ruth M. Ruprecht
- New Iberia Research Center, University of Louisiana at Lafayette, Lafayette, Louisiana, United States of America
- Department of Biology, University of Louisiana at Lafayette, Lafayette, Louisiana, United States of America
- Department of Microbiology, Immunology, and Molecular Genetics, University of Texas Health San Antonio, San Antonio, Texas, United States of America
- Texas Biomedical Research Institute and Southwest National Primate Research Center, San Antonio, Texas, United States of America
| | - Thomas J. Hope
- Department of Cell and Developmental Biology, Northwestern University Feinberg School of Medicine, Chicago, Illinois, United States of America
| |
Collapse
|
15
|
Wessels JM, Nguyen PV, Vitali D, Mueller K, Vahedi F, Felker AM, Dupont HA, Bagri P, Verschoor CP, Deshiere A, Mazzulli T, Tremblay MJ, Ashkar AA, Kaushic C. Depot medroxyprogesterone acetate (DMPA) enhances susceptibility and increases the window of vulnerability to HIV-1 in humanized mice. Sci Rep 2021; 11:3894. [PMID: 33594113 PMCID: PMC7887257 DOI: 10.1038/s41598-021-83242-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Accepted: 01/27/2021] [Indexed: 12/16/2022] Open
Abstract
The progestin-based hormonal contraceptive Depot Medroxyprogesterone Acetate (DMPA) is widely used in sub-Saharan Africa, where HIV-1 is endemic. Meta-analyses have shown that women using DMPA are 40% more likely than women not using hormonal contraceptives to acquire Human Immunodeficiency Virus (HIV-1). Therefore understanding how DMPA increases susceptibility to HIV-1 is an important public health issue. Using C57BL/6 mice and our previously optimized humanized mouse model (NOD-Rag1tm1Mom Il2rgtm1Wjl transplanted with hCD34-enriched hematopoietic stem cells; Hu-mice) where peripheral blood and tissues are reconstituted by human immune cells, we assessed how DMPA affected mucosal barrier function, HIV-1 susceptibility, viral titres, and target cells compared to mice in the diestrus phase of the estrous cycle, when endogenous progesterone is highest. We found that DMPA enhanced FITC-dextran dye leakage from the vaginal tract into the systemic circulation, enhanced target cells (hCD68+ macrophages, hCD4+ T cells) in the vaginal tract and peripheral blood (hCD45+hCD3+hCD4+hCCR5+ T cells), increased the rate of intravaginal HIV-1 infection, extended the window of vulnerability, and lowered vaginal viral titres following infection. These findings suggest DMPA may enhance susceptibility to HIV-1 in Hu-mice by impairing the vaginal epithelial barrier, increasing vaginal target cells (including macrophages), and extending the period of time during which Hu-mice are susceptible to infection; mechanisms that might also affect HIV-1 susceptibility in women.
Collapse
Affiliation(s)
- Jocelyn M Wessels
- McMaster Immunology Research Centre, Michael G. DeGroote Centre for Learning and Discovery, McMaster University, MDCL Room 4014, 1280 Main Street West, Hamilton, ON, L8S 4K1, Canada.,Department of Pathology and Molecular Medicine, McMaster University, 1280 Main Street West, Hamilton, ON, L8S 4K1, Canada
| | - Philip V Nguyen
- McMaster Immunology Research Centre, Michael G. DeGroote Centre for Learning and Discovery, McMaster University, MDCL Room 4014, 1280 Main Street West, Hamilton, ON, L8S 4K1, Canada.,Department of Pathology and Molecular Medicine, McMaster University, 1280 Main Street West, Hamilton, ON, L8S 4K1, Canada
| | - Danielle Vitali
- McMaster Immunology Research Centre, Michael G. DeGroote Centre for Learning and Discovery, McMaster University, MDCL Room 4014, 1280 Main Street West, Hamilton, ON, L8S 4K1, Canada.,Department of Pathology and Molecular Medicine, McMaster University, 1280 Main Street West, Hamilton, ON, L8S 4K1, Canada
| | - Kristen Mueller
- McMaster Immunology Research Centre, Michael G. DeGroote Centre for Learning and Discovery, McMaster University, MDCL Room 4014, 1280 Main Street West, Hamilton, ON, L8S 4K1, Canada.,Department of Pathology and Molecular Medicine, McMaster University, 1280 Main Street West, Hamilton, ON, L8S 4K1, Canada
| | - Fatemeh Vahedi
- McMaster Immunology Research Centre, Michael G. DeGroote Centre for Learning and Discovery, McMaster University, MDCL Room 4014, 1280 Main Street West, Hamilton, ON, L8S 4K1, Canada.,Department of Pathology and Molecular Medicine, McMaster University, 1280 Main Street West, Hamilton, ON, L8S 4K1, Canada
| | - Allison M Felker
- McMaster Immunology Research Centre, Michael G. DeGroote Centre for Learning and Discovery, McMaster University, MDCL Room 4014, 1280 Main Street West, Hamilton, ON, L8S 4K1, Canada.,Department of Pathology and Molecular Medicine, McMaster University, 1280 Main Street West, Hamilton, ON, L8S 4K1, Canada
| | - Haley A Dupont
- McMaster Immunology Research Centre, Michael G. DeGroote Centre for Learning and Discovery, McMaster University, MDCL Room 4014, 1280 Main Street West, Hamilton, ON, L8S 4K1, Canada.,Department of Pathology and Molecular Medicine, McMaster University, 1280 Main Street West, Hamilton, ON, L8S 4K1, Canada
| | - Puja Bagri
- McMaster Immunology Research Centre, Michael G. DeGroote Centre for Learning and Discovery, McMaster University, MDCL Room 4014, 1280 Main Street West, Hamilton, ON, L8S 4K1, Canada.,Department of Pathology and Molecular Medicine, McMaster University, 1280 Main Street West, Hamilton, ON, L8S 4K1, Canada
| | - Chris P Verschoor
- Department of Pathology and Molecular Medicine, McMaster University, 1280 Main Street West, Hamilton, ON, L8S 4K1, Canada
| | - Alexandre Deshiere
- Axe Des Maladies Infectieuses Et Immunitaires, Centre de Recherche du CHU de Québec-Université Laval, Pavillon CHUL, Québec City, QC, G1V 4G2, Canada
| | - Tony Mazzulli
- Public Health Laboratories, Public Health Ontario, Toronto, ON, M5G 1V2, Canada.,Department of Microbiology, Mount Sinai Hospital/University Health Network, Toronto, ON, M5G 1X5, Canada.,Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, M5S 1A8, Canada
| | - Michel J Tremblay
- Axe Des Maladies Infectieuses Et Immunitaires, Centre de Recherche du CHU de Québec-Université Laval, Pavillon CHUL, Québec City, QC, G1V 4G2, Canada
| | - Ali A Ashkar
- McMaster Immunology Research Centre, Michael G. DeGroote Centre for Learning and Discovery, McMaster University, MDCL Room 4014, 1280 Main Street West, Hamilton, ON, L8S 4K1, Canada.,Department of Pathology and Molecular Medicine, McMaster University, 1280 Main Street West, Hamilton, ON, L8S 4K1, Canada
| | - Charu Kaushic
- McMaster Immunology Research Centre, Michael G. DeGroote Centre for Learning and Discovery, McMaster University, MDCL Room 4014, 1280 Main Street West, Hamilton, ON, L8S 4K1, Canada. .,Department of Pathology and Molecular Medicine, McMaster University, 1280 Main Street West, Hamilton, ON, L8S 4K1, Canada.
| |
Collapse
|
16
|
Daly MB, Sterling M, Holder A, Dinh C, Nishiura K, Khalil G, García-Lerma JG, Dobard C. The effect of depot medroxyprogesterone acetate on tenofovir alafenamide in rhesus macaques. Antiviral Res 2020; 186:105001. [PMID: 33385420 PMCID: PMC8480307 DOI: 10.1016/j.antiviral.2020.105001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Revised: 12/17/2020] [Accepted: 12/23/2020] [Indexed: 11/28/2022]
Abstract
Prevention of HIV infection and unintended pregnancies are public health priorities. In sub-Saharan Africa, where HIV prevalence is highest, depot medroxyprogesterone acetate (DMPA) is widely used as contraception. Therefore, understanding potential interactions between DMPA and antiretrovirals is critical. Here, we use a macaque model to investigate the effect of DMPA on the pharmacology of the antiretroviral tenofovir alafenamide (TAF). Female rhesus macaques received 30 mg of DMPA (n = 9) or were untreated (n = 9). Macaques received a human equivalent dose of TAF (1.5 mg/kg) orally by gavage. Tenofovir (TFV) and TFV-diphosphate (TFV-DP) were measured in blood, secretions, and tissues over 72 h. The median area under the curve (AUC0-72h) values for TFV-DP in peripheral blood mononuclear cells were similar in DMPA-treated (6991 fmol*h/106 cells) and untreated controls (5256 fmol*h/106 cells) (P = 0.174). Rectal tissue TFV-DP concentrations from DMPA+ animals [median: 20.23 fmol/mg of tissue (range: 4.94-107.95)] were higher than the DMPA- group [median: below the limit of quantification (BLOQ-11.92)], (P = 0.019). TFV-DP was not detectable in vaginal tissue from either group. A high-dose DMPA treatment in macaques was associated with increased rectal TFV-DP levels, indicating a potential tissue-specific drug-drug interaction. The lack of detectable TFV-DP in the vaginal tissue warrants further investigation of PrEP efficacy with single-agent TAF products. DMPA did not affect systemic TAF metabolism, with similar PBMC TFV-DP in both groups, suggesting that DMPA use should not alter the antiviral activity of TAF.
Collapse
Affiliation(s)
- Michele B Daly
- Laboratory Branch, Division of HIV/AIDS Prevention, National Center for HIV, Hepatitis, STD, and Prevention, Centers for Disease Control and Prevention, 1600 Clifton Road, Atlanta, GA, 30329, USA.
| | - Mara Sterling
- Laboratory Branch, Division of HIV/AIDS Prevention, National Center for HIV, Hepatitis, STD, and Prevention, Centers for Disease Control and Prevention, 1600 Clifton Road, Atlanta, GA, 30329, USA
| | - Angela Holder
- Laboratory Branch, Division of HIV/AIDS Prevention, National Center for HIV, Hepatitis, STD, and Prevention, Centers for Disease Control and Prevention, 1600 Clifton Road, Atlanta, GA, 30329, USA.
| | - Chuong Dinh
- Laboratory Branch, Division of HIV/AIDS Prevention, National Center for HIV, Hepatitis, STD, and Prevention, Centers for Disease Control and Prevention, 1600 Clifton Road, Atlanta, GA, 30329, USA.
| | - Kenji Nishiura
- Laboratory Branch, Division of HIV/AIDS Prevention, National Center for HIV, Hepatitis, STD, and Prevention, Centers for Disease Control and Prevention, 1600 Clifton Road, Atlanta, GA, 30329, USA.
| | - George Khalil
- Quantitative Sciences and Data Management Branch, Division of HIV/AIDS Prevention, National Center for HIV, Hepatitis, STD, and Prevention, Centers for Disease Control and Prevention, 1600 Clifton Road, Atlanta, GA, 30329, USA.
| | - J Gerardo García-Lerma
- Laboratory Branch, Division of HIV/AIDS Prevention, National Center for HIV, Hepatitis, STD, and Prevention, Centers for Disease Control and Prevention, 1600 Clifton Road, Atlanta, GA, 30329, USA.
| | - Charles Dobard
- Laboratory Branch, Division of HIV/AIDS Prevention, National Center for HIV, Hepatitis, STD, and Prevention, Centers for Disease Control and Prevention, 1600 Clifton Road, Atlanta, GA, 30329, USA.
| |
Collapse
|
17
|
Noël-Romas L, Perner M, Molatlhegi R, Farr Zuend C, Mabhula A, Hoger S, Lamont A, Birse K, Berard A, McCorrister S, Westmacott G, Leslie A, Poliquin V, Heffron R, McKinnon LR, Burgener AD. Vaginal microbiome-hormonal contraceptive interactions associate with the mucosal proteome and HIV acquisition. PLoS Pathog 2020; 16:e1009097. [PMID: 33362285 PMCID: PMC7790405 DOI: 10.1371/journal.ppat.1009097] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Revised: 01/07/2021] [Accepted: 10/26/2020] [Indexed: 01/02/2023] Open
Abstract
Alterations to the mucosal environment of the female genital tract, such as genital inflammation, have been associated with increased HIV acquisition in women. As the microbiome and hormonal contraceptives can affect vaginal mucosal immunity, we hypothesized these components may interact in the context of HIV susceptibility. Using previously published microbiome data from 685 women in the CAPRISA-004 trial, we compared relative risk of HIV acquisition in this cohort who were using injectable depot medroxyprogesterone acetate (DMPA), norethisterone enanthate (NET-EN), and combined oral contraceptives (COC). In women who were Lactobacillus-dominant, HIV acquisition was 3-fold higher in women using DMPA relative to women using NET-EN or COC (OR: 3.27; 95% CI: 1.24–11.24, P = 0.0305). This was not observed in non-Lactobacillus-dominant women (OR: 0.95, 95% CI: 0.44–2.15, P = 0.895) (interaction P = 0.0686). Higher serum MPA levels associated with increased molecular pathways of inflammation in the vaginal mucosal fluid of Lactobacillus-dominant women, but no differences were seen in non-Lactobacillus dominant women. This study provides data suggesting an interaction between the microbiome, hormonal contraceptives, and HIV susceptibility. Alterations to the mucosal environment of the female genital tract have been associated with increased HIV acquisition in women. As both the vaginal microbiome and hormonal contraceptives affect mucosal immunity, we investigated their interaction with HIV susceptibility. We characterized the vaginal microbiomes in 685 women from the CAPRISA-004 trial, who utilized three major types of hormonal contraceptives including injectable depot medroxyprogesterone acetate (DMPA), norethisterone enanthate (NET-EN), and combined oral contraceptives (COC). In the 40% of women with Lactobacillus-depleted microbiomes, HIV acquisition was not different between contraceptive groups. However, in the 60% of women with Lactobacillus as the dominant bacterial taxa, HIV acquisition risk was 3-fold higher (in women using DMPA relative to women using NET-EN and COC). Higher serum medroxyprogesterone acetate levels in Lactobacillus dominant women associated with increased cervicovaginal inflammation pathways in the mucosal proteome, biomarkers of which associated with HIV susceptibility. This study provides data suggesting an interaction between the microbiome, hormonal contraceptives, and HIV susceptibility.
Collapse
Affiliation(s)
- Laura Noël-Romas
- Departments of Obstetrics & Gynecology, University of Manitoba, Winnipeg, Canada
- Center for Global Health and Diseases, Case Western Reserve University, Ohio, United States of America
| | - Michelle Perner
- Medical Microbiology, University of Manitoba, Winnipeg, Canada
| | | | - Christina Farr Zuend
- Center for Global Health and Diseases, Case Western Reserve University, Ohio, United States of America
| | | | - Sarah Hoger
- Medical Microbiology, University of Manitoba, Winnipeg, Canada
| | - Alana Lamont
- Departments of Obstetrics & Gynecology, University of Manitoba, Winnipeg, Canada
| | - Kenzie Birse
- Departments of Obstetrics & Gynecology, University of Manitoba, Winnipeg, Canada
- Center for Global Health and Diseases, Case Western Reserve University, Ohio, United States of America
| | - Alicia Berard
- Departments of Obstetrics & Gynecology, University of Manitoba, Winnipeg, Canada
| | - Stuart McCorrister
- Mass Spectrometry and Proteomics Core Facility, National Microbiology Lab, Public Health Agency of Canada, Winnipeg, Canada
| | - Garett Westmacott
- Mass Spectrometry and Proteomics Core Facility, National Microbiology Lab, Public Health Agency of Canada, Winnipeg, Canada
| | - Al Leslie
- Africa Health Research Institute, Durban, South Africa
- Department of Infection and Immunity, University College London, London, United Kingdom
| | - Vanessa Poliquin
- Departments of Obstetrics & Gynecology, University of Manitoba, Winnipeg, Canada
| | - Renee Heffron
- Department of Global Health and Department of Epidemiology, University of Washington, Seattle, Washington, United States of America
| | | | - Adam D. Burgener
- Departments of Obstetrics & Gynecology, University of Manitoba, Winnipeg, Canada
- Center for Global Health and Diseases, Case Western Reserve University, Ohio, United States of America
- Medical Microbiology, University of Manitoba, Winnipeg, Canada
- Unit of Infectious Diseases, Department of Medicine Solna, Center for Molecular Medicine, Karolinska Institute, Karolinska University Hospital, Stockholm, Sweden
- * E-mail:
| |
Collapse
|
18
|
Vicetti Miguel RD, Quispe Calla NE, Cherpes TL. HIV, progestins, genital epithelial barrier function, and the burden of objectivity†. Biol Reprod 2020; 103:318-322. [PMID: 32561906 PMCID: PMC7401028 DOI: 10.1093/biolre/ioaa078] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Revised: 05/07/2020] [Accepted: 05/12/2020] [Indexed: 02/04/2023] Open
Abstract
Contributions from a diverse set of scientific disciplines will be needed to help individuals make fully informed decisions regarding contraceptive choices least likely to promote HIV susceptibility. This commentary recaps contrasting interpretations of results from the Evidence for Contraceptive Options and HIV Outcomes (ECHO) Trial, a study that compared HIV risk in women using the progestin-only injectable contraceptive depot medroxyprogesterone acetate (DMPA) vs. two other contraceptive choices. It also summarizes results from basic and translational research that establish biological plausibility for earlier clinical studies that identified enhanced HIV susceptibility in women using DMPA.
Collapse
Affiliation(s)
| | - Nirk E Quispe Calla
- Department of Comparative Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - Thomas L Cherpes
- Department of Comparative Medicine, Stanford University School of Medicine, Stanford, CA, USA
| |
Collapse
|
19
|
Lim SM, Wever R, Pas SD, Bonofacio G, Koopmans MPG, Martina BEE. Zika Virus Outbreak on Curaçao and Bonaire, a Report Based on Laboratory Diagnostics Data. Front Public Health 2019; 7:333. [PMID: 31781532 PMCID: PMC6861455 DOI: 10.3389/fpubh.2019.00333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Accepted: 10/25/2019] [Indexed: 11/18/2022] Open
Abstract
Background: Zika virus (ZIKV) emerged in May 2015 in Brazil, from which it spread to many other countries in Latin America. Cases of ZIKV infection were eventually also reported in Curaçao (January 2016) and Bonaire (February 2016). Methods: In the period of 16 December 2015 until 26 April 2017, serum, EDTA-plasma or urine samples were taken at Medical Laboratory Services (MLS) from patients on Curaçao and tested in qRT-PCR at the Erasmus Medical Centre (EMC) in the Netherlands. Between 17 October 2016 until 26 April 2017 all samples of suspected ZIKV-patients collected on Curaçao, as well as on Bonaire, were tested at MLS. Paired urine and/or serum samples from patients were analyzed for ZIKV shedding kinetics, and compared in terms of sensitivity for ZIKV RNA detection. Furthermore, the age and gender of patients were used to determine ZIKV incidence rates, and their geozone location to determine the spatial distribution of ZIKV cases. Results: In total, 781 patients of 2820 tested individuals were found qRT-PCR-positive for ZIKV on Curaçao. The first two ZIKV cases were diagnosed in December 2015. A total of 112 patients of 382 individuals tested qRT-PCR-positive for ZIKV on Bonaire. For both islands, the peak number of absolute cases occurred in November 2016, with 247 qRT-PCR confirmed cases on Curaçao and 66 qRT-PCR-positive cases on Bonaire. Overall, a higher proportion of women than men was diagnosed with ZIKV on both islands, as well as mostly individuals in the age category of 25–54 years old. Furthermore, ZIKV cases were mostly clustered in the east of the island, in Willemstad. Conclusions: ZIKV cases confirmed by qRT-PCR indicate that the virus was circulating on Curaçao between at least December 2015 and March 2017, and on Bonaire between at least October 2016 and February 2017, with peak cases occurring in November 2016. The lack of preparedness of Curaçao for the ZIKV outbreak was compensated by shipping all samples to the EMC for diagnostic testing; however, both islands will need to put the right infrastructure in place to enable a rapid response to an outbreak of any new emergent virus in the future.
Collapse
Affiliation(s)
| | - Robert Wever
- Medical Laboratory Services, Willemstad, Curaçao
| | - Suzan D Pas
- Department of Viroscience, WHO Collaborating Centre for Arboviruses and Hemorrhagic Fevers, Erasmus Medical Center, Rotterdam, Netherlands
| | | | - Marion P G Koopmans
- Department of Viroscience, WHO Collaborating Centre for Arboviruses and Hemorrhagic Fevers, Erasmus Medical Center, Rotterdam, Netherlands
| | - Byron E E Martina
- Artemis One Health Research Foundation, Delft, Netherlands.,Department of Viroscience, WHO Collaborating Centre for Arboviruses and Hemorrhagic Fevers, Erasmus Medical Center, Rotterdam, Netherlands
| |
Collapse
|
20
|
Current advances in HIV vaccine preclinical studies using Macaque models. Vaccine 2019; 37:3388-3399. [PMID: 31088747 DOI: 10.1016/j.vaccine.2019.04.094] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2018] [Revised: 04/02/2019] [Accepted: 04/30/2019] [Indexed: 02/06/2023]
Abstract
The macaque simian or simian/human immunodeficiency virus (SIV/SHIV) challenge model has been widely used to inform and guide human vaccine trials. Substantial advances have been made recently in the application of repeated-low-dose challenge (RLD) approach to assess SIV/SHIV vaccine efficacies (VE). Some candidate HIV vaccines have shown protective effects in preclinical studies using the macaque SIV/SHIV model but the model's true predictive value for screening potential HIV vaccine candidates needs to be evaluated further. Here, we review key parameters used in the RLD approach and discuss their relevance for evaluating VE to improve preclinical studies of candidate HIV vaccines.
Collapse
|
21
|
Boodhram R, Moodley D, Abbai N, Ramjee G. Association of endogenous progesterone levels in young women using hormonal contraception with recent HIV-1 infection. BMC WOMENS HEALTH 2019; 19:63. [PMID: 31068152 PMCID: PMC6505278 DOI: 10.1186/s12905-019-0761-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 08/14/2018] [Accepted: 04/26/2019] [Indexed: 12/13/2022]
Abstract
BACKGROUND A high endogenous progesterone luteal state in the menstrual cycle has been independently associated with Human Immunodeficiency Virus (HIV) incidence in epidemiological studies. Hormonal contraception particularly high dose Depot Medroxyprogesterone Acetate (DMPA) is also thought to increase the risk of HIV acquisition. Inconsistent reports of this association have led us to hypothesize that unsuppressed endogenous progesterone level in women who reported hormonal contraception (HC) use may be an explanation for increased vulnerability to HIV. METHODS This pilot study was a secondary cross-sectional analysis of data and laboratory testing of stored specimens collected from women who participated in the SAMRC HIV prevention MDP 301 trial during 2005-2009 in South Africa. Serum progesterone levels were measured in 39 women at the point of first positive HIV diagnosis during study follow-up and 36 women who remained HIV uninfected at the 52-week study exit visit. RESULTS Overall, the median (IQR) progesterone level in 49 women using hormonal contraception was 0.39 ng/ml (IQR 0.13-0.45) and 48 (97.9%) women had a progesterone level < 3.0 ng/ml suggestive of adequate progesterone suppression for contraceptive efficacy. After excluding the one woman with a progesterone level of > 3.0 ng/ml, the median progesterone level in women using DMPA remained marginally higher at 0.42 ng/ml (IQR 0.27-0.45) than women using Norethisterone Enanthate (NET-EN) (0.31 ng/ml; IQR 0.13-0.41, p = 0.061). For women using hormonal contraception, the median progesterone level did not differ between women with recent HIV infection or women who remained HIV negative (0.39 vs 0.38 ng/ml, p = 0.959). Similarly, the median progesterone level in women using DMPA or NET-EN did not differ by HIV status (0.43 vs 0.41 ng/ml, p = 0.905; 0.24 vs 0.31 ng/ml, p = 0.889). CONCLUSION Among women using hormonal contraception, DMPA or NET-EN we did not observe a significant difference in progesterone levels between women with recently acquired HIV infection and women who remained HIV negative. Our findings suggest that endogenous progesterone levels remain suppressed in the presence of hormonal contraception and are not likely to be associated with HIV acquisition.
Collapse
Affiliation(s)
- Resha Boodhram
- HIV Prevention Research Unit, South African Medical Research Council, Durban, South Africa
| | - Dhayendre Moodley
- Department of Obstetrics and Gynaecology, School of Clinical Medicine, College of Health Sciences, University of KwaZulu Natal, 719 Umbilo Road, Durban, 4051, South Africa.
| | - Nathlee Abbai
- Department of Clinical Medicine Laboratory, School of Clinical Medicine, College of Health Sciences, University of KwaZulu Natal, Durban, South Africa
| | - Gita Ramjee
- HIV Prevention Research Unit, South African Medical Research Council, Durban, South Africa.,Department of Epidemiology and Population Health, London School of Hygiene & Tropical Medicine, London, UK.,Department of Global Health, University of Washington, Seattle, USA
| |
Collapse
|
22
|
Abstract
Most new HIV infections, over 80%, occur through sexual transmission. During sexual transmission, the virus must bypass specific female and male reproductive tract anatomical barriers to encounter viable target cells. Understanding the generally efficient ability of these barrier to exclude HIV and the precise mechanisms of HIV translocation beyond these genital barriers is essential for vaccine and novel therapeutic development. In this review, we explore the mucosal, barriers of cervico-vaginal and penile tissues that comprise the female and male reproductive tracts. The unique cellular assemblies f the squamous and columnar epithelium are illustrate highlighting their structure and function. Each anatomical tissue offers a unique barrier to virus entry in healthy individuals. Unfortunately barrier dysfunction can lead to HIV transmission. How these diverse mucosal barriers have the potential to fail is considered, highlighting those anatomical areas that are postulated to offer a weaker barrier and are; therefore, more susceptible to viral ingress. Risk factors, such as sexually transmitted infections, microbiome dysbiosis, and high progestin environments are also associated with increased acquisition of HIV. How these states may affect the integrity of mucosal barriers leading to HIV acquisition are discussed suggesting mechanisms of transmission and revealing potential targets for intervention.
Collapse
Affiliation(s)
- Ann M Carias
- Department of Cell and Molecular Biology, Feinberg School of Medicine, Northwestern University, Lurie 9-290, Chicago, IL 60611, USA
| | - Thomas J Hope
- Department of Cell and Molecular Biology, Feinberg School of Medicine, Northwestern University, Lurie 9-290, Chicago, IL 60611, USA
| |
Collapse
|
23
|
Highlights from the Fourth Biennial Strategies for an HIV Cure Meeting, 10–12 October 2018, Bethesda, MD, USA. J Virus Erad 2019. [DOI: 10.1016/s2055-6640(20)30280-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
|
24
|
Kuo L, Lawrence D, McDonald D, Refsland E, Bridges S, Smiley S, Tressler RL, Beaubien C, Salzwedel K. Highlights from the Fourth Biennial Strategies for an HIV Cure Meeting, 10-12 October 2018, Bethesda, MD, USA. J Virus Erad 2019; 5:50-59. [PMID: 30800428 PMCID: PMC6362907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
The National Institute of Allergy and Infectious Diseases (NIAID) organised the Strategies for an HIV Cure 2018 meeting focused on research to develop innovative strategies for eradicating or achieving long-term remission of HIV infection. The purpose was to bring together researchers studying HIV persistence and cure strategies, including the six National Institutes of Health (NIH)-funded Martin Delaney Collaboratories for HIV Cure Research (MDCs), as well as industry and community partners, to share scientific results and stimulate active discussion among all stakeholders about the merits of various approaches under investigation. These discussions were intended to stimulate new collaborations and ideas for future research. The meeting covered a comprehensive range of topics spanning basic and translational research, drug discovery and development, and clinical research. Aside from the oral presentations described here, the meeting also included 130 poster presentations. Each of the three days of presentations is available for viewing via the NIH VideoCast website at: https://videocast.nih.gov/PastEvents.asp.
Collapse
Affiliation(s)
- Lillian Kuo
- Division of AIDS,
National Institute of Allergy and Infectious Diseases,
Bethesda,
MD,
USA
| | - Diane Lawrence
- Division of AIDS,
National Institute of Allergy and Infectious Diseases,
Bethesda,
MD,
USA
| | - David McDonald
- Division of AIDS,
National Institute of Allergy and Infectious Diseases,
Bethesda,
MD,
USA
| | - Eric Refsland
- Division of AIDS,
National Institute of Allergy and Infectious Diseases,
Bethesda,
MD,
USA
| | - Sandra Bridges
- Division of AIDS,
National Institute of Allergy and Infectious Diseases,
Bethesda,
MD,
USA
| | - Stephen Smiley
- Division of AIDS,
National Institute of Allergy and Infectious Diseases,
Bethesda,
MD,
USA
| | - Randall L Tressler
- Division of AIDS,
National Institute of Allergy and Infectious Diseases,
Bethesda,
MD,
USA
| | - Candice Beaubien
- Division of AIDS,
National Institute of Allergy and Infectious Diseases,
Bethesda,
MD,
USA
| | - Karl Salzwedel
- Division of AIDS,
National Institute of Allergy and Infectious Diseases,
Bethesda,
MD,
USA
| |
Collapse
|
25
|
Li H, Hai Y, Lim SY, Toledo N, Crecente-Campo J, Schalk D, Li L, Omange RW, Dacoba TG, Liu LR, Kashem MA, Wan Y, Liang B, Li Q, Rakasz E, Schultz-Darken N, Alonso MJ, Plummer FA, Whitney JB, Luo M. Mucosal antibody responses to vaccines targeting SIV protease cleavage sites or full-length Gag and Env proteins in Mauritian cynomolgus macaques. PLoS One 2018; 13:e0202997. [PMID: 30153293 PMCID: PMC6112674 DOI: 10.1371/journal.pone.0202997] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2018] [Accepted: 08/13/2018] [Indexed: 02/07/2023] Open
Abstract
HIV mutates rapidly and infects CD4+ T cells, especially when they are activated. A vaccine targeting conserved, essential viral elements while limiting CD4+ T cell activation could be effective. Learning from natural immunity observed in a group of highly HIV-1 exposed seronegative Kenyan female sex workers, we are testing a novel candidate HIV vaccine targeting the 12 viral protease cleavage sites (PCSs) (the PCS vaccine), in comparison with a vaccine targeting full-length Gag and Env (the Gag/Env vaccine) in a Mauritian cynomolgus macaque/SIV model. In this study we evaluated these vaccines for induction of mucosal antibodies to SIV immunogens at the female genital tract. Bio-Plex and Western blot analyses of cervicovaginal lavage samples showed that both the PCS and Gag/Env vaccines can elicit mucosal IgG antibody responses to SIV immunogens. Significantly higher increase of anti-PCS antibodies was induced by the PCS vaccine than by the Gag/Env vaccine (p<0.0001). The effect of the mucosal antibody responses in protection from repeated low dose pathogenic SIVmac251 challenges is being evaluated.
Collapse
Affiliation(s)
- Hongzhao Li
- Department of Medical Microbiology and Infectious Diseases, University of Manitoba, Winnipeg, MB, Canada
| | - Yan Hai
- Department of Medical Microbiology and Infectious Diseases, University of Manitoba, Winnipeg, MB, Canada
| | - So-Yon Lim
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, United States of America
| | - Nikki Toledo
- Department of Medical Microbiology and Infectious Diseases, University of Manitoba, Winnipeg, MB, Canada
| | - Jose Crecente-Campo
- Center for Research in Molecular Medicine and Chronic Diseases (CIMUS), Campus Vida, Universidade de Santiago de Compostela, Santiago de Compostela, Spain
| | - Dane Schalk
- Scientific Protocol Implementation Unit, Wisconsin National Primate Research Center, Madison, WI, United States of America
| | - Lin Li
- National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, MB, Canada
| | - Robert W Omange
- Department of Medical Microbiology and Infectious Diseases, University of Manitoba, Winnipeg, MB, Canada
| | - Tamara G Dacoba
- Center for Research in Molecular Medicine and Chronic Diseases (CIMUS), Campus Vida, Universidade de Santiago de Compostela, Santiago de Compostela, Spain
| | - Lewis R Liu
- Department of Medical Microbiology and Infectious Diseases, University of Manitoba, Winnipeg, MB, Canada
| | - Mohammad Abul Kashem
- Department of Medical Microbiology and Infectious Diseases, University of Manitoba, Winnipeg, MB, Canada
| | - Yanmin Wan
- Nebraska Center for Virology, School of Biological Sciences, University of Nebraska-Lincoln, Lincoln, NE, United States of America
| | - Binhua Liang
- National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, MB, Canada.,Department of Biochemistry and Medical Genetics, University of Manitoba, Winnipeg, MB, Canada
| | - Qingsheng Li
- Nebraska Center for Virology, School of Biological Sciences, University of Nebraska-Lincoln, Lincoln, NE, United States of America
| | - Eva Rakasz
- Immunology Services Unit, Wisconsin National Primate Research Center, Madison, WI, United States of America
| | - Nancy Schultz-Darken
- Scientific Protocol Implementation Unit, Wisconsin National Primate Research Center, Madison, WI, United States of America
| | - Maria J Alonso
- Center for Research in Molecular Medicine and Chronic Diseases (CIMUS), Campus Vida, Universidade de Santiago de Compostela, Santiago de Compostela, Spain
| | - Francis A Plummer
- Department of Medical Microbiology and Infectious Diseases, University of Manitoba, Winnipeg, MB, Canada.,National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, MB, Canada
| | - James B Whitney
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, United States of America.,Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA, United States of America
| | - Ma Luo
- Department of Medical Microbiology and Infectious Diseases, University of Manitoba, Winnipeg, MB, Canada.,National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, MB, Canada
| |
Collapse
|
26
|
Kumar S. Sexual transmission of Zika virus: more to explore. THE LANCET GLOBAL HEALTH 2018; 6:e618. [DOI: 10.1016/s2214-109x(18)30214-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2018] [Accepted: 03/26/2018] [Indexed: 10/16/2022] Open
|
27
|
Bradley F, Birse K, Hasselrot K, Noël-Romas L, Introini A, Wefer H, Seifert M, Engstrand L, Tjernlund A, Broliden K, Burgener AD. The vaginal microbiome amplifies sex hormone-associated cyclic changes in cervicovaginal inflammation and epithelial barrier disruption. Am J Reprod Immunol 2018; 80:e12863. [PMID: 29709092 DOI: 10.1111/aji.12863] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2018] [Accepted: 03/28/2018] [Indexed: 12/27/2022] Open
Abstract
PROBLEM Susceptibility to HIV is associated with the menstrual cycle and vaginal microbiome, but their collective impact on vaginal inflammation remains unclear. Here, we characterized the cervicovaginal proteome, inflammation, and microbiome community structure and function during the menstrual cycle. METHOD OF STUDY Cervicovaginal secretions were collected from regularly cycling women (n = 16) at median day 10, 16, and 24 of each menstrual cycle and analyzed by mass spectrometry, 16S rRNA gene sequencing, and a multiplex bead array immunoassay. Follicular, ovulatory, and luteal phases were defined by serum sex hormone levels. RESULTS Ovulation showed the largest mucosal proteome changes, where 30% and 19% of the 406 human proteins identified differed compared to the luteal and follicular phases, respectively. Neutrophil/leukocyte migration pathways were lowest during ovulation and peaked in the luteal phase, while antimicrobial and epithelial barrier promoting proteins were highest during ovulation. Vaginal microbial community structure and function did not vary significantly during the menstrual cycle, with the majority consistently Lactobacillus-dominant (63%) or non-Lactobacillus-dominant (25%). Fluctuations in the epithelial barrier protein RPTN between the ovulatory and luteal phase were amplified in women with Gardnerella vaginalis and anaerobic bacteria and reduced when Lactobacillus was dominant. CONCLUSION This small study demonstrates that sex hormones modulate neutrophil/leukocyte inflammation, barrier function, and antimicrobial pathways in the female genital tract with the strongest changes occurring during ovulation. The data further suggest a microbiome context for hormone-driven changes in vaginal immunity which may have implications for HIV susceptibility.
Collapse
Affiliation(s)
- Frideborg Bradley
- Department of Medicine Solna, Unit of Infectious Diseases, Center for Molecular Medicine, Karolinska Institutet Karolinska University Hospital, Stockholm, Sweden
| | - Kenzie Birse
- Department of Medical Microbiology, University of Manitoba, Winnipeg, MB, Canada.,National HIV and Retrovirology Labs, JC Wilt Infectious Disease Centre, Public Health Agency of Canada, Winnipeg, MB, Canada
| | - Klara Hasselrot
- Department of Medicine Solna, Unit of Infectious Diseases, Center for Molecular Medicine, Karolinska Institutet Karolinska University Hospital, Stockholm, Sweden.,Department of Gynaecology, Danderyds Hospital, Stockholm, Sweden
| | - Laura Noël-Romas
- Department of Medical Microbiology, University of Manitoba, Winnipeg, MB, Canada.,National HIV and Retrovirology Labs, JC Wilt Infectious Disease Centre, Public Health Agency of Canada, Winnipeg, MB, Canada
| | - Andrea Introini
- Department of Medicine Solna, Unit of Infectious Diseases, Center for Molecular Medicine, Karolinska Institutet Karolinska University Hospital, Stockholm, Sweden
| | - Hugo Wefer
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden.,Science for Life Laboratory, Clinical Genomics Facility, Solna, Sweden
| | - Maike Seifert
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden.,Science for Life Laboratory, Clinical Genomics Facility, Solna, Sweden
| | - Lars Engstrand
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden.,Science for Life Laboratory, Clinical Genomics Facility, Solna, Sweden
| | - Annelie Tjernlund
- Department of Medicine Solna, Unit of Infectious Diseases, Center for Molecular Medicine, Karolinska Institutet Karolinska University Hospital, Stockholm, Sweden
| | - Kristina Broliden
- Department of Medicine Solna, Unit of Infectious Diseases, Center for Molecular Medicine, Karolinska Institutet Karolinska University Hospital, Stockholm, Sweden
| | - Adam D Burgener
- Department of Medicine Solna, Unit of Infectious Diseases, Center for Molecular Medicine, Karolinska Institutet Karolinska University Hospital, Stockholm, Sweden.,Department of Medical Microbiology, University of Manitoba, Winnipeg, MB, Canada.,National HIV and Retrovirology Labs, JC Wilt Infectious Disease Centre, Public Health Agency of Canada, Winnipeg, MB, Canada
| |
Collapse
|
28
|
Sanders-Beer BE, Voronin Y, McDonald D, Singh A. Harnessing Novel Imaging Approaches to Guide HIV Prevention and Cure Discoveries-A National Institutes of Health and Global HIV Vaccine Enterprise 2017 Meeting Report. AIDS Res Hum Retroviruses 2018; 34:12-26. [PMID: 29145733 DOI: 10.1089/aid.2017.0216] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Advances in imaging technologies have greatly increased our understanding of cellular and molecular interactions in humans and their corresponding animal models of infectious diseases. In the HIV/SIV field, imaging has provided key insights into mucosal viral transmission, local and systemic virus spread, host-virus dynamics, and chronic inflammation/immune activation and the resultant immunopathology. Recent developments in imaging applications are yielding physical, spatial, and temporal measurements to enhance insight into biological functions and disease processes, while retaining important cellular, microenvironmental, organ, and intact organism contextual details. Taking advantage of the latest advancements in imaging technologies may help answer important questions in the HIV field. The Global HIV Vaccine Enterprise in collaboration with the National Institutes of Health (NIH) sponsored a meeting on May 8 and 9, 2017 to provide a platform to review state-of-the-art imaging technologies and to foster multidisciplinary collaborations in HIV/AIDS research. The meeting covered applications of imaging in studies of early events and pathogenesis, reservoirs, and cure, as well as in vaccine development. In addition, presentations and discussions of imaging applications from non-HIV biomedical research areas were included. This report summarizes the presentations and discussions at the meeting.
Collapse
Affiliation(s)
- Brigitte E. Sanders-Beer
- Division of AIDS, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland
| | | | - David McDonald
- Division of AIDS, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland
| | - Anjali Singh
- Division of AIDS, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland
| |
Collapse
|