1
|
Liu C, Wei Y, Dang Y, Batool W, Fan X, Hu Y, He Z, Zhang S. Decarboxylase mediated oxalic acid metabolism is important to antioxidation and detoxification rather than pathogenicity in Magnaporthe oryzae. Virulence 2025; 16:2444690. [PMID: 39814555 DOI: 10.1080/21505594.2024.2444690] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2024] [Revised: 10/18/2024] [Accepted: 12/13/2024] [Indexed: 01/18/2025] Open
Abstract
Oxalic acid (OA), an essential pathogenic factor, has been identified in several plant pathogens, and researchers are currently pursuing studies on interference with OA metabolism as a treatment for related diseases. However, the metabolic route in Magnaporthe oryzae remains unknown. In this study, we describe D-erythroascorbic acid-mediated OA synthesis and its metabolic and clearance pathways in rice blast fungus. By knocking out the D-arabino-1,4-lactone oxidase gene (Moalo1), one-third of oxalic acid remained in M. oryzae, indicating a main pathway for oxalic acid production. M. oryzae OxdC (MoOxdC) is an oxalate decarboxylase that appears to play a role in relieving oxalic acid toxicity. Loss of Mooxdc does not affect mycelial growth, conidiophore development, or appressorium formation in M. oryzae; however, the antioxidant and pathogenic abilities of the mutant were enhanced. This is owing to Mooxdc deletion upregulated a series of OA metabolic genes, including the oxalate oxidase gene (Mooxo) and Moalo1, as well as both OA transporter genes. Simultaneously, as feedback to the tricarboxylic acid (TCA) cycle, the decrease of formic acid in ΔMooxdc leads to the reduction of acetyl-CoA content, and two genes involved in the β-oxidation of fatty acids were also upregulated, which enhanced the fatty acid metabolism of the ΔMooxdc. Overall, this work reveals the role of OA in M. oryzae. We found that OA metabolism was mainly involved in the growth and development of M. oryzae, OA as a byproduct of D-erythroascorbic acid after removing H2O2, the OA-associated pathway ensures the TCA process and ATP supply.
Collapse
Affiliation(s)
- Chang Liu
- The Key Laboratory for Extreme-Environmental Microbiology, College of Plant Protection, Shenyang Agricultural University, Shenyang, China
| | - Yi Wei
- The Key Laboratory for Extreme-Environmental Microbiology, College of Plant Protection, Shenyang Agricultural University, Shenyang, China
| | - Yuejia Dang
- College of Life and Health, Dalian University, Dalian, China
| | - Wajjiha Batool
- The Key Laboratory for Extreme-Environmental Microbiology, College of Plant Protection, Shenyang Agricultural University, Shenyang, China
| | - Xiaoning Fan
- The Key Laboratory for Extreme-Environmental Microbiology, College of Plant Protection, Shenyang Agricultural University, Shenyang, China
| | - Yan Hu
- The Key Laboratory for Extreme-Environmental Microbiology, College of Plant Protection, Shenyang Agricultural University, Shenyang, China
| | - Zhengquan He
- Key Laboratory of Three Gorges Regional Plant Genetics and Germplasm Enhancement (CTGU)/Biotechnology Research Center, Three Gorges University, Yichang, China
| | - Shihong Zhang
- The Key Laboratory for Extreme-Environmental Microbiology, College of Plant Protection, Shenyang Agricultural University, Shenyang, China
| |
Collapse
|
2
|
Pukalski J, Mokrzyński K, Chyc M, Potrzebowski MJ, Makowski T, Dulski M, Latowski D. Synthesis and characterization of allomelanin model from 1,8-dihydroxynaphthalene autooxidation. Sci Rep 2025; 15:567. [PMID: 39747342 PMCID: PMC11695988 DOI: 10.1038/s41598-024-84405-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2024] [Accepted: 12/23/2024] [Indexed: 01/04/2025] Open
Abstract
In this work a novel method for synthesis of 1,8-dihydroxynaphthalene melanin was presented, as well as the physicochemical properties, molecular structure, and characteristics of the pigment. The proposed synthesis protocol is simple and cost-effective with no enzymes or catalysts needed. The final product is not adsorbed on any surface, since the pigment is the result of autooxidation of 1,8-dihydroxynaphthalene. Performed analyses revealed that the solubility, optical and paramagnetic properties are typical for melanins, and in the EPR spectra an unusual hyperfine structure was observed. The molecular structure of the pigment consists of three different layers forming polar and non-polar surfaces. Additionally, the presence of ether bonds presence was revealed. The developed method creates new opportunities for melanin research and eliminates the need to extract melanins from biological samples, which often lead to structural changes in isolated melanins, which undermines the reliability of analyses of the properties and structure of these polymers. On the other hand, the ubiquity of melanins in living organisms and the diversity of their biological functions have let to the growing interest of researchers in this group of pigments. The analyses carried out show that the obtained synthetic DHN polymer can be considered as a model DHN-melanin in mycological studies and material research.
Collapse
Affiliation(s)
- Jan Pukalski
- Faculty of Biochemistry, Biophysics and Biotechnology, Department of Plant Physiology and Biochemistry, Jagiellonian University, Gronostajowa 7, 30-387, Kraków, Poland
| | - Krystian Mokrzyński
- Faculty of Biochemistry, Biophysics and Biotechnology, Department of Biophysics, Jagiellonian University, Gronostajowa 7, 30-387, Kraków, Poland
- Faculty of Biochemistry, Biophysics and Biotechnology, Department of Biophysics and Cancer Biology, Jagiellonian University, Gronostajowa 7, 30-387, Kraków, Poland
| | - Marek Chyc
- University of Applied Sciences in Tarnów, Mickiewicza 8, 33-100, Tarnów, Poland
| | - Marek J Potrzebowski
- Centre of Molecular and Macromolecular Studies, Polish Academy of Sciences, Sienkiewicza 112, 90-363, Łódź, Poland
| | - Tomasz Makowski
- Centre of Molecular and Macromolecular Studies, Polish Academy of Sciences, Sienkiewicza 112, 90-363, Łódź, Poland
| | - Mateusz Dulski
- Institute of Materials Engineering, University of Silesia, 75 Pułku Piechoty 1A, 41-500, Chorzow, Poland
| | - Dariusz Latowski
- Faculty of Biochemistry, Biophysics and Biotechnology, Department of Plant Physiology and Biochemistry, Jagiellonian University, Gronostajowa 7, 30-387, Kraków, Poland.
| |
Collapse
|
3
|
Martínez-Ríos M, Martín-Torrijos L, Diéguez-Uribeondo J. Trachemys scripta Eggs as Part of a Potential In Vivo Model for Studying Sea Turtle Egg Fusariosis. J Fungi (Basel) 2025; 11:23. [PMID: 39852442 PMCID: PMC11766952 DOI: 10.3390/jof11010023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2024] [Revised: 12/19/2024] [Accepted: 12/30/2024] [Indexed: 01/26/2025] Open
Abstract
The fungal pathogens Fusarium keratoplasticum and Fusarium falciforme are responsible for the emerging infectious disease named sea turtle egg fusariosis (STEF). This disease affects all sea turtle species throughout the world, causing low hatching success and mass mortalities. In this study, we investigated the potential use of widely available and easy-to-handle eggs of the invasive alien red-eared slider turtle, Trachemys scripta, as part of an in vivo host model to improve our knowledge of the biological properties of the pathogens responsible of the STEF. Specifically, we performed in vivo experiments, in which T. scripta eggs were challenged with conidia of F. keratoplasticum isolated from diseased sea turtle eggs. We found that the pathogen could colonize and develop similar signs to those observed in nature and fulfill Koch's postulates. The pathogen showed high virulence properties (e.g., high disease incidence, severity, and low hatching success) and its ability to modify the pH in both the egg surface and culture media, confirming previously described fungal pathogen models. These results support the use of T. scripta as an experimental in vivo host model for studying the biological characteristics of STEF, thus providing valuable insights into the mechanisms underlying the emergence of this fungal disease.
Collapse
Affiliation(s)
| | | | - Javier Diéguez-Uribeondo
- Department of Mycology, Real Jardín Botánico CSIC, Plaza Murillo 2, 28014 Madrid, Spain; (M.M.-R.); (L.M.-T.)
| |
Collapse
|
4
|
Sugiura R, Arazoe T, Motoyama T, Osada H, Kamakura T, Kuramochi K, Furuyama Y. Pyricularia oryzae enhances Streptomyces griseus growth via non-volatile alkaline metabolites. ENVIRONMENTAL MICROBIOLOGY REPORTS 2024; 16:e70012. [PMID: 39313864 PMCID: PMC11420290 DOI: 10.1111/1758-2229.70012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Accepted: 09/03/2024] [Indexed: 09/25/2024]
Abstract
Chemical compounds that affect microbial interactions have attracted wide interest. In this study, Streptomyces griseus showed enhanced growth when cocultured with the rice blast fungus Pyricularia oryzae on potato dextrose agar (PDA) medium. An improvement in S. griseus growth was observed before contact with P. oryzae, and no growth-promoting effect was observed when the growth medium between the two microorganisms was separated. These results suggested that the chemicals produced by P. oryzae diffused through the medium and were not volatile. A PDA plate supplemented with phenol red showed that the pH of the area surrounding P. oryzae increased. The area with increased pH promoted S. griseus growth, suggesting that the alkaline compounds produced by P. oryzae were involved in this growth stimulation. In contrast, coculture with the soilborne plant pathogen Fusarium oxysporum and entomopathogenic fungus Cordyceps tenuipes did not promote S. griseus growth. Furthermore, DL-α-Difluoromethylornithine, a polyamine biosynthesis inhibitor, prevented the increase in pH and growth promotion of S. griseus by P. oryzae. These results indicated that P. oryzae increased pH by producing a polyamine.
Collapse
Affiliation(s)
- Risa Sugiura
- Department of Applied Biological Science, Faculty of Science and TechnologyTokyo University of ScienceNoda‐shiJapan
| | - Takayuki Arazoe
- Department of Applied Biological Science, Faculty of Science and TechnologyTokyo University of ScienceNoda‐shiJapan
| | - Takayuki Motoyama
- Plant Immunity Research GroupRIKEN Center for Sustainable Resource Science (CSRS)Wako‐shiJapan
| | | | - Takashi Kamakura
- Department of Applied Biological Science, Faculty of Science and TechnologyTokyo University of ScienceNoda‐shiJapan
| | - Kouji Kuramochi
- Department of Applied Biological Science, Faculty of Science and TechnologyTokyo University of ScienceNoda‐shiJapan
| | - Yuuki Furuyama
- Department of Applied Biological Science, Faculty of Science and TechnologyTokyo University of ScienceNoda‐shiJapan
| |
Collapse
|
5
|
Wang D, Wang F, Huang Z, Li A, Dai W, Leng H, Jin L, Li Z, Sun K, Feng J. Structure and assembly process of skin fungal communities among bat species in northern China. Front Microbiol 2024; 15:1458258. [PMID: 39309528 PMCID: PMC11414763 DOI: 10.3389/fmicb.2024.1458258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Accepted: 08/23/2024] [Indexed: 09/25/2024] Open
Abstract
Background The skin fungal communities of animals play a crucial role in maintaining host health and defending against pathogens. Because fungal infections can affect the skin microbiota of bats, gaining a comprehensive understanding of the characteristics of healthy bat skin fungal communities and the ecological processes driving them provides valuable insights into the interactions between pathogens and fungi. Methods We used Kruskal-Wallis tests and Permutational Multivariate Analysis of Variance (PERMANOVA) to clarify differences in skin fungal community structure among bat species. A Generalized Linear Model (GLM) based on a quasi-Poisson distribution and partial distance-based redundancy analysis (db-RDA) was performed to assess the influence of variables on skin fungal communities. Using community construction models to explore the ecological processes driving fungal community changes, t-tests and Wilcoxon tests were used to compare the alpha diversity and species abundance differences between the fungal structure on bat species' skin and the environmental fungal pool. Results We found significant differences in the composition and diversity of skin fungal communities among bat species influenced by temperature, sampling site, and body mass index. Trophic modes and skin fungal community complexity also varied among bat species. Null model and neutral model analysis demonstrated that deterministic processes dominated the assembly of skin fungal communities, with homogeneous selection as the predominant process. Skin fungal communities on bat species were impacted by the environmental fungal reservoir, and actively selected certain amplicon sequence variants (ASVs) from the environmental reservoir to adhere to the skin. Conclusion In this study, we revealed the structure and the ecological process driving the skin fungal community across bat species in northern China. Overall, these results broaden our knowledge of skin fungal communities among bat species, which may be beneficial to potential strategies for the protection of bats in China.
Collapse
Affiliation(s)
- Denghui Wang
- College of Life Science, Jilin Agricultural University, Changchun, China
| | - Fan Wang
- College of Life Science, Jilin Agricultural University, Changchun, China
| | - Zihao Huang
- College of Life Science, Jilin Agricultural University, Changchun, China
| | - Aoqiang Li
- School of Life Sciences, Central China Normal University, Wuhan, China
| | - Wentao Dai
- Jilin Provincial Key Laboratory of Animal Resource Conservation and Utilization, Northeast Normal University, Changchun, China
| | - Haixia Leng
- Jilin Provincial Key Laboratory of Animal Resource Conservation and Utilization, Northeast Normal University, Changchun, China
| | - Longru Jin
- Jilin Provincial Key Laboratory of Animal Resource Conservation and Utilization, Northeast Normal University, Changchun, China
| | - Zhongle Li
- College of Life Science, Jilin Agricultural University, Changchun, China
- Jilin Provincial International Cooperation Key Laboratory for Biological Control of Agricultural Pests, Changchun, China
| | - Keping Sun
- Jilin Provincial Key Laboratory of Animal Resource Conservation and Utilization, Northeast Normal University, Changchun, China
| | - Jiang Feng
- College of Life Science, Jilin Agricultural University, Changchun, China
- Jilin Provincial International Cooperation Key Laboratory for Biological Control of Agricultural Pests, Changchun, China
| |
Collapse
|
6
|
Hadjila C, Incerti O, Celano G, Desopo M, Ippolito A, Sanzani SM. Electrolyzed Salt Solutions Used against Major Postharvest Diseases of Fresh Fruit and Vegetables. Foods 2024; 13:2503. [PMID: 39200430 PMCID: PMC11353557 DOI: 10.3390/foods13162503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 08/06/2024] [Accepted: 08/07/2024] [Indexed: 09/02/2024] Open
Abstract
Alternative means of control are becoming increasingly relevant to the improvement of safety and the reduction of postharvest losses and waste of fruit and vegetables, especially in view of the application of the EU Greed Deal. A previous study from our research group that focused on the electrolysis process of water and was conducted using NaCl and NaHCO3 as electrolytes proved to efficiently reduce pathogen inoculum in packinghouse washing water. In the present study, we examined the effect of the electrolyzed salt solutions (eNaCl and eNaHCO3) produced in the same experimental conditions previously reported to be used as postharvest treatments during handling and commercialization, and/or at the consumer's site. We tested the electrolyzed solutions, obtained in the presence or absence of the salts, against five relevant fungal pathogens in terms of conidia viability, and on various hosts in terms of rot incidence/severity. Chemical parameters of electrolyzed and non-electrolyzed solutions were also assessed. Although a different susceptibility to treatments was observed among pathogens, electrolyzed sodium chloride (eNaCl) was the most efficient treatment for preventing spore germination, as well as for minimizing fruit rot. However, a consistent control of fungal viability and consequent rot was also achieved using electrolyzed tap water (eW). The eNaHCO3, although less efficient on fungal viability, provided a significant effect against fruit rot. The investigated electrolyzed solutions seem promising for reducing the waste of fresh fruit and vegetables.
Collapse
Affiliation(s)
- Chahinez Hadjila
- Dipartimento di Scienze del Suolo, della Pianta e degli Alimenti, Università degli Studi di Bari Aldo Moro, Via Amendola 165/A, 70126 Bari, Italy; (C.H.); (O.I.); (G.C.); (M.D.); (A.I.)
- CIHEAM Bari, Via Ceglie 9, 70010 Valenzano, Italy
| | - Ornella Incerti
- Dipartimento di Scienze del Suolo, della Pianta e degli Alimenti, Università degli Studi di Bari Aldo Moro, Via Amendola 165/A, 70126 Bari, Italy; (C.H.); (O.I.); (G.C.); (M.D.); (A.I.)
| | - Giuseppe Celano
- Dipartimento di Scienze del Suolo, della Pianta e degli Alimenti, Università degli Studi di Bari Aldo Moro, Via Amendola 165/A, 70126 Bari, Italy; (C.H.); (O.I.); (G.C.); (M.D.); (A.I.)
| | - Marika Desopo
- Dipartimento di Scienze del Suolo, della Pianta e degli Alimenti, Università degli Studi di Bari Aldo Moro, Via Amendola 165/A, 70126 Bari, Italy; (C.H.); (O.I.); (G.C.); (M.D.); (A.I.)
| | - Antonio Ippolito
- Dipartimento di Scienze del Suolo, della Pianta e degli Alimenti, Università degli Studi di Bari Aldo Moro, Via Amendola 165/A, 70126 Bari, Italy; (C.H.); (O.I.); (G.C.); (M.D.); (A.I.)
| | - Simona Marianna Sanzani
- Dipartimento di Scienze del Suolo, della Pianta e degli Alimenti, Università degli Studi di Bari Aldo Moro, Via Amendola 165/A, 70126 Bari, Italy; (C.H.); (O.I.); (G.C.); (M.D.); (A.I.)
| |
Collapse
|
7
|
Peralta-Ruiz Y, Molina Hernandez JB, Grande-Tovar CD, Serio A, Valbonetti L, Chaves-López C. Antifungal Mechanism of Ruta graveolens Essential Oil: A Colombian Traditional Alternative against Anthracnose Caused by Colletotrichum gloeosporioides. Molecules 2024; 29:3516. [PMID: 39124920 PMCID: PMC11314608 DOI: 10.3390/molecules29153516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2024] [Revised: 07/23/2024] [Accepted: 07/25/2024] [Indexed: 08/12/2024] Open
Abstract
Here, we report for the first time on the mechanisms of action of the essential oil of Ruta graveolens (REO) against the plant pathogen Colletotrichum gloeosporioides. In particular, the presence of REO drastically affected the morphology of hyphae by inducing changes in the cytoplasmic membrane, such as depolarization and changes in the fatty acid profile where straight-chain fatty acids (SCFAs) increased by up to 92.1%. In addition, REO induced changes in fungal metabolism and triggered apoptosis-like responses to cell death, such as DNA fragmentation and the accumulation of reactive oxygen species (ROS). The production of essential enzymes involved in fungal metabolism, such as acid phosphatase, β-galactosidase, β-glucosidase, and N-acetyl-β-glucosaminidase, was significantly reduced in the presence of REO. In addition, C. gloeosporioides activated naphthol-As-BI phosphohydrolase as a mechanism of response to REO stress. The data obtained here have shown that the essential oil of Ruta graveolens has a strong antifungal effect on C. gloeosporioides. Therefore, it has the potential to be used as a surface disinfectant and as a viable replacement for fungicides commonly used to treat anthracnose in the postharvest testing phase.
Collapse
Affiliation(s)
- Yeimmy Peralta-Ruiz
- Programa de Ingeniería Agroindustrial, Facultad de Ingeniería, Universidad del Atlántico, Carrera 30 Número 8-49, Puerto Colombia 081008, Colombia
| | - Junior Bernardo Molina Hernandez
- Department of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, Via R. Balzarini 1, 64100 Teramo, Italy; (J.B.M.H.); (A.S.); (L.V.)
- Department of Agricultural and Food Sciences, University of Bologna, 47521 Cesena, Italy
| | - Carlos David Grande-Tovar
- Grupo de Investigación de Fotoquímica y Fotobiología, Universidad del Atlántico, Carrera 30 Número 8-49, Puerto Colombia 081008, Colombia;
| | - Annalisa Serio
- Department of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, Via R. Balzarini 1, 64100 Teramo, Italy; (J.B.M.H.); (A.S.); (L.V.)
| | - Luca Valbonetti
- Department of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, Via R. Balzarini 1, 64100 Teramo, Italy; (J.B.M.H.); (A.S.); (L.V.)
| | - Clemencia Chaves-López
- Department of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, Via R. Balzarini 1, 64100 Teramo, Italy; (J.B.M.H.); (A.S.); (L.V.)
| |
Collapse
|
8
|
Ren W, Qian C, Ren D, Cai Y, Deng Z, Zhang N, Wang C, Wang Y, Zhu P, Xu L. The GATA transcription factor BcWCL2 regulates citric acid secretion to maintain redox homeostasis and full virulence in Botrytis cinerea. mBio 2024; 15:e0013324. [PMID: 38814088 PMCID: PMC11253612 DOI: 10.1128/mbio.00133-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Accepted: 04/22/2024] [Indexed: 05/31/2024] Open
Abstract
Botrytis cinerea is a typical necrotrophic plant pathogenic fungus which can deliberately acidify host tissues and trigger oxidative bursts therein to facilitate its virulence. The white collar complex (WCC), consisting of BcWCL1 and BcWCL2, is recognized as the primary light receptor in B. cinerea. Nevertheless, the specific mechanisms through which the WCC components, particularly BcWCL2 as a GATA transcription factor, control virulence are not yet fully understood. This study demonstrates that deletion of BcWCL2 results in the loss of light-sensitive phenotypic characteristics. Additionally, the Δbcwcl2 strain exhibits reduced secretion of citrate, delayed infection cushion development, weaker hyphal penetration, and decreased virulence. The application of exogenous citric acid was found to restore infection cushion formation, hyphal penetration, and virulence of the Δbcwcl2 strain. Transcriptome analysis at 48 h post-inoculation revealed that two citrate synthases, putative citrate transporters, hydrolytic enzymes, and reactive oxygen species scavenging-related genes were down-regulated in Δbcwcl2, whereas exogenous citric acid application restored the expression of the above genes involved in the early infection process of Δbcwcl2. Moreover, the expression of Bcvel1, a known regulator of citrate secretion, tissue acidification, and secondary metabolism, was down-regulated in Δbcwcl2 but not in Δbcwcl1. ChIP-qPCR and electrophoretic mobility shift assays revealed that BcWCL2 can bind to the promoter sequences of Bcvel1. Overexpressing Bcvel1 in Δbcwcl2 was found to rescue the mutant defects. Collectively, our findings indicate that BcWCL2 regulates the expression of the global regulator Bcvel1 to influence citrate secretion, tissue acidification, redox homeostasis, and virulence of B. cinerea.IMPORTANCEThis study illustrated the significance of the fungal blue light receptor component BcWCL2 protein in regulating citrate secretion in Botrytis cinerea. Unlike BcWCL1, BcWCL2 may contribute to redox homeostasis maintenance during infection cushion formation, ultimately proving to be essential for full virulence. It is also demonstrated that BcWCL2 can regulate the expression of Bcvel1 to influence host tissue acidification, citrate secretion, infection cushion development, and virulence. While the role of organic acids secreted by plant pathogenic fungi in fungus-host interactions has been recognized, this paper revealed the importance, regulatory mechanisms, and key transcription factors that control organic acid secretion. These understanding of the pathogenetic mechanism of plant pathogens can provide valuable insights for developing effective prevention and treatment strategies against fungal diseases.
Collapse
Affiliation(s)
- Weiheng Ren
- School of Life Sciences, East China Normal University, Shanghai, China
| | - Chen Qian
- School of Life Sciences, East China Normal University, Shanghai, China
| | - Dandan Ren
- School of Life Sciences, East China Normal University, Shanghai, China
| | - Yunfei Cai
- School of Life Sciences, East China Normal University, Shanghai, China
| | - Zhaohui Deng
- School of Life Sciences, East China Normal University, Shanghai, China
| | - Ning Zhang
- School of Life Sciences, East China Normal University, Shanghai, China
| | - Congcong Wang
- School of Life Sciences, East China Normal University, Shanghai, China
| | - Yiwen Wang
- School of Life Sciences, East China Normal University, Shanghai, China
| | - Pinkuan Zhu
- School of Life Sciences, East China Normal University, Shanghai, China
| | - Ling Xu
- School of Life Sciences, East China Normal University, Shanghai, China
| |
Collapse
|
9
|
Philippot L, Chenu C, Kappler A, Rillig MC, Fierer N. The interplay between microbial communities and soil properties. Nat Rev Microbiol 2024; 22:226-239. [PMID: 37863969 DOI: 10.1038/s41579-023-00980-5] [Citation(s) in RCA: 129] [Impact Index Per Article: 129.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/19/2023] [Indexed: 10/22/2023]
Abstract
In recent years, there has been considerable progress in determining the soil properties that influence the structure of the soil microbiome. By contrast, the effects of microorganisms on their soil habitat have received less attention with most previous studies focusing on microbial contributions to soil carbon and nitrogen dynamics. However, soil microorganisms are not only involved in nutrient cycling and organic matter transformations but also alter the soil habitat through various biochemical and biophysical mechanisms. Such microbially mediated modifications of soil properties can have local impacts on microbiome assembly with pronounced ecological ramifications. In this Review, we describe the processes by which microorganisms modify the soil environment, considering soil physics, hydrology and chemistry. We explore how microorganism-soil interactions can generate feedback loops and discuss how microbially mediated modifications of soil properties can serve as an alternative avenue for the management and manipulation of microbiomes to combat soil threats and global change.
Collapse
Affiliation(s)
- Laurent Philippot
- Université de Bourgogne Franche-Comté, INRAE, Institut Agro Dijon, Department of Agroecology, Dijon, France.
| | - Claire Chenu
- University of Paris-Saclay, INRAE, AgroParisTech, Palaiseau, France
| | - Andreas Kappler
- Center for Applied Geosciences, University of Tübingen, Tübingen, Germany
- Cluster of Excellence: EXC 2124: Controlling Microbes to Fight Infection, Tübingen, Germany
| | - Matthias C Rillig
- Freie Universität Berlin, Institute of Biology, Berlin, Germany
- Berlin-Brandenburg Institute of Advanced Biodiversity Research, Berlin, Germany
| | - Noah Fierer
- Department of Ecology and Evolutionary Biology, Cooperative Institute for Research in Environmental Sciences, University of Colorado Boulder, Boulder, CO, USA
| |
Collapse
|
10
|
Silao FGS, Valeriano VD, Uddström E, Falconer E, Ljungdahl PO. Diverse mechanisms control amino acid-dependent environmental alkalization by Candida albicans. Mol Microbiol 2024; 121:696-716. [PMID: 38178569 DOI: 10.1111/mmi.15216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 12/12/2023] [Accepted: 12/14/2023] [Indexed: 01/06/2024]
Abstract
Candida albicans has the capacity to neutralize acidic growth environments by releasing ammonia derived from the catabolism of amino acids. The molecular components underlying alkalization and its physiological significance remain poorly understood. Here, we present an integrative model with the cytosolic NAD+-dependent glutamate dehydrogenase (Gdh2) as the principal ammonia-generating component. We show that alkalization is dependent on the SPS-sensor-regulated transcription factor STP2 and the proline-responsive activator Put3. These factors function in parallel to derepress GDH2 and the two proline catabolic enzymes PUT1 and PUT2. Consistently, a double mutant lacking STP2 and PUT3 exhibits a severe alkalization defect that nearly phenocopies that of a gdh2-/- strain. Alkalization is dependent on mitochondrial activity and in wild-type cells occurs as long as the conditions permit respiratory growth. Strikingly, Gdh2 levels decrease and cells transiently extrude glutamate as the environment becomes more alkaline. Together, these processes constitute a rudimentary regulatory system that counters and limits the negative effects associated with ammonia generation. These findings align with Gdh2 being dispensable for virulence, and based on a whole human blood virulence assay, the same is true for C. glabrata and C. auris. Using a transwell co-culture system, we observed that the growth and proliferation of Lactobacillus crispatus, a common component of the acidic vaginal microenvironment and a potent antagonist of C. albicans, is unaffected by fungal-induced alkalization. Consequently, although Candida spp. can alkalinize their growth environments, other fungal-associated processes are more critical in promoting dysbiosis and virulent fungal growth.
Collapse
Affiliation(s)
- Fitz Gerald S Silao
- Department of Molecular Biosciences, The Wenner-Gren Institute, Science for Life Laboratory (SciLifeLab), Stockholm University, Stockholm, Sweden
| | - Valerie Diane Valeriano
- Centre for Translational Microbiome Research (CTMR), Department of Microbiology, Tumor and Cell Biology, Karolinska Institute, Solna, Sweden
| | - Erika Uddström
- Department of Molecular Biosciences, The Wenner-Gren Institute, Science for Life Laboratory (SciLifeLab), Stockholm University, Stockholm, Sweden
| | - Emilie Falconer
- Department of Molecular Biosciences, The Wenner-Gren Institute, Science for Life Laboratory (SciLifeLab), Stockholm University, Stockholm, Sweden
| | - Per O Ljungdahl
- Department of Molecular Biosciences, The Wenner-Gren Institute, Science for Life Laboratory (SciLifeLab), Stockholm University, Stockholm, Sweden
| |
Collapse
|
11
|
Atasoy M, Álvarez Ordóñez A, Cenian A, Djukić-Vuković A, Lund PA, Ozogul F, Trček J, Ziv C, De Biase D. Exploitation of microbial activities at low pH to enhance planetary health. FEMS Microbiol Rev 2024; 48:fuad062. [PMID: 37985709 PMCID: PMC10963064 DOI: 10.1093/femsre/fuad062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 10/31/2023] [Accepted: 11/17/2023] [Indexed: 11/22/2023] Open
Abstract
Awareness is growing that human health cannot be considered in isolation but is inextricably woven with the health of the environment in which we live. It is, however, under-recognized that the sustainability of human activities strongly relies on preserving the equilibrium of the microbial communities living in/on/around us. Microbial metabolic activities are instrumental for production, functionalization, processing, and preservation of food. For circular economy, microbial metabolism would be exploited to produce building blocks for the chemical industry, to achieve effective crop protection, agri-food waste revalorization, or biofuel production, as well as in bioremediation and bioaugmentation of contaminated areas. Low pH is undoubtedly a key physical-chemical parameter that needs to be considered for exploiting the powerful microbial metabolic arsenal. Deviation from optimal pH conditions has profound effects on shaping the microbial communities responsible for carrying out essential processes. Furthermore, novel strategies to combat contaminations and infections by pathogens rely on microbial-derived acidic molecules that suppress/inhibit their growth. Herein, we present the state-of-the-art of the knowledge on the impact of acidic pH in many applied areas and how this knowledge can guide us to use the immense arsenal of microbial metabolic activities for their more impactful exploitation in a Planetary Health perspective.
Collapse
Affiliation(s)
- Merve Atasoy
- UNLOCK, Wageningen University & Research and Technical University Delft, Droevendaalsesteeg 4, 6708 PB,Wageningen, the Netherlands
| | - Avelino Álvarez Ordóñez
- Department of Food Hygiene and Technology and Institute of Food Science and Technology, Universidad de León, Campus de Vegazana s/n, 24071 León, Spain
| | - Adam Cenian
- Institute of Fluid Flow Machinery, Polish Academy of Sciences, Department of Physical Aspects of Ecoenergy, 14 Fiszera St., 80-231 Gdańsk, Poland
| | - Aleksandra Djukić-Vuković
- Department of Biochemical Engineering and Biotechnology, Faculty of Technology and Metallurgy, University of Belgrade, Karnegijeva 4, 11120 Belgrade, Serbia
| | - Peter A Lund
- Institute of Microbiology and Infection,School of Biosciences, University of Birmingham, Birmingham B15 2TT, United Kingdom
| | - Fatih Ozogul
- Department of Seafood Processing and Technology, Faculty of Fisheries, Cukurova University, Balcali, 01330, Adana, Turkey
- Biotechnology Research and Application Center, Cukurova University, Balcali, 01330 Adana, Turkey
| | - Janja Trček
- Department of Biology, Faculty of Natural Sciences and Mathematics, University of Maribor, Koroška cesta 160, 2000 Maribor, Slovenia
| | - Carmit Ziv
- Department of Postharvest Science, Agricultural Research Organization – Volcani Center, 68 HaMaccabim Road , P.O.B 15159 Rishon LeZion 7505101, Israel
| | - Daniela De Biase
- Department of Medico-Surgical Sciences and Biotechnologies, Sapienza University of Rome, Corso della Repubblica 79, 04100 Latina, Italy
| |
Collapse
|
12
|
Winter H, Wagner R, Yao Y, Ehlbeck J, Schnabel U. Influence of plasma-treated air on surface microbial communities on freshly harvested lettuce. Curr Res Food Sci 2023; 7:100649. [PMID: 38115898 PMCID: PMC10728334 DOI: 10.1016/j.crfs.2023.100649] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 11/07/2023] [Accepted: 11/25/2023] [Indexed: 12/21/2023] Open
Abstract
Plant-based foods like lettuce are an important part of the human diet and worldwide industry. On a global scale, the number of food-associated illnesses increased in the last decades. Conventional lettuce sanitation methods include cleaning either with tap or chloritized water. Beside these water-consuming strategies, physical plasma is an innovative and effective possibility for food sanitation. Recent studies with plasma-treated water showed an effective reduction of the microbial load. Plasma-processed air (PPA) is another great opportunity to reduce the microbial load and save water. To test the efficiency of PPA, the surface microbiome of treated lettuce was analyzed via proliferation assays with special agars, live/dead assays and tests for respiratory activity of the microorganisms. PPA showed a reduction of the colony forming units (CFU/mL) on all tested microbial groups (Gram-negative and Gram-positive bacteria, yeasts and molds). These results were supported by the live/dead assay. For further insights, the PPA-ingredients were detected with Fourier Transformation Infrared Spectroscopy (FTIR), which revealed NO2, NO and N2O5 as the main reactive species in the PPA. In the future, PPA could be an outstanding, on-demand sanitation step for higher food safety standards, especially in situations where humidity and high temperature should be avoided.
Collapse
Affiliation(s)
- Hauke Winter
- Leibniz Institute for Plasma Science and Technology (INP), Felix-Hausdorff-Strasse 2, 17489, Greifswald, Germany
- Institute of Microbiology, University of Greifswald, Felix-Hausdorff-Strasse 8, 17489, Greifswald, Germany
| | - Robert Wagner
- Leibniz Institute for Plasma Science and Technology (INP), Felix-Hausdorff-Strasse 2, 17489, Greifswald, Germany
| | - Yijiao Yao
- Leibniz Institute for Plasma Science and Technology (INP), Felix-Hausdorff-Strasse 2, 17489, Greifswald, Germany
- Department of Food & Nutritional Sciences, University of Reading, Whiteknights, Reading, RG6 6AD, UK
| | - Jörg Ehlbeck
- Leibniz Institute for Plasma Science and Technology (INP), Felix-Hausdorff-Strasse 2, 17489, Greifswald, Germany
| | - Uta Schnabel
- Leibniz Institute for Plasma Science and Technology (INP), Felix-Hausdorff-Strasse 2, 17489, Greifswald, Germany
| |
Collapse
|
13
|
Montoya C, Kurylec J, Ossa A, Orrego S. Cyclic strain of poly (methyl methacrylate) surfaces triggered the pathogenicity of Candida albicans. Acta Biomater 2023; 170:415-426. [PMID: 37625677 PMCID: PMC10705016 DOI: 10.1016/j.actbio.2023.08.037] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 07/21/2023] [Accepted: 08/17/2023] [Indexed: 08/27/2023]
Abstract
Candida albicans is an opportunistic yeast and the primary etiological factor in oral candidiasis and denture stomatitis. The pathogenesis of C. albicans could be triggered by several variables, including environmental, nutritional, and biomaterial surface cues. Specifically, biomaterial interactions are driven by different surface properties, including wettability, stiffness, and roughness. Dental biomaterials experience repetitive (cyclic) stresses from chewing and biomechanical movements. Pathogenic biofilms are formed over these biomaterial surfaces under cyclic strain. This study investigated the effect of the cyclic strain (deformation) of biomaterial surfaces on the virulence of Candida albicans. Candida biofilms were grown over Poly (methyl methacrylate) (PMMA) surfaces subjected to static (no strain) and cyclic strain with different levels (ε˜x=0.1 and 0.2%). To evaluate the biomaterial-biofilm interactions, the biofilm characteristics, yeast-to-hyphae transition, and the expression of virulent genes were measured. Results showed the biofilm biomass and metabolic activity to be significantly higher when Candida adhered to surfaces subjected to cyclic strain compared to static surfaces. Examination of the yeast-to-hyphae transition showed pseudo-hyphae cells (pathogenic) in cyclically strained biomaterial surfaces, whereas static surfaces showed spherical yeast cells (commensal). RNA sequencing was used to determine and compare the transcriptome profiles of cyclically strained and static surfaces. Genes and transcription factors associated with cell adhesion (CSH1, PGA10, and RBT5), biofilm formation (EFG1), and secretion of extracellular matrix (ECM) (CRH1, ADH5, GCA1, and GCA2) were significantly upregulated in the cyclically strained biomaterial surfaces compared to static ones. Genes and transcription factors associated with virulence (UME6 and HGC1) and the secretion of extracellular enzymes (LIP, PLB, and SAP families) were also significantly upregulated in the cyclically strained biomaterial surfaces compared to static. For the first time, this study reveals a biomaterial surface factor triggering the pathogenesis of Candida albicans, which is essential for understanding, controlling, and preventing oral infections. STATEMENT OF SIGNIFICANCE: Fungal infections produced by Candida albicans are a significant contributor to various health conditions. Candida becomes pathogenic when certain environmental conditions change, including temperature, pH, nutrients, and CO2 levels. In addition, surface properties, including wettability, stiffness, and roughness, drive the interactions between Candida and biomaterials. Clinically, Candida adheres to biomaterials that are under repetitive deformation due to body movements. In this work, we revealed that when Candida adhered to biomaterial surfaces subjected to repetitive deformation, the microorganism becomes pathogenic by increasing the formation of biofilms and the expression of virulent factors related to hyphae formation and secretion of enzymes. Findings from this work could aid the development of new strategies for treating fungal infections in medical devices or implanted biomaterials.
Collapse
Affiliation(s)
- Carolina Montoya
- Department of Oral Health Sciences, Kornberg School of Dentistry, Temple University, Philadelphia, PA, United States
| | - Julia Kurylec
- Department of Oral Health Sciences, Kornberg School of Dentistry, Temple University, Philadelphia, PA, United States
| | - Alex Ossa
- Production Engineering Department, School of Engineering, Universidad EAFIT, Medellín, Colombia
| | - Santiago Orrego
- Department of Oral Health Sciences, Kornberg School of Dentistry, Temple University, Philadelphia, PA, United States; Bioengineering Department, College of Engineering, Temple University, Philadelphia, PA, United States.
| |
Collapse
|
14
|
Han Z, Moh ESX, Santos ALS, Barcellos IC, Peng Y, Huang W, Ye J. Dechlorination of wastewater from shell-based glucosamine processing by mangrove wetland-derived fungi. Front Microbiol 2023; 14:1271286. [PMID: 37901808 PMCID: PMC10613029 DOI: 10.3389/fmicb.2023.1271286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Accepted: 09/28/2023] [Indexed: 10/31/2023] Open
Abstract
Wastewater from processing crustacean shell features ultrahigh chloride content. Bioremediation of the wastewater is challenging due to the high chloride ion content, making it inhospitable for most microorganisms to survive and growth. In this study, mangrove wetland-derived fungi were first tested for their salt tolerance, and the highly tolerant isolates were cultured in shrimp processing wastewater and the chloride concentration was monitored. Notably, the filamentous fungal species Aspergillus piperis could remove over 70% of the chloride in the wastewater within 3 days, with the fastest biomass increase (2.01 times heavier) and chloride removal occurring between day one and two. The chloride ions were sequestered into the fungal cells. The genome of this fungal species contained Cl- conversion enzymes, which may have contributed to the ion removal. The fungal strain was found to be of low virulence in larval models and could serve as a starting point for further considerations in bioremediation of shell processing wastewater, promoting the development of green technology in the shell processing industry.
Collapse
Affiliation(s)
- Zhiping Han
- College of Food Science and Engineering, Lingnan Normal University, Zhanjiang, Guangdong, China
| | - Edward S. X. Moh
- ARC Centre of Excellence for Synthetic Biology, School of Natural Sciences, Macquarie University, Sydney, NSW, Australia
| | - André L. S. Santos
- Department of General Microbiology, Institute of Microbiology Paulo de Góes, Federal University of Rio de Janeiro (UFRJ), and Rede Micologia RJ – FAPERJ, Rio de Janeiro, Brazil
| | - Iuri C. Barcellos
- Department of General Microbiology, Institute of Microbiology Paulo de Góes, Federal University of Rio de Janeiro (UFRJ), and Rede Micologia RJ – FAPERJ, Rio de Janeiro, Brazil
| | - Yuanhuai Peng
- College of Food Science and Engineering, Lingnan Normal University, Zhanjiang, Guangdong, China
| | - Weicong Huang
- College of Food Science and Engineering, Lingnan Normal University, Zhanjiang, Guangdong, China
| | - Jianzhi Ye
- Agricultural Products Processing Research Institute, Chinese Academy of Tropical Agricultural Sciences, Zhanjiang, Guangdong, China
| |
Collapse
|
15
|
Carreón-Anguiano KG, Gómez-Tah R, Pech-Balan E, Ek-Hernández GE, De los Santos-Briones C, Islas-Flores I, Canto-Canché B. Pseudocercospora fijiensis Conidial Germination Is Dominated by Pathogenicity Factors and Effectors. J Fungi (Basel) 2023; 9:970. [PMID: 37888226 PMCID: PMC10607838 DOI: 10.3390/jof9100970] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 09/14/2023] [Accepted: 09/21/2023] [Indexed: 10/28/2023] Open
Abstract
Conidia play a vital role in the survival and rapid spread of fungi. Many biological processes of conidia, such as adhesion, signal transduction, the regulation of oxidative stress, and autophagy, have been well studied. In contrast, the contribution of pathogenicity factors during the development of conidia in fungal phytopathogens has been poorly investigated. To date, few reports have centered on the pathogenicity functions of fungal phytopathogen conidia. Pseudocercospora fijiensis is a hemibiotrophic fungus and the causal agent of the black Sigatoka disease in bananas and plantains. Here, a conidial transcriptome of P. fijiensis was characterized computationally. Carbohydrates, amino acids, and lipid metabolisms presented the highest number of annotations in Gene Ontology. Common conidial functions were found, but interestingly, pathogenicity factors and effectors were also identified. Upon analysis of the resulting proteins against the Pathogen-Host Interaction (PHI) database, 754 hits were identified. WideEffHunter and EffHunter effector predictors identified 618 effectors, 265 of them were shared with the PHI database. A total of 1107 conidial functions devoted to pathogenesis were found after our analysis. Regarding the conidial effectorome, it was found to comprise 40 canonical and 578 non-canonical effectors. Effectorome characterization revealed that RXLR, LysM, and Y/F/WxC are the largest effector families in the P. fijiensis conidial effectorome. Gene Ontology classification suggests that they are involved in many biological processes and metabolisms, expanding our current knowledge of fungal effectors.
Collapse
Affiliation(s)
- Karla Gisel Carreón-Anguiano
- Unidad de Biotecnología, Centro de Investigación Científica de Yucatán, A.C., Calle 43 No. 130 x 32 y 34, Colonia Chuburná de Hidalgo, Mérida C.P. 97205, Yucatán, Mexico; (K.G.C.-A.); (R.G.-T.); (E.P.-B.); (G.E.E.-H.); (C.D.l.S.-B.)
| | - Rufino Gómez-Tah
- Unidad de Biotecnología, Centro de Investigación Científica de Yucatán, A.C., Calle 43 No. 130 x 32 y 34, Colonia Chuburná de Hidalgo, Mérida C.P. 97205, Yucatán, Mexico; (K.G.C.-A.); (R.G.-T.); (E.P.-B.); (G.E.E.-H.); (C.D.l.S.-B.)
| | - Efren Pech-Balan
- Unidad de Biotecnología, Centro de Investigación Científica de Yucatán, A.C., Calle 43 No. 130 x 32 y 34, Colonia Chuburná de Hidalgo, Mérida C.P. 97205, Yucatán, Mexico; (K.G.C.-A.); (R.G.-T.); (E.P.-B.); (G.E.E.-H.); (C.D.l.S.-B.)
| | - Gemaly Elisama Ek-Hernández
- Unidad de Biotecnología, Centro de Investigación Científica de Yucatán, A.C., Calle 43 No. 130 x 32 y 34, Colonia Chuburná de Hidalgo, Mérida C.P. 97205, Yucatán, Mexico; (K.G.C.-A.); (R.G.-T.); (E.P.-B.); (G.E.E.-H.); (C.D.l.S.-B.)
| | - César De los Santos-Briones
- Unidad de Biotecnología, Centro de Investigación Científica de Yucatán, A.C., Calle 43 No. 130 x 32 y 34, Colonia Chuburná de Hidalgo, Mérida C.P. 97205, Yucatán, Mexico; (K.G.C.-A.); (R.G.-T.); (E.P.-B.); (G.E.E.-H.); (C.D.l.S.-B.)
| | - Ignacio Islas-Flores
- Unidad de Bioquímica y Biología Molecular de Plantas, Centro de Investigación Científica de Yucatán, A.C., Calle 43 No. 130 x 32 y 34, Colonia Chuburná de Hidalgo, Mérida C.P. 97205, Yucatán, Mexico;
| | - Blondy Canto-Canché
- Unidad de Biotecnología, Centro de Investigación Científica de Yucatán, A.C., Calle 43 No. 130 x 32 y 34, Colonia Chuburná de Hidalgo, Mérida C.P. 97205, Yucatán, Mexico; (K.G.C.-A.); (R.G.-T.); (E.P.-B.); (G.E.E.-H.); (C.D.l.S.-B.)
| |
Collapse
|
16
|
Kiss A, Hariri Akbari F, Marchev A, Papp V, Mirmazloum I. The Cytotoxic Properties of Extreme Fungi's Bioactive Components-An Updated Metabolic and Omics Overview. Life (Basel) 2023; 13:1623. [PMID: 37629481 PMCID: PMC10455657 DOI: 10.3390/life13081623] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 06/28/2023] [Accepted: 06/29/2023] [Indexed: 08/27/2023] Open
Abstract
Fungi are the most diverse living organisms on planet Earth, where their ubiquitous presence in various ecosystems offers vast potential for the research and discovery of new, naturally occurring medicinal products. Concerning human health, cancer remains one of the leading causes of mortality. While extensive research is being conducted on treatments and their efficacy in various stages of cancer, finding cytotoxic drugs that target tumor cells with no/less toxicity toward normal tissue is a significant challenge. In addition, traditional cancer treatments continue to suffer from chemical resistance. Fortunately, the cytotoxic properties of several natural products derived from various microorganisms, including fungi, are now well-established. The current review aims to extract and consolidate the findings of various scientific studies that identified fungi-derived bioactive metabolites with antitumor (anticancer) properties. The antitumor secondary metabolites identified from extremophilic and extremotolerant fungi are grouped according to their biological activity and type. It became evident that the significance of these compounds, with their medicinal properties and their potential application in cancer treatment, is tremendous. Furthermore, the utilization of omics tools, analysis, and genome mining technology to identify the novel metabolites for targeted treatments is discussed. Through this review, we tried to accentuate the invaluable importance of fungi grown in extreme environments and the necessity of innovative research in discovering naturally occurring bioactive compounds for the development of novel cancer treatments.
Collapse
Affiliation(s)
- Attila Kiss
- Agro-Food Science Techtransfer and Innovation Centre, Faculty for Agro, Food and Environmental Science, Debrecen University, 4032 Debrecen, Hungary;
| | - Farhad Hariri Akbari
- Department of Biology, Biotechnical Faculty, University of Ljubljana, 1000 Ljubljana, Slovenia;
| | - Andrey Marchev
- Laboratory of Metabolomics, Department of Biotechnology, The Stephan Angeloff Institute of Microbiology, Bulgarian Academy of Sciences, 4000 Plovdiv, Bulgaria
| | - Viktor Papp
- Department of Botany, Hungarian University of Agriculture and Life Sciences, 1118 Budapest, Hungary;
| | - Iman Mirmazloum
- Department of Plant Physiology and Plant Ecology, Institute of Agronomy, Hungarian University of Agriculture and Life Sciences, 1118 Budapest, Hungary
| |
Collapse
|
17
|
Xu L, Liu H, Zhu S, Meng Y, Wang Y, Li J, Zhang F, Huang L. VmPacC-mediated pH regulation of Valsa mali confers to host acidification identified by comparative proteomics analysis. STRESS BIOLOGY 2023; 3:18. [PMID: 37676527 PMCID: PMC10441875 DOI: 10.1007/s44154-023-00097-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Accepted: 05/24/2023] [Indexed: 09/06/2023]
Abstract
Apple valsa canker caused by the Ascomycete fungus Valsa mali is one of the most serious diseases of apple, resulting in huge economic losses in the apple-growing area of China. Previous study found that the pathogen could acidify the infected tissues to make lower ambient pH (from 6.0 to 3.5) for their successfully colonization. The pH signaling transcription factor VmPacC is required for acidification of its environment and for full virulence in V. mali. It is known that the functional cooperation of proteins secreted by V. mali plays pivotal role in its successful colonization of host plants. In this study, we used tandem mass tag (TMT) labeling coupled with LC-MS/MS-based quantitative proteomics to analyze the VmPacC-mediated pH regulation in V. mali, focusing on differentially expressed proteins (DEPs). We identified 222 DEPs specific to VmPacC deletion, and 921 DEPs specific to different pH conditions (pH 6.0 and 3.4). Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analyses indicated that these DEPs were mainly involved in pathways associated with carbon metabolism, biosynthesis of antibiotics, citrate cycle (TCA cycle), glycolysis/gluconeogenesis, glutathione metabolism, ribosomes, and pentose phosphate pathways. Additionally, we identified 119 DEPs that were shared among the VmPacC deletion mutant and different pH conditions, which were mainly related to energy metabolism pathways, providing the energy required for the hyphal growth and responses to environmental stresses. A protein-protein interaction (PPI) network analysis indicated that most of the shared proteins were mapped to an interaction network with a medium confidence score of 0.4. Notably, one uncharacterized protein (KUI69106.1), and two known proteins (heat shock protein 60 (KUI73579.1), aspartate aminotransferase (KUI73864.1)) located in the core of the network were highly connected (with ≥ 38 directed edges) with the other shared DEPs. Our results suggest that VmPacC participates in the pathogen's regulation to ambient pH through the regulation of energy metabolism pathways such as the glycolysis/gluconeogenesis pathway and TCA cycle. Finally, we proposed a sophisticated molecular regulatory network to explain pH decrease in V. mali. Our study, by providing insights into V. mali regulating pH, helps to elucidate the mechanisms of host acidification during pathogen infection.
Collapse
Affiliation(s)
- Liangsheng Xu
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, 712100, China.
| | - Hailong Liu
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Shan Zhu
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Yangguang Meng
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Yinghao Wang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Jianyu Li
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Feiran Zhang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Lili Huang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, 712100, China.
| |
Collapse
|
18
|
Awuchi CG, Nwozo OS, Aja PM, Odongo GA. High-pressure acidified steaming with varied citric acid dosing can successfully detoxify mycotoxins. Food Sci Nutr 2023; 11:2677-2685. [PMID: 37324899 PMCID: PMC10261742 DOI: 10.1002/fsn3.3324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2023] [Revised: 03/04/2023] [Accepted: 03/07/2023] [Indexed: 03/20/2023] Open
Abstract
Mycotoxins are toxic fungal metabolites that exert various toxicities, including leading to death in lethal doses. This study developed a novel high-pressure acidified steaming (HPAS) for detoxification of mycotoxins in foods and feed. The raw materials, maize and peanut/groundnut, were used for the study. The samples were separated into raw and processed categories. Processed samples were treated using HPAS at different citric acid concentrations (CCC) adjusted to pH 4.0, 4.5, and 5.0. The enzyme-linked immunosorbent assay (ELISA) kit method for mycotoxins analysis was used to determine the levels of mycotoxins in the grains, with specific focus on total aflatoxins (AT), aflatoxins B1 (AFB1), aflatoxin G1 (AFG1), ochratoxin A (OTA), and citrinin. The mean values of the AT, AFB1, AFG1, OTA, and citrinin in the raw samples were 10.06 ± 0.02, 8.21 ± 0.01, 6.79 ± 0.00, 8.11 ± 0.02, and 7.39 ± 0.01 μg/kg for maize, respectively (p ≤ .05); and for groundnut (peanut), they were 8.11 ± 0.01, 4.88 ± 0.01, 7.04 ± 0.02, 6.75 ± 0.01, and 4.71 ± 0.00 μg/kg, respectively. At CCC adjusted to pH 5.0, the AT, AFB1, AFG1, OTA, and citrinin in the samples significantly reduced by 30%-51% and 17%-38% for maize and groundnut, respectively, and were reduced to 28%-100% when CCC was adjusted to pH 4.5 and 4.0 (p ≤ .05). The HPAS process either completely detoxified the mycotoxins or at least reduced them to levels below the maximum limits of 4.00-6.00, 2.00, 2.00, 5.00, and 100 μg/kg for AT, AFB1, AFG1, OTA, and citrinin, respectively, set by the European Union, WHO/FAO, and USDA. The study clearly demonstrates that mycotoxins can be completely detoxified using HPAS at CCC adjusted to pH 4.0 or below. This can be widely applied or integrated into many agricultural and production processes in the food, pharmaceutical, medical, chemical, and nutraceutical industries where pressurized steaming can be applied for the successful detoxification of mycotoxins.
Collapse
Affiliation(s)
- Chinaza Godswill Awuchi
- Department of BiochemistryKampala International UniversityBushenyiUganda
- School of Natural and Applied SciencesKampala International UniversityKampalaUganda
| | - Onyenibe Sarah Nwozo
- Department of BiochemistryKampala International UniversityBushenyiUganda
- Department of BiochemistryUniversity of IbadanIbadanNigeria
| | - Patrick Maduabuchi Aja
- Department of BiochemistryKampala International UniversityBushenyiUganda
- Department of BiochemistryEbonyi State UniversityAbakalikiNigeria
| | - Grace Akinyi Odongo
- Department of BiochemistryKampala International UniversityBushenyiUganda
- International Agency for Research on CancerWorld Health OrganizationLyonFrance
| |
Collapse
|
19
|
Venugopalan LP, Aimanianda V, Namperumalsamy VP, Prajna L, Kuppamuthu D, Jayapal JM. Comparative proteome analysis identifies species-specific signature proteins in Aspergillus pathogens. Appl Microbiol Biotechnol 2023:10.1007/s00253-023-12559-4. [PMID: 37166481 DOI: 10.1007/s00253-023-12559-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 04/22/2023] [Accepted: 04/25/2023] [Indexed: 05/12/2023]
Abstract
Aspergillus flavus and Aspergillus fumigatus are important human pathogens that can infect the lung and cornea. During infection, Aspergillus dormant conidia are the primary morphotype that comes in contact with the host. As the conidial surface-associated proteins (CSPs) and the extracellular proteins during the early stages of growth play a crucial role in establishing infection, we profiled and compared these proteins between a clinical strain of A. flavus and a clinical strain of A. fumigatus. We identified nearly 100 CSPs in both Aspergillus, and these non-covalently associated surface proteins were able to stimulate the neutrophils to secrete interleukin IL-8. Mass spectrometry analysis identified more than 200 proteins in the extracellular space during the early stages of conidial growth and germination (early exoproteome). The conidial surface proteins and the early exoproteome of A. fumigatus were enriched with immunoreactive proteins and those with pathogenicity-related functions while that of the A. flavus were primarily enzymes involved in cell wall reorganization and binding. Comparative proteome analysis of the CSPs and the early exoproteome between A. flavus and A. fumigatus enabled the identification of a common core proteome and potential species-specific signature proteins. Transcript analysis of selected proteins indicate that the transcript-protein level correlation does not exist for all proteins and might depend on factors such as membrane-anchor signals and protein half-life. The probable signature proteins of A. flavus and A. fumigatus identified in this study can serve as potential candidates for developing species-specific diagnostic tests. KEY POINTS: • CSPs and exoproteins could differentiate A. flavus and A. fumigatus. • A. fumigatus conidial surface harbored more antigenic proteins than A. flavus. • Identified species-specific signature proteins of A. flavus and A. fumigatus.
Collapse
Affiliation(s)
- Lakshmi Prabha Venugopalan
- Department of Proteomics, Aravind Medical Research Foundation, Anna Nagar, Madurai, Tamil Nadu, India
- Present address: Centre for Biotechnology, Anna University, Chennai, India
| | - Vishukumar Aimanianda
- Unité des Aspergillus, Institut Pasteur, 75015, Paris, France
- Present address: Unité de recherche Mycologie Moléculaire, UMR2000, Institut Pasteur, 75015, Paris, France
| | | | - Lalitha Prajna
- Department of Ocular Microbiology, Aravind Medical Research Foundation, Anna Nagar, Madurai, Tamil Nadu, India
| | - Dharmalingam Kuppamuthu
- Department of Proteomics, Aravind Medical Research Foundation, Anna Nagar, Madurai, Tamil Nadu, India
| | - Jeya Maheshwari Jayapal
- Department of Proteomics, Aravind Medical Research Foundation, Anna Nagar, Madurai, Tamil Nadu, India.
| |
Collapse
|
20
|
Liu Y, Wilson AJ, Han J, Hui A, O'Sullivan L, Huan T, Haney CH. Amino Acid Availability Determines Plant Immune Homeostasis in the Rhizosphere Microbiome. mBio 2023; 14:e0342422. [PMID: 36786577 PMCID: PMC10127609 DOI: 10.1128/mbio.03424-22] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2022] [Accepted: 01/11/2023] [Indexed: 02/15/2023] Open
Abstract
Microbes possess conserved microbe-associated molecular patterns (MAMPs) that are recognized by plant receptors to induce pattern-triggered immunity (PTI). Despite containing the same MAMPs as pathogens, commensals thrive in the plant rhizosphere microbiome, indicating they must suppress or evade host immunity. Previous work found that bacterial-secreted gluconic acid is sufficient to suppress PTI. Here, we show that gluconic acid biosynthesis is not necessary for immunity suppression by the beneficial bacterial strain Pseudomonas simiae WCS417. We performed a forward genetic screen with EMS-mutagenized P. simiae WCS417 and a flagellin-inducible CYP71A12pro:GUS reporter as a PTI readout. We identified a loss of function mutant in ornithine carbamoyltransferase argF, which is required for ornithine conversion to arginine, that cannot suppress PTI or acidify the rhizosphere. Fungal pathogens use alkalization through production of ammonia and glutamate, and arginine biosynthetic precursors, to promote their own growth and virulence. While a ΔargF mutant has a growth defect in the rhizosphere, we found that restoring growth with exogenous arginine resulted in rhizosphere alkalization in a mutant that cannot make gluconic acid, indicating that arginine biosynthesis is required for both growth and acidification. Furthermore, blocking bacterial arginine, glutamine, or proline biosynthesis through genetic mutations or feedback inhibition by adding corresponding amino acids, resulted in rhizosphere alkalization. Untargeted metabolomics determined that ornithine, an alkaline molecule, accumulates under conditions associated with rhizosphere alkalization. Our findings show that bacterial amino acid biosynthesis contributes to acidification by preventing accumulation of ornithine and the resulting alkalization. IMPORTANCE Understanding how microbiota evade and suppress host immunity is critical to our knowledge of how beneficial microbes persist in association with a host. Prior work has shown that secretion of organic acids by beneficial microbes is sufficient to suppress plant immunity. This work shows that microbial amino acid metabolism is not only critical for growth in the plant rhizosphere microbiome, but also for regulation of plant rhizosphere pH, and, consequentially, regulation of plant immunity. We found that, in the absence of microbial glutamate and arginine metabolism, rhizosphere alkalization and microbial overgrowth occurs. Collectively, our findings suggest that, by regulating nutrient availability, plants have the potential to regulate their immune homeostasis in the rhizosphere microbiome.
Collapse
Affiliation(s)
- Yang Liu
- Department of Microbiology and Immunology, The University of British Columbia, Vancouver, Canada
| | - Andrew J Wilson
- Department of Microbiology and Immunology, The University of British Columbia, Vancouver, Canada
| | - Jiatong Han
- Department of Microbiology and Immunology, The University of British Columbia, Vancouver, Canada
| | - Alisa Hui
- Department of Chemistry, The University of British Columbia, Vancouver, Canada
| | - Lucy O'Sullivan
- Department of Molecular Biology, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Tao Huan
- Department of Chemistry, The University of British Columbia, Vancouver, Canada
| | - Cara H Haney
- Department of Microbiology and Immunology, The University of British Columbia, Vancouver, Canada
| |
Collapse
|
21
|
Abstract
Mitogen-activated protein kinases (MAPKs) regulate a variety of cellular processes in eukaryotes. In fungal pathogens, conserved MAPK pathways control key virulence functions such as infection-related development, invasive hyphal growth, or cell wall remodeling. Recent findings suggest that ambient pH acts as a key regulator of MAPK-mediated pathogenicity, but the underlying molecular events are unknown. Here, we found that in the fungal pathogen Fusarium oxysporum, pH controls another infection-related process, hyphal chemotropism. Using the ratiometric pH sensor pHluorin we show that fluctuations in cytosolic pH (pHc) induce rapid reprogramming of the three conserved MAPKs in F. oxysporum, and that this response is conserved in the fungal model organism Saccharomyces cerevisiae. Screening of a subset of S. cerevisiae mutants identified the sphingolipid-regulated AGC kinase Ypk1/2 as a key upstream component of pHc-modulated MAPK responses. We further show that acidification of the cytosol in F. oxysporum leads to an increase of the long-chain base (LCB) sphingolipid dihydrosphingosine (dhSph) and that exogenous addition of dhSph activates Mpk1 phosphorylation and chemotropic growth. Our results reveal a pivotal role of pHc in the regulation of MAPK signaling and suggest new ways to target fungal growth and pathogenicity. IMPORTANCE Fungal phytopathogens cause devastating losses in global agriculture. All plant-infecting fungi use conserved MAPK signaling pathways to successfully locate, enter, and colonize their hosts. In addition, many pathogens also manipulate the pH of the host tissue to increase their virulence. Here, we establish a functional link between cytosolic pH (pHc) and MAPK signaling in the control of pathogenicity in the vascular wilt fungal pathogen Fusarium oxysporum. We demonstrate that fluctuations in pHc cause rapid reprogramming of MAPK phosphorylation, which directly impacts key processes required for infection, such as hyphal chemotropism and invasive growth. Targeting pHc homeostasis and MAPK signaling can thus open new ways to combat fungal infection.
Collapse
|
22
|
Avîrvarei AC, Salanță LC, Pop CR, Mudura E, Pasqualone A, Anjos O, Barboza N, Usaga J, Dărab CP, Burja-Udrea C, Zhao H, Fărcaș AC, Coldea TE. Fruit-Based Fermented Beverages: Contamination Sources and Emerging Technologies Applied to Assure Their Safety. Foods 2023; 12:foods12040838. [PMID: 36832913 PMCID: PMC9957501 DOI: 10.3390/foods12040838] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 01/26/2023] [Accepted: 02/07/2023] [Indexed: 02/18/2023] Open
Abstract
The food and beverage market has become broader due to globalization and consumer claims. Under the umbrella of consumer demands, legislation, nutritional status, and sustainability, the importance of food and beverage safety must be decisive. A significant sector of food production is related to ensuring fruit and vegetable conservation and utilization through fermentation. In this respect, in this review, we critically analyzed the scientific literature regarding the presence of chemical, microbiological and physical hazards in fruit-based fermented beverages. Furthermore, the potential formation of toxic compounds during processing is also discussed. In managing the risks, biological, physical, and chemical techniques can reduce or eliminate any contaminant from fruit-based fermented beverages. Some of these techniques belong to the technological flow of obtaining the beverages (i.e., mycotoxins bound by microorganisms used in fermentation) or are explicitly applied for a specific risk reduction (i.e., mycotoxin oxidation by ozone). Providing manufacturers with information on potential hazards that could jeopardize the safety of fermented fruit-based drinks and strategies to lower or eliminate these hazards is of paramount importance.
Collapse
Affiliation(s)
- Alexandra Costina Avîrvarei
- Department of Food Engineering, Faculty of Food Science and Technology, University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca, 400372 Cluj-Napoca, Romania
| | - Liana Claudia Salanță
- Department of Food Science, University of Agricultural Sciences and Veterinary Medicine, 400372 Cluj-Napoca, Romania
- Centre for Technology Transfer-BioTech, 64 Calea Florești, 400509 Cluj-Napoca, Romania
| | - Carmen Rodica Pop
- Department of Food Science, University of Agricultural Sciences and Veterinary Medicine, 400372 Cluj-Napoca, Romania
- Centre for Technology Transfer-BioTech, 64 Calea Florești, 400509 Cluj-Napoca, Romania
| | - Elena Mudura
- Department of Food Engineering, Faculty of Food Science and Technology, University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca, 400372 Cluj-Napoca, Romania
- Centre for Technology Transfer-BioTech, 64 Calea Florești, 400509 Cluj-Napoca, Romania
| | - Antonella Pasqualone
- Department of Soil, Plant and Food Science (DISSPA), University of Bari Aldo Moro, I-70126 Bari, Italy
| | - Ofelia Anjos
- Instituto Politécnico de Castelo Branco, 6001-909 Castelo Branco, Portugal
- Forest Research Centre, School of Agriculture, University of Lisbon, 1349-017 Lisbon, Portugal
- Spectroscopy and Chromatography Laboratory, CBP-BI-Centro de Biotecnologia de Plantas da Beira Interior, 6001-909 Castelo Branco, Portugal
| | - Natalia Barboza
- Food Technology Department, University of Costa Rica, Ciudad Universitaria Rodrigo Facio, San Jośe 11501-2060, Costa Rica
- National Center of Food Science and Technology (CITA), University of Costa Rica, Ciudad Universitaria Rodrigo Facio, San Jośe 11501-2060, Costa Rica
| | - Jessie Usaga
- National Center of Food Science and Technology (CITA), University of Costa Rica, Ciudad Universitaria Rodrigo Facio, San Jośe 11501-2060, Costa Rica
| | - Cosmin Pompei Dărab
- Faculty of Electrical Engineering, Technical University of Cluj-Napoca, 400114 Cluj-Napoca, Romania
| | - Cristina Burja-Udrea
- Industrial Engineering and Management Department, Faculty of Engineering, Lucian Blaga University of Sibiu, 550024 Sibiu, Romania
| | - Haifeng Zhao
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China
- Research Institute for Food Nutrition and Human Health, Guangzhou 510640, China
| | - Anca Corina Fărcaș
- Department of Food Science, University of Agricultural Sciences and Veterinary Medicine, 400372 Cluj-Napoca, Romania
- Centre for Technology Transfer-BioTech, 64 Calea Florești, 400509 Cluj-Napoca, Romania
| | - Teodora Emilia Coldea
- Department of Food Engineering, Faculty of Food Science and Technology, University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca, 400372 Cluj-Napoca, Romania
- Centre for Technology Transfer-BioTech, 64 Calea Florești, 400509 Cluj-Napoca, Romania
- Correspondence:
| |
Collapse
|
23
|
Zhang F, Meng Y, Wang Y, Zhu S, Liu R, Li J, Xu L, Huang L. VmPma1 contributes to virulence via regulation of the acidification process during host infection in Valsa mali. Int J Biol Macromol 2023; 228:123-137. [PMID: 36566811 DOI: 10.1016/j.ijbiomac.2022.12.178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 12/10/2022] [Accepted: 12/16/2022] [Indexed: 12/24/2022]
Abstract
Valsa mali is a destructive phytopathogenic fungus that mainly infects apple and pear trees. Infection with V. mali results in host tissue acidification via the generation of citric acid, which promote invasion. Here, two plasma membrane H+-ATPases, VmPma1 and VmPma2, were identified in V. mali. The VmPma1 deletion mutant (∆VmPma1) displayed higher intracellular acid accumulation and a lower growth rate compared to the wild type. In contrast, the VmPma2 deletion mutant (∆VmPma2) showed no obvious phenotypic differences. Meanwhile, loss of VmPma1, but not VmPma2, in V. mali led to a significant decrease in growth under acidic or alkaline conditions compared with WT. More importantly, ∆VmPma1 showed a greater reduction in ATPase hydrolase activity and acidification of the external environment, more sensitivity to abiotic stress, and weaker pathogenicity than ∆VmPma2. This evidence indicates that VmPma1 is the main gene of the two plasma membrane H+-ATPases. Transcriptomic analysis indicated that many metabolic processes regulated by VmPma1 are strictly pH-regulated. Besides, we identified two genes (named VmAgn1p and Vmap1) that contribute to the pathogenicity of V. mali by differentially regulating external acidification capacity. Overall, our findings show that VmPma1 plays a pivotal role in pathogenicity by affecting the acidification of V. mali.
Collapse
Affiliation(s)
- Feiran Zhang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Yangguang Meng
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Yinghao Wang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Shan Zhu
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Ronghao Liu
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Jianyu Li
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Liangsheng Xu
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling 712100, Shaanxi, China.
| | - Lili Huang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling 712100, Shaanxi, China.
| |
Collapse
|
24
|
Kunene PN, Mahlambi PN. Case study on antiretroviral drugs uptake from soil irrigated with contaminated water: Bio-accumulation and bio-translocation to roots, stem, leaves, and fruits. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 319:121004. [PMID: 36608725 DOI: 10.1016/j.envpol.2023.121004] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2022] [Revised: 12/15/2022] [Accepted: 01/02/2023] [Indexed: 06/17/2023]
Abstract
This study aimed to evaluate the potential of uptake of the commonly used antiretroviral drugs (ARVDs) in South Africa (abacavir, nevirapine, and efavirenz) by vegetable plants (beetroot, spinach, and tomato) from contaminated soil culture. The study results showed that all the studied vegetables have the potential to take up abacavir, nevirapine, and efavirenz from contaminated soil, be absorbed by the root, and translocate them to the aerial part of the plants. The total percentage of ARVDs found in the individual plant was mainly attributed to abacavir which contributed 53% in beetroot and 48% in spinach, while efavirenz (42%) was the main contributor in tomato. Abacavir was found at high concentrations to a maximum of 40.21 μg/kg in the spinach root, 18.43 μg/kg in the spinach stem, and 6.77 μg/kg in the spinach soil, while efavirenz was the highest concentrations, up to 35.44 μg/kg in tomato leaves and 8.86 μg/kg in tomato fruits. Spinach roots accumulated more ARVDs than beetroot and tomato however, the concentrations were not statistically different. Hydrophobicity was the main effect on the linearity, accumulation, and translocation of ARVDs. This study advances knowledge on the fate of ARVDs in agroecosystems, particularly in plant root - ARVD interaction and the resulting potentially toxic effects on plants. These results suggest that the quality of water used for crop irrigation needs to be assessed prior to irrigation to avoid vegetable plant pollution as contaminated water results in the contaminants uptake by plants. This may lead to the transfer of pollutants to the edible crops parts of and thus be unintentionally consumed by humans. More studies need to be continuously conducted to evaluate ARVDs bioaccumulation and their mechanism of uptake by other vegetables. The use of the pot-plant system can be recommended because it closely relates to the agricultural world.
Collapse
Affiliation(s)
- P N Kunene
- Department of Chemistry, University of KwaZulu-Natal, Private Bag X01, Scottsville, Pietermaritzburg, 3209, South Africa
| | - P N Mahlambi
- Department of Chemistry, University of KwaZulu-Natal, Private Bag X01, Scottsville, Pietermaritzburg, 3209, South Africa.
| |
Collapse
|
25
|
Antimicrobial and physiochemical properties of films and coatings prepared from bio-fiber gum and whey protein isolate conjugates. Food Control 2023. [DOI: 10.1016/j.foodcont.2023.109666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
|
26
|
Spoto M, Riera Puma JP, Fleming E, Guan C, Ondouah Nzutchi Y, Kim D, Oh J. Large-Scale CRISPRi and Transcriptomics of Staphylococcus epidermidis Identify Genetic Factors Implicated in Lifestyle Versatility. mBio 2022; 13:e0263222. [PMID: 36409086 PMCID: PMC9765180 DOI: 10.1128/mbio.02632-22] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Accepted: 10/27/2022] [Indexed: 11/23/2022] Open
Abstract
Staphylococcus epidermidis is a ubiquitous human commensal skin bacterium that is also one of the most prevalent nosocomial pathogens. The genetic factors underlying this remarkable lifestyle plasticity are incompletely understood, mainly due to the difficulties of genetic manipulation, precluding high-throughput functional profiling of this species. To probe the versatility of S. epidermidis to survive across a diversity of environmental conditions, we developed a large-scale CRISPR interference (CRISPRi) screen complemented by transcriptional profiling (RNA sequencing) across 24 diverse conditions and piloted a droplet-based CRISPRi approach to enhance throughput and sensitivity. We identified putative essential genes, importantly revealing amino acid metabolism as crucial to survival across diverse environments, and demonstrated the importance of trace metal uptake for survival under multiple stress conditions. We identified pathways significantly enriched and repressed across our range of stress and nutrient-limited conditions, demonstrating the considerable plasticity of S. epidermidis in responding to environmental stressors. Additionally, we postulate a mechanism by which nitrogen metabolism is linked to lifestyle versatility in response to hyperosmotic challenges, such as those encountered on human skin. Finally, we examined the survival of S. epidermidis under acid stress and hypothesize a role for cell wall modification as a vital component of the survival response under acidic conditions. Taken together, this study integrates large-scale CRISPRi and transcriptomics data across multiple environments to provide insights into a keystone member of the human skin microbiome. Our results additionally provide a valuable benchmarking analysis for CRISPRi screens and are a rich resource for other staphylococcal researchers. IMPORTANCE Staphylococcus epidermidis is a bacteria that broadly inhabits healthy human skin, yet it is also a common cause of skin infections and bloodstream infections associated with implanted medical devices. Because human skin has many different types of S. epidermidis, each containing different genes, our goal is to determine how these different genes allow S. epidermidis to switch from healthy growth in the skin to being an infectious pathogen. Understanding this switch is critical to developing new strategies to prevent and treat S. epidermidis infections.
Collapse
Affiliation(s)
- Michelle Spoto
- The Jackson Laboratory for Genomic Medicine, Farmington, Connecticut, USA
- The University of Connecticut Health Center, Farmington, Connecticut, USA
| | | | - Elizabeth Fleming
- The Jackson Laboratory for Genomic Medicine, Farmington, Connecticut, USA
| | - Changhui Guan
- The Jackson Laboratory for Genomic Medicine, Farmington, Connecticut, USA
| | | | - Dean Kim
- The Jackson Laboratory for Genomic Medicine, Farmington, Connecticut, USA
| | - Julia Oh
- The Jackson Laboratory for Genomic Medicine, Farmington, Connecticut, USA
| |
Collapse
|
27
|
Díaz AI, Laca A, Díaz M. Approach to a fungal treatment of a biologically treated landfill leachate. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2022; 322:116085. [PMID: 36063693 DOI: 10.1016/j.jenvman.2022.116085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 08/20/2022] [Accepted: 08/20/2022] [Indexed: 06/15/2023]
Abstract
White-rot fungi (WRF) have the ability to synthetize extracellular enzymes that could degrade recalcitrant pollutants. The aim of this work was to evaluate the use of P. chrysosporium to treat a biologically and physically pre-treated landfill leachate which high load of refractory compounds (COD>1000 mg/L, BOD5<50 mg/L) in order to reduce COD and colour. Batch tests were carried out at 26 °C and 135 rpm for 15 days. The soluble chemical oxygen demand (sCOD), soluble biological oxygen demand (sBOD5) and colour, as well as the lignin peroxidase (LiP) and manganese peroxidase (MnP) enzymatic activities were analysed. Besides, the effects of different operating conditions, i.e., pH control, permeate dilution and supplementation, on treatment efficacy were investigated. The control of pH was shown to be key for fungal treatment. In addition, it was found that the addition of carbon and nitrogen sources improved the enzymatic synthesis and the removals of sCOD and colour. Data here obtained open the possibility of using fungi for reducing the amount of recalcitrant pollutants still present in treated landfill leachates or similar effluents.
Collapse
Affiliation(s)
- Ana Isabel Díaz
- Department of Chemical and Environmental Engineering, University of Oviedo, C/Julián Clavería, s/n, E-33006, Oviedo, Asturias, Spain
| | - Adriana Laca
- Department of Chemical and Environmental Engineering, University of Oviedo, C/Julián Clavería, s/n, E-33006, Oviedo, Asturias, Spain.
| | - Mario Díaz
- Department of Chemical and Environmental Engineering, University of Oviedo, C/Julián Clavería, s/n, E-33006, Oviedo, Asturias, Spain
| |
Collapse
|
28
|
Zaveri A, Edwards J, Rochfort S. Production of Primary Metabolites by Rhizopus stolonifer, Causal Agent of Almond Hull Rot Disease. Molecules 2022; 27:7199. [PMID: 36364023 PMCID: PMC9657676 DOI: 10.3390/molecules27217199] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2022] [Revised: 10/10/2022] [Accepted: 10/17/2022] [Indexed: 10/15/2023] Open
Abstract
Species in the fungal genus Rhizopus are able to convert simple sugars into primary metabolites such as fumaric acid, lactic acid, citric acid, and, to a lesser extent, malic acid in the presence of specific carbon and nitrogen sources. This ability has been linked to plant pathogenicity. Rhizopus stolonifer causes hull rot disease in almonds, symptoms of which have been previously associated with the fungus's production of fumaric acid. Six isolates of R. stolonifer taken from infected almond hulls were grown in artificial media amended with one of four carbon sources (glucose, fructose, sucrose, and xylose) and two nitrogen sources (asparagine and ammonium sulphate) chosen based on almond hull composition and used in industry. Proton nuclear magnetic resonance (1H NMR)-based metabolomics identified that R. stolonifer could metabolise glucose, fructose, sucrose, and to a lesser extent xylose, and both nitrogen sources, to produce three metabolites, i.e., fumaric acid, lactic acid, and ethanol, under in vitro conditions. Sugar metabolisation and acid production were significantly influenced by sugar source and isolates, with five isolates depleting glucose most rapidly, followed by fructose, sucrose, and then xylose. The maximum amounts of metabolites were produced when glucose was the carbon source, with fumaric acid produced in higher amounts than lactic acid. Isolate 19A-0069, however, preferred sucrose as the carbon source, and Isolate 19A-0030 produced higher amounts of lactic acid than fumaric acid. This is the first report, to our knowledge, of R. stolonifer producing lactic acid in preference to fumaric acid. Additionally, R. stolonifer isolate 19-0030 was inoculated into Nonpareil almond fruit on trees grown under high- and low-nitrogen and water treatments, and hull compositions of infected and uninfected fruit were analysed using 1H NMR-based metabolomics. Glucose and asparagine content of uninfected hulls was influenced by the nitrogen and water treatments provided to the trees, being higher in the high-nitrogen and water treatments. In infected hulls, glucose and fructose were significantly reduced but not sucrose or xylose. Large amounts of both fumaric and lactic acid were produced, particularly under high-nitrogen treatments. Moreover, almond shoots placed in dilute solutions of fumaric acid or lactic acid developed leaf symptoms very similar to the 'strike' symptoms seen in hull rot disease in the field, suggesting both acids are involved in causing disease.
Collapse
Affiliation(s)
- Anjali Zaveri
- School of Applied Systems Biology, La Trobe University, Bundoora, VIC 3083, Australia
| | - Jacqueline Edwards
- School of Applied Systems Biology, La Trobe University, Bundoora, VIC 3083, Australia
- Agriculture Victoria Research, 5 Ring Road, Bundoora, VIC 3083, Australia
| | - Simone Rochfort
- School of Applied Systems Biology, La Trobe University, Bundoora, VIC 3083, Australia
- Agriculture Victoria Research, 5 Ring Road, Bundoora, VIC 3083, Australia
| |
Collapse
|
29
|
Fungal Contamination in Microalgal Cultivation: Biological and Biotechnological Aspects of Fungi-Microalgae Interaction. J Fungi (Basel) 2022; 8:jof8101099. [PMID: 36294664 PMCID: PMC9605242 DOI: 10.3390/jof8101099] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2022] [Revised: 10/12/2022] [Accepted: 10/15/2022] [Indexed: 11/17/2022] Open
Abstract
In the last few decades, the increasing interest in microalgae as sources of new biomolecules and environmental remediators stimulated scientists’ investigations and industrial applications. Nowadays, microalgae are exploited in different fields such as cosmeceuticals, nutraceuticals and as human and animal food supplements. Microalgae can be grown using various cultivation systems depending on their final application. One of the main problems in microalgae cultivations is the possible presence of biological contaminants. Fungi, among the main contaminants in microalgal cultures, are able to influence the production and quality of biomass significantly. Here, we describe fungal contamination considering both shortcomings and benefits of fungi-microalgae interactions, highlighting the biological aspects of this interaction and the possible biotechnological applications.
Collapse
|
30
|
Schüller A, Studt-Reinhold L, Strauss J. How to Completely Squeeze a Fungus-Advanced Genome Mining Tools for Novel Bioactive Substances. Pharmaceutics 2022; 14:1837. [PMID: 36145585 PMCID: PMC9505985 DOI: 10.3390/pharmaceutics14091837] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 08/23/2022] [Accepted: 08/29/2022] [Indexed: 11/17/2022] Open
Abstract
Fungal species have the capability of producing an overwhelming diversity of bioactive substances that can have beneficial but also detrimental effects on human health. These so-called secondary metabolites naturally serve as antimicrobial "weapon systems", signaling molecules or developmental effectors for fungi and hence are produced only under very specific environmental conditions or stages in their life cycle. However, as these complex conditions are difficult or even impossible to mimic in laboratory settings, only a small fraction of the true chemical diversity of fungi is known so far. This also implies that a large space for potentially new pharmaceuticals remains unexplored. We here present an overview on current developments in advanced methods that can be used to explore this chemical space. We focus on genetic and genomic methods, how to detect genes that harbor the blueprints for the production of these compounds (i.e., biosynthetic gene clusters, BGCs), and ways to activate these silent chromosomal regions. We provide an in-depth view of the chromatin-level regulation of BGCs and of the potential to use the CRISPR/Cas technology as an activation tool.
Collapse
Affiliation(s)
| | | | - Joseph Strauss
- Institute of Microbial Genetics, Department of Applied Genetics and Cell Biology, University of Natural Resources and Life Sciences Vienna, A-3430 Tulln/Donau, Austria
| |
Collapse
|
31
|
Hiengrach P, Panpetch W, Chindamporn A, Leelahavanichkul A. Helicobacter pylori, Protected from Antibiotics and Stresses Inside Candida albicans Vacuoles, Cause Gastritis in Mice. Int J Mol Sci 2022; 23:8568. [PMID: 35955701 PMCID: PMC9368807 DOI: 10.3390/ijms23158568] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 07/28/2022] [Accepted: 07/29/2022] [Indexed: 12/10/2022] Open
Abstract
Due to (i) the simultaneous presence of Helicobacter pylori (ulcer-induced bacteria) and Candida albicans in the stomach and (ii) the possibility of prokaryotic-eukaryotic endosymbiosis (intravacuolar H. pylori in the yeast cells) under stresses, we tested this symbiosis in vitro and in vivo. To that end, intravacuolar H. pylori were induced by the co-incubation of C. albicans with H. pylori under several stresses (acidic pH, non-H. pylori-enrichment media, and aerobic environments); the results were detectable by direct microscopy (wet mount) and real-time polymerase chain reaction (PCR). Indeed, intravacuolar H. pylori were predominant under all stresses, especially the lower pH level (pH 2-3). Interestingly, the H. pylori (an amoxicillin-sensitive strain) inside C. albicans were protected from the antibiotic (amoxicillin), while extracellular H. pylori were neutralizable, as indicated by the culture. In parallel, the oral administration of intravacuolar H. pylori in mice caused H. pylori colonization in the stomach resulting in gastritis, as indicated by gastric histopathology and tissue cytokines, similar to the administration of free H. pylori (extra-Candida bacteria). In conclusion, Candida protected H. pylori from stresses and antibiotics, and the intravacuolar H. pylori were able to be released from the yeast cells, causing gastric inflammation with neutrophil accumulations.
Collapse
Affiliation(s)
- Pratsanee Hiengrach
- Center of Excellence on Translational Research in Inflammation and Immunology (CETRII), Department of Microbiology, Chulalongkorn University, Bangkok 10330, Thailand; (P.H.); (W.P.)
- Department of Microbiology, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand
| | - Wimonrat Panpetch
- Center of Excellence on Translational Research in Inflammation and Immunology (CETRII), Department of Microbiology, Chulalongkorn University, Bangkok 10330, Thailand; (P.H.); (W.P.)
- Department of Microbiology, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand
| | - Ariya Chindamporn
- Department of Microbiology, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand
- Antimicrobial Resistance and Stewardship Research Unit, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand
| | - Asada Leelahavanichkul
- Center of Excellence on Translational Research in Inflammation and Immunology (CETRII), Department of Microbiology, Chulalongkorn University, Bangkok 10330, Thailand; (P.H.); (W.P.)
- Department of Microbiology, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand
- Nephrology Unit, Department of Medicine, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand
| |
Collapse
|
32
|
Palmieri D, Miccoli C, Notardonato I, Avino P, Lima G, De Curtis F, Ianiri G, Castoria R. Modulation of extracellular Penicillium expansum-driven acidification by Papiliotrema terrestris affects biosynthesis of patulin and has a possible role in biocontrol activity. Front Microbiol 2022; 13:973670. [PMID: 35979494 PMCID: PMC9377529 DOI: 10.3389/fmicb.2022.973670] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Accepted: 07/13/2022] [Indexed: 12/03/2022] Open
Abstract
The active regulation of extracellular pH is critical for the virulence of fungal pathogens. Penicillium expansum is the causal agent of green-blue mold on stored pome fruits and during its infection process acidifies the host tissues by secreting organic acids. P. expansum is also the main producer of patulin (PAT), a mycotoxin found in pome fruit-based products and that represents a serious health hazard for its potential carcinogenicity. While it is known that PAT biosynthesis in P. expansum is regulated by nutritional factors such as carbon and nitrogen and by the pH, the mechanistic effects of biocontrol on PAT production by P. expansum are not known. In this work, we assessed how optimal and suboptimal concentrations of the biocontrol agent (BCA) Papiliotrema terrestris LS28 affect both extracellular pH and PAT biosynthesis in P. expansum. In wounded apples, the optimal and suboptimal concentrations of the BCA provided almost complete and partial protection from P. expansum infection, respectively, and reduced PAT contamination in both cases. However, the suboptimal concentration of the BCA increased the specific mycotoxigenic activity by P. expansum. In vitro, the rate of PAT biosynthesis was strictly related to the extracellular pH, with the highest amount of PAT detected in the pH range 4–7, whereas only traces were detectable at pH 3. Moreover, both in vitro and in apple wounds the BCA counteracted the extracellular P. expansum-driven acidification maintaining extracellular pH around 4, which is within the pH range that is optimal for PAT biosynthesis. Conversely, in the absence of LS28 the pathogen-driven acidification led to rapidly achieving acidic pH values (<3) that lie outside of the optimal pH range for PAT biosynthesis. Taken together, these results suggest that pH modulation by LS28 is important to counteract the host tissue acidification and, therefore, the virulence of P. expansum. On the other hand, the buffering of P. expansum-driven acidification provided by the BCA increases the specific rate of PAT biosynthesis through the extension of the time interval at which the pH value lies within the optimal range for PAT biosynthesis. Nevertheless, the antagonistic effect provided by the BCA greatly reduced the total amount of PAT.
Collapse
Affiliation(s)
- Davide Palmieri
- Department of Agricultural, Environmental and Food Sciences, University of Molise, Campobasso, Italy
- Davide Palmieri,
| | - Cecilia Miccoli
- Department of Agricultural, Environmental and Food Sciences, University of Molise, Campobasso, Italy
- Department of Agricultural and Forestry Sciences, University of Tuscia, Viterbo, Italy
| | - Ivan Notardonato
- Department of Agricultural, Environmental and Food Sciences, University of Molise, Campobasso, Italy
| | - Pasquale Avino
- Department of Agricultural, Environmental and Food Sciences, University of Molise, Campobasso, Italy
| | - Giuseppe Lima
- Department of Agricultural, Environmental and Food Sciences, University of Molise, Campobasso, Italy
| | - Filippo De Curtis
- Department of Agricultural, Environmental and Food Sciences, University of Molise, Campobasso, Italy
| | - Giuseppe Ianiri
- Department of Agricultural, Environmental and Food Sciences, University of Molise, Campobasso, Italy
- Giuseppe Ianiri,
| | - Raffaello Castoria
- Department of Agricultural, Environmental and Food Sciences, University of Molise, Campobasso, Italy
- *Correspondence: Raffaello Castoria,
| |
Collapse
|
33
|
A computer vision chemometric-assisted approach to access pH and glucose influence on susceptibility of Candida pathogenic strains. Arch Microbiol 2022; 204:530. [PMID: 35900475 DOI: 10.1007/s00203-022-03145-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 07/12/2022] [Accepted: 07/18/2022] [Indexed: 11/02/2022]
Abstract
Microorganisms adapt to environmental conditions as a survival strategy for different interactions with the environment. The adaptive capacity of fungi allows them to cause disease at various sites of infection in humans. In this study, we propose digital images as responses of a complete factorial 23. Furthermore, we compared two experimental approaches: the experimental design (3D) and the checkerboard assay (2D) to know the influence of pH, glucose, and fluconazole concentration on different strains of the genus Candida. The digital images obtained from the factorial 23 were used as input in the PCA-ANOVA to analyze the results of this experimental design. pH modification in the culture medium modifies the susceptibility in some species less adapted to this type of modification. For the first time, to the best of our knowledge, digital images were used as input to PCA-ANOVA to obtain information on Candida spp.. Therefore, a higher concentration of antifungals is needed to inhibit the same strain at a lower pH. In short, we present an alternative with less use of reagents and time. In addition, the use of digital images allows obtaining information about fungal susceptibility with three or more factors.
Collapse
|
34
|
Wang M, Du Y, Jiao W, Fu M. Effects of fruit tissue pH value on the
Penicillium expansum
growth, patulin accumulation and distribution. J FOOD PROCESS PRES 2022. [DOI: 10.1111/jfpp.16881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Affiliation(s)
- Min Wang
- College of Food Science and Engineering Qilu University of Technology (Shandong Academy of Sciences) Jinan People's Republic of China
| | - Yamin Du
- College of Food Science and Engineering Qilu University of Technology (Shandong Academy of Sciences) Jinan People's Republic of China
| | - Wenxiao Jiao
- College of Food Science and Engineering Qilu University of Technology (Shandong Academy of Sciences) Jinan People's Republic of China
| | - Maorun Fu
- College of Food Science and Engineering Qilu University of Technology (Shandong Academy of Sciences) Jinan People's Republic of China
| |
Collapse
|
35
|
da Silva LL, Morgan T, Garcia EA, Rosa RO, de Oliveira Mendes TA, de Queiroz MV. Pectinolytic arsenal of Colletotrichum lindemuthianum and other fungi with different lifestyles. J Appl Microbiol 2022; 133:1857-1871. [PMID: 35766136 DOI: 10.1111/jam.15692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 05/27/2022] [Accepted: 06/26/2022] [Indexed: 11/29/2022]
Abstract
AIM To identify and analyze genes that encode pectinases in the genome of the fungus C. lindemuthianum, evaluate the expression of these genes, and compare putative pectinases found in C. lindemuthianum with pectinases produced by other fungi and oomycetes with different lifestyles. METHODS AND RESULTS Genes encoding pectinases in the genome of C. lindemuthianum were identified and analyzed. The expression of these genes was analyzed. Pectinases from C. lindemuthianum were compared with pectinases from other fungi that have different lifestyles, and the pectinase activity in some of these fungi was quantified. Fifty-eight genes encoding pectinases were identified in C. lindemuthianum. At least six types of enzymes involved in pectin degradation were identified, with pectate lyases and polygalacturonases being the most abundant. Twenty-seven genes encoding pectinases were differentially expressed at some point in C. lindemuthianum during their interactions with their host. For each type of pectinase, there were at least three isoenzyme groups. The number of pectinases present in fungi with different lifestyles seemed to be related more to the lifestyle than to the taxonomic relationship between them. Only phytopathogenic fungi showed pectate lyase activity. CONCLUSIONS The collective results demonstrate the pectinolytic arsenal of C. lindemuthianum, with many and diverse genes encoding pectinases more than that found in other phytopathogens, which suggests that at least part of these pectinases must be important for the pathogenicity of the fungus C. lindemuthianum. SIGNIFICANCE AND IMPACT OF THE STUDY Knowledge of these pectinases could further the understanding of the importance of this broad pectinolytic arsenal in the common bean infection, and could be exploited for biotechnological purposes.
Collapse
Affiliation(s)
- Leandro Lopes da Silva
- Laboratório de Genética Molecular de Microrganismos, Departamento de Microbiologia/Instituto de Biotecnologia Aplicada à Agropecuária (BIOAGRO), Universidade Federal de Viçosa, Viçosa-, MG, Brasil
| | - Túlio Morgan
- Laboratório de Biotecnologia Molecular, Departamento de Bioquímica e Biologia Molecular, Universidade Federal de Viçosa, Viçosa-, MG, Brasil
| | - Ediones Amaro Garcia
- Laboratório de Genética Molecular de Microrganismos, Departamento de Microbiologia/Instituto de Biotecnologia Aplicada à Agropecuária (BIOAGRO), Universidade Federal de Viçosa, Viçosa-, MG, Brasil
| | - Rafael Oliveira Rosa
- Laboratório de Genética Molecular de Microrganismos, Departamento de Microbiologia/Instituto de Biotecnologia Aplicada à Agropecuária (BIOAGRO), Universidade Federal de Viçosa, Viçosa-, MG, Brasil
| | - Tiago Antônio de Oliveira Mendes
- Laboratório de Biotecnologia Molecular, Departamento de Bioquímica e Biologia Molecular, Universidade Federal de Viçosa, Viçosa-, MG, Brasil
| | - Marisa Vieira de Queiroz
- Laboratório de Genética Molecular de Microrganismos, Departamento de Microbiologia/Instituto de Biotecnologia Aplicada à Agropecuária (BIOAGRO), Universidade Federal de Viçosa, Viçosa-, MG, Brasil
| |
Collapse
|
36
|
Zhang S, Li C, Si J, Han Z, Chen D. Action Mechanisms of Effectors in Plant-Pathogen Interaction. Int J Mol Sci 2022; 23:6758. [PMID: 35743201 PMCID: PMC9224169 DOI: 10.3390/ijms23126758] [Citation(s) in RCA: 57] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 06/09/2022] [Accepted: 06/15/2022] [Indexed: 02/08/2023] Open
Abstract
Plant pathogens are one of the main factors hindering the breeding of cash crops. Pathogens, including oomycetes, fungus, and bacteria, secrete effectors as invasion weapons to successfully invade and propagate in host plants. Here, we review recent advances made in the field of plant-pathogen interaction models and the action mechanisms of phytopathogenic effectors. The review illustrates how effectors from different species use similar and distinct strategies to infect host plants. We classify the main action mechanisms of effectors in plant-pathogen interactions according to the infestation process: targeting physical barriers for disruption, creating conditions conducive to infestation, protecting or masking themselves, interfering with host cell physiological activity, and manipulating plant downstream immune responses. The investigation of the functioning of plant pathogen effectors contributes to improved understanding of the molecular mechanisms of plant-pathogen interactions. This understanding has important theoretical value and is of practical significance in plant pathology and disease resistance genetics and breeding.
Collapse
Affiliation(s)
| | | | | | - Zhigang Han
- State Key Laboratory of Subtropical Silviculture, College of Forestry and Biotechnology, Zhejiang A&F University, Hangzhou 311300, China; (S.Z.); (C.L.); (J.S.)
| | - Donghong Chen
- State Key Laboratory of Subtropical Silviculture, College of Forestry and Biotechnology, Zhejiang A&F University, Hangzhou 311300, China; (S.Z.); (C.L.); (J.S.)
| |
Collapse
|
37
|
Palmieri F, Koutsokera A, Bernasconi E, Junier P, von Garnier C, Ubags N. Recent Advances in Fungal Infections: From Lung Ecology to Therapeutic Strategies With a Focus on Aspergillus spp. Front Med (Lausanne) 2022; 9:832510. [PMID: 35386908 PMCID: PMC8977413 DOI: 10.3389/fmed.2022.832510] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Accepted: 02/22/2022] [Indexed: 12/15/2022] Open
Abstract
Fungal infections are estimated to be the main cause of death for more than 1.5 million people worldwide annually. However, fungal pathogenicity has been largely neglected. This is notably the case for pulmonary fungal infections, which are difficult to diagnose and to treat. We are currently facing a global emergence of antifungal resistance, which decreases the chances of survival for affected patients. New therapeutic approaches are therefore needed to face these life-threatening fungal infections. In this review, we will provide a general overview on respiratory fungal infections, with a focus on fungi of the genus Aspergillus. Next, the immunological and microbiological mechanisms of fungal pathogenesis will be discussed. The role of the respiratory mycobiota and its interactions with the bacterial microbiota on lung fungal infections will be presented from an ecological perspective. Finally, we will focus on existing and future innovative approaches for the treatment of respiratory fungal infections.
Collapse
Affiliation(s)
- Fabio Palmieri
- Laboratory of Microbiology, Institute of Biology, University of Neuchâtel, Neuchâtel, Switzerland
- *Correspondence: Fabio Palmieri,
| | - Angela Koutsokera
- Faculty of Biology and Medicine, University of Lausanne, Service de Pneumologie, Centre Hospitalier Universitaire Vaudois (CHUV), Lausanne, Switzerland
| | - Eric Bernasconi
- Faculty of Biology and Medicine, University of Lausanne, Service de Pneumologie, Centre Hospitalier Universitaire Vaudois (CHUV), Lausanne, Switzerland
| | - Pilar Junier
- Laboratory of Microbiology, Institute of Biology, University of Neuchâtel, Neuchâtel, Switzerland
| | - Christophe von Garnier
- Faculty of Biology and Medicine, University of Lausanne, Service de Pneumologie, Centre Hospitalier Universitaire Vaudois (CHUV), Lausanne, Switzerland
| | - Niki Ubags
- Faculty of Biology and Medicine, University of Lausanne, Service de Pneumologie, Centre Hospitalier Universitaire Vaudois (CHUV), Lausanne, Switzerland
- Niki Ubags,
| |
Collapse
|
38
|
Srinivasan N, Thangavelu K, Uthandi S. Lovastatin production by an oleaginous fungus, Aspergillus terreus KPR12 using sago processing wastewater (SWW). Microb Cell Fact 2022; 21:22. [PMID: 35164756 PMCID: PMC8842936 DOI: 10.1186/s12934-022-01751-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Accepted: 01/25/2022] [Indexed: 12/19/2022] Open
Abstract
Abstract
Background
Lovastatin is one of the first statins to be extensively used for its cholesterol-lowering ability. It is commercially produced by fermentation. Species belonging to the genus Aspergillus are well-studied fungi that have been widely used for lovastatin production. In the present study, we produced lovastatin from sago processing wastewater (SWW) under submerged fermentation using oleaginous fungal strains, A. terreus KPR12 and A. caespitosus ASEF14.
Results
The intra- and extracellular concentrations of lovastatin produced by A. terreus KPR12 and A. caespitosus ASEF14 were lactonized. Because A. caespitosus ASEF14 produced a negligible amount of lovastatin, further kinetics of lovastatin production in SWW was studied using the KPR12 strain for 9 days. Lovastatin concentrations in the intra- and extracellular fractions of the A. terreus KPR12 cultured in a synthetic medium (SM) were 117.93 and 883.28 mg L–1, respectively. However, these concentrations in SWW were 142.23 and 429.98 mg L–1, respectively. The yeast growth inhibition bioassay confirmed the antifungal property of fungal extracts. A. terreus KPR12 showed a higher inhibition zone of 14 mm than the ASEF14 strain. The two-way analysis of variance (ANOVA; p < 0.01) showed significant differences in the localization pattern, fungal strains, growth medium, and their respective interactions. The lovastatin yield coefficient values were 0.153 g g–1 on biomass (YLOV/X) and 0.043 g g–1 on the substrate, starch (YLOV/S). The pollutant level of treated SWW exhibited a reduction in total solids (TS, 59%), total dissolved solids (TDS, 68%), biological oxygen demand (BOD, 79.5%), chemical oxygen demand (COD, 57.1%), phosphate (88%), cyanide (65.4%), and void of nutrients such as nitrate (100%), and ammonia (100%).
Conclusion
The starch-rich wastewater serves as a suitable medium for A. terreus KPR12 for the production of lovastatin. It simultaneously decontaminates the sago processing wastewater, enabling its reuse for irrigation/recreation.
Graphical Abstract
Collapse
|
39
|
Jiao W, Liu X, Li Y, Li B, Du Y, Zhang Z, Chen Q, Fu M. Organic acid, a virulence factor for pathogenic fungi, causing postharvest decay in fruits. MOLECULAR PLANT PATHOLOGY 2022; 23:304-312. [PMID: 34820999 PMCID: PMC8743014 DOI: 10.1111/mpp.13159] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 10/27/2021] [Accepted: 10/27/2021] [Indexed: 06/13/2023]
Abstract
Decay due to fungal infection is a major cause of postharvest losses in fruits. Acidic fungi may enhance their virulence by locally reducing the pH of the host. Several devastating postharvest fungi, such as Penicillium spp., Botrytis cinerea, and Sclerotinia sclerotiorum, can secrete gluconic acid, oxalic acid, or citric acid. Emerging evidence suggests that organic acids secreted by acidic fungi are important virulence factors. In this review, we summarized the research progress on the biosynthesis of organic acids, the role of the pH signalling transcription factor PacC in regulating organic acid, and the action mechanism of the main organic acid secreted via postharvest pathogenic fungi during infection of host tissues. This paper systematically demonstrates the relationships between tissue acidification and postharvest fungal pathogenicity, which will motivate the study of host-pathogen interactions and provide a better understanding of virulence mechanisms of the pathogens so as to design new technical strategies to prevent postharvest diseases.
Collapse
Affiliation(s)
- Wenxiao Jiao
- College of Food Science and EngineeringQilu University of Technology (Shandong Academy of Sciences)JinanChina
| | - Xin Liu
- College of Food Science and EngineeringQilu University of Technology (Shandong Academy of Sciences)JinanChina
| | - Youyuan Li
- College of Food Science and EngineeringQilu University of Technology (Shandong Academy of Sciences)JinanChina
| | - Boqiang Li
- Key Laboratory of Plant ResourcesInstitute of BotanyChinese Academy of SciencesBeijingChina
| | - Yamin Du
- College of Food Science and EngineeringQilu University of Technology (Shandong Academy of Sciences)JinanChina
| | - Zhanquan Zhang
- Key Laboratory of Plant ResourcesInstitute of BotanyChinese Academy of SciencesBeijingChina
| | - Qingmin Chen
- College of Food Science and EngineeringShandong Agricultural and Engineering UniversityJinanChina
| | - Maorun Fu
- College of Food Science and EngineeringQilu University of Technology (Shandong Academy of Sciences)JinanChina
| |
Collapse
|
40
|
Fisol AFBC, Saidi NB, Al-Obaidi JR, Lamasudin DU, Atan S, Razali N, Sajari R, Rahmad N, Hussin SNIS, Mr NH. Differential Analysis of Mycelial Proteins and Metabolites From Rigidoporus Microporus During In Vitro Interaction With Hevea Brasiliensis. MICROBIAL ECOLOGY 2022; 83:363-379. [PMID: 33890145 DOI: 10.1007/s00248-021-01757-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Accepted: 04/15/2021] [Indexed: 06/12/2023]
Abstract
Rigidoporus microporus is the fungus accountable for the white root rot disease that is detrimental to the rubber tree, Hevea brasiliensis. The pathogenicity mechanism of R. microporus and the identity of the fungal proteins and metabolites involved during the infection process remain unclear. In this study, the protein and metabolite profiles of two R. microporus isolates, Segamat (SEG) and Ayer Molek (AM), were investigated during an in vitro interaction with H. brasiliensis. The isolates were used to inoculate H. brasiliensis clone RRIM 2025, and mycelia adhering to the roots of the plant were collected for analysis. Transmission electron microscope (TEM) images acquired confirms the hyphae attachment and colonization of the mycelia on the root of the H. brasiliensis clones after 4 days of inoculation. The protein samples were subjected to 2-DE analysis and analyzed using MALDI-ToF MS/MS, while the metabolites were extracted using methanol and analyzed using LC/MS-QTOF. Based on the differential analyses, upregulation of proteins that are essential for fungal evolution such as malate dehydrogenase, fructose 1,6-biphosphate aldolase, and glyceraldehyde-3-phosphate dehydrogenase hints an indirect role in fungal pathogenicity, while metabolomic analysis suggests an increase in acidic compounds which may lead to increased cell wall degrading enzyme activity. Bioinformatics analyses revealed that the carbohydrate and amino acid metabolisms were prominently affected in response to the fungal pathogenicity. In addition to that, other pathways that were significantly affected include "Protein Ubiquitination Pathway," Unfolded Protein Response," "HIFα Signaling," and "Sirtuin Signaling Pathway." The identification of responsive proteins and metabolites from this study promotes a better understanding of mechanisms underlying R. microporus pathogenesis and provides a list of potential biological markers for early recognition of the white root rot disease.
Collapse
Affiliation(s)
- Ahmad Faiz Bin Che Fisol
- Department of Cell and Molecular Biology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400, Serdang, Selangor, Malaysia
| | - Noor Baity Saidi
- Department of Cell and Molecular Biology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400, Serdang, Selangor, Malaysia
| | - Jameel R Al-Obaidi
- Department of Biology, Faculty of Science and Mathematics, Universiti Pendidikan Sultan Idris, 35900, Tanjong Malim, Perak, Malaysia.
| | - Dhilia Udie Lamasudin
- Department of Cell and Molecular Biology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400, Serdang, Selangor, Malaysia
| | - Safiah Atan
- Malaysian Rubber Board, 47000, Sungai Buloh, Selangor, Malaysia
| | - Nurhanani Razali
- Membranology Unit, Okinawa Institute of Science and Technology Graduate University, 1919-1, Tancha, Onna-son, Kunigami-kun, Okinawa, 904-0495, Japan
- Department of Hygienic Sciences, Kobe Pharmaceutical University, 4-19-1 Motoyamakita-machi, Higashinada-ku, Kobe, 658-8558, Japan
| | - Roslinda Sajari
- Malaysian Rubber Board, 47000, Sungai Buloh, Selangor, Malaysia
| | - Norasfaliza Rahmad
- Agro-Biotechnology Institute Malaysia (ABI), National Institutes of Biotechnology Malaysia (NIBM), c/o MARDI Headquarters, 43400, Serdang, Selangor, Malaysia
| | - Siti Nahdatul Isnaini Said Hussin
- Agro-Biotechnology Institute Malaysia (ABI), National Institutes of Biotechnology Malaysia (NIBM), c/o MARDI Headquarters, 43400, Serdang, Selangor, Malaysia
| | - Nurul Hafiza Mr
- Agro-Biotechnology Institute Malaysia (ABI), National Institutes of Biotechnology Malaysia (NIBM), c/o MARDI Headquarters, 43400, Serdang, Selangor, Malaysia
| |
Collapse
|
41
|
Ambrosini V, Riou C. The dark side of 5,10,15,20-(tetra-4-sulfonatophenyl)porphyrin tetra-ammonium (TPPS) on Botrytis cinerea mycelium growth. J PORPHYR PHTHALOCYA 2022. [DOI: 10.1142/s1088424622500134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
42
|
Amino Acid Sensing and Assimilation by the Fungal Pathogen Candida albicans in the Human Host. Pathogens 2021; 11:pathogens11010005. [PMID: 35055954 PMCID: PMC8781990 DOI: 10.3390/pathogens11010005] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 12/17/2021] [Accepted: 12/19/2021] [Indexed: 01/04/2023] Open
Abstract
Nutrient uptake is essential for cellular life and the capacity to perceive extracellular nutrients is critical for coordinating their uptake and metabolism. Commensal fungal pathogens, e.g., Candida albicans, have evolved in close association with human hosts and are well-adapted to using diverse nutrients found in discrete host niches. Human cells that cannot synthesize all amino acids require the uptake of the “essential amino acids” to remain viable. Consistently, high levels of amino acids circulate in the blood. Host proteins are rich sources of amino acids but their use depends on proteases to cleave them into smaller peptides and free amino acids. C. albicans responds to extracellular amino acids by pleiotropically enhancing their uptake and derive energy from their catabolism to power opportunistic virulent growth. Studies using Saccharomyces cerevisiae have established paradigms to understand metabolic processes in C. albicans; however, fundamental differences exist. The advent of CRISPR/Cas9-based methods facilitate genetic analysis in C. albicans, and state-of-the-art molecular biological techniques are being applied to directly examine growth requirements in vivo and in situ in infected hosts. The combination of divergent approaches can illuminate the biological roles of individual cellular components. Here we discuss recent findings regarding nutrient sensing with a focus on amino acid uptake and metabolism, processes that underlie the virulence of C. albicans.
Collapse
|
43
|
Vanderwolf KJ, Kyle CJ, Faure PA, McAlpine DF, Davy CM. Skin pH varies among bat species and seasons and between wild and captive bats. CONSERVATION PHYSIOLOGY 2021; 9:coab088. [PMID: 34925845 PMCID: PMC8672241 DOI: 10.1093/conphys/coab088] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Revised: 07/09/2021] [Accepted: 11/01/2021] [Indexed: 06/14/2023]
Abstract
Skin is a key aspect of the immune system in the defence against pathogens. Skin pH regulates the activity of enzymes produced both by hosts and by microbes on host skin, thus implicating pH in disease susceptibility. Skin pH varies inter- and intra-specifically and is influenced by a variety of intrinsic and extrinsic variables. Increased skin alkalinity is associated with a predisposition to cutaneous infections in humans and dogs, and inter-specific and inter-individual variation in skin pH is implicated in differential susceptibility to some skin diseases. The cutaneous pH of bats has not been characterized but is postulated to play a role in susceptibility to white-nose syndrome (WNS), a fungal infection that has decimated several Nearctic bat species. We used non-invasive probes to measure the pH of bat flight membranes in five species with differing susceptibility to WNS. Skin pH ranged from 4.67 to 8.59 and varied among bat species, geographic locations, body parts, age classes, sexes and seasons. Wild Eptesicus fuscus were consistently more acidic than wild Myotis lucifugus, Myotis leibii and Perimyotis subflavus. Juvenile bats had more acidic skin than adults during maternity season but did not differ during swarming. Male M. lucifugus were more acidic than females during maternity season, yet this trend reversed during swarming. Bat skin was more acidic in summer compared to winter, a pattern also reported in humans. Skin pH was more acidic in captive than wild E. fuscus, suggesting environmental impacts on skin pH. The pH of roosting substrates affects skin pH in captive bats and may partially explain seasonal patterns in wild bats that use different roost types across seasons. Future research on the influence of pH on microbial pathogenic factors and skin barrier function may provide valuable insights on new therapeutic targets for treating bat skin conditions.
Collapse
Affiliation(s)
- Karen J Vanderwolf
- Corresponding author: Environmental and Life Sciences Program, Trent University, 1600 West Bank Dr., Peterborough, K9L 0G2, Canada.
| | - Christopher J Kyle
- Environmental and Life Sciences Program, Trent University, 1600 West Bank Dr., Peterborough, K9L 0G2, Ontario, Canada
- Forensic Science Department, Trent University, 1600 West Bank Dr, Peterborough, K9L 0G2, Ontario, Canada
- Natural Resources DNA Profiling and Forensics Center, Trent University, 1600 West Bank Dr, Peterborough, K9L 0G2, Ontario, Canada
| | - Paul A Faure
- Department of Psychology, Neuroscience & Behaviour, McMaster University, 1280 Main Street West, Hamilton, L8S 4K1, Ontario, Canada
| | - Donald F McAlpine
- Department of Natural History, New Brunswick Museum, 277 Douglas Ave, Saint John, E2K 1E5, New Brunswick, Canada
| | - Christina M Davy
- Environmental and Life Sciences Program, Trent University, 1600 West Bank Dr., Peterborough, K9L 0G2, Ontario, Canada
- Wildlife Research and Monitoring Section, Ontario Ministry of Northern Development, Mines, Natural Resources and Forestry, 1600 West Bank Dr, Peterborough, K9L 0G2, Ontario, Canada
- Current affiliation: Department of Biology, Carleton University, 1125 Colonel By Drive, Ottawa, K1S 5B6, Ontario, Canada
| |
Collapse
|
44
|
Nie Y, Wang Z, Zhang R, Ma J, Zhang H, Li S, Li J. Aspergillus oryzae, a novel eco-friendly fungal bioflocculant for turbid drinking water treatment. Sep Purif Technol 2021. [DOI: 10.1016/j.seppur.2021.119669] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
45
|
Tagele SB, Kim RH, Shin JH. Interactions between Brassica Biofumigants and Soil Microbiota: Causes and Impacts. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:11538-11553. [PMID: 34551253 DOI: 10.1021/acs.jafc.1c03776] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Biofumigation is used to control soil-borne plant diseases, and it has paramount importance to reduce the cost of chemical fumigants. Information about the field control efficacies and impacts of Brassica-based biofumigation (BBF) on soil bacterial and fungal microbiota is scattered in the literature. Therefore, this review summarizes and discusses the nature and the underlying causes of soil bacterial and fungal community dynamics in response to BBF. In addition, the major factors influencing the interaction between a biofumigant and soil microbiota are discussed. The pros and cons of BBF to soil microbiota and the subsequent impacts on sustainable farming practices are also highlighted.
Collapse
Affiliation(s)
- Setu Bazie Tagele
- Department of Applied Biosciences, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Ryeong-Hui Kim
- Department of Integrative Biology, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Jae-Ho Shin
- Department of Applied Biosciences, Kyungpook National University, Daegu 41566, Republic of Korea
- Department of Integrative Biology, Kyungpook National University, Daegu 41566, Republic of Korea
| |
Collapse
|
46
|
Aspergillus sp. assisted bioflocculation of Chlorella MJ 11/11 for the production of biofuel from the algal-fungal co-pellet. Sep Purif Technol 2021. [DOI: 10.1016/j.seppur.2021.118320] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
47
|
Buijs VA, Zuijdgeest XCL, Groenewald JZ, Crous PW, de Vries RP. Carbon utilization and growth-inhibition of citrus-colonizing Phyllosticta species. Fungal Biol 2021; 125:815-825. [PMID: 34537177 DOI: 10.1016/j.funbio.2021.05.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Revised: 05/09/2021] [Accepted: 05/21/2021] [Indexed: 11/15/2022]
Abstract
The genus Phyllosticta includes both endophytic and phytopathogenic species that occur on a broad range of plant hosts, including Citrus. Some pathogenic species cause severe disease, such as Phyllosticta citricarpa, the causal agent of Citrus Black Spot (CBS). In contrast, other species, such as Phyllosticta capitalensis, have an endophytic lifestyle in numerous plant hosts. Carbon utilization capabilities are hypothesized to influence both host range and lifestyle, and are in part determined by the set of Carbohydrate Active Enzyme (CAZyme) encoding genes of a species. In this study, carbon utilization capabilities of five Phyllosticta species were determined, as well as the CAZyme repertoire (CAZome) encoded in their genomes. Little variation was found among species in terms of carbon utilization capabilities and CAZome. However, one of the tested carbon sources, sugar beet pulp (SBP), inhibited growth of the plant pathogens, also when combined with another carbon source, while endophytic species remained unaffected.
Collapse
Affiliation(s)
- Valerie A Buijs
- Evolutionary Phytopathology, Westerdijk Fungal Biodiversity Institute, Uppsalalaan 8, 3584, CT, Utrecht, the Netherlands; Laboratory of Phytopathology, Wageningen University and Research, Droevendaalsesteeg 1, 6708 PB, Wageningen, the Netherlands
| | - Xander C L Zuijdgeest
- Evolutionary Phytopathology, Westerdijk Fungal Biodiversity Institute, Uppsalalaan 8, 3584, CT, Utrecht, the Netherlands
| | - Johannes Z Groenewald
- Evolutionary Phytopathology, Westerdijk Fungal Biodiversity Institute, Uppsalalaan 8, 3584, CT, Utrecht, the Netherlands
| | - Pedro W Crous
- Evolutionary Phytopathology, Westerdijk Fungal Biodiversity Institute, Uppsalalaan 8, 3584, CT, Utrecht, the Netherlands; Laboratory of Phytopathology, Wageningen University and Research, Droevendaalsesteeg 1, 6708 PB, Wageningen, the Netherlands
| | - Ronald P de Vries
- Fungal Physiology, Westerdijk Fungal Biodiversity Institute & Fungal Molecular Physiology, Utrecht University, Uppsalalaan 8, 3584 CT, Utrecht, the Netherlands.
| |
Collapse
|
48
|
Martínez-Blay V, Taberner V, Pérez-Gago MB, Palou L. Postharvest Treatments with Sulfur-Containing Food Additives to Control Major Fungal Pathogens of Stone Fruits. Foods 2021; 10:2115. [PMID: 34574225 PMCID: PMC8465793 DOI: 10.3390/foods10092115] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 08/31/2021] [Accepted: 09/01/2021] [Indexed: 11/17/2022] Open
Abstract
The sulfur-containing salts, classified as food additives, sodium metabisulfite (SMBS), potassium metabisulfite (PMBS), aluminum sulfate (AlS), and aluminum potassium sulfate (AlPS), were evaluated for their activity against Monilinia fructicola, Rhizopus stolonifer, and Geotrichum candidum, the most economically important fungal pathogens causing postharvest disease of stone fruit. In in vitro tests with potato dextrose agar (PDA) Petri dishes amended with different concentrations of the salts (0, 10, 20, 30, 50, and 100 mM), SMBS and PMBS at all concentrations, AlS above 20 mM, and AlPS above 30 mM, completely inhibited the mycelial growth of the three fungi after incubation at 25 °C for up to 10 days. In in vivo primary screenings with artificially inoculated nectarines, aqueous solutions of the four salts reduced the incidence and severity of brown rot (BR) at concentrations of 10 and 50 mM, whereas only AlS and AlPS reduced Rhizopus rot (RR), and none of the salts was effective against sour rot (SR). Solutions at 100 mM were phytotoxic and injured the fruit peel. In small-scale trials, 1 min dip treatments at 20 °C in SMBS or PMBS at 10 mM significantly reduced the incidence and severity of BR after incubation at 20 °C for up to 8 days. Conversely, dips in AlS and AlPS reduced neither BR nor RR. Results highlight the potential of SMBS and PMBS as new nonpolluting tools for the integrated control of BR, but not RR and SR, on stone fruit.
Collapse
Affiliation(s)
| | | | | | - Lluís Palou
- Centre de Tecnologia Postcollita (CTP), Institut Valencià d’Investigacions Agràries (IVIA), 46113 Montcada, Valencia, Spain; (V.M.-B.); (V.T.); (M.B.P.-G.)
| |
Collapse
|
49
|
Khoshbakht M, Srey J, Adpressa DA, Jagels A, Loesgen S. Precursor-Directed Biosynthesis of Aminofulvenes: New Chalanilines from Endophytic Fungus Chalara sp. Molecules 2021; 26:4418. [PMID: 34361574 PMCID: PMC8347292 DOI: 10.3390/molecules26154418] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Revised: 07/17/2021] [Accepted: 07/19/2021] [Indexed: 01/02/2023] Open
Abstract
The plant endophyte Chalara sp. is able to biotransform the epigenetic modifier vorinostat to form unique, aniline-containing polyketides named chalanilines. Here, we sought to expand the chemical diversity of chalaniline A-type molecules by changing the aniline moiety in the precursor vorinostat. In total, twenty-three different vorinostat analogs were prepared via two-step synthesis, and nineteen were incorporated by the fungus into polyketides. The highest yielding substrates were selected for large-scale precursor-directed biosynthesis and five novel compounds, including two fluorinated chalanilines, were isolated, purified, and structurally characterized. Structure elucidation relied on 1D and 2D NMR techniques and was supported by low- and high-resolution mass spectrometry. All compounds were tested for their bioactivity but were not active in antimicrobial or cell viability assays. Aminofulvene-containing natural products are rare, and this high-yielding, precursor-directed process allows for the diversification of this class of compounds.
Collapse
Affiliation(s)
- Mahsa Khoshbakht
- Department of Chemistry, Oregon State University, Corvallis, OR 97331, USA; (M.K.); (J.S.); (D.A.A.)
| | - Jason Srey
- Department of Chemistry, Oregon State University, Corvallis, OR 97331, USA; (M.K.); (J.S.); (D.A.A.)
| | - Donovon A. Adpressa
- Department of Chemistry, Oregon State University, Corvallis, OR 97331, USA; (M.K.); (J.S.); (D.A.A.)
| | - Annika Jagels
- Whitney Laboratory for Marine Bioscience, Department of Chemistry, University of Florida, Gainesville, FL 32080, USA;
| | - Sandra Loesgen
- Department of Chemistry, Oregon State University, Corvallis, OR 97331, USA; (M.K.); (J.S.); (D.A.A.)
- Whitney Laboratory for Marine Bioscience, Department of Chemistry, University of Florida, Gainesville, FL 32080, USA;
| |
Collapse
|
50
|
Nemo R, Bacha K. Microbial dynamic and growth potential of selected pathogens in Ethiopian traditional fermented beverages. ANN MICROBIOL 2021. [DOI: 10.1186/s13213-021-01635-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Abstract
Purpose
The patterns of microbial succession and the associated physicochemical changes in the course of beverage fermentation determine the safety status of the final product against foodborne pathogens. In this study, the microbial dynamics during fermentation of three Ethiopian traditional fermented beverages (namely, borde, tej, and grawa) and the growth potential of selected foodborne pathogens in ready-to-consume beverages were assessed.
Methods
The raw materials used for lab-scale fermentation of the beverages were bought from open markets of Jimma and Anfilo towns. During fermentation, samples were drawn every 6 h (borde fermentation) and 12 h (grawa and tej fermentation). The dominant microbes of the fermentation phases were determined following standard microbiological methods. The growth potential of Escherichia coli, Salmonella typhimurium, Staphylococcus aureus, Listeria monocytogenes, and Candida albicans in the ready-to-consume beverages were assessed by microbial enumeration over defined storage period.
Result
Early fermentation period of all beverages was dominated by aerobic mesophilic bacteria, staphylococci, and Enterobacteriaceae with highest mean counts (Log CFU/ml) of 6.42 ± 0.10, 5.44 ± 0.08, and 5.40 ± 0.11, respectively. At the end of fermentation, yeast counts (Log CFU/ml) dominated in tej (9.41 ± 0.06) and grawa (7.88 ± 0.02) samples, while lactic acid bacteria dominated in borde sample (7.33 ± 0.07). During fermentation, pH dropped for borde (4.58 ± 0.03 to 4.22 ± 0.01), and grawa (4.18 ± 0.10 to 3.62 ± 0.02), but increased for tej (5.26 ± 0.01 to 5.50 ± 0.03) during the first 24 h, though it dropped later down to 3.81 ± 0.02 at 144th h. All reference pathogens were unable to reach infective dose in grawa and tej samples. However, borde sample supported their growth to infective dose within 24 h. Thus, grawa and tej beverages had the capability of inhibiting growth of pathogens while borde needs basic safety control measures during preparation and storage.
Conclusion
With further safety evaluation of the products, the production processes of the three beverages could be scaled up for commercial purposes using defined starter cultures originated from the same beverages. However, the safety status of borde calls for further evaluation for alternative shelf-life extension mechanisms including the introduction of organic preservatives from local products such as medicinal plants.
Collapse
|