1
|
Listian SA, Mazur AC, Kol M, Ufelmann E, Eising S, Fröhlich F, Walter S, Holthuis JCM, Barisch C. Complex sphingolipid profiling and identification of an inositol-phosphorylceramide synthase in Dictyostelium discoideum. iScience 2024; 27:110609. [PMID: 39286488 PMCID: PMC11402645 DOI: 10.1016/j.isci.2024.110609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 06/12/2024] [Accepted: 07/26/2024] [Indexed: 09/19/2024] Open
Abstract
Dictyostelium discoideum is a professional phagocyte frequently used to study cellular processes underlying the recognition, engulfment, and infection course of microbial pathogens. Sphingolipids are abundant components of the plasma membrane that bind cholesterol, control membrane properties, participate in signal transmission, and serve as adhesion molecules in recognition processes relevant to immunity and infection. By combining lipidomics with a bioinformatics-based cloning strategy, we show here that D. discoideum produces phosphoinositol-containing sphingolipids with predominantly phytoceramide backbones. Cell-free expression of candidate inositol-phosphorylceramide (IPC) synthases from D. discoideum enabled identification of an enzyme that selectively catalyzes the transfer of phosphoinositol from phosphatidylinositol onto ceramide. The IPC synthase, DdIPCS1, shares multiple sequence motifs with yeast IPC and human sphingomyelin synthases and localizes to the Golgi apparatus as well as the contractile vacuole of D. discoideum. These findings open up important opportunities for exploring a role of sphingolipids in phagocytosis and infection across major evolutionary boundaries.
Collapse
Affiliation(s)
- Stevanus A Listian
- Division of Molecular Infection Biology, Department of Biology/Chemistry, University of Osnabrück, Osnabrück, Germany
| | - Anna-Carina Mazur
- Division of Molecular Infection Biology, Department of Biology/Chemistry, University of Osnabrück, Osnabrück, Germany
- Centre for Structural Systems Biology, Hamburg, Germany
- Division of Host-Microbe Interactome, Research Center Borstel (FZB) - Leibniz Lung Center, Borstel, Germany
- Department of Biology, University of Hamburg, Hamburg, Germany
| | - Matthijs Kol
- Division of Molecular Cell Biology, Department of Biology/Chemistry, University of Osnabrück, Osnabrück, Germany
- Center of Cellular Nanoanalytics (CellNanOs), University of Osnabrück, Osnabrück, Germany
| | - Edwin Ufelmann
- Division of Molecular Infection Biology, Department of Biology/Chemistry, University of Osnabrück, Osnabrück, Germany
| | - Sebastian Eising
- Division of Molecular Membrane Biology, Department of Biology/Chemistry, University of Osnabrück, Osnabrück, Germany
| | - Florian Fröhlich
- Division of Molecular Membrane Biology, Department of Biology/Chemistry, University of Osnabrück, Osnabrück, Germany
- Center of Cellular Nanoanalytics (CellNanOs), University of Osnabrück, Osnabrück, Germany
| | - Stefan Walter
- Center of Cellular Nanoanalytics (CellNanOs), University of Osnabrück, Osnabrück, Germany
| | - Joost C M Holthuis
- Division of Molecular Cell Biology, Department of Biology/Chemistry, University of Osnabrück, Osnabrück, Germany
- Center of Cellular Nanoanalytics (CellNanOs), University of Osnabrück, Osnabrück, Germany
| | - Caroline Barisch
- Division of Molecular Infection Biology, Department of Biology/Chemistry, University of Osnabrück, Osnabrück, Germany
- Center of Cellular Nanoanalytics (CellNanOs), University of Osnabrück, Osnabrück, Germany
- Centre for Structural Systems Biology, Hamburg, Germany
- Division of Host-Microbe Interactome, Research Center Borstel (FZB) - Leibniz Lung Center, Borstel, Germany
- Department of Biology, University of Hamburg, Hamburg, Germany
| |
Collapse
|
2
|
Liu R, Dang JN, Lee R, Lee JJ, Kesavamoorthy N, Ameri H, Rao N, Eoh H. Mycobacterium dormancy and antibiotic tolerance within the retinal pigment epithelium of ocular tuberculosis. Microbiol Spectr 2024; 12:e0078824. [PMID: 38916325 PMCID: PMC11302011 DOI: 10.1128/spectrum.00788-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Accepted: 05/23/2024] [Indexed: 06/26/2024] Open
Abstract
Tuberculosis (TB) is a leading cause of death among infectious diseases worldwide due to latent TB infection, which is the critical step for the successful pathogenic cycle. In this stage, Mycobacterium tuberculosis resides inside the host in a dormant and antibiotic-tolerant state. Latent TB infection can also lead to multisystemic diseases because M. tuberculosis invades virtually all organs, including ocular tissues. Ocular tuberculosis (OTB) occurs when the dormant bacilli within the ocular tissues reactivate, originally seeded by hematogenous spread from pulmonary TB. Histological evidence suggests that retinal pigment epithelium (RPE) cells play a central role in immune privilege and in protection from antibiotic effects, making them an anatomical niche for invading M. tuberculosis. RPE cells exhibit high tolerance to environmental redox stresses, allowing phagocytosed M. tuberculosis bacilli to maintain viability in a dormant state. However, the microbiological and metabolic mechanisms determining the interaction between the RPE intracellular environment and phagocytosed M. tuberculosis are largely unknown. Here, liquid chromatography-mass spectrometry metabolomics were used to illuminate the metabolic state within RPE cells reprogrammed to harbor dormant M. tuberculosis bacilli and enhance antibiotic tolerance. Timely and accurate diagnosis as well as efficient chemotherapies are crucial in preventing the poor visual outcomes of OTB patients. Unfortunately, the efficacy of current methods is highly limited. Thus, the results will lead to propose a novel therapeutic option to synthetically kill the dormant M. tuberculosis inside the RPE cells by modulating the phenotypic state of M. tuberculosis and laying the foundation for a new, innovative regimen for treating OTB. IMPORTANCE Understanding the metabolic environment within the retinal pigment epithelium (RPE) cells altered by infection with Mycobacterium tuberculosis and mycobacterial dormancy is crucial to identify new therapeutic methods to cure ocular tuberculosis. The present study showed that RPE cellular metabolism is altered to foster intracellular M. tuberculosis to enter into the dormant and drug-tolerant state, thereby blunting the efficacy of anti-tuberculosis chemotherapy. RPE cells serve as an anatomical niche as the cells protect invading bacilli from antibiotic treatment. LC-MS metabolomics of RPE cells after co-treatment with H2O2 and M. tuberculosis infection showed that the intracellular environment within RPE cells is enriched with a greater level of oxidative stress. The antibiotic tolerance of intracellular M. tuberculosis within RPE cells can be restored by a metabolic manipulation strategy such as co-treatment of antibiotic with the most downstream glycolysis metabolite, phosphoenolpyruvate.
Collapse
Affiliation(s)
- Rachel Liu
- Molecular Microbiology and Immunology, Keck School of Medicine, University of Southern California, Los Angeles, California, USA
| | - Joshua N. Dang
- Roski Eye Institute, Keck School of Medicine, University of Southern California, Los Angeles, California, USA
| | - Rhoeun Lee
- Molecular Microbiology and Immunology, Keck School of Medicine, University of Southern California, Los Angeles, California, USA
- School of Pharmacy, Sungkyunkwan University, Suwon, South Korea
| | - Jae Jin Lee
- Molecular Microbiology and Immunology, Keck School of Medicine, University of Southern California, Los Angeles, California, USA
| | - Niranjana Kesavamoorthy
- Roski Eye Institute, Keck School of Medicine, University of Southern California, Los Angeles, California, USA
| | - Hossein Ameri
- Roski Eye Institute, Keck School of Medicine, University of Southern California, Los Angeles, California, USA
| | - Narsing Rao
- Roski Eye Institute, Keck School of Medicine, University of Southern California, Los Angeles, California, USA
| | - Hyungjin Eoh
- Molecular Microbiology and Immunology, Keck School of Medicine, University of Southern California, Los Angeles, California, USA
- Roski Eye Institute, Keck School of Medicine, University of Southern California, Los Angeles, California, USA
| |
Collapse
|
3
|
Xia F, Liu Y, Wei L, Shao S, Zhang Y, Ma Y, Wang Q. Long-chain unsaturated fatty acids sensor controlling the type III/VI secretion system is essential for Edwardsiella piscicida infection. Microbiol Res 2024; 285:127770. [PMID: 38788352 DOI: 10.1016/j.micres.2024.127770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2024] [Revised: 05/07/2024] [Accepted: 05/15/2024] [Indexed: 05/26/2024]
Abstract
Edwardsiella piscicida is an acute marine pathogen that causes severe damage to the aquaculture industry worldwide. The pathogenesis of E. piscicida is dependent mainly on the type III secretion system (T3SS) and type VI secretion system (T6SS), both of which are critically regulated by EsrB and EsrC. In this study, we revealed that fatty acids influence T3SS expression. Unsaturated fatty acids (UFAs), but not saturated fatty acids (SFAs), directly interact with EsrC, which abolishes the function of EsrC and results in the turn-off of T3/T6SS. Moreover, during the in vivo colonization of E. piscicida, host fatty acids were observed to be transported into E. piscicida through FadL and to modulate the expression of T3/T6SS. Furthermore, the esrCR38G mutant blocked the interaction between EsrC and UFAs, leading to dramatic growth defects in DMEM and impaired colonization in HeLa cells and zebrafish. In conclusion, this study revealed that the interaction between UFAs and EsrC to turn off T3/T6SS expression is essential for E. piscicida infection.
Collapse
Affiliation(s)
- Feng Xia
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Yihan Liu
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Lifan Wei
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Shuai Shao
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, China; Shanghai Engineering Research Center of Maricultured Animal Vaccines, Shanghai, China; Laboratory of Aquatic Animal Diseases of MOA, Shanghai 200237, China
| | - Yuanxing Zhang
- Shanghai Engineering Research Center of Maricultured Animal Vaccines, Shanghai, China; Laboratory of Aquatic Animal Diseases of MOA, Shanghai 200237, China
| | - Yue Ma
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, China; Shanghai Engineering Research Center of Maricultured Animal Vaccines, Shanghai, China; Laboratory of Aquatic Animal Diseases of MOA, Shanghai 200237, China.
| | - Qiyao Wang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, China; Shanghai Engineering Research Center of Maricultured Animal Vaccines, Shanghai, China; Laboratory of Aquatic Animal Diseases of MOA, Shanghai 200237, China; Shanghai Haosi Marine Biotechnology Co., Ltd, China.
| |
Collapse
|
4
|
Guallar-Garrido S, Soldati T. Exploring host-pathogen interactions in the Dictyostelium discoideum-Mycobacterium marinum infection model of tuberculosis. Dis Model Mech 2024; 17:dmm050698. [PMID: 39037280 PMCID: PMC11552500 DOI: 10.1242/dmm.050698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/23/2024] Open
Abstract
Mycobacterium tuberculosis is a pathogenic mycobacterium that causes tuberculosis. Tuberculosis is a significant global health concern that poses numerous clinical challenges, particularly in terms of finding effective treatments for patients. Throughout evolution, host immune cells have developed cell-autonomous defence strategies to restrain and eliminate mycobacteria. Concurrently, mycobacteria have evolved an array of virulence factors to counteract these host defences, resulting in a dynamic interaction between host and pathogen. Here, we review recent findings, including those arising from the use of the amoeba Dictyostelium discoideum as a model to investigate key mycobacterial infection pathways. D. discoideum serves as a scalable and genetically tractable model for human phagocytes, providing valuable insights into the intricate mechanisms of host-pathogen interactions. We also highlight certain similarities between M. tuberculosis and Mycobacterium marinum, and the use of M. marinum to more safely investigate mycobacteria in D. discoideum.
Collapse
Affiliation(s)
- Sandra Guallar-Garrido
- Department of Biochemistry, Faculty of Science, University of Geneva, 30 quai Ernest-Ansermet, Science II, 1211 Geneva-4, Switzerland
| | - Thierry Soldati
- Department of Biochemistry, Faculty of Science, University of Geneva, 30 quai Ernest-Ansermet, Science II, 1211 Geneva-4, Switzerland
| |
Collapse
|
5
|
Liu R, Dang JN, Lee R, Lee JJ, Kesavamoorthy N, Ameri H, Rao N, Eoh H. Mycobacterium dormancy and antibiotic tolerance within the retinal pigment epithelium of ocular tuberculosis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.18.585612. [PMID: 38562751 PMCID: PMC10983995 DOI: 10.1101/2024.03.18.585612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
Tuberculosis (TB) is a leading cause of death among infectious diseases worldwide due to latent TB infection, which is the critical step for the successful pathogenic cycle. In this stage, Mycobacterium tuberculosis resides inside the host in a dormant and antibiotic-tolerant state. Latent TB infection can lead to a multisystemic diseases because M. tuberculosis invades virtually all organs, including ocular tissues. Ocular tuberculosis (OTB) occurs when the dormant bacilli within ocular tissues reactivate, originally seeded by hematogenous spread from pulmonary TB. Timely and accurate diagnosis as well as efficient chemotherapies are crucial in preventing poor visual outcomes of OTB patients. Histological evidence suggests that retinal pigment epithelium (RPE) cells play a central role in immune privilege and in the protection from the antibiotic effects, making them an anatomical niche for invading M. tuberculosis . RPE cells exhibit high tolerance to environmental redox stresses, allowing phagocytosed M. tuberculosis bacilli to maintain viability in a dormant state. However, the microbiological and metabolic mechanisms determining the interaction between the RPE intracellular environment and phagocytosed M. tuberculosis are largely unknown. Here, liquid chromatography mass spectrometry (LC-MS) metabolomics was used to illuminate the metabolic state within RPE cells reprogrammed to harbor dormant M. tuberculosis bacilli and enhance the antibiotic tolerance. The results have led to propose a novel therapeutic option to synthetically kill the dormant M. tuberculosis inside the RPE cells by modulating the phenotypic state of M. tuberculosis , thus laying the foundation for a new, innovative regimen for treating OTB. Importance Understanding the metabolic environment within the retinal pigment epithelium (RPE) cells altered by infection with M. tuberculosis and mycobacterial dormancy is crucial to identify new therapeutic methods to cure OTB. The present study showed that RPE cellular metabolism is altered to foster intracellular M. tuberculosis to enter into the dormant and drug tolerant state, thereby blunting the efficacy of anti-TB chemotherapy. RPE cells serve as an anatomical niche as the cells protect invading bacilli from antibiotic treatment. LC-MS metabolomics of RPE cells after co-treatment with H2O2 and M. tuberculosis infection showed that intracellular environment within RPE cells is enriched with greater level of oxidative stress. The antibiotic tolerance of intracellular M. tuberculosis within RPE cells can be restored by a metabolic manipulation strategy such as co-treatment of antibiotic with the most downstream glycolysis metabolite, phosphoenolpyruvate.
Collapse
|
6
|
Hong H, Dill-McFarland KA, Simmons JD, Peterson GJ, Benchek P, Mayanja-Kizza H, Boom WH, Stein CM, Hawn TR. Mycobacterium tuberculosis-dependent monocyte expression quantitative trait loci, cytokine production, and TB pathogenesis. Front Immunol 2024; 15:1359178. [PMID: 38515745 PMCID: PMC10954790 DOI: 10.3389/fimmu.2024.1359178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Accepted: 02/05/2024] [Indexed: 03/23/2024] Open
Abstract
Introduction The heterogeneity of outcomes after Mycobacterium tuberculosis (Mtb) exposure is a conundrum associated with millennia of host-pathogen co-evolution. We hypothesized that human myeloid cells contain genetically encoded, Mtb-specific responses that regulate critical steps in tuberculosis (TB) pathogenesis. Methods We mapped genome-wide expression quantitative trait loci (eQTLs) in Mtb-infected monocytes with RNAseq from 80 Ugandan household contacts of pulmonary TB cases to identify monocyte-specific, Mtb-dependent eQTLs and their association with cytokine expression and clinical resistance to tuberculin skin test (TST) and interferon-γ release assay (IGRA) conversion. Results cis-eQTLs (n=1,567) were identified in Mtb-infected monocytes (FDR<0.01), including 29 eQTLs in 16 genes which were Mtb-dependent (significant for Mtb:genotype interaction [FDR<0.1], but not classified as eQTL in uninfected condition [FDR≥0.01]). A subset of eQTLs were associated with Mtb-induced cytokine expression (n=8) and/or clinical resistance to TST/IGRA conversion (n=1). Expression of BMP6, an Mtb-dependent eQTL gene, was associated with IFNB1 induction in Mtb-infected and DNA ligand-induced cells. Network and enrichment analyses identified fatty acid metabolism as a pathway associated with eQTL genes. Discussion These findings suggest that monocyte genes contain Mtb-dependent eQTLs, including a subset associated with cytokine expression and/or clinical resistance to TST/IGRA conversion, providing insight into immunogenetic pathways regulating susceptibility to Mtb infection and TB pathogenesis.
Collapse
Affiliation(s)
- Hyejeong Hong
- Department of Biobehavioral Health Sciences, School of Nursing, University of Pennsylvania, Philadelphia, PA, United States
| | | | - Jason D. Simmons
- Department of Medicine, University of Washington, Seattle, WA, United States
| | - Glenna J. Peterson
- Department of Medicine, University of Washington, Seattle, WA, United States
| | - Penelope Benchek
- Department of Population & Quantitative Health Sciences, Case Western Reserve University, Cleveland, OH, United States
| | | | - W. Henry Boom
- Department of Medicine, Case Western Reserve University, Cleveland, OH, United States
| | - Catherine M. Stein
- Department of Population & Quantitative Health Sciences, Case Western Reserve University, Cleveland, OH, United States
- Department of Medicine, Case Western Reserve University, Cleveland, OH, United States
| | - Thomas R. Hawn
- Department of Medicine, University of Washington, Seattle, WA, United States
| |
Collapse
|
7
|
Franzkoch R, Anand A, Breitsprecher L, Psathaki OE, Barisch C. Resolving exit strategies of mycobacteria in Dictyostelium discoideum by combining high-pressure freezing with 3D-correlative light and electron microscopy. Mol Microbiol 2024; 121:593-604. [PMID: 38063129 DOI: 10.1111/mmi.15205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 11/21/2023] [Accepted: 11/23/2023] [Indexed: 03/12/2024]
Abstract
The infection course of Mycobacterium tuberculosis is highly dynamic and comprises sequential stages that require damaging and crossing of several membranes to enable the translocation of the bacteria into the cytosol or their escape from the host. Many important breakthroughs such as the restriction of mycobacteria by the autophagy pathway and the recruitment of sophisticated host repair machineries to the Mycobacterium-containing vacuole have been gained in the Dictyostelium discoideum/M. marinum system. Despite the availability of well-established light and advanced electron microscopy techniques in this system, a correlative approach integrating both methods with near-native ultrastructural preservation is currently lacking. This is most likely due to the low ability of D. discoideum to adhere to surfaces, which results in cell loss even after fixation. To address this problem, we improved the adhesion of cells and developed a straightforward and convenient workflow for 3D-correlative light and electron microscopy. This approach includes high-pressure freezing, which is an excellent technique for preserving membranes. Thus, our method allows to monitor the ultrastructural aspects of vacuole escape which is of central importance for the survival and dissemination of bacterial pathogens.
Collapse
Affiliation(s)
- Rico Franzkoch
- iBiOs-integrated Bioimaging Facility, University of Osnabrück, Osnabrück, Germany
- Center of Cellular Nanoanalytics, Osnabrück, Germany
- Division of Microbiology, Department of Biology, University of Osnabrück, Osnabrück, Germany
| | - Aby Anand
- Center of Cellular Nanoanalytics, Osnabrück, Germany
- Division of Molecular Infection Biology, Department of Biology, University of Osnabrück, Osnabrück, Germany
- Centre for Structural Systems Biology, Hamburg, Germany
- Division of Host-Microbe Interactome, Research Center Borstel - Leibniz Lung Center (FZB), Borstel, Germany
- Department of Biology, University of Hamburg, Hamburg, Germany
| | - Leonhard Breitsprecher
- iBiOs-integrated Bioimaging Facility, University of Osnabrück, Osnabrück, Germany
- Center of Cellular Nanoanalytics, Osnabrück, Germany
- Division of Microbiology, Department of Biology, University of Osnabrück, Osnabrück, Germany
| | - Olympia E Psathaki
- iBiOs-integrated Bioimaging Facility, University of Osnabrück, Osnabrück, Germany
- Center of Cellular Nanoanalytics, Osnabrück, Germany
| | - Caroline Barisch
- Center of Cellular Nanoanalytics, Osnabrück, Germany
- Division of Molecular Infection Biology, Department of Biology, University of Osnabrück, Osnabrück, Germany
- Centre for Structural Systems Biology, Hamburg, Germany
- Division of Host-Microbe Interactome, Research Center Borstel - Leibniz Lung Center (FZB), Borstel, Germany
- Department of Biology, University of Hamburg, Hamburg, Germany
| |
Collapse
|
8
|
Lefrançois LH, Nitschke J, Wu H, Panis G, Prados J, Butler RE, Mendum TA, Hanna N, Stewart GR, Soldati T. Temporal genome-wide fitness analysis of Mycobacterium marinum during infection reveals the genetic requirement for virulence and survival in amoebae and microglial cells. mSystems 2024; 9:e0132623. [PMID: 38270456 PMCID: PMC10878075 DOI: 10.1128/msystems.01326-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Accepted: 12/15/2023] [Indexed: 01/26/2024] Open
Abstract
Tuberculosis remains the most pervasive infectious disease and the recent emergence of drug-resistant strains emphasizes the need for more efficient drug treatments. A key feature of pathogenesis, conserved between the human pathogen Mycobacterium tuberculosis and the model pathogen Mycobacterium marinum, is the metabolic switch to lipid catabolism and altered expression of virulence genes at different stages of infection. This study aims to identify genes involved in sustaining viable intracellular infection. We applied transposon sequencing (Tn-Seq) to M. marinum, an unbiased genome-wide strategy combining saturation insertional mutagenesis and high-throughput sequencing. This approach allowed us to identify the localization and relative abundance of insertions in pools of transposon mutants. Gene essentiality and fitness cost of mutations were quantitatively compared between in vitro growth and different stages of infection in two evolutionary distinct phagocytes, the amoeba Dictyostelium discoideum and the murine BV2 microglial cells. In the M. marinum genome, 57% of TA sites were disrupted and 568 genes (10.2%) were essential, which is comparable to previous Tn-Seq studies on M. tuberculosis and M. bovis. Major pathways involved in the survival of M. marinum during infection of D. discoideum are related to DNA damage repair, lipid and vitamin metabolism, the type VII secretion system (T7SS) ESX-1, and the Mce1 lipid transport system. These pathways, except Mce1 and some glycolytic enzymes, were similarly affected in BV2 cells. These differences suggest subtly distinct nutrient availability or requirement in different host cells despite the known predominant use of lipids in both amoeba and microglial cells.IMPORTANCEThe emergence of biochemically and genetically tractable host model organisms for infection studies holds the promise to accelerate the pace of discoveries related to the evolution of innate immunity and the dissection of conserved mechanisms of cell-autonomous defenses. Here, we have used the genetically and biochemically tractable infection model system Dictyostelium discoideum/Mycobacterium marinum to apply a genome-wide transposon-sequencing experimental strategy to reveal comprehensively which mutations confer a fitness advantage or disadvantage during infection and compare these to a similar experiment performed using the murine microglial BV2 cells as host for M. marinum to identify conservation of virulence pathways between hosts.
Collapse
Affiliation(s)
- Louise H. Lefrançois
- Department of Biochemistry, Faculty of Science, University of Geneva, Science II, Geneva, Switzerland
| | - Jahn Nitschke
- Department of Biochemistry, Faculty of Science, University of Geneva, Science II, Geneva, Switzerland
| | - Huihai Wu
- Department of Microbial Sciences, School of Biosciences, University of Surrey, Guildford, Surrey, United Kingdom
| | - Gaël Panis
- Department of Microbiology and Molecular Medicine, Faculty of Medicine/CMU, University of Geneva, Institute of Genetics and Genomics in Geneva (iGE3), Genève, Switzerland
| | - Julien Prados
- Department of Microbiology and Molecular Medicine, Faculty of Medicine/CMU, University of Geneva, Institute of Genetics and Genomics in Geneva (iGE3), Genève, Switzerland
- Bioinformatics Support Platform for data analysis, Geneva University, Medicine Faculty, Geneva, Switzerland
| | - Rachel E. Butler
- Department of Microbial Sciences, School of Biosciences, University of Surrey, Guildford, Surrey, United Kingdom
| | - Tom A. Mendum
- Department of Microbial Sciences, School of Biosciences, University of Surrey, Guildford, Surrey, United Kingdom
| | - Nabil Hanna
- Department of Biochemistry, Faculty of Science, University of Geneva, Science II, Geneva, Switzerland
| | - Graham R. Stewart
- Department of Microbial Sciences, School of Biosciences, University of Surrey, Guildford, Surrey, United Kingdom
| | - Thierry Soldati
- Department of Biochemistry, Faculty of Science, University of Geneva, Science II, Geneva, Switzerland
| |
Collapse
|
9
|
Dargham T, Mallick I, Kremer L, Santucci P, Canaan S. Intrabacterial lipid inclusion-associated proteins: a core machinery conserved from saprophyte Actinobacteria to the human pathogen Mycobacterium tuberculosis. FEBS Open Bio 2023; 13:2306-2323. [PMID: 37872001 PMCID: PMC10699116 DOI: 10.1002/2211-5463.13721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 10/02/2023] [Accepted: 10/19/2023] [Indexed: 10/25/2023] Open
Abstract
Mycobacterium tuberculosis (Mtb), the aetiologic agent of tuberculosis (TB), stores triacylglycerol (TAG) in the form of intrabacterial lipid inclusions (ILI) to survive and chronically persist within its host. These highly energetic molecules represent a major source of carbon to support bacterial persistence and reactivation, thus playing a leading role in TB pathogenesis. However, despite its physiological and clinical relevance, ILI metabolism in Mtb remains poorly understood. Recent discoveries have suggested that several ILI-associated proteins might be widely conserved across TAG-producing prokaryotes, but still very little is known regarding the nature and the biological functions of these proteins. Herein, we performed an in silico analysis of three independent ILI-associated proteomes previously reported to computationally define a potential core ILI-associated proteome, referred to as ILIome. Our investigation revealed the presence of 70 orthologous proteins that were strictly conserved, thereby defining a minimal ILIome core. We further narrowed our analysis to proteins involved in lipid metabolism and discuss here their putative biological functions, along with their molecular interactions and dynamics at the surface of these bacterial organelles. We also highlight the experimental limitations of the original proteomic investigations and of the present bioinformatic analysis, while describing new technological approaches and presenting biological perspectives in the field. The in silico investigation presented here aims at providing useful datasets that could constitute a scientific resource of broad interest for the mycobacterial community, with the ultimate goal of enlightening ILI metabolism in prokaryotes with a special emphasis on Mtb pathogenesis.
Collapse
Affiliation(s)
- Tonia Dargham
- Aix‐Marseille Univ, CNRS, LISM UMR 7255, IMM FR3479, IM2BFrance
- IHU Méditerranée InfectionAix‐Marseille Univ.France
| | - Ivy Mallick
- Aix‐Marseille Univ, CNRS, LISM UMR 7255, IMM FR3479, IM2BFrance
| | - Laurent Kremer
- Centre National de la Recherche Scientifique UMR 9004, Institut de Recherche en Infectiologie de Montpellier (IRIM)Université de MontpellierFrance
- INSERM, Institut de Recherche en Infectiologie de MontpellierFrance
| | - Pierre Santucci
- Aix‐Marseille Univ, CNRS, LISM UMR 7255, IMM FR3479, IM2BFrance
| | - Stéphane Canaan
- Aix‐Marseille Univ, CNRS, LISM UMR 7255, IMM FR3479, IM2BFrance
| |
Collapse
|
10
|
Hong H, Dill-McFarland KA, Simmons JD, Peterson GJ, Benchek P, Mayanja-Kizza H, Boom WH, Stein CM, Hawn TR. Mycobacterium tuberculosis-dependent Monocyte Expression Quantitative Trait Loci and Tuberculosis Pathogenesis. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2023:2023.08.28.23294698. [PMID: 37693490 PMCID: PMC10491362 DOI: 10.1101/2023.08.28.23294698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/12/2023]
Abstract
The heterogeneity of outcomes after Mycobacterium tuberculosis (Mtb) exposure is a conundrum associated with millennia of host-pathogen co-evolution. We hypothesized that human myeloid cells contain genetically encoded, Mtb-specific responses that regulate critical steps in tuberculosis (TB) pathogenesis. We mapped genome-wide expression quantitative trait loci (eQTLs) in Mtb-infected monocytes with RNAseq from 80 Ugandan household contacts of pulmonary TB cases to identify monocyte-specific, Mtb-dependent eQTLs and their association with cytokine expression and clinical resistance to tuberculin skin test (TST) and interferon-γ release assay (IGRA) conversion. cis-eQTLs (n=1,567) were identified in Mtb-infected monocytes (FDR<0.01), including 29 eQTLs in 16 genes which were Mtb-dependent (significant for Mtb:genotype interaction [FDR<0.1], but not classified as eQTL in media condition [FDR≥0.01]). A subset of eQTLs were associated with Mtb-induced cytokine expression (n=8) and/or clinical resistance to TST/IGRA conversion (n=1). Expression of BMP6, an Mtb-dependent eQTL gene, was associated with IFNB1 induction in Mtb-infected and DNA ligand-induced cells. Network and enrichment analyses identified fatty acid metabolism as a pathway associated with eQTL genes. These findings suggest that monocyte genes contain Mtb-dependent eQTLs, including a subset associated with cytokine expression and/or clinical resistance to TST/IGRA conversion, providing insight into immunogenetic pathways regulating susceptibility to Mtb infection and TB pathogenesis.
Collapse
Affiliation(s)
- Hyejeong Hong
- Department of Biobehavioral Health Sciences, School of Nursing, University of Pennsylvania, Philadelphia, PA, USA
| | | | - Jason D. Simmons
- Department of Medicine, University of Washington, Seattle, WA, USA
| | | | - Penelope Benchek
- Department of Population & Quantitative Health Sciences, Case Western Reserve University, Cleveland, OH, USA
| | | | - W. Henry Boom
- Department of Medicine, Case Western Reserve University, Cleveland, OH, USA
| | - Catherine M. Stein
- Department of Population & Quantitative Health Sciences, Case Western Reserve University, Cleveland, OH, USA
- Department of Medicine, Case Western Reserve University, Cleveland, OH, USA
| | - Thomas R. Hawn
- Department of Medicine, University of Washington, Seattle, WA, USA
| |
Collapse
|
11
|
Hüsler D, Stauffer P, Hilbi H. Tapping lipid droplets: A rich fat diet of intracellular bacterial pathogens. Mol Microbiol 2023; 120:194-209. [PMID: 37429596 DOI: 10.1111/mmi.15120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 06/21/2023] [Accepted: 06/22/2023] [Indexed: 07/12/2023]
Abstract
Lipid droplets (LDs) are dynamic and versatile organelles present in most eukaryotic cells. LDs consist of a hydrophobic core of neutral lipids, a phospholipid monolayer coat, and a variety of associated proteins. LDs are formed at the endoplasmic reticulum and have diverse roles in lipid storage, energy metabolism, membrane trafficking, and cellular signaling. In addition to their physiological cellular functions, LDs have been implicated in the pathogenesis of several diseases, including metabolic disorders, cancer, and infections. A number of intracellular bacterial pathogens modulate and/or interact with LDs during host cell infection. Members of the genera Mycobacterium, Legionella, Coxiella, Chlamydia, and Salmonella exploit LDs as a source of intracellular nutrients and membrane components to establish their distinct intracellular replicative niches. In this review, we focus on the biogenesis, interactions, and functions of LDs, as well as on their role in lipid metabolism of intracellular bacterial pathogens.
Collapse
Affiliation(s)
- Dario Hüsler
- Institute of Medical Microbiology, University of Zurich, Zurich, Switzerland
| | - Pia Stauffer
- Institute of Medical Microbiology, University of Zurich, Zurich, Switzerland
| | - Hubert Hilbi
- Institute of Medical Microbiology, University of Zurich, Zurich, Switzerland
| |
Collapse
|
12
|
Lanni F, Wijnant GJ, Xie M, Osiecki P, Dartois V, Sarathy JP. Adaptation to the intracellular environment of primary human macrophages influences drug susceptibility of Mycobacterium tuberculosis. Tuberculosis (Edinb) 2023; 139:102318. [PMID: 36889104 DOI: 10.1016/j.tube.2023.102318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 12/28/2022] [Accepted: 01/22/2023] [Indexed: 01/24/2023]
Abstract
As a facultative intracellular pathogen, M. tuberculosis (Mtb) is highly adapted to evading antibacterial mechanisms in phagocytic cells. Both the macrophage and pathogen experience transcriptional and metabolic changes from the onset of phagocytosis. To account for this interaction in the assessment of intracellular drug susceptibility, we allowed a 3-day preadaptation phase post-macrophage infection prior to drug treatment. We found that intracellular Mtb in human monocyte-derived macrophages (MDM) presents dramatic alterations in susceptibility to isoniazid, sutezolid, rifampicin and rifapentine when compared to axenic culture. Infected MDM gradually accumulate lipid bodies, adopting a characteristic appearance reminiscent of foamy macrophages in granulomas. Furthermore, TB granulomas in vivo develop hypoxic cores with decreasing oxygen tension gradients across their radii. Accordingly, we evaluated the effects of hypoxia on preadapted intracellular Mtb in our MDM model. We observed that hypoxia induced greater lipid body formation and no additional shifts in drug tolerance, suggesting that the adaptation of intracellular Mtb to baseline host cell conditions under normoxia dominates changes to intracellular drug susceptibility. Using unbound plasma concentrations in patients as surrogates for free drug concentrations in lung interstitial fluid, we estimate that intramacrophage Mtb in granulomas are exposed to bacteriostatic concentrations of most study drugs.
Collapse
Affiliation(s)
- Faye Lanni
- Center for Discovery and Innovation, 111 Ideation Way, Nutley, NJ, 07110, United States
| | - Gert-Jan Wijnant
- Center for Discovery and Innovation, 111 Ideation Way, Nutley, NJ, 07110, United States
| | - Min Xie
- Center for Discovery and Innovation, 111 Ideation Way, Nutley, NJ, 07110, United States
| | - Paulina Osiecki
- Center for Discovery and Innovation, 111 Ideation Way, Nutley, NJ, 07110, United States
| | - Véronique Dartois
- Center for Discovery and Innovation, 111 Ideation Way, Nutley, NJ, 07110, United States; Hackensack School of Medicine, Department of Medical Sciences, 123, Metro Boulevard, Nutley, NJ, 07110, United States
| | - Jansy P Sarathy
- Center for Discovery and Innovation, 111 Ideation Way, Nutley, NJ, 07110, United States.
| |
Collapse
|
13
|
Barisch C, Holthuis JCM, Cosentino K. Membrane damage and repair: a thin line between life and death. Biol Chem 2023; 404:467-490. [PMID: 36810295 DOI: 10.1515/hsz-2022-0321] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Accepted: 02/03/2023] [Indexed: 02/24/2023]
Abstract
Bilayered membranes separate cells from their surroundings and form boundaries between intracellular organelles and the cytosol. Gated transport of solutes across membranes enables cells to establish vital ion gradients and a sophisticated metabolic network. However, an advanced compartmentalization of biochemical reactions makes cells also particularly vulnerable to membrane damage inflicted by pathogens, chemicals, inflammatory responses or mechanical stress. To avoid potentially lethal consequences of membrane injuries, cells continuously monitor the structural integrity of their membranes and readily activate appropriate pathways to plug, patch, engulf or shed the damaged membrane area. Here, we review recent insights into the cellular mechanisms that underly an effective maintenance of membrane integrity. We discuss how cells respond to membrane lesions caused by bacterial toxins and endogenous pore-forming proteins, with a primary focus on the intimate crosstalk between membrane proteins and lipids during wound formation, detection and elimination. We also discuss how a delicate balance between membrane damage and repair determines cell fate upon bacterial infection or activation of pro-inflammatory cell death pathways.
Collapse
Affiliation(s)
- Caroline Barisch
- Molecular Infection Biology Division, Department of Biology and Center of Cellular Nanoanalytics, Osnabrück University, D-49076 Osnabrück, Germany
| | - Joost C M Holthuis
- Molecular Cell Biology Division, Department of Biology and Center of Cellular Nanoanalytics, Osnabrück University, D-49076 Osnabrück, Germany
| | - Katia Cosentino
- Molecular Cell Biophysics Division, Department of Biology and Center of Cellular Nanoanalytics, Osnabrück University, D-49076 Osnabrück, Germany
| |
Collapse
|
14
|
Costa MFDS, Pereira-Dutra F, Deboosere N, Jouny S, Song OR, Iack G, Souza AL, Roma EH, Delorme V, Bozza PT, Brodin P. Mycobacterium tuberculosis induces delayed lipid droplet accumulation in dendritic cells depending on bacterial viability and virulence. Mol Microbiol 2023; 119:224-236. [PMID: 36579614 DOI: 10.1111/mmi.15023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 12/23/2022] [Accepted: 12/25/2022] [Indexed: 12/30/2022]
Abstract
Tuberculosis remains a global health threat with high morbidity. Dendritic cells (DCs) participate in the acute and chronic inflammatory responses to Mycobacterium tuberculosis (Mtb) by directing the adaptive immune response and are present in lung granulomas. In macrophages, the interaction of lipid droplets (LDs) with mycobacteria-containing phagosomes is central to host-pathogen interactions. However, the data available for DCs are still a matter of debate. Here, we reported that bone marrow-derived DCs (BMDCs) were susceptible to Mtb infection and replication at similar rate to macrophages. Unlike macrophages, the analysis of gene expression showed that Mtb infection induced a delayed increase in lipid droplet-related genes and proinflammatory response. Hence, LD accumulation has been observed by high-content imaging in late periods. Infection of BMDCs with killed H37Rv demonstrated that LD accumulation depends on Mtb viability. Moreover, infection with the attenuated strains H37Ra and Mycobacterium bovis-BCG induced only an early transient increase in LDs, whereas virulent Mtb also induced delayed LD accumulation. In addition, infection with the BCG strain with the reintroduced virulence RD1 locus induced higher LD accumulation and bacterial replication when compared to parental BCG. Collectively, our data suggest that delayed LD accumulation in DCs is dependent on mycobacterial viability and virulence.
Collapse
Affiliation(s)
- Maria Fernanda de Souza Costa
- Instituto de Biologia, Departamento de Imunobiologia, Universidade Federal Fluminense, Niteroi, Brazil.,Center for Technological Development in Health, Fundação Oswaldo Cruz, Rio de Janeiro, Brazil.,Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019 - UMR 9017 - CIIL - Center for Infection and Immunity of Lille, Lille, France
| | - Filipe Pereira-Dutra
- Immunopharmacology Laboratory, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, Brazil
| | - Nathalie Deboosere
- Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019 - UMR 9017 - CIIL - Center for Infection and Immunity of Lille, Lille, France
| | - Samuel Jouny
- Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019 - UMR 9017 - CIIL - Center for Infection and Immunity of Lille, Lille, France
| | - Ok-Ryul Song
- Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019 - UMR 9017 - CIIL - Center for Infection and Immunity of Lille, Lille, France
| | - Guilherme Iack
- Instituto de Biologia, Departamento de Imunobiologia, Universidade Federal Fluminense, Niteroi, Brazil.,Immunopharmacology Laboratory, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, Brazil
| | - Andreia Lamoglia Souza
- Fundação Oswaldo Cruz, Laboratory of Immunology and Immunogenetics in Infectious Diseases at Evandro Chagas National Institute of Infectious Diseases, Rio de Janeiro, Brazil
| | - Eric Henrique Roma
- Fundação Oswaldo Cruz, Laboratory of Immunology and Immunogenetics in Infectious Diseases at Evandro Chagas National Institute of Infectious Diseases, Rio de Janeiro, Brazil
| | - Vincent Delorme
- Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019 - UMR 9017 - CIIL - Center for Infection and Immunity of Lille, Lille, France
| | - Patricia T Bozza
- Immunopharmacology Laboratory, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, Brazil
| | - Priscille Brodin
- Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019 - UMR 9017 - CIIL - Center for Infection and Immunity of Lille, Lille, France
| |
Collapse
|
15
|
Campo-Pérez V, Guallar-Garrido S, Luquin M, Sánchez-Chardi A, Julián E. The High Plasticity of Nonpathogenic Mycobacterium brumae Induces Rapid Changes in Its Lipid Profile during Pellicle Maturation: The Potential of This Bacterium as a Versatile Cell Factory for Lipid Compounds of Therapeutic Interest. Int J Mol Sci 2022; 23:13609. [PMID: 36362396 PMCID: PMC9655737 DOI: 10.3390/ijms232113609] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 10/28/2022] [Accepted: 11/03/2022] [Indexed: 09/08/2024] Open
Abstract
The immunomodulatory potential of mycobacteria to be used for therapeutic purposes varies by species and culture conditions and is closely related to mycobacterial lipid composition. Although the lipids present in the mycobacterial cell wall are relevant, lipids are mainly stored in intracellular lipid inclusions (ILIs), which have emerged as a crucial structure in understanding mycobacteria-host interaction. Little is known about ILI ultrastructure, production, and composition in nonpathogenic species. In this study, we compared the lipid profiles of the nonpathogenic immunomodulatory agent Mycobacterium brumae during pellicle maturation under different culture conditions with qualitative and quantitative approaches by using high-resolution imaging and biochemical and composition analyses to understand ILI dynamics. The results showed wax esters, mainly in early stages of development, and acylglycerols in mature ILI composition, revealing changes in dynamics, amount, and morphometry, depending on pellicle maturation and the culture media used. Low-glycerol cultures induced ILIs with lower molecular weights which were smaller in size in comparison with the ILIs produced in glycerol-enriched media. The data also indicate the simple metabolic plasticity of lipid synthesis in M. brumae, as well as its high versatility in generating different lipid profiles. These findings provide an interesting way to enhance the production of key lipid structures via the simple modulation of cell culture conditions.
Collapse
Affiliation(s)
- Víctor Campo-Pérez
- Departament de Genètica i de Microbiologia, Facultat de Biociències, Universitat Autònoma de Barcelona, 08193 Barcelona, Spain
- Bacterial Infections and Antimicrobial Therapy Group, Institute for Bioengineering of Catalonia (IBEC), Baldiri Reixac 15-21, 08028 Barcelona, Spain
| | - Sandra Guallar-Garrido
- Departament de Genètica i de Microbiologia, Facultat de Biociències, Universitat Autònoma de Barcelona, 08193 Barcelona, Spain
| | - Marina Luquin
- Departament de Genètica i de Microbiologia, Facultat de Biociències, Universitat Autònoma de Barcelona, 08193 Barcelona, Spain
| | - Alejandro Sánchez-Chardi
- Servei de Microscòpia, Universitat Autònoma de Barcelona, 08193 Barcelona, Spain
- Departament de Biologia Evolutiva, Ecologia i Ciències Ambientals, Facultat de Biologia, Universitat de Barcelona, 08028 Barcelona, Spain
| | - Esther Julián
- Departament de Genètica i de Microbiologia, Facultat de Biociències, Universitat Autònoma de Barcelona, 08193 Barcelona, Spain
| |
Collapse
|
16
|
Krysenko S, Wohlleben W. Polyamine and Ethanolamine Metabolism in Bacteria as an Important Component of Nitrogen Assimilation for Survival and Pathogenicity. Med Sci (Basel) 2022; 10:40. [PMID: 35997332 PMCID: PMC9397018 DOI: 10.3390/medsci10030040] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 07/23/2022] [Accepted: 07/25/2022] [Indexed: 11/16/2022] Open
Abstract
Nitrogen is an essential element required for bacterial growth. It serves as a building block for the biosynthesis of macromolecules and provides precursors for secondary metabolites. Bacteria have developed the ability to use various nitrogen sources and possess two enzyme systems for nitrogen assimilation involving glutamine synthetase/glutamate synthase and glutamate dehydrogenase. Microorganisms living in habitats with changeable availability of nutrients have developed strategies to survive under nitrogen limitation. One adaptation is the ability to acquire nitrogen from alternative sources including the polyamines putrescine, cadaverine, spermidine and spermine, as well as the monoamine ethanolamine. Bacterial polyamine and monoamine metabolism is not only important under low nitrogen availability, but it is also required to survive under high concentrations of these compounds. Such conditions can occur in diverse habitats such as soil, plant tissues and human cells. Strategies of pathogenic and non-pathogenic bacteria to survive in the presence of poly- and monoamines offer the possibility to combat pathogens by using their capability to metabolize polyamines as an antibiotic drug target. This work aims to summarize the knowledge on poly- and monoamine metabolism in bacteria and its role in nitrogen metabolism.
Collapse
Affiliation(s)
- Sergii Krysenko
- Interfaculty Institute of Microbiology and Infection Medicine Tübingen (IMIT), Department of Microbiology and Biotechnology, University of Tübingen, Auf der Morgenstelle 28, 72076 Tübingen, Germany;
- Cluster of Excellence ‘Controlling Microbes to Fight Infections’, University of Tübingen, 72076 Tübingen, Germany
| | - Wolfgang Wohlleben
- Interfaculty Institute of Microbiology and Infection Medicine Tübingen (IMIT), Department of Microbiology and Biotechnology, University of Tübingen, Auf der Morgenstelle 28, 72076 Tübingen, Germany;
- Cluster of Excellence ‘Controlling Microbes to Fight Infections’, University of Tübingen, 72076 Tübingen, Germany
| |
Collapse
|
17
|
Alexandrova LA, Khandazhinskaya AL, Matyugina ES, Makarov DA, Kochetkov SN. Analogues of Pyrimidine Nucleosides as Mycobacteria Growth Inhibitors. Microorganisms 2022; 10:microorganisms10071299. [PMID: 35889017 PMCID: PMC9322969 DOI: 10.3390/microorganisms10071299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 06/23/2022] [Accepted: 06/24/2022] [Indexed: 01/25/2023] Open
Abstract
Tuberculosis (TB) is the oldest human infection disease. Mortality from TB significantly decreased in the 20th century, because of vaccination and the widespread use of antibiotics. However, about a third of the world’s population is currently infected with Mycobacterium tuberculosis (Mtb) and the death rate from TB is about 1.4–2 million people per year. In the second half of the 20th century, new extensively multidrug-resistant strains of Mtb were identified, which are steadily increasing among TB patients. Therefore, there is an urgent need to develop new anti-TB drugs, which remains one of the priorities of pharmacology and medicinal chemistry. The antimycobacterial activity of nucleoside derivatives and analogues was revealed not so long ago, and a lot of studies on their antibacterial properties have been published. Despite the fact that there are no clinically used drugs based on nucleoside analogues, some progress has been made in this area. This review summarizes current research in the field of the design and study of inhibitors of mycobacteria, primarily Mtb.
Collapse
|
18
|
Hill NS, Welch MD. A glycine-rich PE_PGRS protein governs mycobacterial actin-based motility. Nat Commun 2022; 13:3608. [PMID: 35750685 PMCID: PMC9232537 DOI: 10.1038/s41467-022-31333-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Accepted: 06/14/2022] [Indexed: 11/09/2022] Open
Abstract
Many key insights into actin regulation have been derived through examining how microbial pathogens intercept the actin cytoskeleton during infection. Mycobacterium marinum, a close relative of the human pathogen Mycobacterium tuberculosis, polymerizes host actin at the bacterial surface to drive intracellular movement and cell-to-cell spread during infection. However, the mycobacterial factor that commandeers actin polymerization has remained elusive. Here, we report the identification and characterization of the M. marinum actin-based motility factor designated mycobacterial intracellular rockets A (MirA), which is a member of the glycine-rich PE_PGRS protein family. MirA contains an amphipathic helix to anchor into the mycobacterial outer membrane and, surprisingly, also the surface of host lipid droplet organelles. MirA directly binds to and activates the host protein N-WASP to stimulate actin polymerization through the Arp2/3 complex, directing both bacterial and lipid droplet actin-based motility. MirA is dissimilar to known N-WASP activating ligands and may represent a new class of microbial and host actin regulator. Additionally, the MirA-N-WASP interaction represents a model to understand how the enigmatic PE_PGRS proteins contribute to mycobacterial pathogenesis.
Collapse
Affiliation(s)
- Norbert S Hill
- Department of Molecular and Cell Biology, University of California, Berkeley, CA, USA.
| | - Matthew D Welch
- Department of Molecular and Cell Biology, University of California, Berkeley, CA, USA.
| |
Collapse
|
19
|
Bosch M, Sweet MJ, Parton RG, Pol A. Lipid droplets and the host-pathogen dynamic: FATal attraction? J Cell Biol 2021; 220:e202104005. [PMID: 34165498 PMCID: PMC8240858 DOI: 10.1083/jcb.202104005] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 06/02/2021] [Accepted: 06/03/2021] [Indexed: 02/06/2023] Open
Abstract
In the ongoing conflict between eukaryotic cells and pathogens, lipid droplets (LDs) emerge as a choke point in the battle for nutrients. While many pathogens seek the lipids stored in LDs to fuel an expensive lifestyle, innate immunity rewires lipid metabolism and weaponizes LDs to defend cells and animals. Viruses, bacteria, and parasites directly and remotely manipulate LDs to obtain substrates for metabolic energy, replication compartments, assembly platforms, membrane blocks, and tools for host colonization and/or evasion such as anti-inflammatory mediators, lipoviroparticles, and even exosomes. Host LDs counterattack such advances by synthesizing bioactive lipids and toxic nucleotides, organizing immune signaling platforms, and recruiting a plethora of antimicrobial proteins to provide a front-line defense against the invader. Here, we review the current state of this conflict. We will discuss why, when, and how LDs efficiently coordinate and precisely execute a plethora of immune defenses. In the age of antimicrobial resistance and viral pandemics, understanding innate immune strategies developed by eukaryotic cells to fight and defeat dangerous microorganisms may inform future anti-infective strategies.
Collapse
Affiliation(s)
- Marta Bosch
- Lipid Trafficking and Disease Group, Institut d’Investigacions Biomèdiques August Pi i Sunyer, Barcelona, Spain
- Department of Biomedical Sciences, Faculty of Medicine, Universitat de Barcelona, Barcelona, Spain
| | - Matthew J. Sweet
- Institute for Molecular Bioscience, University of Queensland, Brisbane, Australia
- Centre for Inflammation and Disease Research, Institute for Molecular Bioscience, University of Queensland, Brisbane, Australia
- Australian Infectious Diseases Research Centre, University of Queensland, Brisbane, Australia
| | - Robert G. Parton
- Institute for Molecular Bioscience, University of Queensland, Brisbane, Australia
- Centre for Microscopy and Microanalysis, University of Queensland, Brisbane, Australia
| | - Albert Pol
- Lipid Trafficking and Disease Group, Institut d’Investigacions Biomèdiques August Pi i Sunyer, Barcelona, Spain
- Department of Biomedical Sciences, Faculty of Medicine, Universitat de Barcelona, Barcelona, Spain
- Institució Catalana de Recerca i Estudis Avançats, Barcelona, Spain
| |
Collapse
|
20
|
Disparate regulation of IMD signaling drives sex differences in infection pathology in Drosophila melanogaster. Proc Natl Acad Sci U S A 2021; 118:2026554118. [PMID: 34341118 PMCID: PMC8364183 DOI: 10.1073/pnas.2026554118] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Sex differences in infection outcome are a widely observed phenomenon. While it is known that biological sex can influence an animal’s response to infection, the mechanisms through which these differences emerge are less clear. Here, we describe a mechanism through which heightened regulation of the IMD signaling pathway by female—but not male—Drosophila melanogaster reduces the cost of immune activity at the expense of resistance to bacterial infection. Through the masculinization of the main organ responsible for antimicrobial peptide activity in the fly (fat body), this work demonstrates that this heightened immune regulation is mediated by sex-determining pathways. Male and female animals exhibit differences in infection outcomes. One possible source of sexually dimorphic immunity is the sex-specific costs of immune activity or pathology, but little is known about the independent effects of immune- versus microbe-induced pathology and whether these may differ for the sexes. Here, by measuring metabolic and physiological outputs in Drosophila melanogaster with wild-type and mutant immune responses, we test whether the sexes are differentially impacted by these various sources of pathology and identify a critical regulator of this difference. We find that the sexes exhibit differential immune activity but similar bacteria-derived metabolic pathology. We show that female-specific immune-inducible expression of PGRP-LB, a negative regulator of the immune deficiency (IMD) pathway, enables females to reduce immune activity in response to reductions in bacterial numbers. In the absence of PGRP-LB, females are more resistant to infection, confirming the functional importance of this regulation and suggesting that female-biased immune restriction comes at a cost.
Collapse
|
21
|
Brink JTR, Fourie R, Sebolai O, Albertyn J, Pohl CH. The role of lipid droplets in microbial pathogenesis. J Med Microbiol 2021; 70. [PMID: 34184983 DOI: 10.1099/jmm.0.001383] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
The nonpolar lipids present in cells are mainly triacylglycerols and steryl esters. When cells are provided with an abundance of nutrients, these storage lipids accumulate. As large quantities of nonpolar lipids cannot be integrated into membranes, they are isolated from the cytosolic environment in lipid droplets. As specialized, inducible cytoplasmic organelles, lipid droplets have functions beyond the regulation of lipid metabolism, in cell signalling and activation, membrane trafficking and control of inflammatory mediator synthesis and secretion. Pathogens, including fungi, viruses, parasites, or intracellular bacteria can induce and may benefit from lipid droplets in infected cells. Here we review biogenesis of lipid droplets as well as the role of lipid droplets in the pathogenesis of selected viruses, bacteria, protists and yeasts.
Collapse
Affiliation(s)
- Jacobus T R Brink
- Department of Microbiology and Biochemistry, University of the Free State, Bloemfontein, South Africa
| | - Ruan Fourie
- Department of Microbiology and Biochemistry, University of the Free State, Bloemfontein, South Africa
| | - Olihile Sebolai
- Department of Microbiology and Biochemistry, University of the Free State, Bloemfontein, South Africa
| | - Jacobus Albertyn
- Department of Microbiology and Biochemistry, University of the Free State, Bloemfontein, South Africa
| | - Carolina H Pohl
- Department of Microbiology and Biochemistry, University of the Free State, Bloemfontein, South Africa
| |
Collapse
|
22
|
Mallick I, Santucci P, Poncin I, Point V, Kremer L, Cavalier JF, Canaan S. Intrabacterial lipid inclusions in mycobacteria: unexpected key players in survival and pathogenesis? FEMS Microbiol Rev 2021; 45:6283747. [PMID: 34036305 DOI: 10.1093/femsre/fuab029] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Accepted: 05/21/2021] [Indexed: 12/12/2022] Open
Abstract
Mycobacterial species, including Mycobacterium tuberculosis, rely on lipids to survive and chronically persist within their hosts. Upon infection, opportunistic and strict pathogenic mycobacteria exploit metabolic pathways to import and process host-derived free fatty acids, subsequently stored as triacylglycerols under the form of intrabacterial lipid inclusions (ILI). Under nutrient-limiting conditions, ILI constitute a critical source of energy that fuels the carbon requirements and maintain redox homeostasis, promoting bacterial survival for extensive periods of time. In addition to their basic metabolic functions, these organelles display multiple other biological properties, emphasizing their central role in the mycobacterial lifecycle. However, despite of their importance, the dynamics of ILI metabolism and their contribution to mycobacterial adaptation/survival in the context of infection has not been thoroughly documented. Herein, we provide an overview of the historical ILI discoveries, their characterization, and current knowledge regarding the micro-environmental stimuli conveying ILI formation, storage and degradation. We also review new biological systems to monitor the dynamics of ILI metabolism in extra- and intracellular mycobacteria and describe major molecular actors in triacylglycerol biosynthesis, maintenance and breakdown. Finally, emerging concepts regarding to the role of ILI in mycobacterial survival, persistence, reactivation, antibiotic susceptibility and inter-individual transmission are also discuss.
Collapse
Affiliation(s)
- Ivy Mallick
- Aix-Marseille Univ, CNRS, LISM, IMM FR3479, Marseille, France.,IHU Méditerranée Infection, Aix-Marseille Univ., Marseille, France
| | - Pierre Santucci
- Aix-Marseille Univ, CNRS, LISM, IMM FR3479, Marseille, France
| | - Isabelle Poncin
- Aix-Marseille Univ, CNRS, LISM, IMM FR3479, Marseille, France
| | - Vanessa Point
- Aix-Marseille Univ, CNRS, LISM, IMM FR3479, Marseille, France
| | - Laurent Kremer
- Institut de Recherche en Infectiologie de Montpellier (IRIM), CNRS, UMR 9004, Université de Montpellier, Montpellier, France.,IRIM, INSERM, Montpellier, France
| | | | - Stéphane Canaan
- Aix-Marseille Univ, CNRS, LISM, IMM FR3479, Marseille, France
| |
Collapse
|
23
|
Wu K, Fan S, Zou L, Zhao F, Ma S, Fan J, Li X, Zhao M, Yan H, Chen J. Molecular Events Occurring in Lipophagy and Its Regulation in Flaviviridae Infection. Front Microbiol 2021; 12:651952. [PMID: 34093468 PMCID: PMC8175637 DOI: 10.3389/fmicb.2021.651952] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Accepted: 04/21/2021] [Indexed: 12/17/2022] Open
Abstract
Diseases caused by Flaviviridae have a wide global and economic impact due to high morbidity and mortality. Flaviviridae infection usually leads to severe, acute or chronic diseases, such as liver injury and liver cancer resulting from hepatitis C virus (HCV) infection, dengue hemorrhagic fever (DHF) or dengue shock syndrome (DSS) caused by dengue virus (DENV). Given the highly complex pathogenesis of Flaviviridae infections, they are still not fully understood at present. Accumulating evidence suggests that host autophagy is disrupted to regulate the life cycle of Flaviviridae. Organelle-specific autophagy is able to selectively target different organelles for quality control, which is essential for regulating cellular homeostasis. As an important sub process of autophagy, lipophagy regulates lipid metabolism by targeting lipid droplets (LDs) and is also closely related to the infection of a variety of pathogenic microorganisms. In this review, we briefly understand the LDs interaction relationship with Flaviviridae infection, outline the molecular events of how lipophagy occurs and the related research progress on the regulatory mechanisms of lipophagy in Flaviviridae infection. Exploring the crosstalk between viral infection and lipophagy induced molecular events may provide new avenues for antiviral therapy.
Collapse
Affiliation(s)
- Keke Wu
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China
| | - Shuangqi Fan
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China
| | - Linke Zou
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China
| | - Feifan Zhao
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China
| | - Shengming Ma
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China
| | - Jindai Fan
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China
| | - Xiaowen Li
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China
| | - Mingqiu Zhao
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China
| | - Huichao Yan
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China
| | - Jinding Chen
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China
| |
Collapse
|
24
|
Dong W, Nie X, Zhu H, Liu Q, Shi K, You L, Zhang Y, Fan H, Yan B, Niu C, Lyu LD, Zhao GP, Yang C. Mycobacterial fatty acid catabolism is repressed by FdmR to sustain lipogenesis and virulence. Proc Natl Acad Sci U S A 2021; 118:e2019305118. [PMID: 33853942 PMCID: PMC8072231 DOI: 10.1073/pnas.2019305118] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Host-derived fatty acids are an important carbon source for pathogenic mycobacteria during infection. How mycobacterial cells regulate the catabolism of fatty acids to serve the pathogenicity, however, remains unknown. Here, we identified a TetR-family transcriptional factor, FdmR, as the key regulator of fatty acid catabolism in the pathogen Mycobacterium marinum by combining use of transcriptomics, chromatin immunoprecipitation followed by sequencing, dynamic 13C-based flux analysis, metabolomics, and lipidomics. An M. marinum mutant deficient in FdmR was severely attenuated in zebrafish larvae and adult zebrafish. The mutant showed defective growth but high substrate consumption on fatty acids. FdmR was identified as a long-chain acyl-coenzyme A (acyl-CoA)-responsive repressor of genes involved in fatty acid degradation and modification. We demonstrated that FdmR functions as a valve to direct the flux of exogenously derived fatty acids away from β-oxidation toward lipid biosynthesis, thereby avoiding the overactive catabolism and accumulation of biologically toxic intermediates. Moreover, we found that FdmR suppresses degradation of long-chain acyl-CoAs endogenously synthesized through the type I fatty acid synthase. By modulating the supply of long-chain acyl-CoAs for lipogenesis, FdmR controls the abundance and chain length of virulence-associated lipids and mycolates and plays an important role in the impermeability of the cell envelope. These results reveal that despite the fact that host-derived fatty acids are used as an important carbon source, overactive catabolism of fatty acids is detrimental to mycobacterial cell growth and pathogenicity. This study thus presents FdmR as a potentially attractive target for chemotherapy.
Collapse
Affiliation(s)
- Wenyue Dong
- CAS Key Laboratory of Synthetic Biology, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences (CAS), Shanghai 200032, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiaoqun Nie
- CAS Key Laboratory of Synthetic Biology, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences (CAS), Shanghai 200032, China
| | - Hong Zhu
- CAS Key Laboratory of Synthetic Biology, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences (CAS), Shanghai 200032, China
| | - Qingyun Liu
- Department of Immunology and Infectious Diseases, Harvard T. H. Chan School of Public Health, Boston, MA 02115
| | - Kunxiong Shi
- Key Laboratory of Medical Molecular Virology of the Ministry of Education/National Health Commission/Chinese Academy of Medical Sciences (MOE/NHC/CAMS), School of Basic Medical Sciences, Department of Microbiology, School of Life Sciences, Shanghai Public Health Clinical Center, Fudan University, Shanghai 200000, China
| | - Linlin You
- CAS Key Laboratory of Synthetic Biology, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences (CAS), Shanghai 200032, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yu Zhang
- CAS Key Laboratory of Synthetic Biology, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences (CAS), Shanghai 200032, China
| | - Hongyan Fan
- Key Laboratory of Medical Molecular Virology of the Ministry of Education/National Health Commission/Chinese Academy of Medical Sciences (MOE/NHC/CAMS), School of Basic Medical Sciences, Department of Microbiology, School of Life Sciences, Shanghai Public Health Clinical Center, Fudan University, Shanghai 200000, China
| | - Bo Yan
- Key Laboratory of Medical Molecular Virology of the Ministry of Education/National Health Commission/Chinese Academy of Medical Sciences (MOE/NHC/CAMS), School of Basic Medical Sciences, Department of Microbiology, School of Life Sciences, Shanghai Public Health Clinical Center, Fudan University, Shanghai 200000, China
| | - Chen Niu
- Key Laboratory of Medical Molecular Virology of the Ministry of Education/National Health Commission/Chinese Academy of Medical Sciences (MOE/NHC/CAMS), School of Basic Medical Sciences, Department of Microbiology, School of Life Sciences, Shanghai Public Health Clinical Center, Fudan University, Shanghai 200000, China;
| | - Liang-Dong Lyu
- Key Laboratory of Medical Molecular Virology of the Ministry of Education/National Health Commission/Chinese Academy of Medical Sciences (MOE/NHC/CAMS), School of Basic Medical Sciences, Department of Microbiology, School of Life Sciences, Shanghai Public Health Clinical Center, Fudan University, Shanghai 200000, China;
| | - Guo-Ping Zhao
- CAS Key Laboratory of Synthetic Biology, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences (CAS), Shanghai 200032, China
- Key Laboratory of Medical Molecular Virology of the Ministry of Education/National Health Commission/Chinese Academy of Medical Sciences (MOE/NHC/CAMS), School of Basic Medical Sciences, Department of Microbiology, School of Life Sciences, Shanghai Public Health Clinical Center, Fudan University, Shanghai 200000, China
- Bio-Med Big Data Center, CAS Key Laboratory of Computational Biology, Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, Shanghai 200032, China
| | - Chen Yang
- CAS Key Laboratory of Synthetic Biology, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences (CAS), Shanghai 200032, China;
| |
Collapse
|
25
|
Chang DPS, Guan XL. Metabolic Versatility of Mycobacterium tuberculosis during Infection and Dormancy. Metabolites 2021; 11:88. [PMID: 33540752 PMCID: PMC7913082 DOI: 10.3390/metabo11020088] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2020] [Revised: 01/16/2021] [Accepted: 01/29/2021] [Indexed: 12/18/2022] Open
Abstract
Mycobacterium tuberculosis (Mtb), the causative agent of tuberculosis (TB), is a highly successful intracellular pathogen with the ability to withstand harsh conditions and reside long-term within its host. In the dormant and persistent states, the bacterium tunes its metabolism and is able to resist the actions of antibiotics. One of the main strategies Mtb adopts is through its metabolic versatility-it is able to cometabolize a variety of essential nutrients and direct these nutrients simultaneously to multiple metabolic pathways to facilitate the infection of the host. Mtb further undergo extensive remodeling of its metabolic pathways in response to stress and dormancy. In recent years, advancement in systems biology and its applications have contributed substantially to a more coherent view on the intricate metabolic networks of Mtb. With a more refined appreciation of the roles of metabolism in mycobacterial infection and drug resistance, and the success of drugs targeting metabolism, there is growing interest in further development of anti-TB therapies that target metabolism, including lipid metabolism and oxidative phosphorylation. Here, we will review current knowledge revolving around the versatility of Mtb in remodeling its metabolism during infection and dormancy, with a focus on central carbon metabolism and lipid metabolism.
Collapse
Affiliation(s)
| | - Xue Li Guan
- Lee Kong Chian School of Medicine, Nanyang Technological University, 59 Nanyang Drive, Singapore 636921, Singapore;
| |
Collapse
|
26
|
Zebrafish Embryo Model for Assessment of Drug Efficacy on Mycobacterial Persisters. Antimicrob Agents Chemother 2020; 64:AAC.00801-20. [PMID: 32778551 DOI: 10.1128/aac.00801-20] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Accepted: 08/03/2020] [Indexed: 01/21/2023] Open
Abstract
Tuberculosis continues to kill millions of people each year. The main difficulty in eradication of the disease is the prolonged duration of treatment, which takes at least 6 months. Persister cells have long been associated with failed treatment and disease relapse because of their phenotypical, though transient, tolerance to drugs. By targeting these persisters, the duration of treatment could be shortened, leading to improved tuberculosis treatment and a reduction in transmission. The unique in vivo environment drives the generation of persisters; however, appropriate in vivo mycobacterial persister models enabling optimized drug screening are lacking. To set up a persister infection model that is suitable for this, we infected zebrafish embryos with in vitro-starved Mycobacterium marinum In vitro starvation resulted in a persister-like phenotype with the accumulation of stored neutral lipids and concomitant increased tolerance to ethambutol. However, these starved wild-type M. marinum organisms rapidly lost their persister phenotype in vivo To prolong the persister phenotype in vivo, we subsequently generated and analyzed mutants lacking functional resuscitation-promoting factors (Rpfs). Interestingly, the ΔrpfAB mutant, lacking two Rpfs, established an infection in vivo, whereas a nutrient-starved ΔrpfAB mutant did maintain its persister phenotype in vivo This mutant was, after nutrient starvation, also tolerant to ethambutol treatment in vivo, as would be expected for persisters. We propose that this zebrafish embryo model with ΔrpfAB mutant bacteria is a valuable addition for drug screening purposes and specifically screens to target mycobacterial persisters.
Collapse
|
27
|
Shim D, Kim H, Shin SJ. Corrigendum: Mycobacterium tuberculosis Infection-Driven Foamy Macrophages and Their Implications in Tuberculosis Control as Targets for Host-Directed Therapy. Front Immunol 2020; 11:1601. [PMID: 32765536 PMCID: PMC7379857 DOI: 10.3389/fimmu.2020.01601] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Accepted: 06/16/2020] [Indexed: 01/01/2023] Open
Affiliation(s)
- Dahee Shim
- Department of Microbiology, Institute for Immunology and Immunological Diseases, Brain Korea 21 Program for Leading Universities and Students (PLUS) Project for Medical Science, Yonsei University College of Medicine, Seoul, South Korea.,Department of Life Science, Research Institute for Natural Sciences, College of Natural Sciences, Hanyang University, Seoul, South Korea
| | - Hagyu Kim
- Department of Microbiology, Institute for Immunology and Immunological Diseases, Brain Korea 21 Program for Leading Universities and Students (PLUS) Project for Medical Science, Yonsei University College of Medicine, Seoul, South Korea
| | - Sung Jae Shin
- Department of Microbiology, Institute for Immunology and Immunological Diseases, Brain Korea 21 Program for Leading Universities and Students (PLUS) Project for Medical Science, Yonsei University College of Medicine, Seoul, South Korea
| |
Collapse
|
28
|
Vincent CM, Simoes da Silva CJ, Wadhawan A, Dionne MS. Origins of Metabolic Pathology in Francisella-Infected Drosophila. Front Immunol 2020; 11:1419. [PMID: 32733472 PMCID: PMC7360822 DOI: 10.3389/fimmu.2020.01419] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Accepted: 06/02/2020] [Indexed: 12/22/2022] Open
Abstract
The origins and causes of infection pathologies are often not understood. Despite this, the study of infection and immunity relies heavily on the ability to discern between potential sources of pathology. Work in the fruit fly has supported the assumption that mortality resulting from bacterial invasion is largely due to direct host-pathogen interactions, as lower pathogen loads are often associated with reduced pathology, and bacterial load upon death is predictable. However, the mechanisms through which these interactions bring about host death are complex. Here we show that infection with the bacterium Francisella novicida leads to metabolic dysregulation and, using treatment with a bacteriostatic antibiotic, we show that this pathology is the result of direct interaction between host and pathogen. We show that mutants of the immune deficiency immune pathway fail to exhibit similar metabolic dysregulation, supporting the idea that the reallocation of resources for immune-related activities contributes to metabolic dysregulation. Targeted investigation into the cross-talk between immune and metabolic pathways has the potential to illuminate some of this interaction.
Collapse
Affiliation(s)
- Crystal M Vincent
- MRC Centre for Molecular Bacteriology and Infection and Department of Life Sciences, Imperial College London, London, United Kingdom
| | - Carolina J Simoes da Silva
- MRC Centre for Molecular Bacteriology and Infection and Department of Life Sciences, Imperial College London, London, United Kingdom
| | - Ashima Wadhawan
- MRC Centre for Molecular Bacteriology and Infection and Department of Life Sciences, Imperial College London, London, United Kingdom
| | - Marc S Dionne
- MRC Centre for Molecular Bacteriology and Infection and Department of Life Sciences, Imperial College London, London, United Kingdom
| |
Collapse
|
29
|
Sarathy JP, Dartois V. Caseum: a Niche for Mycobacterium tuberculosis Drug-Tolerant Persisters. Clin Microbiol Rev 2020; 33:e00159-19. [PMID: 32238365 PMCID: PMC7117546 DOI: 10.1128/cmr.00159-19] [Citation(s) in RCA: 60] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Caseum, the central necrotic material of tuberculous lesions, is a reservoir of drug-recalcitrant persisting mycobacteria. Caseum is found in closed nodules and in open cavities connecting with an airway. Several commonly accepted characteristics of caseum were established during the preantibiotic era, when autopsies of deceased tuberculosis (TB) patients were common but methodologies were limited. These pioneering studies generated concepts such as acidic pH, low oxygen tension, and paucity of nutrients being the drivers of nonreplication and persistence in caseum. Here we review widely accepted beliefs about the caseum-specific stress factors thought to trigger the shift of Mycobacterium tuberculosis to drug tolerance. Our current state of knowledge reveals that M. tuberculosis is faced with a lipid-rich diet rather than nutrient deprivation in caseum. Variable caseum pH is seen across lesions, possibly transiently acidic in young lesions but overall near neutral in most mature lesions. Oxygen tension is low in the avascular caseum of closed nodules and high at the cavity surface, and a gradient of decreasing oxygen tension likely forms toward the cavity wall. Since caseum is largely made of infected and necrotized macrophages filled with lipid droplets, the microenvironmental conditions encountered by M. tuberculosis in foamy macrophages and in caseum bear many similarities. While there remain a few knowledge gaps, these findings constitute a solid starting point to develop high-throughput drug discovery assays that combine the right balance of oxygen tension, pH, lipid abundance, and lipid species to model the profound drug tolerance of M. tuberculosis in caseum.
Collapse
Affiliation(s)
- Jansy P Sarathy
- Center for Discovery and Innovation, Hackensack Meridian School of Medicine at Seton Hall University, Nutley, New Jersey, USA
| | - Véronique Dartois
- Center for Discovery and Innovation, Hackensack Meridian School of Medicine at Seton Hall University, Nutley, New Jersey, USA
| |
Collapse
|
30
|
Roque NR, Lage SL, Navarro R, Fazolini N, Maya-Monteiro CM, Rietdorf J, Melo RCN, D'Avila H, Bozza PT. Rab7 controls lipid droplet-phagosome association during mycobacterial infection. Biochim Biophys Acta Mol Cell Biol Lipids 2020; 1865:158703. [PMID: 32229179 DOI: 10.1016/j.bbalip.2020.158703] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2019] [Revised: 03/12/2020] [Accepted: 03/25/2020] [Indexed: 12/21/2022]
Abstract
Lipid droplets (LDs) are organelles that have multiple roles in inflammatory and infectious diseases. LD act as essential platforms for immunometabolic regulation, including as sites for lipid storage and metabolism, inflammatory lipid mediator production, and signaling pathway compartmentalization. Accumulating evidence indicates that intracellular pathogens may exploit host LDs as source of nutrients and as part of their strategy to promote immune evasion. Notably, numerous studies have demonstrated the interaction between LDs and pathogen-containing phagosomes. However, the mechanism involved in this phenomenon remains elusive. Here, we observed LDs and PLIN2 surrounding M. bovis BCG-containing phagosomes, which included observations of a bacillus cell surrounded by lipid content inside a phagosome and LAM from mycobacteria co-localizing with LDs; these results were suggestive of exchange of contents between these compartments. By using beads coated with M.tb lipids, we demonstrated that LD-phagosome associations are regulated through the mycobacterial cell wall components LAM and PIM. In addition, we demonstrated that Rab7 and RILP, but not Rab5, localizes to LDs of infected macrophages and observed the presence of Rab7 at the site of interaction with an infected phagosome. Moreover, treatment of macrophages with the Rab7 inhibitor CID1067700 significantly inhibited the association between LDs and LAM-coated beads. Altogether, our data demonstrate that LD-phagosome interactions are controlled by mycobacterial cell wall components and Rab7, which enables the exchange of contents between LDs and phagosomes and may represent a fundamental aspect of bacterial pathogenesis and immune evasion.
Collapse
Affiliation(s)
- Natalia R Roque
- Laboratório de Imunofarmacologia, IOC, Fundação Oswaldo Cruz, Rio de Janeiro, 21045-900, RJ, Brazil
| | - Silvia L Lage
- Laboratório de Imunofarmacologia, IOC, Fundação Oswaldo Cruz, Rio de Janeiro, 21045-900, RJ, Brazil
| | - Roberta Navarro
- Laboratório de Imunofarmacologia, IOC, Fundação Oswaldo Cruz, Rio de Janeiro, 21045-900, RJ, Brazil
| | - Narayana Fazolini
- Laboratório de Imunofarmacologia, IOC, Fundação Oswaldo Cruz, Rio de Janeiro, 21045-900, RJ, Brazil
| | - Clarissa M Maya-Monteiro
- Laboratório de Imunofarmacologia, IOC, Fundação Oswaldo Cruz, Rio de Janeiro, 21045-900, RJ, Brazil
| | - Jens Rietdorf
- Centro de Desenvolvimento Tecnológico em Saúde, CDTS, IOC, Fundação Oswaldo Cruz, Rio de Janeiro, 21045-900, RJ, Brazil
| | - Rossana C N Melo
- Laboratório de Biologia Celular, Departamento de Biologia, Universidade Federal de Juiz de Fora, Juiz de Fora, 36036-330, MG, Brazil
| | - Heloisa D'Avila
- Laboratório de Biologia Celular, Departamento de Biologia, Universidade Federal de Juiz de Fora, Juiz de Fora, 36036-330, MG, Brazil
| | - Patricia T Bozza
- Laboratório de Imunofarmacologia, IOC, Fundação Oswaldo Cruz, Rio de Janeiro, 21045-900, RJ, Brazil.
| |
Collapse
|
31
|
Lamrabet O, Melotti A, Burdet F, Hanna N, Perrin J, Nitschke J, Pagni M, Hilbi H, Soldati T, Cosson P. Transcriptional Responses of Dictyostelium discoideum Exposed to Different Classes of Bacteria. Front Microbiol 2020; 11:410. [PMID: 32210949 PMCID: PMC7078664 DOI: 10.3389/fmicb.2020.00410] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Accepted: 02/27/2020] [Indexed: 12/19/2022] Open
Abstract
Dictyostelium discoideum amoebae feed by ingesting bacteria, then killing them in phagosomes. Ingestion and killing of different bacteria have been shown to rely on largely different molecular mechanisms. One would thus expect that D. discoideum adapts its ingestion and killing machinery when encountering different bacteria. In this study, we investigated by RNA sequencing if and how D. discoideum amoebae respond to the presence of different bacteria by modifying their gene expression patterns. Each bacterial species analyzed induced a specific modification of the transcriptome. Bacteria such as Bacillus subtilis, Klebsiella pneumoniae, or Mycobacterium marinum induced a specific and different transcriptional response, while Micrococcus luteus did not trigger a significant gene regulation. Although folate has been proposed to be one of the key molecules secreted by bacteria and recognized by hunting amoebae, it elicited a very specific and restricted transcriptional signature, distinct from that triggered by any bacteria analyzed here. Our results indicate that D. discoideum amoebae respond in a highly specific, almost non-overlapping manner to different species of bacteria. We additionally identify specific sets of genes that can be used as reporters of the response of D. discoideum to different bacteria.
Collapse
Affiliation(s)
- Otmane Lamrabet
- Department of Cell Physiology and Metabolism, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Astrid Melotti
- Department of Cell Physiology and Metabolism, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Frédéric Burdet
- Vital-IT Group, SIB, Swiss Institute of Bioinformatics, Lausanne, Switzerland
| | - Nabil Hanna
- Department of Biochemistry, Faculty of Science, University of Geneva, Geneva, Switzerland
| | - Jackie Perrin
- Department of Cell Physiology and Metabolism, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Jahn Nitschke
- Department of Biochemistry, Faculty of Science, University of Geneva, Geneva, Switzerland
| | - Marco Pagni
- Vital-IT Group, SIB, Swiss Institute of Bioinformatics, Lausanne, Switzerland
| | - Hubert Hilbi
- Faculty of Medicine, Institute of Medical Microbiology, University of Zurich, Zurich, Switzerland
| | - Thierry Soldati
- Department of Biochemistry, Faculty of Science, University of Geneva, Geneva, Switzerland
| | - Pierre Cosson
- Department of Cell Physiology and Metabolism, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| |
Collapse
|
32
|
Khandazhinskaya AL, Matyugina ES, Alexandrova LA, Kezin VA, Chernousova LN, Smirnova TG, Andreevskaya SN, Popenko VI, Leonova OG, Kochetkov SN. Interaction of 5-substituted pyrimidine nucleoside analogues and M.Tuberculosis: A view through an electron microscope. Biochimie 2020; 171-172:170-177. [PMID: 32147512 DOI: 10.1016/j.biochi.2020.03.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Accepted: 03/03/2020] [Indexed: 01/17/2023]
Abstract
The data of transmission electron microscopy (TEM) on morphology of M. tuberculosis H37Rv bacterial cells treated with four analogues of pyrimidine nucleosides with different substituents at 5 position of base are presented. We showed that the growth of M. tuberculosis H37Rv cells effectively inhibited by each of these compounds. This process is accompanied with the accumulation of lipid intracellular vacuole-like inclusions in the cells, appearance of deep protrusions and indentations on the surface, partial and/or complete destruction of the three-layered cell envelope. The exact molecular mechanism of action of 5-substituted pyrimidine nucleosides on M. tuberculosis cells remains to be proved. However, one can suggest that mechanism of action for these compounds is related either to their direct interactions with bacteria cell walls or to interactions with enzymes participating in the process of cell wall formation.
Collapse
Affiliation(s)
- Anastasia L Khandazhinskaya
- Engelhardt Institute of Molecular Biology of the Russian Academy of Sciences, 32 Vavilov St., Moscow, 119991, Russia.
| | - Elena S Matyugina
- Engelhardt Institute of Molecular Biology of the Russian Academy of Sciences, 32 Vavilov St., Moscow, 119991, Russia.
| | - Liudmila A Alexandrova
- Engelhardt Institute of Molecular Biology of the Russian Academy of Sciences, 32 Vavilov St., Moscow, 119991, Russia.
| | - Vasiliy A Kezin
- Engelhardt Institute of Molecular Biology of the Russian Academy of Sciences, 32 Vavilov St., Moscow, 119991, Russia
| | - Larisa N Chernousova
- Central Tuberculosis Research Institute, 2 Yauzskaya Alley, Moscow, 107564, Russia.
| | - Tatiana G Smirnova
- Central Tuberculosis Research Institute, 2 Yauzskaya Alley, Moscow, 107564, Russia.
| | - Sofya N Andreevskaya
- Central Tuberculosis Research Institute, 2 Yauzskaya Alley, Moscow, 107564, Russia.
| | - Vladimir I Popenko
- Engelhardt Institute of Molecular Biology of the Russian Academy of Sciences, 32 Vavilov St., Moscow, 119991, Russia.
| | - Olga G Leonova
- Engelhardt Institute of Molecular Biology of the Russian Academy of Sciences, 32 Vavilov St., Moscow, 119991, Russia.
| | - Sergey N Kochetkov
- Engelhardt Institute of Molecular Biology of the Russian Academy of Sciences, 32 Vavilov St., Moscow, 119991, Russia.
| |
Collapse
|
33
|
Molecular Detection of Isoniazid and Rifampin Resistance in Mycobacterium tuberculosis Isolates from Lorestan Province, Iran from 2014 to 2017. ARCHIVES OF CLINICAL INFECTIOUS DISEASES 2020. [DOI: 10.5812/archcid.81436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
34
|
Maan P, Kaur J. Rv2223c, an acid inducible carboxyl-esterase of Mycobacterium tuberculosis enhanced the growth and survival of Mycobacterium smegmatis. Future Microbiol 2019; 14:1397-1415. [DOI: 10.2217/fmb-2019-0162] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Aim: To elucidate the role of Rv2223c in Mycobacterium tuberculosis. Methods: Purified recombinant Rv2223c protein was characterized. Expression of rv2223c in the presence of different stress environment and subcellular localization were performed in M. tuberculosis H37Ra and Mycobacterium smegmatis ( MS_2223c). Effect of its overexpression on growth rate, infection and intracellular survival in THP-1/PBMC cells were studied. Results: rRv2223c demonstrated esterase activity with preference for pNP-octanoate and hydrolyzed trioctanoate to di- and mono-octanoate. Expression of rv2223c was upregulated in acidic and nutritive stress conditions. rRv2223c was identified in extracellular and cell wall fractions. MS_2223c exhibited enhanced growth, survival during in vitro stress, infection and intracellular survival. Conclusions: Rv2223c is a secretary, carboxyl-esterase, with enhanced expression under acidic and nutritive stress condition and might help in intracellular survival of bacteria.
Collapse
Affiliation(s)
- Pratibha Maan
- Department of Biotechnology, Panjab University, Chandigarh, India
| | - Jagdeep Kaur
- Department of Biotechnology, Panjab University, Chandigarh, India
| |
Collapse
|
35
|
Greenwood DJ, Dos Santos MS, Huang S, Russell MRG, Collinson LM, MacRae JI, West A, Jiang H, Gutierrez MG. Subcellular antibiotic visualization reveals a dynamic drug reservoir in infected macrophages. Science 2019; 364:1279-1282. [PMID: 31249058 DOI: 10.1126/science.aat9689] [Citation(s) in RCA: 95] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2018] [Revised: 02/20/2019] [Accepted: 05/13/2019] [Indexed: 12/29/2022]
Abstract
Tuberculosis, caused by the intracellular pathogen Mycobacterium tuberculosis, remains the world's deadliest infectious disease. Sterilizing chemotherapy requires at least 6 months of multidrug therapy. Difficulty visualizing the subcellular localization of antibiotics in infected host cells means that it is unclear whether antibiotics penetrate all mycobacteria-containing compartments in the cell. Here, we combined correlated light, electron, and ion microscopy to image the distribution of bedaquiline in infected human macrophages at submicrometer resolution. Bedaquiline accumulated primarily in host cell lipid droplets, but heterogeneously in mycobacteria within a variety of intracellular compartments. Furthermore, lipid droplets did not sequester antibiotic but constituted a transferable reservoir that enhanced antibacterial efficacy. Thus, strong lipid binding facilitated drug trafficking by host organelles to an intracellular target during antimicrobial treatment.
Collapse
Affiliation(s)
| | | | - Song Huang
- Centre for Microscopy, Characterisation and Analysis, University of Western Australia, Perth, Australia
| | | | | | | | | | - Haibo Jiang
- Centre for Microscopy, Characterisation and Analysis, University of Western Australia, Perth, Australia. .,School of Molecular Sciences, University of Western Australia, Perth, Australia
| | | |
Collapse
|
36
|
Santucci P, Johansen MD, Point V, Poncin I, Viljoen A, Cavalier JF, Kremer L, Canaan S. Nitrogen deprivation induces triacylglycerol accumulation, drug tolerance and hypervirulence in mycobacteria. Sci Rep 2019; 9:8667. [PMID: 31209261 PMCID: PMC6572852 DOI: 10.1038/s41598-019-45164-5] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2018] [Accepted: 05/29/2019] [Indexed: 11/09/2022] Open
Abstract
Mycobacteria share with other actinomycetes the ability to produce large quantities of triacylglycerol (TAG), which accumulate as intracytoplasmic lipid inclusions (ILI) also known as lipid droplets (LD). Mycobacterium tuberculosis (M. tb), the etiologic agent of tuberculosis, acquires fatty acids from the human host which are utilized to synthesize TAG, subsequently stored in the form of ILI to meet the carbon and nutrient requirements of the bacterium during long periods of persistence. However, environmental factors governing mycobacterial ILI formation and degradation remain poorly understood. Herein, we demonstrated that in the absence of host cells, carbon excess and nitrogen starvation promote TAG accumulation in the form of ILI in M. smegmatis and M. abscessus, used as surrogate species of M. tb. Based on these findings, we developed a simple and reversible in vitro model to regulate ILI biosynthesis and hydrolysis in mycobacteria. We also showed that TAG formation is tgs1 dependent and that lipolytic enzymes mediate TAG breakdown. Moreover, we confirmed that the nitrogen-deprived and ILI-rich phenotype was associated with an increased tolerance towards several drugs used for treating mycobacterial infections. Importantly, we showed that the presence of ILI substantially enhanced the bacterial burden and granuloma abundance in zebrafish embryos infected with lipid-rich M. abscessus as compared to embryos infected with lipid-poor M. abscessus, suggesting that ILI are actively contributing to mycobacterial virulence and pathogenesis.
Collapse
Affiliation(s)
- Pierre Santucci
- Aix-Marseille Univ, CNRS, LISM, IMM FR3479, Marseille, France
| | - Matt D Johansen
- Institut de Recherche en Infectiologie de Montpellier (IRIM), CNRS, UMR 9004, Université de Montpellier, 34293, Montpellier, France
| | - Vanessa Point
- Aix-Marseille Univ, CNRS, LISM, IMM FR3479, Marseille, France
| | - Isabelle Poncin
- Aix-Marseille Univ, CNRS, LISM, IMM FR3479, Marseille, France
| | - Albertus Viljoen
- Institut de Recherche en Infectiologie de Montpellier (IRIM), CNRS, UMR 9004, Université de Montpellier, 34293, Montpellier, France
| | | | - Laurent Kremer
- Institut de Recherche en Infectiologie de Montpellier (IRIM), CNRS, UMR 9004, Université de Montpellier, 34293, Montpellier, France.,INSERM, IRIM, 34293, Montpellier, France
| | - Stéphane Canaan
- Aix-Marseille Univ, CNRS, LISM, IMM FR3479, Marseille, France.
| |
Collapse
|
37
|
Koliwer‐Brandl H, Knobloch P, Barisch C, Welin A, Hanna N, Soldati T, Hilbi H. DistinctMycobacterium marinumphosphatases determine pathogen vacuole phosphoinositide pattern, phagosome maturation, and escape to the cytosol. Cell Microbiol 2019; 21:e13008. [DOI: 10.1111/cmi.13008] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2018] [Revised: 12/18/2018] [Accepted: 01/12/2019] [Indexed: 01/02/2023]
Affiliation(s)
- Hendrik Koliwer‐Brandl
- Faculty of Medicine, Institute of Medical MicrobiologyUniversity of Zurich Zurich Switzerland
| | - Paulina Knobloch
- Faculty of Medicine, Institute of Medical MicrobiologyUniversity of Zurich Zurich Switzerland
| | - Caroline Barisch
- Faculty of Science, Department of BiochemistryUniversity of Geneva Geneva Switzerland
| | - Amanda Welin
- Faculty of Medicine, Institute of Medical MicrobiologyUniversity of Zurich Zurich Switzerland
| | - Nabil Hanna
- Faculty of Science, Department of BiochemistryUniversity of Geneva Geneva Switzerland
| | - Thierry Soldati
- Faculty of Science, Department of BiochemistryUniversity of Geneva Geneva Switzerland
| | - Hubert Hilbi
- Faculty of Medicine, Institute of Medical MicrobiologyUniversity of Zurich Zurich Switzerland
| |
Collapse
|
38
|
Maurya RK, Bharti S, Krishnan MY. Triacylglycerols: Fuelling the Hibernating Mycobacterium tuberculosis. Front Cell Infect Microbiol 2019; 8:450. [PMID: 30687647 PMCID: PMC6333902 DOI: 10.3389/fcimb.2018.00450] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2018] [Accepted: 12/18/2018] [Indexed: 01/13/2023] Open
Abstract
Mycobacterium tuberculosis (Mtb) has the remarkable ability to persist with a modified metabolic status and phenotypic drug tolerance for long periods in the host without producing symptoms of active tuberculosis. These persisters may reactivate to cause active disease when the immune system becomes disrupted or compromised. Thus, the infected hosts with the persisters serve as natural reservoir of the deadly pathogen. Understanding the host and bacterial factors contributing to Mtb persistence is important to devise strategies to tackle the Mtb persisters. Host lipids act as the major source of carbon and energy for Mtb. Fatty acids derived from the host cells are converted to triacylglycerols (triglycerides or TAG) and stored in the bacterial cytoplasm. TAG serves as a dependable, long-term energy source of lesser molecular mass than other storage molecules like glycogen. TAG are found in substantial amounts in the mycobacterial cell wall. This review discusses the production, accumulation and possible roles of TAG in mycobacteria, pointing out the aspects that remain to be explored. Finally, the essentiality of TAG synthesis for Mtb is discussed with implications for identification of intervention strategies.
Collapse
Affiliation(s)
- Rahul Kumar Maurya
- Microbiology Division, CSIR-Central Drug Research Institute, Lucknow, India
| | - Suman Bharti
- Microbiology Division, CSIR-Central Drug Research Institute, Lucknow, India
| | - Manju Y Krishnan
- Microbiology Division, CSIR-Central Drug Research Institute, Lucknow, India
| |
Collapse
|
39
|
Bozzaro S, Buracco S, Peracino B, Eichinger L. Dictyostelium Host Response to Legionella Infection: Strategies and Assays. Methods Mol Biol 2019; 1921:347-370. [PMID: 30694504 DOI: 10.1007/978-1-4939-9048-1_23] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The professional phagocyte Dictyostelium discoideum is a well-established model organism to study host-pathogen interactions. Dictyostelium amoebae grow as separate, independent cells; they divide by binary fission and take up bacteria and yeast via phagocytosis. In the year 2000, D. discoideum was described by two groups as a novel system for genetic analysis of host-pathogen interactions for the intracellular pathogen Legionella pneumophila. Since then additional microbial pathogens that can be studied in D. discoideum have been reported. The organism has various advantages for the dissection of the complex cross-talk between a host and a pathogen. A fully sequenced and well-curated genome is available, there are excellent molecular genetic tools on the market, and the generation of targeted multiple gene knock-outs as well as the realization of untargeted genetic screens is generally straightforward. Dictyostelium also offers easy cultivation, and the cells are suitable for cell biological studies, which in combination with in vivo expression of fluorescence-tagged proteins allows the investigation of the dynamics of bacterial uptake and infection. Furthermore, a large mutant collection is available at the Dictyostelium stock center, favoring the identification of host resistance or susceptibility genes. Here, we briefly describe strategies to identify host cell factors important during an infection, followed by protocols for cell culture and storage, uptake and infection, and confocal microscopy of infected cells.
Collapse
Affiliation(s)
- Salvatore Bozzaro
- Department of Clinical and Biological Sciences, University of Turin, Orbassano, Italy.
| | - Simona Buracco
- Department of Clinical and Biological Sciences, University of Turin, Orbassano, Italy
| | - Barbara Peracino
- Department of Clinical and Biological Sciences, University of Turin, Orbassano, Italy
| | - Ludwig Eichinger
- Center for Biochemistry, Medical Faculty, University of Cologne, Cologne, Germany.
| |
Collapse
|
40
|
López-Jiménez AT, Cardenal-Muñoz E, Leuba F, Gerstenmaier L, Barisch C, Hagedorn M, King JS, Soldati T. The ESCRT and autophagy machineries cooperate to repair ESX-1-dependent damage at the Mycobacterium-containing vacuole but have opposite impact on containing the infection. PLoS Pathog 2018; 14:e1007501. [PMID: 30596802 PMCID: PMC6329560 DOI: 10.1371/journal.ppat.1007501] [Citation(s) in RCA: 71] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2018] [Revised: 01/11/2019] [Accepted: 12/03/2018] [Indexed: 12/21/2022] Open
Abstract
Phagocytic cells capture and kill most invader microbes within the bactericidal phagosome, but some pathogens subvert killing by damaging the compartment and escaping to the cytosol. To prevent the leakage of pathogen virulence and host defence factors, as well as bacteria escape, host cells have to contain and repair the membrane damage, or finally eliminate the cytosolic bacteria. All eukaryotic cells engage various repair mechanisms to ensure plasma membrane integrity and proper compartmentalization of organelles, including the Endosomal Sorting Complex Required for Transport (ESCRT) and autophagy machineries. We show that during infection of Dictyostelium discoideum with Mycobacterium marinum, the ESCRT-I component Tsg101, the ESCRT-III protein Snf7/Chmp4/Vps32 and the AAA-ATPase Vps4 are recruited to sites of damage at the Mycobacterium-containing vacuole. Interestingly, damage separately recruits the ESCRT and the autophagy machineries. In addition, the recruitment of Vps32 and Vps4 to repair sterile membrane damage depends on Tsg101 but appears independent of Ca2+. Finally, in absence of Tsg101, M. marinum accesses prematurely the cytosol, where the autophagy machinery restricts its growth. We propose that ESCRT has an evolutionary conserved function to repair small membrane damage and to contain intracellular pathogens in intact compartments. Upon uptake by a host cell, intracellular pathogens reside in a membranous compartment called phagosome. Within the phagosome, microbes are protected from the extracellular and cytosolic immune defences, whilst access to nutrients is limited. Some microbes gain access to the host cytosol by damaging the membrane of the phagosome, a step preceding egress and dissemination. Autophagy, a major catabolic pathway in eukaryotes, has been previously proposed to contribute to autonomous cell defence and to repair the membrane damage induced by intracellular pathogens. Here, we provide evidence that, in Dictyostelium discoideum, autophagy does not work alone in the containment of vacuolar mycobacteria, but it operates together with the Endosomal Sorting Complex Required for Transport (ESCRT), a protein machinery recently shown to repair endolysosomal damage. We demonstrate that the membrane perforations induced by the ESX-1 secretion system of Mycobacterium marinum are targeted by both ESCRT and autophagy, which seal the damaged vacuole. We propose that ESCRT might mend small membrane pores, whilst autophagy patches larger cumulative wounds. Interestingly, and contrary to what has been described in mammalian cells for ESCRT-dependent endolysosomal repair, in D. discoideum, repair of sterile membrane damage appears not to require Ca2+. The evolutionary conservation of the function of ESCRT in membrane repair suggests that this machinery plays an ancestral and widespread role to contain a broad range of intracellular pathogens.
Collapse
Affiliation(s)
- Ana T. López-Jiménez
- Department of Biochemistry, Faculty of Science, University of Geneva, Sciences II, Geneva, Switzerland
| | - Elena Cardenal-Muñoz
- Department of Biochemistry, Faculty of Science, University of Geneva, Sciences II, Geneva, Switzerland
| | - Florence Leuba
- Department of Biochemistry, Faculty of Science, University of Geneva, Sciences II, Geneva, Switzerland
| | - Lilli Gerstenmaier
- Section Parasitology, Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
| | - Caroline Barisch
- Department of Biochemistry, Faculty of Science, University of Geneva, Sciences II, Geneva, Switzerland
| | - Monica Hagedorn
- Life Sciences and Chemistry, Jacobs University Bremen gGmbH, group Ribogenetics, Bremen, Germany
| | - Jason S. King
- Department of Biomedical Science, University of Sheffield, Western Bank, Sheffield, United Kingdom
| | - Thierry Soldati
- Department of Biochemistry, Faculty of Science, University of Geneva, Sciences II, Geneva, Switzerland
- * E-mail:
| |
Collapse
|
41
|
Maan P, Kumar A, Kaur J, Kaur J. Rv1288, a Two Domain, Cell Wall Anchored, Nutrient Stress Inducible Carboxyl-Esterase of Mycobacterium tuberculosis, Modulates Cell Wall Lipid. Front Cell Infect Microbiol 2018; 8:421. [PMID: 30560095 PMCID: PMC6287010 DOI: 10.3389/fcimb.2018.00421] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2018] [Accepted: 11/16/2018] [Indexed: 01/29/2023] Open
Abstract
Rv1288, a conserved hypothetical protein of M. tuberculosis (M.tb), was recently characterized as two-domain esterase enzyme by in silico study. In the present study, Rv1288 and its domains (Est and Lyt) were cloned individually from M.tb into E. coli for expression and purification. The purified rRv1288 and rEst proteins exhibited lipolytic activity with medium chain length esters as optimum substrates, while Lyt domain did not show enzymatic activity. However, presence of Lyt domain resulted in enhanced rate of protein aggregation at higher temperature. Both rRv1288 and rEst followed the similar patterns of substrate specificity, temperature and pH activity. Site directed mutagenesis confirmed the Ser-294, Asp-391 and His-425 as catalytic site residues. Rv1288 was found to be present in cell wall fraction of M.tb H37Ra. Peptidoglycan binding activity of Rv1288 and its domains demonstrated that the Lyt domain is essential for anchoring protein to the cell wall. Expression of rv1288 was up regulated in M.tb under nutrient starved condition. Over expression of rv1288 in surrogate host M. smegmatis led to change in colony morphology, enhanced pellicle and aggregate formation that might be linked with the changed lipid composition of bacterial cell wall. Cell wall of M. smegmatis expressing rv1288 had higher amount of lipids, with a significant increase in trehalose dimycolate content. Rv1288 also leads to increase in drug resistance of M. smegmatis. Rv1288 also enhanced the intracellular survival of M. smegmatis in Raw264.7 cell line. Overall, this study suggested that Rv1288, a cell wall localized carboxyl hydrolase with mycolyl-transferase activity, modulated the cell wall lipids to favor the survival of bacteria under stress condition.
Collapse
Affiliation(s)
- Pratibha Maan
- Department of Biotechnology, Panjab University, Chandigarh, India
| | - Arbind Kumar
- Department of Biotechnology, Panjab University, Chandigarh, India
| | - Jashandeep Kaur
- Department of Biotechnology, Panjab University, Chandigarh, India
| | - Jagdeep Kaur
- Department of Biotechnology, Panjab University, Chandigarh, India
| |
Collapse
|
42
|
Delineating the Physiological Roles of the PE and Catalytic Domains of LipY in Lipid Consumption in Mycobacterium-Infected Foamy Macrophages. Infect Immun 2018; 86:IAI.00394-18. [PMID: 29986895 DOI: 10.1128/iai.00394-18] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2018] [Accepted: 07/03/2018] [Indexed: 12/29/2022] Open
Abstract
Within tuberculous granulomas, a subpopulation of Mycobacterium tuberculosis resides inside foamy macrophages (FM) that contain abundant cytoplasmic lipid bodies (LB) filled with triacylglycerol (TAG). Upon fusion of LB with M. tuberculosis-containing phagosomes, TAG is hydrolyzed and reprocessed by the bacteria into their own lipids, which accumulate as intracytosolic lipid inclusions (ILI). This phenomenon is driven by many mycobacterial lipases, among which LipY participates in the hydrolysis of host and bacterial TAG. However, the functional contribution of LipY's PE domain to TAG hydrolysis remains unclear. Here, enzymatic studies were performed to compare the lipolytic activities of recombinant LipY and its truncated variant lacking the N-terminal PE domain, LipY(ΔPE). Complementarily, an FM model was used where bone marrow-derived mouse macrophages were infected with M. bovis BCG strains either overexpressing LipY or LipY(ΔPE) or carrying a lipY deletion mutation prior to being exposed to TAG-rich very-low-density lipoprotein (VLDL). Results indicate that truncation of the PE domain correlates with increased TAG hydrolase activity. Quantitative electron microscopy analyses showed that (i) in the presence of lipase inhibitors, large ILI (ILI+3) were not formed because of an absence of LB due to inhibition of VLDL-TAG hydrolysis or inhibition of LB-neutral lipid hydrolysis by mycobacterial lipases, (ii) ILI+3 profiles in the strain overexpressing LipY(ΔPE) were reduced, and (iii) the number of ILI+3 profiles in the ΔlipY mutant was reduced by 50%. Overall, these results delineate the role of LipY and its PE domain in host and mycobacterial lipid consumption and show that additional mycobacterial lipases take part in these processes.
Collapse
|
43
|
Vijay S, Hai HT, Thu DDA, Johnson E, Pielach A, Phu NH, Thwaites GE, Thuong NTT. Ultrastructural Analysis of Cell Envelope and Accumulation of Lipid Inclusions in Clinical Mycobacterium tuberculosis Isolates from Sputum, Oxidative Stress, and Iron Deficiency. Front Microbiol 2018; 8:2681. [PMID: 29379477 PMCID: PMC5770828 DOI: 10.3389/fmicb.2017.02681] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2017] [Accepted: 12/22/2017] [Indexed: 11/13/2022] Open
Abstract
Introduction: Mycobacteria have several unique cellular characteristics, such as multiple cell envelope layers, elongation at cell poles, asymmetric cell division, and accumulation of intracytoplasmic lipid inclusions, which contributes to their survival under stress conditions. However, the understanding of these characteristics in clinical Mycobacterium tuberculosis (M. tuberculosis) isolates and under host stress is limited. We previously reported the influence of host stress on the cell length distribution in a large set of clinical M. tuberculosis isolates (n = 158). Here, we investigate the influence of host stress on the cellular ultrastructure of few clinical M. tuberculosis isolates (n = 8) from that study. The purpose of this study is to further understand the influence of host stress on the cellular adaptations of clinical M. tuberculosis isolates. Methods: We selected few M. tuberculosis isolates (n = 8) for analyzing the cellular ultrastructure ex vivo in sputum and under in vitro stress conditions by transmission electron microscopy. The cellular adaptations of M. tuberculosis in sputum were correlated with the ultrastructure of antibiotic sensitive and resistant isolates in liquid culture, under oxidative stress, iron deficiency, and exposure to isoniazid. Results: In sputum, M. tuberculosis accumulated intracytoplasmic lipid inclusions. In liquid culture, clinical M. tuberculosis revealed isolate to isolate variation in the extent of intracytoplasmic lipid inclusions, which were absent in the laboratory strain H37Rv. Oxidative stress, iron deficiency, and exposure to isoniazid increased the accumulation of lipid inclusions and decreased the thickness of the cell envelope electron transparent layer in M. tuberculosis cells. Furthermore, intracytoplasmic compartments were observed in iron deficient cells. Conclusion: Our ultrastructural analysis has revealed significant influence of host stress on the cellular adaptations in clinical M. tuberculosis isolates. These adaptations may contribute to the survival of M. tuberculosis under host and antibiotic stress conditions. Variation in the cellular adaptations among clinical M. tuberculosis isolates may correlate with their ability to persist in tuberculosis patients during antibiotic treatment. These observations indicate the need for further analyzing these cellular adaptations in a large set of clinical M. tuberculosis isolates. This will help to determine the significance of these cellular adaptations in the tuberculosis treatment.
Collapse
Affiliation(s)
- Srinivasan Vijay
- Oxford University Clinical Research Unit, Ho Chi Minh City, Vietnam.,Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Hoang T Hai
- Oxford University Clinical Research Unit, Ho Chi Minh City, Vietnam
| | - Do D A Thu
- Oxford University Clinical Research Unit, Ho Chi Minh City, Vietnam
| | - Errin Johnson
- Sir William Dunn School of Pathology, University of Oxford, Oxford, United Kingdom
| | - Anna Pielach
- Sir William Dunn School of Pathology, University of Oxford, Oxford, United Kingdom
| | - Nguyen H Phu
- Hospital for Tropical Diseases, Ho Chi Minh City, Vietnam
| | - Guy E Thwaites
- Oxford University Clinical Research Unit, Ho Chi Minh City, Vietnam.,Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Nguyen T T Thuong
- Oxford University Clinical Research Unit, Ho Chi Minh City, Vietnam.,Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
44
|
Cardenal-Muñoz E, Barisch C, Lefrançois LH, López-Jiménez AT, Soldati T. When Dicty Met Myco, a (Not So) Romantic Story about One Amoeba and Its Intracellular Pathogen. Front Cell Infect Microbiol 2018; 7:529. [PMID: 29376033 PMCID: PMC5767268 DOI: 10.3389/fcimb.2017.00529] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2017] [Accepted: 12/18/2017] [Indexed: 01/06/2023] Open
Abstract
In recent years, Dictyostelium discoideum has become an important model organism to study the cell biology of professional phagocytes. This amoeba not only shares many molecular features with mammalian macrophages, but most of its fundamental signal transduction pathways are conserved in humans. The broad range of existing genetic and biochemical tools, together with its suitability for cell culture and live microscopy, make D. discoideum an ideal and versatile laboratory organism. In this review, we focus on the use of D. discoideum as a phagocyte model for the study of mycobacterial infections, in particular Mycobacterium marinum. We look in detail at the intracellular cycle of M. marinum, from its uptake by D. discoideum to its active or passive egress into the extracellular medium. In addition, we describe the molecular mechanisms that both the mycobacterial invader and the amoeboid host have developed to fight against each other, and compare and contrast with those developed by mammalian phagocytes. Finally, we introduce the methods and specific tools that have been used so far to monitor the D. discoideum-M. marinum interaction.
Collapse
Affiliation(s)
- Elena Cardenal-Muñoz
- Department of Biochemistry, Sciences II, Faculty of Sciences, University of Geneva, Geneva, Switzerland
| | | | | | | | | |
Collapse
|
45
|
Dunn JD, Bosmani C, Barisch C, Raykov L, Lefrançois LH, Cardenal-Muñoz E, López-Jiménez AT, Soldati T. Eat Prey, Live: Dictyostelium discoideum As a Model for Cell-Autonomous Defenses. Front Immunol 2018; 8:1906. [PMID: 29354124 PMCID: PMC5758549 DOI: 10.3389/fimmu.2017.01906] [Citation(s) in RCA: 102] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2017] [Accepted: 12/13/2017] [Indexed: 12/11/2022] Open
Abstract
The soil-dwelling social amoeba Dictyostelium discoideum feeds on bacteria. Each meal is a potential infection because some bacteria have evolved mechanisms to resist predation. To survive such a hostile environment, D. discoideum has in turn evolved efficient antimicrobial responses that are intertwined with phagocytosis and autophagy, its nutrient acquisition pathways. The core machinery and antimicrobial functions of these pathways are conserved in the mononuclear phagocytes of mammals, which mediate the initial, innate-immune response to infection. In this review, we discuss the advantages and relevance of D. discoideum as a model phagocyte to study cell-autonomous defenses. We cover the antimicrobial functions of phagocytosis and autophagy and describe the processes that create a microbicidal phagosome: acidification and delivery of lytic enzymes, generation of reactive oxygen species, and the regulation of Zn2+, Cu2+, and Fe2+ availability. High concentrations of metals poison microbes while metal sequestration inhibits their metabolic activity. We also describe microbial interference with these defenses and highlight observations made first in D. discoideum. Finally, we discuss galectins, TNF receptor-associated factors, tripartite motif-containing proteins, and signal transducers and activators of transcription, microbial restriction factors initially characterized in mammalian phagocytes that have either homologs or functional analogs in D. discoideum.
Collapse
Affiliation(s)
- Joe Dan Dunn
- Faculty of Sciences, Department of Biochemistry, University of Geneva, Geneva, Switzerland
| | - Cristina Bosmani
- Faculty of Sciences, Department of Biochemistry, University of Geneva, Geneva, Switzerland
| | - Caroline Barisch
- Faculty of Sciences, Department of Biochemistry, University of Geneva, Geneva, Switzerland
| | - Lyudmil Raykov
- Faculty of Sciences, Department of Biochemistry, University of Geneva, Geneva, Switzerland
| | - Louise H Lefrançois
- Faculty of Sciences, Department of Biochemistry, University of Geneva, Geneva, Switzerland
| | - Elena Cardenal-Muñoz
- Faculty of Sciences, Department of Biochemistry, University of Geneva, Geneva, Switzerland
| | | | - Thierry Soldati
- Faculty of Sciences, Department of Biochemistry, University of Geneva, Geneva, Switzerland
| |
Collapse
|
46
|
Teng O, Ang CKE, Guan XL. Macrophage-Bacteria Interactions-A Lipid-Centric Relationship. Front Immunol 2017; 8:1836. [PMID: 29326713 PMCID: PMC5742358 DOI: 10.3389/fimmu.2017.01836] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2017] [Accepted: 12/05/2017] [Indexed: 11/13/2022] Open
Abstract
Macrophages are professional phagocytes at the front line of immune defenses against foreign bodies and microbial pathogens. Various bacteria, which are responsible for deadly diseases including tuberculosis and salmonellosis, are capable of hijacking this important immune cell type and thrive intracellularly, either in the cytoplasm or in specialized vacuoles. Tight regulation of cellular metabolism is critical in shaping the macrophage polarization states and immune functions. Lipids, besides being the bulk component of biological membranes, serve as energy sources as well as signaling molecules during infection and inflammation. With the advent of systems-scale analyses of genes, transcripts, proteins, and metabolites, in combination with classical biology, it is increasingly evident that macrophages undergo extensive lipid remodeling during activation and infection. Each bacterium species has evolved its own tactics to manipulate host metabolism toward its own advantage. Furthermore, modulation of host lipid metabolism affects disease susceptibility and outcome of infections, highlighting the critical roles of lipids in infectious diseases. Here, we will review the emerging roles of lipids in the complex host-pathogen relationship and discuss recent methodologies employed to probe these versatile metabolites during the infection process. An improved understanding of the lipid-centric nature of infections can lead to the identification of the Achilles' heel of the pathogens and host-directed targets for therapeutic interventions. Currently, lipid-moderating drugs are clinically available for a range of non-communicable diseases, which we anticipate can potentially be tapped into for various infections.
Collapse
Affiliation(s)
- Ooiean Teng
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore
| | - Candice Ke En Ang
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore
| | - Xue Li Guan
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore
| |
Collapse
|
47
|
Trofimov V, Costa-Gouveia J, Hoffmann E, Brodin P. Host-pathogen systems for early drug discovery against tuberculosis. Curr Opin Microbiol 2017; 39:143-151. [PMID: 29179041 DOI: 10.1016/j.mib.2017.11.017] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2017] [Accepted: 11/17/2017] [Indexed: 12/21/2022]
Abstract
Tuberculosis (TB) is a global disease causing 1.8 million deaths each year. The appearance of drug-resistant strains raised the demand for new anti-mycobacterial drugs and therapies, because previously discovered antibiotics are shown to be inefficient. Moreover, the number of newly discovered drugs is not increasing in proportion to the emergence of drug resistance, which suggests that more optimized methodology and screening procedures are required including the incorporation of in vivo properties of TB infection. A way to improve efficacy of screening approaches is by introducing the use of different host-pathogen systems into primary screenings. These include whole cell-based screenings, zebrafish larvae-based screenings and the impact of artificial granuloma research on the drug discovery process. This review highlights current screening attempts and the identified molecular targets and summarizes findings of alternative, not fully explored host-pathogen systems for the characterization of anti-mycobacterial compounds.
Collapse
Affiliation(s)
- Valentin Trofimov
- CNRS, Inserm, CHU Lille, U1019 - UMR8204 - CIIL - Centre d'Infection et d'Immunité de Lille, Institut Pasteur de Lille, University Lille, Lille, France
| | - Joana Costa-Gouveia
- CNRS, Inserm, CHU Lille, U1019 - UMR8204 - CIIL - Centre d'Infection et d'Immunité de Lille, Institut Pasteur de Lille, University Lille, Lille, France
| | - Eik Hoffmann
- CNRS, Inserm, CHU Lille, U1019 - UMR8204 - CIIL - Centre d'Infection et d'Immunité de Lille, Institut Pasteur de Lille, University Lille, Lille, France
| | - Priscille Brodin
- CNRS, Inserm, CHU Lille, U1019 - UMR8204 - CIIL - Centre d'Infection et d'Immunité de Lille, Institut Pasteur de Lille, University Lille, Lille, France.
| |
Collapse
|
48
|
Abstract
Triacylglycerol is a universal storage molecule for metabolic energy in living organisms. However, Dictyostelium amoebae, that have accumulated storage fat from added fatty acids do not progress through the starvation period preceding the development of the durable spore. Mutants deficient in genes of fat metabolism, such as fcsA, encoding a fatty acid activating enzyme, or dgat1 and dgat2, specifying proteins that synthesize triacylglycerol, strongly increase their chances to contribute to the spore fraction of the developing fruiting body, but lose the ability to produce storage fat efficiently. Dictyostelium seipin, an orthologue of a human protein that in patients causes the complete loss of adipose tissue when mutated, does not quantitatively affect fat storage in the amoeba. Dictyostelium seiP knockout mutants have lipid droplets that are enlarged in size but reduced in number. These mutants are as vulnerable as the wild type when exposed to fatty acids during their vegetative growth phase, and do not efficiently enter the spore head in Dictyostelium development. Summary: In contrast to many living organisms, storage fat is not beneficial for Dictyostelium cells when progressing through starvation and subsequent development of a dormant stage.
Collapse
Affiliation(s)
- Jessica M Kornke
- Abteilung Zellbiologie, Universität Kassel, D-34109 Kassel, Germany
| | - Markus Maniak
- Abteilung Zellbiologie, Universität Kassel, D-34109 Kassel, Germany
| |
Collapse
|
49
|
Shaping the niche in macrophages: Genetic diversity of the M. tuberculosis complex and its consequences for the infected host. Int J Med Microbiol 2017; 308:118-128. [PMID: 28969988 DOI: 10.1016/j.ijmm.2017.09.009] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2017] [Revised: 09/09/2017] [Accepted: 09/11/2017] [Indexed: 12/12/2022] Open
Abstract
Pathogenic mycobacteria of the Mycobacterium tuberculosis complex (MTBC) have co-evolved with their individual hosts and are able to transform the hostile environment of the macrophage into a permissive cellular habitat. The impact of MTBC genetic variability has long been considered largely unimportant in TB pathogenesis. Members of the MTBC can now be distinguished into three major phylogenetic groups consisting of 7 phylogenetic lineages and more than 30 so called sub-lineages/subgroups. MTBC genetic diversity indeed influences the transmissibility and virulence of clinical MTBC isolates as well as the immune response and the clinical outcome. Here we review the genetic diversity and epidemiology of MTBC strains and describe the current knowledge about the host immune response to infection with MTBC clinical isolates using human and murine experimental model systems in vivo and in vitro. We discuss the role of innate cytokines in detail and portray two in our group recently developed approaches to characterize the intracellular niches of MTBC strains. Characterizing the niches and deciphering the strategies of MTBC strains to transform an antibacterial effector cell into a permissive cellular habitat offers the opportunity to identify strain- and lineage-specific key factors which may represent targets for novel antimicrobial or host directed therapies for tuberculosis.
Collapse
|
50
|
Niedergang F, Gasman S, Vitale N, Desnos C, Lamaze C. Meeting after meeting: 20 years of discoveries by the members of the Exocytosis-Endocytosis Club. Biol Cell 2017; 109:339-353. [DOI: 10.1111/boc.201700026] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2017] [Revised: 07/24/2017] [Accepted: 07/24/2017] [Indexed: 11/29/2022]
Affiliation(s)
- Florence Niedergang
- Institut National de la Santé et de la Recherche Médicale (INSERM); U1016 Institut Cochin Paris France
- Centre National de la Recherche Scientifique (CNRS); UMR 8104 Paris France
- Université Paris Descartes, Sorbonne Paris Cité; Paris France
| | - Stéphane Gasman
- Institut des Neurosciences Cellulaires et Intégratives; CNRS UPR3212; Université de Strasbourg; France
- INSERM; 75654 Paris Cedex 13 France
| | - Nicolas Vitale
- Institut des Neurosciences Cellulaires et Intégratives; CNRS UPR3212; Université de Strasbourg; France
- INSERM; 75654 Paris Cedex 13 France
| | - Claire Desnos
- Université Paris Descartes, Sorbonne Paris Cité; Paris France
- CNRS; UMR 8250 Paris France
| | - Christophe Lamaze
- Institut Curie - Centre de Recherche; PSL Research University; Membrane Dynamics and Mechanics of Intracellular Signaling Laboratory; Paris France
- CNRS; UMR 3666 Paris France
- INSERM; U1143 Paris France
| |
Collapse
|