1
|
Roach SN, Shepherd FK, Mickelson CK, Fiege JK, Thielen BK, Pross LM, Sanders AE, Mitchell JS, Robertson M, Fife BT, Langlois RA. Tropism for ciliated cells is the dominant driver of influenza viral burst size in the human airway. Proc Natl Acad Sci U S A 2024; 121:e2320303121. [PMID: 39008691 PMCID: PMC11295045 DOI: 10.1073/pnas.2320303121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Accepted: 05/26/2024] [Indexed: 07/17/2024] Open
Abstract
Influenza viruses pose a significant burden on global human health. Influenza has a broad cellular tropism in the airway, but how infection of different epithelial cell types impacts replication kinetics and burden in the airways is not fully understood. Using primary human airway cultures, which recapitulate the diverse epithelial cell landscape of the human airways, we investigated the impact of cell type composition on virus tropism and replication kinetics. Cultures were highly diverse across multiple donors and 30 independent differentiation conditions and supported a range of influenza replication. Although many cell types were susceptible to influenza, ciliated and secretory cells were predominantly infected. Despite the strong tropism preference for secretory and ciliated cells, which consistently make up 75% or more of infected cells, only ciliated cells were associated with increased virus production. Surprisingly, infected secretory cells were associated with overall reduced virus output. The disparate response and contribution to influenza virus production could be due to different pro- and antiviral interferon-stimulated gene signatures between ciliated and secretory populations, which were interrogated with single-cell RNA sequencing. These data highlight the heterogeneous outcomes of influenza virus infections in the complex cellular environment of the human airway and the disparate impacts of infected cell identity on multiround burst size, even among preferentially infected cell types.
Collapse
Affiliation(s)
- Shanley N. Roach
- Department of Microbiology and Immunology, University of Minnesota, Minneapolis, MN55455
| | - Frances K. Shepherd
- Department of Microbiology and Immunology, University of Minnesota, Minneapolis, MN55455
| | - Clayton K. Mickelson
- Department of Microbiology and Immunology, University of Minnesota, Minneapolis, MN55455
| | - Jessica K. Fiege
- Department of Microbiology and Immunology, University of Minnesota, Minneapolis, MN55455
| | - Beth K. Thielen
- Division of Pediatric Infectious Diseases and Immunology, Department of Pediatrics, University of Minnesota, Minneapolis, MN55455
| | - Lauren M. Pross
- Department of Microbiology and Immunology, University of Minnesota, Minneapolis, MN55455
| | - Autumn E. Sanders
- Department of Microbiology and Immunology, University of Minnesota, Minneapolis, MN55455
| | - Jason S. Mitchell
- Center for Immunology, University of Minnesota, Minneapolis, MN55455
| | - Mason Robertson
- Department of Microbiology and Immunology, University of Minnesota, Minneapolis, MN55455
| | - Brian T. Fife
- Center for Immunology, University of Minnesota, Minneapolis, MN55455
- Department of Medicine, University of Minnesota, Minneapolis, MN55455
| | - Ryan A. Langlois
- Department of Microbiology and Immunology, University of Minnesota, Minneapolis, MN55455
| |
Collapse
|
2
|
Bauer L, Rijsbergen LC, Leijten L, Benavides FF, Noack D, Lamers MM, Haagmans BL, de Vries RD, de Swart RL, van Riel D. The pro-inflammatory response to influenza A virus infection is fueled by endothelial cells. Life Sci Alliance 2023; 6:e202201837. [PMID: 37072183 PMCID: PMC10114347 DOI: 10.26508/lsa.202201837] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 04/05/2023] [Accepted: 04/05/2023] [Indexed: 04/20/2023] Open
Abstract
Morbidity and mortality from influenza are associated with high levels of systemic inflammation. Endothelial cells play a key role in systemic inflammatory responses during severe influenza A virus (IAV) infections, despite being rarely infected in humans. How endothelial cells contribute to systemic inflammatory responses is unclear. Here, we developed a transwell system in which airway organoid-derived differentiated human lung epithelial cells were co-cultured with primary human lung microvascular endothelial cells (LMECs). We compared the susceptibility of LMECs to pandemic H1N1 virus and recent seasonal H1N1 and H3N2 viruses and assessed the associated pro-inflammatory responses. Despite the detection of IAV nucleoprotein in LMEC mono-cultures, there was no evidence for productive infection. In epithelial-endothelial co-cultures, abundant IAV infection of epithelial cells resulted in the breakdown of the epithelial barrier, but infection of LMECs was rarely detected. We observed a significantly higher secretion of pro-inflammatory cytokines in LMECs when co-cultured with IAV-infected epithelial cells than LMEC mono-cultures exposed to IAV. Taken together, our data show that LMECs are abortively infected by IAV but can fuel the inflammatory response.
Collapse
Affiliation(s)
- Lisa Bauer
- Department of Viroscience, Erasmus MC, Rotterdam, The Netherlands
| | | | - Lonneke Leijten
- Department of Viroscience, Erasmus MC, Rotterdam, The Netherlands
| | | | - Danny Noack
- Department of Viroscience, Erasmus MC, Rotterdam, The Netherlands
| | - Mart M Lamers
- Department of Viroscience, Erasmus MC, Rotterdam, The Netherlands
| | - Bart L Haagmans
- Department of Viroscience, Erasmus MC, Rotterdam, The Netherlands
| | - Rory D de Vries
- Department of Viroscience, Erasmus MC, Rotterdam, The Netherlands
| | - Rik L de Swart
- Department of Viroscience, Erasmus MC, Rotterdam, The Netherlands
| | - Debby van Riel
- Department of Viroscience, Erasmus MC, Rotterdam, The Netherlands
| |
Collapse
|
3
|
Zerangian N, Erabi G, Poudineh M, Monajjem K, Diyanati M, Khanlari M, Khalaji A, Allafi D, Faridzadeh A, Amali A, Alizadeh N, Salimi Y, Ghane Ezabadi S, Abdi A, Hasanabadi Z, ShojaeiBaghini M, Deravi N. Venous thromboembolism in viral diseases: A comprehensive literature review. Health Sci Rep 2023; 6:e1085. [PMID: 36778773 PMCID: PMC9900357 DOI: 10.1002/hsr2.1085] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 12/25/2022] [Accepted: 01/19/2023] [Indexed: 02/09/2023] Open
Abstract
Venous thromboembolism (VTE) is known to be a common respiratory and/or cardiovascular complication in hospitalized patients with viral infections. Numerous studies have proven human immunodeficiency virus infection to be a prothrombotic condition. An elevated VTE risk has been observed in critically ill H1N1 influenza patients. VTE risk is remarkably higher in patients infected with the Hepatitis C virus in contrast to uninfected subjects. The elevation of D-dimer levels supported the association between Chikungunya and the Zika virus and the rise of clinical VTE risk. Varicella-zoster virus is a risk factor for both cellulitis and the consequent invasive bacterial disease which may take part in thrombotic initiation. Eventually, hospitalized patients infected with the coronavirus disease of 2019 (COVID-19), the cause of the ongoing worldwide pandemic, could mainly suffer from an anomalous risk of coagulation activation with enhanced venous thrombosis events and poor quality clinical course. Although the risk of VTE in nonhospitalized COVID-19 patients is not known yet, there are a large number of guidelines and studies on thromboprophylaxis administration for COVID-19 cases. This study aims to take a detailed look at the effect of viral diseases on VTE, the epidemiology of VTE in viral diseases, and the diagnosis and treatment of VTE.
Collapse
Affiliation(s)
- Nasibeh Zerangian
- Health Education and Health Promotion, Department of Health Education and Health Promotion, School of HealthMashhad University of Medical SciencesMashhadIran
| | - Gisou Erabi
- Student Research CommitteeUrmia University of Medical SciencesUrmiaIran
| | | | - Kosar Monajjem
- Student Research CommitteeTabriz University of Medical SciencesTabrizIran
| | - Maryam Diyanati
- Student Research CommitteeRafsanjan University of Medical SciencesRafsanjanIran
| | - Maryam Khanlari
- Student Research CommitteeTabriz University of Medical SciencesTabrizIran
| | | | - Diba Allafi
- Student Research CommitteeUrmia University of Medical SciencesUrmiaIran
| | - Arezoo Faridzadeh
- Department of Immunology and Allergy, School of MedicineMashhad University of Medical SciencesMashhadIran
- Immunology Research CenterMashhad University of Medical SciencesMashhadIran
| | - Arian Amali
- Student Research Committee, Paramedical DepartmentIslamic Azad University, Mashhad BranchMashhadIran
| | - Nilufar Alizadeh
- Doctor of Medicine (MD), School of MedicineIran University of Medical SciencesTehranIran
| | - Yasaman Salimi
- Student Research CommitteeKermanshah University of Medical SciencesKermanshahIran
| | - Sajjad Ghane Ezabadi
- Student's Scientific Research Center, School of MedicineTehran University of Medical SciencesTehranIran
| | - Amir Abdi
- Student Research Committee, School of Medicine, Tehran Medical SciencesIslamic Azad UniversityTehranIran
| | - Zahra Hasanabadi
- Doctor of Medicine (MD), School of MedicineQazvin University of Medical ScienceQazvinIran
| | - Mahdie ShojaeiBaghini
- Medical Informatics Research Center, Institute for Futures Studies in HealthKerman University of Medical SciencesKermanIran
| | - Niloofar Deravi
- Student Research Committee, School of MedicineShahid Beheshti University of Medical SciencesTehranIran
| |
Collapse
|
4
|
Zhang Y, Yang J, Liu P, Zhang RJ, Li JD, Bi YH, Li Y. Regulatory role of ncRNAs in pulmonary epithelial and endothelial barriers: Molecular therapy clues of influenza-induced acute lung injury. Pharmacol Res 2022; 185:106509. [DOI: 10.1016/j.phrs.2022.106509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Revised: 09/23/2022] [Accepted: 10/10/2022] [Indexed: 10/31/2022]
|
5
|
miR-142 Targets TIM-1 in Human Endothelial Cells: Potential Implications for Stroke, COVID-19, Zika, Ebola, Dengue, and Other Viral Infections. Int J Mol Sci 2022; 23:ijms231810242. [PMID: 36142146 PMCID: PMC9499484 DOI: 10.3390/ijms231810242] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 08/30/2022] [Accepted: 09/02/2022] [Indexed: 11/30/2022] Open
Abstract
T-cell immunoglobulin and mucin domain 1 (TIM-1) has been recently identified as one of the factors involved in the internalization of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) in human cells, in addition to angiotensin-converting enzyme 2 (ACE2), transmembrane serine protease 2 (TMPRSS2), neuropilin-1, and others. We hypothesized that specific microRNAs could target TIM-1, with potential implications for the management of patients suffering from coronavirus disease 2019 (COVID-19). By combining bioinformatic analyses and functional assays, we identified miR-142 as a specific regulator of TIM-1 transcription. Since TIM-1 has been implicated in the regulation of endothelial function at the level of the blood-brain barrier (BBB) and its levels have been shown to be associated with stroke and cerebral ischemia-reperfusion injury, we validated miR-142 as a functional modulator of TIM-1 in human brain microvascular endothelial cells (hBMECs). Taken together, our results indicate that miR-142 targets TIM-1, representing a novel strategy against cerebrovascular disorders, as well as systemic complications of SARS-CoV-2 and other viral infections.
Collapse
|
6
|
Kenney AD, Aron SL, Gilbert C, Kumar N, Chen P, Eddy A, Zhang L, Zani A, Vargas-Maldonado N, Speaks S, Kawahara J, Denz PJ, Dorn L, Accornero F, Ma J, Zhu H, Rajaram MVS, Cai C, Langlois RA, Yount JS. Influenza virus replication in cardiomyocytes drives heart dysfunction and fibrosis. SCIENCE ADVANCES 2022; 8:eabm5371. [PMID: 35544568 PMCID: PMC9094651 DOI: 10.1126/sciadv.abm5371] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Accepted: 03/24/2022] [Indexed: 05/04/2023]
Abstract
Cardiac dysfunction is a common complication of severe influenza virus infection, but whether this occurs due to direct infection of cardiac tissue or indirectly through systemic lung inflammation remains unclear. To test the etiology of this aspect of influenza disease, we generated a novel recombinant heart-attenuated influenza virus via genome incorporation of target sequences for miRNAs expressed in cardiomyocytes. Compared with control virus, mice infected with miR-targeted virus had significantly reduced heart viral titers, confirming cardiac attenuation of viral replication. However, this virus was fully replicative in the lungs and induced similar systemic inflammation and weight loss compared to control virus. The miR-targeted virus induced fewer cardiac conduction irregularities and significantly less fibrosis in mice lacking interferon-induced transmembrane protein 3 (IFITM3), which serve as a model for influenza-associated cardiac pathology. We conclude that robust virus replication in the heart is required for pathology, even when lung inflammation is severe.
Collapse
Affiliation(s)
- Adam D. Kenney
- Department of Microbial Infection and Immunity, The Ohio State University, Columbus, OH, USA
- Infectious Diseases Institute, Viruses and Emerging Pathogens Program, The Ohio State University, Columbus, OH, USA
| | - Stephanie L. Aron
- Department of Microbiology and Immunology, The University of Minnesota, Minneapolis, MN, USA
| | - Clara Gilbert
- Department of Microbiology and Immunology, The University of Minnesota, Minneapolis, MN, USA
| | - Naresh Kumar
- Department of Microbial Infection and Immunity, The Ohio State University, Columbus, OH, USA
| | - Peng Chen
- Department of Physiology and Cell Biology, The Ohio State University, Columbus, OH, USA
| | - Adrian Eddy
- Department of Microbial Infection and Immunity, The Ohio State University, Columbus, OH, USA
- Infectious Diseases Institute, Viruses and Emerging Pathogens Program, The Ohio State University, Columbus, OH, USA
| | - Lizhi Zhang
- Department of Microbial Infection and Immunity, The Ohio State University, Columbus, OH, USA
- Infectious Diseases Institute, Viruses and Emerging Pathogens Program, The Ohio State University, Columbus, OH, USA
| | - Ashley Zani
- Department of Microbial Infection and Immunity, The Ohio State University, Columbus, OH, USA
- Infectious Diseases Institute, Viruses and Emerging Pathogens Program, The Ohio State University, Columbus, OH, USA
| | - Nahara Vargas-Maldonado
- Department of Microbial Infection and Immunity, The Ohio State University, Columbus, OH, USA
| | - Samuel Speaks
- Department of Microbial Infection and Immunity, The Ohio State University, Columbus, OH, USA
| | - Jeffrey Kawahara
- Department of Microbial Infection and Immunity, The Ohio State University, Columbus, OH, USA
- Infectious Diseases Institute, Viruses and Emerging Pathogens Program, The Ohio State University, Columbus, OH, USA
| | - Parker J. Denz
- Department of Microbial Infection and Immunity, The Ohio State University, Columbus, OH, USA
- Infectious Diseases Institute, Viruses and Emerging Pathogens Program, The Ohio State University, Columbus, OH, USA
| | - Lisa Dorn
- Department of Physiology and Cell Biology, The Ohio State University, Columbus, OH, USA
| | - Federica Accornero
- Department of Physiology and Cell Biology, The Ohio State University, Columbus, OH, USA
| | - Jianjie Ma
- Department of Surgery, The Ohio State University, Columbus, OH, USA
| | - Hua Zhu
- Department of Surgery, The Ohio State University, Columbus, OH, USA
| | - Murugesan V. S. Rajaram
- Department of Microbial Infection and Immunity, The Ohio State University, Columbus, OH, USA
| | - Chuanxi Cai
- Department of Surgery, The Ohio State University, Columbus, OH, USA
| | - Ryan A. Langlois
- Department of Microbiology and Immunology, The University of Minnesota, Minneapolis, MN, USA
| | - Jacob S. Yount
- Department of Microbial Infection and Immunity, The Ohio State University, Columbus, OH, USA
- Infectious Diseases Institute, Viruses and Emerging Pathogens Program, The Ohio State University, Columbus, OH, USA
| |
Collapse
|
7
|
Mettelman RC, Allen EK, Thomas PG. Mucosal immune responses to infection and vaccination in the respiratory tract. Immunity 2022; 55:749-780. [PMID: 35545027 PMCID: PMC9087965 DOI: 10.1016/j.immuni.2022.04.013] [Citation(s) in RCA: 89] [Impact Index Per Article: 29.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 04/12/2022] [Accepted: 04/15/2022] [Indexed: 01/25/2023]
Abstract
The lungs are constantly exposed to inhaled debris, allergens, pollutants, commensal or pathogenic microorganisms, and respiratory viruses. As a result, innate and adaptive immune responses in the respiratory tract are tightly regulated and are in continual flux between states of enhanced pathogen clearance, immune-modulation, and tissue repair. New single-cell-sequencing techniques are expanding our knowledge of airway cellular complexity and the nuanced connections between structural and immune cell compartments. Understanding these varied interactions is critical in treatment of human pulmonary disease and infections and in next-generation vaccine design. Here, we review the innate and adaptive immune responses in the lung and airways following infection and vaccination, with particular focus on influenza virus and severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). The ongoing SARS-CoV-2 pandemic has put pulmonary research firmly into the global spotlight, challenging previously held notions of respiratory immunity and helping identify new populations at high risk for respiratory distress.
Collapse
Affiliation(s)
- Robert C Mettelman
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - E Kaitlynn Allen
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Paul G Thomas
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA.
| |
Collapse
|
8
|
Abstract
Blood vessel endothelial cells (ECs) have long been known to modulate inflammation by regulating immune cell trafficking, activation status and function. However, whether the heterogeneous EC populations in various tissues and organs differ in their immunomodulatory capacity has received insufficient attention, certainly with regard to considering them for alternative immunotherapy. Recent single-cell studies have identified specific EC subtypes that express gene signatures indicative of phagocytosis or scavenging, antigen presentation and immune cell recruitment. Here we discuss emerging evidence suggesting a tissue-specific and vessel type-specific immunomodulatory role for distinct subtypes of ECs, here collectively referred to as 'immunomodulatory ECs' (IMECs). We propose that IMECs have more important functions in immunity than previously recognized, and suggest that these might be considered as targets for new immunotherapeutic approaches.
Collapse
|
9
|
Roche SM, Holbert S, Le Vern Y, Rossignol C, Rossignol A, Velge P, Virlogeux-Payant I. A large panel of chicken cells are invaded in vivo by Salmonella Typhimurium even when depleted of all known invasion factors. Open Biol 2021; 11:210117. [PMID: 34784793 PMCID: PMC8596019 DOI: 10.1098/rsob.210117] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Poultry are the main source of human infection by Salmonella. As infected poultry are asymptomatic, identifying infected poultry farms is difficult, thus controlling animal infections is of primary importance. As cell tropism is known to govern disease, our aim was therefore to identify infected host-cell types in the organs of chicks known to be involved in Salmonella infection and investigate the role of the three known invasion factors in this process (T3SS-1, Rck and PagN). Chicks were inoculated with wild-type or isogenic fluorescent Salmonella Typhimurium mutants via the intracoelomic route. Our results show that liver, spleen, gall bladder and aortic vessels could be foci of infection, and that phagocytic and non-phagocytic cells, including immune, epithelial and endothelial cells, are invaded in vivo in each organ. Moreover, a mutant defective for the T3SS-1, Rck and PagN remained able to colonize organs like the wild-type strain and invaded non-phagocytic cells in each organ studied. As the infection of the gall bladder had not previously been described in chicks, invasion of gall bladder cells was confirmed by immunohistochemistry and infection was shown to last several weeks after inoculation. Altogether, for the first time these findings provide insights into cell tropism of Salmonella in relevant organs involved in Salmonella infection in chicks and also demonstrate that the known invasion factors are not required for entry into these cell types.
Collapse
Affiliation(s)
- S. M. Roche
- INRAE, Université de Tours, ISP, 37380 Nouzilly, France
| | - S. Holbert
- INRAE, Université de Tours, ISP, 37380 Nouzilly, France
| | - Y. Le Vern
- INRAE, Université de Tours, ISP, 37380 Nouzilly, France
| | - C. Rossignol
- INRAE, Université de Tours, ISP, 37380 Nouzilly, France
| | - A. Rossignol
- INRAE, Université de Tours, ISP, 37380 Nouzilly, France
| | - P. Velge
- INRAE, Université de Tours, ISP, 37380 Nouzilly, France
| | | |
Collapse
|
10
|
Unfolded Protein Response Inhibition Reduces Middle East Respiratory Syndrome Coronavirus-Induced Acute Lung Injury. mBio 2021; 12:e0157221. [PMID: 34372702 PMCID: PMC8406233 DOI: 10.1128/mbio.01572-21] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Tissue- and cell-specific expression patterns are highly variable within and across individuals, leading to altered host responses after acute virus infection. Unraveling key tissue-specific response patterns provides novel opportunities for defining fundamental mechanisms of virus-host interaction in disease and the identification of critical tissue-specific networks for disease intervention in the lung. Currently, there are no approved therapeutics for Middle East respiratory syndrome coronavirus (MERS-CoV) patients, and little is understood about how lung cell types contribute to disease outcomes. MERS-CoV replicates equivalently in primary human lung microvascular endothelial cells (MVE) and fibroblasts (FB) and to equivalent peak titers but with slower replication kinetics in human airway epithelial cell cultures (HAE). However, only infected MVE demonstrate observable virus-induced cytopathic effect. To explore mechanisms leading to reduced MVE viability, donor-matched human lung MVE, HAE, and FB were infected, and their transcriptomes, proteomes, and lipidomes were monitored over time. Validated functional enrichment analysis demonstrated that MERS-CoV-infected MVE were dying via an unfolded protein response (UPR)-mediated apoptosis. Pharmacologic manipulation of the UPR in MERS-CoV-infected primary lung cells reduced viral titers and in male mice improved respiratory function with accompanying reductions in weight loss, pathological signatures of acute lung injury, and times to recovery. Systems biology analysis and validation studies of global kinetic transcript, protein, and lipid data sets confirmed that inhibition of host stress pathways that are differentially regulated following MERS-CoV infection of different tissue types can alleviate symptom progression to end-stage lung disease commonly seen following emerging coronavirus outbreaks.
Collapse
|
11
|
Host factor Rab11a is critical for efficient assembly of influenza A virus genomic segments. PLoS Pathog 2021; 17:e1009517. [PMID: 33970958 PMCID: PMC8136845 DOI: 10.1371/journal.ppat.1009517] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Revised: 05/20/2021] [Accepted: 04/19/2021] [Indexed: 11/30/2022] Open
Abstract
It is well documented that influenza A viruses selectively package 8 distinct viral ribonucleoprotein complexes (vRNPs) into each virion; however, the role of host factors in genome assembly is not completely understood. To evaluate the significance of cellular factors in genome assembly, we generated a reporter virus carrying a tetracysteine tag in the NP gene (NP-Tc virus) and assessed the dynamics of vRNP localization with cellular components by fluorescence microscopy. At early time points, vRNP complexes were preferentially exported to the MTOC; subsequently, vRNPs associated on vesicles positive for cellular factor Rab11a and formed distinct vRNP bundles that trafficked to the plasma membrane on microtubule networks. In Rab11a deficient cells, however, vRNP bundles were smaller in the cytoplasm with less co-localization between different vRNP segments. Furthermore, Rab11a deficiency increased the production of non-infectious particles with higher RNA copy number to PFU ratios, indicative of defects in specific genome assembly. These results indicate that Rab11a+ vesicles serve as hubs for the congregation of vRNP complexes and enable specific genome assembly through vRNP:vRNP interactions, revealing the importance of Rab11a as a critical host factor for influenza A virus genome assembly. The influenza A virus (IAV) genome is composed of 8 distinct RNA segments. It has remained unclear how these 8 individual RNA segments are assembled together to form infectious virus particles. Our study shows that Rab11a+ vesicles serve as platforms for the congregation and assembly of 8 individual viral RNA segments needed to form infectious virus particles. However, in cells lacking Rab11a, viral RNA segments fail to congregate together, resulting in increased production of defective virus particles, likely due to misassembling of viral RNA segments. Thus, our study reveals the important role for Rab11a in influenza virus genome assembly and production of infectious virus particles.
Collapse
|
12
|
Schön J, Breithaupt A, Höper D, King J, Pohlmann A, Parvin R, Behr KP, Schwarz BA, Beer M, Stech J, Harder T, Grund C. Neuraminidase-associated plasminogen recruitment enables systemic spread of natural avian Influenza viruses H3N1. PLoS Pathog 2021; 17:e1009490. [PMID: 33891662 PMCID: PMC8118554 DOI: 10.1371/journal.ppat.1009490] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Revised: 05/13/2021] [Accepted: 03/19/2021] [Indexed: 12/21/2022] Open
Abstract
Repeated outbreaks due to H3N1 low pathogenicity avian influenza viruses (LPAIV) in Belgium were associated with unusually high mortality in chicken in 2019. Those events caused considerable economic losses and prompted restriction measures normally implemented for eradicating high pathogenicity avian influenza viruses (HPAIV). Initial pathology investigations and infection studies suggested this virus to be able to replicate systemically, being very atypical for H3 LPAIV. Here, we investigate the pathogenesis of this H3N1 virus and propose a mechanism explaining its unusual systemic replication capability. By intravenous and intracerebral inoculation in chicken, we demonstrate systemic spread of this virus, extending to the central nervous system. Endoproteolytic viral hemagglutinin (HA) protein activation by either tissue-restricted serine peptidases or ubiquitous subtilisin-like proteases is the functional hallmark distinguishing (H5 or H7) LPAIV from HPAIV. However, luciferase reporter assays show that HA cleavage in case of the H3N1 strain in contrast to the HPAIV is not processed by intracellular proteases. Yet the H3N1 virus replicates efficiently in cell culture without trypsin, unlike LPAIVs. Moreover, this trypsin-independent virus replication is inhibited by 6-aminohexanoic acid, a plasmin inhibitor. Correspondingly, in silico analysis indicates that plasminogen is recruitable by the viral neuraminidase for proteolytic activation due to the loss of a strongly conserved N-glycosylation site at position 130. This mutation was shown responsible for plasminogen recruitment and neurovirulence of the mouse brain-passaged laboratory strain A/WSN/33 (H1N1). In conclusion, our findings provide good evidence in natural chicken strains for N1 neuraminidase-operated recruitment of plasminogen, enabling systemic replication leading to an unusual high pathogenicity phenotype. Such a gain of function in naturally occurring AIVs representing an established human influenza HA-subtype raises concerns over potential zoonotic threats.
Collapse
Affiliation(s)
- Jacob Schön
- Institute of Diagnostic Virology, Greifswald–Insel Riems, Germany
| | - Angele Breithaupt
- Department of Experimental Animal Facilities and Biorisk Management, Greifswald–Insel Riems, Germany
| | - Dirk Höper
- Institute of Diagnostic Virology, Greifswald–Insel Riems, Germany
| | - Jacqueline King
- Institute of Diagnostic Virology, Greifswald–Insel Riems, Germany
| | - Anne Pohlmann
- Institute of Diagnostic Virology, Greifswald–Insel Riems, Germany
| | - Rokshana Parvin
- Department of Pathology, Bangladesh Agricultural University, Mymensingh, Bangladesh
| | | | | | - Martin Beer
- Institute of Diagnostic Virology, Greifswald–Insel Riems, Germany
| | - Jürgen Stech
- Institute of Molecular Virology and Cell Biology, Greifswald–Insel Riems, Germany
| | - Timm Harder
- Institute of Diagnostic Virology, Greifswald–Insel Riems, Germany
| | - Christian Grund
- Institute of Diagnostic Virology, Greifswald–Insel Riems, Germany
| |
Collapse
|
13
|
McCall LI. Quo vadis? Central Rules of Pathogen and Disease Tropism. Front Cell Infect Microbiol 2021; 11:640987. [PMID: 33718287 PMCID: PMC7947345 DOI: 10.3389/fcimb.2021.640987] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2020] [Accepted: 01/18/2021] [Indexed: 12/12/2022] Open
Abstract
Understanding why certain people get sick and die while others recover or never become ill is a fundamental question in biomedical research. A key determinant of this process is pathogen and disease tropism: the locations that become infected (pathogen tropism), and the locations that become damaged (disease tropism). Identifying the factors that regulate tropism is essential to understand disease processes, but also to drive the development of new interventions. This review intersects research from across infectious diseases to define the central mediators of disease and pathogen tropism. This review also highlights methods of study, and translational implications. Overall, tropism is a central but under-appreciated aspect of infection pathogenesis which should be at the forefront when considering the development of new methods of intervention.
Collapse
Affiliation(s)
- Laura-Isobel McCall
- Department of Chemistry and Biochemistry, University of Oklahoma, Norman, OK, United States
- Department of Microbiology and Plant Biology, University of Oklahoma, Norman, OK, United States
- Stephenson Cancer Center, University of Oklahoma, Oklahoma City, OK, United States
- Laboratories of Molecular Anthropology and Microbiome Research, University of Oklahoma, Norman, OK, United States
| |
Collapse
|
14
|
Fosse JH, Haraldsen G, Falk K, Edelmann R. Endothelial Cells in Emerging Viral Infections. Front Cardiovasc Med 2021; 8:619690. [PMID: 33718448 PMCID: PMC7943456 DOI: 10.3389/fcvm.2021.619690] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Accepted: 02/01/2021] [Indexed: 12/11/2022] Open
Abstract
There are several reasons to consider the role of endothelial cells in COVID-19 and other emerging viral infections. First, severe cases of COVID-19 show a common breakdown of central vascular functions. Second, SARS-CoV-2 replicates in endothelial cells. Third, prior deterioration of vascular function exacerbates disease, as the most common comorbidities of COVID-19 (obesity, hypertension, and diabetes) are all associated with endothelial dysfunction. Importantly, SARS-CoV-2's ability to infect endothelium is shared by many emerging viruses, including henipaviruses, hantavirus, and highly pathogenic avian influenza virus, all specifically targeting endothelial cells. The ability to infect endothelium appears to support generalised dissemination of infection and facilitate the access to certain tissues. The disturbed vascular function observed in severe COVID-19 is also a prominent feature of many other life-threatening viral diseases, underscoring the need to understand how viruses modulate endothelial function. We here review the role of vascular endothelial cells in emerging viral infections, starting with a summary of endothelial cells as key mediators and regulators of vascular and immune responses in health and infection. Next, we discuss endotheliotropism as a possible virulence factor and detail features that regulate viruses' ability to attach to and enter endothelial cells. We move on to review how endothelial cells detect invading viruses and respond to infection, with particular focus on pathways that may influence vascular function and the host immune system. Finally, we discuss how endothelial cell function can be dysregulated in viral disease, either by viral components or as bystander victims of overshooting or detrimental inflammatory and immune responses. Many aspects of how viruses interact with the endothelium remain poorly understood. Considering the diversity of such mechanisms among different emerging viruses allows us to highlight common features that may be of general validity and point out important challenges.
Collapse
Affiliation(s)
| | - Guttorm Haraldsen
- Department of Pathology, Oslo University Hospital, Oslo, Norway.,Department of Pathology, University of Oslo, Oslo, Norway
| | - Knut Falk
- Norwegian Veterinary Institute, Oslo, Norway.,AquaMed Consulting AS, Oslo, Norway
| | - Reidunn Edelmann
- Department of Clinical Medicine, Centre for Cancer Biomarkers CCBIO, University of Bergen, Bergen, Norway
| |
Collapse
|
15
|
Latreille E, Lee WL. Interactions of Influenza and SARS-CoV-2 with the Lung Endothelium: Similarities, Differences, and Implications for Therapy. Viruses 2021; 13:161. [PMID: 33499234 PMCID: PMC7911974 DOI: 10.3390/v13020161] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 01/20/2021] [Accepted: 01/21/2021] [Indexed: 12/15/2022] Open
Abstract
Respiratory viruses such as influenza and severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) are a constant threat to public health given their ability to cause global pandemics. Infection with either virus may lead to aberrant host responses, such as excessive immune cell recruitment and activation, dysregulated inflammation, and coagulopathy. These may contribute to the development of lung edema and respiratory failure. An increasing amount of evidence suggests that lung endothelial cells play a critical role in the pathogenesis of both viruses. In this review, we discuss how infection with influenza or SARS-CoV-2 may induce endothelial dysfunction. We compare the effects of infection of these two viruses, how they may contribute to pathogenesis, and discuss the implications for potential treatment. Understanding the differences between the effects of these two viruses on lung endothelial cells will provide important insight to guide the development of therapeutics.
Collapse
Affiliation(s)
- Elyse Latreille
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON M5S 1A8, Canada;
| | - Warren L. Lee
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON M5S 1A8, Canada;
- Keenan Centre for Biomedical Research, St. Michael’s Hospital, Toronto, ON M5B 1W8, Canada
- Interdepartmental Division of Critical Care and the Department of Medicine, University of Toronto, Toronto, ON M5B 1T8, Canada
- Department of Biochemistry, University of Toronto, Toronto, ON M5S 1A8, Canada
| |
Collapse
|
16
|
Mackman N, Antoniak S, Wolberg AS, Kasthuri R, Key NS. Coagulation Abnormalities and Thrombosis in Patients Infected With SARS-CoV-2 and Other Pandemic Viruses. Arterioscler Thromb Vasc Biol 2020; 40:2033-2044. [PMID: 32657623 PMCID: PMC7447001 DOI: 10.1161/atvbaha.120.314514] [Citation(s) in RCA: 131] [Impact Index Per Article: 26.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Accepted: 06/29/2020] [Indexed: 02/07/2023]
Abstract
The world is amid a pandemic caused by severe acute respiratory syndrome-coronavirus 2. Severe acute respiratory syndrome-coronavirus causes serious respiratory tract infections that can lead to viral pneumonia, acute respiratory distress syndrome, and death. Some patients with coronavirus disease 2019 (COVID-19) have an activated coagulation system characterized by elevated plasma levels of d-dimer-a biomarker of fibrin degradation. Importantly, high levels of D-dimer on hospital admission are associated with increased risk of mortality. Venous thromboembolism is more common than arterial thromboembolism in hospitalized COVID-19 patients. Pulmonary thrombosis and microvascular thrombosis are observed in autopsy studies, and this may contribute to the severe hypoxia observed in COVID-19 patients. It is likely that multiple systems contribute to thrombosis in COVID-19 patients, such as activation of coagulation, platelet activation, hypofibrinolysis, endothelial cell dysfunction, inflammation, neutrophil extracellular traps, and complement. Targeting these different pathways may reduce thrombosis and improve lung function in COVID-19 patients.
Collapse
Affiliation(s)
- Nigel Mackman
- From the Department of Medicine, UNC Blood Research Center (N.M., S.A., A.S.W., R.K., N.S.K.), University of North Carolina at Chapel Hill
- Division of Hematology, Department of Medicine (N.M., R.K., N.S.K.), University of North Carolina at Chapel Hill
| | - Silvio Antoniak
- From the Department of Medicine, UNC Blood Research Center (N.M., S.A., A.S.W., R.K., N.S.K.), University of North Carolina at Chapel Hill
- Department of Pathology and Laboratory Medicine (S.A., A.S.W.), University of North Carolina at Chapel Hill
| | - Alisa S. Wolberg
- From the Department of Medicine, UNC Blood Research Center (N.M., S.A., A.S.W., R.K., N.S.K.), University of North Carolina at Chapel Hill
- Department of Pathology and Laboratory Medicine (S.A., A.S.W.), University of North Carolina at Chapel Hill
| | - Raj Kasthuri
- From the Department of Medicine, UNC Blood Research Center (N.M., S.A., A.S.W., R.K., N.S.K.), University of North Carolina at Chapel Hill
- Division of Hematology, Department of Medicine (N.M., R.K., N.S.K.), University of North Carolina at Chapel Hill
| | - Nigel S. Key
- From the Department of Medicine, UNC Blood Research Center (N.M., S.A., A.S.W., R.K., N.S.K.), University of North Carolina at Chapel Hill
- Division of Hematology, Department of Medicine (N.M., R.K., N.S.K.), University of North Carolina at Chapel Hill
| |
Collapse
|
17
|
Gustafson D, Raju S, Wu R, Ching C, Veitch S, Rathnakumar K, Boudreau E, Howe KL, Fish JE. Overcoming Barriers: The Endothelium As a Linchpin of Coronavirus Disease 2019 Pathogenesis? Arterioscler Thromb Vasc Biol 2020; 40:1818-1829. [PMID: 32510978 PMCID: PMC7370857 DOI: 10.1161/atvbaha.120.314558] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Accepted: 05/26/2020] [Indexed: 01/08/2023]
Abstract
OBJECTIVE Coronavirus disease 2019 (COVID-19) is a global pandemic involving >5 500 000 cases worldwide as of May 26, 2020. The culprit is the severe acute respiratory syndrome coronavirus-2, which invades cells by binding to ACE2 (angiotensin-converting enzyme 2). While the majority of patients mount an appropriate antiviral response and recover at home, others progress to respiratory distress requiring hospital admission for supplemental oxygen. In severe cases, deterioration to acute respiratory distress syndrome necessitating mechanical ventilation, development of severe thrombotic events, or cardiac injury and dysfunction occurs. In this review, we highlight what is known to date about COVID-19 and cardiovascular risk, focusing in on the putative role of the endothelium in disease susceptibility and pathogenesis. Approach and Results: Cytokine-driven vascular leak in the lung alveolar-endothelial interface facilitates acute lung injury in the setting of viral infection. Given that the virus affects multiple organs, including the heart, it likely gains access into systemic circulation by infecting or passing from the respiratory epithelium to the endothelium for viral dissemination. Indeed, cardiovascular complications of COVID-19 are highly prevalent and include acute cardiac injury, myocarditis, and a hypercoagulable state, all of which may be influenced by altered endothelial function. Notably, the disease course is worse in individuals with preexisting comorbidities that involve endothelial dysfunction and may be linked to elevated ACE2 expression, such as diabetes mellitus, hypertension, and cardiovascular disease. CONCLUSIONS Rapidly emerging data on COVID-19, together with results from studies on severe acute respiratory syndrome coronavirus-1, are providing insight into how endothelial dysfunction may contribute to the pandemic that is paralyzing the globe. This may, in turn, inform the design of biomarkers predictive of disease course, as well as therapeutics targeting pathogenic endothelial responses.
Collapse
Affiliation(s)
- Dakota Gustafson
- From the Toronto General Hospital Research Institute, University Health Network, Canada (D.G., S.R., R.W., C.C., S.V., K.R., E.B., K.L.H., J.E.F.)
- Department of Laboratory Medicine and Pathobiology (D.G., R.W., S.V., J.E.F.), University of Toronto, Canada
| | - Sneha Raju
- From the Toronto General Hospital Research Institute, University Health Network, Canada (D.G., S.R., R.W., C.C., S.V., K.R., E.B., K.L.H., J.E.F.)
- Institute of Medical Science (S.R., C.C., K.L.H., J.E.F.), University of Toronto, Canada
- Division of Vascular Surgery (S.R., K.L.H.), Toronto General Hospital, Canada
| | - Ruilin Wu
- From the Toronto General Hospital Research Institute, University Health Network, Canada (D.G., S.R., R.W., C.C., S.V., K.R., E.B., K.L.H., J.E.F.)
- Department of Laboratory Medicine and Pathobiology (D.G., R.W., S.V., J.E.F.), University of Toronto, Canada
| | - Crizza Ching
- From the Toronto General Hospital Research Institute, University Health Network, Canada (D.G., S.R., R.W., C.C., S.V., K.R., E.B., K.L.H., J.E.F.)
- Institute of Medical Science (S.R., C.C., K.L.H., J.E.F.), University of Toronto, Canada
| | - Shawn Veitch
- From the Toronto General Hospital Research Institute, University Health Network, Canada (D.G., S.R., R.W., C.C., S.V., K.R., E.B., K.L.H., J.E.F.)
- Department of Laboratory Medicine and Pathobiology (D.G., R.W., S.V., J.E.F.), University of Toronto, Canada
| | - Kumaragurubaran Rathnakumar
- From the Toronto General Hospital Research Institute, University Health Network, Canada (D.G., S.R., R.W., C.C., S.V., K.R., E.B., K.L.H., J.E.F.)
| | - Emilie Boudreau
- From the Toronto General Hospital Research Institute, University Health Network, Canada (D.G., S.R., R.W., C.C., S.V., K.R., E.B., K.L.H., J.E.F.)
| | - Kathryn L. Howe
- From the Toronto General Hospital Research Institute, University Health Network, Canada (D.G., S.R., R.W., C.C., S.V., K.R., E.B., K.L.H., J.E.F.)
- Institute of Medical Science (S.R., C.C., K.L.H., J.E.F.), University of Toronto, Canada
- Division of Vascular Surgery (S.R., K.L.H.), Toronto General Hospital, Canada
- Peter Munk Cardiac Centre (K.L.H., J.E.F.), Toronto General Hospital, Canada
| | - Jason E. Fish
- From the Toronto General Hospital Research Institute, University Health Network, Canada (D.G., S.R., R.W., C.C., S.V., K.R., E.B., K.L.H., J.E.F.)
- Department of Laboratory Medicine and Pathobiology (D.G., R.W., S.V., J.E.F.), University of Toronto, Canada
- Institute of Medical Science (S.R., C.C., K.L.H., J.E.F.), University of Toronto, Canada
- Peter Munk Cardiac Centre (K.L.H., J.E.F.), Toronto General Hospital, Canada
| |
Collapse
|
18
|
Chan LLY, Hui KPY, Kuok DIT, Bui CHT, Ng KC, Mok CKP, Yang ZF, Guan W, Poon LLM, Zhong N, Peiris JSM, Nicholls JM, Chan MCW. Risk Assessment of the Tropism and Pathogenesis of the Highly Pathogenic Avian Influenza A/H7N9 Virus Using Ex Vivo and In Vitro Cultures of Human Respiratory Tract. J Infect Dis 2020; 220:578-588. [PMID: 31001638 DOI: 10.1093/infdis/jiz165] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2018] [Accepted: 04/15/2019] [Indexed: 11/14/2022] Open
Abstract
BACKGROUND Highly pathogenic avian influenza (HPAI)-H7N9 virus arising from low pathogenic avian influenza (LPAI)-H7N9 virus with polybasic amino acid substitutions in the hemagglutinin was detected in 2017. METHODS We compared the tropism, replication competence, and cytokine induction of HPAI-H7N9, LPAI-H7N9, and HPAI-H5N1 in ex vivo human respiratory tract explants, in vitro culture of human alveolar epithelial cells (AECs) and pulmonary microvascular endothelial cells (HMVEC-L). RESULTS Replication competence of HPAI- and LPAI-H7N9 were comparable in ex vivo cultures of bronchus and lung. HPAI-H7N9 predominantly infected AECs, whereas limited infection was observed in bronchus. The reduced tropism of HPAI-H7N9 in bronchial epithelium may explain the lack of human-to-human transmission despite a number of mammalian adaptation markers. Apical and basolateral release of virus was observed only in HPAI-H7N9- and H5N1-infected AECs regardless of infection route. HPAI-H7N9, but not LPAI-H7N9 efficiently replicated in HMVEC-L. CONCLUSIONS Our findings demonstrate that a HPAI-H7N9 virus efficiently replicating in ex vivo cultures of human bronchus and lung. The HPAI-H7N9 was more efficient at replicating in human AECs and HMVEC-L than LPAI-H7N9 implying that endothelial tropism may involve in pathogenesis of HPAI-H7N9 disease.
Collapse
Affiliation(s)
- Louisa L Y Chan
- School of Public Health, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong Special Administrative Region (SAR), China
| | - Kenrie P Y Hui
- School of Public Health, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong Special Administrative Region (SAR), China
| | - Denise I T Kuok
- School of Public Health, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong Special Administrative Region (SAR), China
| | - Christine H T Bui
- School of Public Health, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong Special Administrative Region (SAR), China
| | - Ka-Chun Ng
- School of Public Health, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong Special Administrative Region (SAR), China
| | - Chris K P Mok
- The HKU-Pasteur Research Pole, School of Public Health, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China.,State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, First Affiliated Hospital of Guangzhou Medical University, China
| | - Zi-Feng Yang
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, First Affiliated Hospital of Guangzhou Medical University, China.,Macau University of Science and Technology, Macau, China
| | - Wenda Guan
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, First Affiliated Hospital of Guangzhou Medical University, China
| | - Leo L M Poon
- School of Public Health, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong Special Administrative Region (SAR), China
| | - Nanshan Zhong
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, First Affiliated Hospital of Guangzhou Medical University, China
| | - J S Malik Peiris
- School of Public Health, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong Special Administrative Region (SAR), China
| | - John M Nicholls
- Department of Pathology, Queen Mary Hospital, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
| | - Michael C W Chan
- School of Public Health, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong Special Administrative Region (SAR), China
| |
Collapse
|
19
|
Short KR, Kuiken T, Van Riel D. Role of Endothelial Cells in the Pathogenesis of Influenza in Humans. J Infect Dis 2020; 220:1859-1860. [PMID: 31283821 PMCID: PMC6804332 DOI: 10.1093/infdis/jiz349] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Accepted: 07/04/2019] [Indexed: 01/20/2023] Open
Affiliation(s)
- Kirsty R Short
- School of Chemistry and Molecular Biosciences, University of Queensland, Brisbane, Australia.,Australian Infectious Diseases Research Centre, University of Queensland, Brisbane, Australia
| | - Thijs Kuiken
- Department of Viroscience, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Debby Van Riel
- Department of Viroscience, Erasmus Medical Center, Rotterdam, The Netherlands
| |
Collapse
|
20
|
Hussein AFA, Cheng H, Tundup S, Antanasijevic A, Varhegyi E, Perez J, AbdulRahman EM, Elenany MG, Helal S, Caffrey M, Peet N, Manicassamy B, Rong L. Identification of entry inhibitors with 4-aminopiperidine scaffold targeting group 1 influenza A virus. Antiviral Res 2020; 177:104782. [PMID: 32222293 PMCID: PMC7243365 DOI: 10.1016/j.antiviral.2020.104782] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Revised: 03/20/2020] [Accepted: 03/22/2020] [Indexed: 01/09/2023]
Abstract
Influenza A viruses (IAVs) cause seasonal flu and occasionally pandemics. The current therapeutics against IAVs target two viral proteins - neuraminidase (NA) and M2 ion-channel protein. However, M2 ion channel inhibitors (amantadine and rimantadine) are no longer recommended by CDC for use due to the emergence of high level of antiviral resistance among the circulating influenza viruses, and resistant strains to NA inhibitors (oseltamivir and zanamivir) have also been reported. Therefore, development of novel anti-influenza therapies is urgently needed. As one of the viral surface glycoproteins, hemagglutinin (HA) mediates critical virus entry steps including virus binding to host cells and virus-host membrane fusion, which makes it a potential target for anti-influenza drug development. In this study, we report the identification of compound CBS1116 with a 4-aminopiperidine scaffold from a chemical library screen as an entry inhibitor specifically targeting two group 1 influenza A viruses, A/Puerto Rico/8/34 (H1N1) and recombinant low pathogenic avian H5N1 virus (A/Vietnam/1203/04, VN04Low). Mechanism of action studies show that CBS1116 interferes with the HA-mediated fusion process. Further structure activity relationship study generated a more potent compound CBS1117 which has a 50% inhibitory concentration of 70 nM and a selectivity index of ~4000 against A/Puerto Rico/8/34 (H1N1) infection in human lung epithelial cell line (A549).
Collapse
Affiliation(s)
- Amira F A Hussein
- Department of Microbiology and Immunology, College of Medicine, University of Illinois at Chicago, Chicago, IL 60612, USA; Department of Clinical and Chemical Pathology, Faculty of Medicine, Cairo University, Cairo, Egypt
| | - Han Cheng
- Department of Microbiology and Immunology, College of Medicine, University of Illinois at Chicago, Chicago, IL 60612, USA.
| | - Smanla Tundup
- Howard Taylor Ricketts Laboratory, Argonne National Laboratory, Lemont, IL, 60439, USA; Department of Microbiology, University of Chicago, Chicago, IL 60637, USA
| | - Aleksandar Antanasijevic
- Department of Biochemistry and Molecular Genetics, University of Illinois at Chicago, Chicago, IL, 60612, USA
| | - Elizabeth Varhegyi
- Department of Microbiology and Immunology, College of Medicine, University of Illinois at Chicago, Chicago, IL 60612, USA
| | - Jasmine Perez
- Department of Microbiology, University of Chicago, Chicago, IL 60637, USA
| | - Eiman M AbdulRahman
- Department of Clinical and Chemical Pathology, Faculty of Medicine, Cairo University, Cairo, Egypt
| | - Mervat G Elenany
- Department of Clinical and Chemical Pathology, Faculty of Medicine, Cairo University, Cairo, Egypt
| | - Soheir Helal
- Department of Clinical and Chemical Pathology, Faculty of Medicine, Cairo University, Cairo, Egypt
| | - Michael Caffrey
- Department of Biochemistry and Molecular Genetics, University of Illinois at Chicago, Chicago, IL, 60612, USA
| | - Norton Peet
- Chicago BioSolutions, Inc., 2242 West Harrison Suite 201, Chicago, IL, 60612, USA
| | - Balaji Manicassamy
- Howard Taylor Ricketts Laboratory, Argonne National Laboratory, Lemont, IL, 60439, USA; Department of Microbiology, University of Chicago, Chicago, IL 60637, USA
| | - Lijun Rong
- Department of Microbiology and Immunology, College of Medicine, University of Illinois at Chicago, Chicago, IL 60612, USA.
| |
Collapse
|
21
|
Kandasamy M, Furlong K, Perez JT, Manicassamy S, Manicassamy B. Suppression of Cytotoxic T Cell Functions and Decreased Levels of Tissue-Resident Memory T Cells during H5N1 Infection. J Virol 2020; 94:e00057-20. [PMID: 32075925 PMCID: PMC7163117 DOI: 10.1128/jvi.00057-20] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Accepted: 02/11/2020] [Indexed: 02/07/2023] Open
Abstract
Seasonal influenza virus infections cause mild illness in healthy adults, as timely viral clearance is mediated by the functions of cytotoxic T cells. However, avian H5N1 influenza virus infections can result in prolonged and fatal illness across all age groups, which has been attributed to the overt and uncontrolled activation of host immune responses. Here, we investigate how excessive innate immune responses to H5N1 impair subsequent adaptive T cell responses in the lungs. Using recombinant H1N1 and H5N1 strains sharing 6 internal genes, we demonstrate that H5N1 (2:6) infection in mice causes higher stimulation and increased migration of lung dendritic cells to the draining lymph nodes, resulting in greater numbers of virus-specific T cells in the lungs. Despite robust T cell responses in the lungs, H5N1 (2:6)-infected mice showed inefficient and delayed viral clearance compared with H1N1-infected mice. In addition, we observed higher levels of inhibitory signals, including increased PD-1 and interleukin-10 (IL-10) expression by cytotoxic T cells in H5N1 (2:6)-infected mice, suggesting that delayed viral clearance of H5N1 (2:6) was due to the suppression of T cell functions in vivo Importantly, H5N1 (2:6)-infected mice displayed decreased numbers of tissue-resident memory T cells compared with H1N1-infected mice; however, despite the decreased number of tissue-resident memory T cells, H5N1 (2:6) was protected against a heterologous challenge from H3N2 virus (X31). Taken together, our study provides mechanistic insight for the prolonged viral replication and protracted illness observed in H5N1-infected patients.IMPORTANCE Influenza viruses cause upper respiratory tract infections in humans. In healthy adults, seasonal influenza virus infections result in mild disease. Occasionally, influenza viruses endemic in domestic birds can cause severe and fatal disease even in healthy individuals. In avian influenza virus-infected patients, the host immune system is activated in an uncontrolled manner and is unable to control infection in a timely fashion. In this study, we investigated why the immune system fails to effectively control a modified form of avian influenza virus. Our studies show that T cell functions important for clearing virally infected cells are impaired by higher negative regulatory signals during modified avian influenza virus infection. In addition, memory T cell numbers were decreased in modified avian influenza virus-infected mice. Our studies provide a possible mechanism for the severe and prolonged disease associated with avian influenza virus infections in humans.
Collapse
Affiliation(s)
| | - Kevin Furlong
- Department of Microbiology, The University of Chicago, Chicago, Illinois, USA
| | - Jasmine T Perez
- Department of Microbiology, The University of Chicago, Chicago, Illinois, USA
| | - Santhakumar Manicassamy
- Cancer Immunology, Inflammation, and Tolerance Program, GRU Cancer Center, Augusta University, Augusta, Georgia, USA
| | - Balaji Manicassamy
- Department of Microbiology and Immunology, University of Iowa, Iowa City, Iowa, USA
| |
Collapse
|
22
|
HA-Dependent Tropism of H5N1 and H7N9 Influenza Viruses to Human Endothelial Cells Is Determined by Reduced Stability of the HA, Which Allows the Virus To Cope with Inefficient Endosomal Acidification and Constitutively Expressed IFITM3. J Virol 2019; 94:JVI.01223-19. [PMID: 31597765 DOI: 10.1128/jvi.01223-19] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Accepted: 09/30/2019] [Indexed: 11/20/2022] Open
Abstract
Previous studies revealed that certain avian influenza A viruses (IAVs), including zoonotic H5N1 and H7N9 IAVs, infect cultured human lung microvascular endothelial cells (HULEC) more efficiently than other IAVs and that tropism to HULEC is determined by viral hemagglutinin (HA). To characterize mechanisms of HA-mediated endotheliotropism, we used 2:6 recombinant IAVs harboring HAs from distinctive avian and human viruses and found that efficient infection of HULEC correlated with low conformational stability of the HA. We next studied effects on viral infectivity of single-point amino acid substitutions in the HA of 2:6 recombinant virus A/Vietnam/1203/2004-PR8 (H5N1). Substitutions H8Q, H103Y, T315I, and K582I (K58I in the HA2 subunit), which increased stability of the HA, markedly reduced viral infectivity for HULEC, whereas substitutions K189N and K218Q, which altered typical H5N1 virus-like receptor specificity and reduced binding avidity of the HA, led to only marginal reduction of infectivity. None of these substitutions affected virus infection in MDCK cells. We confirmed the previous observation of elevated basal expression of IFITM3 protein in HULEC and found that endosomal acidification is less efficient in HULEC than in MDCK cells. In accord with these findings, counteraction of IFITM3-mediated restriction by amphotericin B and reduction of endosomal pH by moderate acidification of the extracellular medium enhanced infectivity of viruses with stable HA for HULEC without significant effect on infectivity for MDCK cells. Collectively, our results indicate that relatively high pH optimum of fusion of the HA of zoonotic H5N1 and H7N9 IAVs allows them to overcome antiviral effects of inefficient endosomal acidification and IFITM3 in human endothelial cells.IMPORTANCE Receptor specificity of the HA of IAVs is known to be a critical determinant of viral cell tropism. Here, we show that fusion properties of the HA may also play a key role in the tropism. Thus, we demonstrate that IAVs having a relatively low pH optimum of fusion cannot efficiently infect human endothelial cells owing to their relatively high endosomal pH and increased expression of fusion-inhibiting IFITM3 protein. These restrictions can be overcome by IAVs with elevated pH of fusion, such as zoonotic H5N1 and H7N9. Our results illustrate that the infectivity of IAVs depends on an interplay between HA conformational stability, endosomal acidification and IFITM3 expression in target cells, and the extracellular pH. Given significant variation of levels of HA stability among animal, human, and zoonotic IAVs, our findings prompt further studies on the fusion-dependent tropism of IAVs to different cell types in humans and its role in viral host range and pathogenicity.
Collapse
|
23
|
|
24
|
Kenney AD, McMichael TM, Imas A, Chesarino NM, Zhang L, Dorn LE, Wu Q, Alfaour O, Amari F, Chen M, Zani A, Chemudupati M, Accornero F, Coppola V, Rajaram MVS, Yount JS. IFITM3 protects the heart during influenza virus infection. Proc Natl Acad Sci U S A 2019; 116:18607-18612. [PMID: 31451661 PMCID: PMC6744864 DOI: 10.1073/pnas.1900784116] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Influenza virus can disseminate from the lungs to the heart in severe infections and can induce cardiac pathology, but this has been difficult to study due to a lack of small animal models. In humans, polymorphisms in the gene encoding the antiviral restriction factor IFN-induced transmembrane protein 3 (IFITM3) are associated with susceptibility to severe influenza, but whether IFITM3 deficiencies contribute to cardiac dysfunction during infection is unclear. We show that IFITM3 deficiency in a new knockout (KO) mouse model increases weight loss and mortality following influenza virus infections. We investigated this enhanced pathogenesis with the A/PR/8/34 (H1N1) (PR8) influenza virus strain, which is lethal in KO mice even at low doses, and observed increased replication of virus in the lungs, spleens, and hearts of KO mice compared with wild-type (WT) mice. Infected IFITM3 KO mice developed aberrant cardiac electrical activity, including decreased heart rate and irregular, arrhythmic RR (interbeat) intervals, whereas WT mice exhibited a mild decrease in heart rate without irregular RR intervals. Cardiac electrical dysfunction in PR8-infected KO mice was accompanied by increased activation of fibrotic pathways and fibrotic lesions in the heart. Infection with a sublethal dose of a less virulent influenza virus strain (A/WSN/33 [H1N1]) resulted in a milder cardiac electrical dysfunction in KO mice that subsided as the mice recovered. Our findings reveal an essential role for IFITM3 in limiting influenza virus replication and pathogenesis in heart tissue and establish IFITM3 KO mice as a powerful model for studying mild and severe influenza virus-induced cardiac dysfunction.
Collapse
Affiliation(s)
- Adam D Kenney
- Department of Microbial Infection and Immunity, The Ohio State University, Columbus, OH 43210
- Infectious Diseases Institute, The Ohio State University, Columbus, OH 43210
| | - Temet M McMichael
- Department of Microbial Infection and Immunity, The Ohio State University, Columbus, OH 43210
| | - Alexander Imas
- Department of Microbial Infection and Immunity, The Ohio State University, Columbus, OH 43210
| | - Nicholas M Chesarino
- Department of Microbial Infection and Immunity, The Ohio State University, Columbus, OH 43210
| | - Lizhi Zhang
- Department of Microbial Infection and Immunity, The Ohio State University, Columbus, OH 43210
- Infectious Diseases Institute, The Ohio State University, Columbus, OH 43210
| | - Lisa E Dorn
- Department of Physiology and Cell Biology, The Ohio State University, Columbus, OH 43210
| | - Qian Wu
- Department of Microbial Infection and Immunity, The Ohio State University, Columbus, OH 43210
| | - Omar Alfaour
- Department of Microbial Infection and Immunity, The Ohio State University, Columbus, OH 43210
| | - Foued Amari
- Genetically Engineered Mouse Modeling Core, The Ohio State University and James Comprehensive Cancer Center, Columbus, OH 43210
| | - Min Chen
- Genetically Engineered Mouse Modeling Core, The Ohio State University and James Comprehensive Cancer Center, Columbus, OH 43210
| | - Ashley Zani
- Department of Microbial Infection and Immunity, The Ohio State University, Columbus, OH 43210
- Infectious Diseases Institute, The Ohio State University, Columbus, OH 43210
| | - Mahesh Chemudupati
- Department of Microbial Infection and Immunity, The Ohio State University, Columbus, OH 43210
- Infectious Diseases Institute, The Ohio State University, Columbus, OH 43210
| | - Federica Accornero
- Infectious Diseases Institute, The Ohio State University, Columbus, OH 43210
- Department of Physiology and Cell Biology, The Ohio State University, Columbus, OH 43210
| | - Vincenzo Coppola
- Infectious Diseases Institute, The Ohio State University, Columbus, OH 43210
- Genetically Engineered Mouse Modeling Core, The Ohio State University and James Comprehensive Cancer Center, Columbus, OH 43210
- Department of Cancer Biology and Genetics, The Ohio State University, Columbus, OH 43210
| | - Murugesan V S Rajaram
- Department of Microbial Infection and Immunity, The Ohio State University, Columbus, OH 43210;
- Infectious Diseases Institute, The Ohio State University, Columbus, OH 43210
| | - Jacob S Yount
- Department of Microbial Infection and Immunity, The Ohio State University, Columbus, OH 43210;
- Infectious Diseases Institute, The Ohio State University, Columbus, OH 43210
| |
Collapse
|
25
|
Bradley KC, Finsterbusch K, Schnepf D, Crotta S, Llorian M, Davidson S, Fuchs SY, Staeheli P, Wack A. Microbiota-Driven Tonic Interferon Signals in Lung Stromal Cells Protect from Influenza Virus Infection. Cell Rep 2019; 28:245-256.e4. [DOI: 10.1016/j.celrep.2019.05.105] [Citation(s) in RCA: 149] [Impact Index Per Article: 24.8] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2018] [Revised: 05/10/2019] [Accepted: 05/29/2019] [Indexed: 02/06/2023] Open
|
26
|
Age-dependent pathogenesis of clade 2.3.4.4A H5N2 HPAIV in experimentally infected Broad Breasted White turkeys. Vet Microbiol 2019; 231:183-190. [PMID: 30955808 DOI: 10.1016/j.vetmic.2019.03.011] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Revised: 03/07/2019] [Accepted: 03/11/2019] [Indexed: 11/20/2022]
Abstract
Highly pathogenic avian influenza (HPAI) is a viral disease with devastating consequences to the poultry industry as it results in high morbidity, mortality and international trade restrictions. In the present study, we characterized age-related differences in terms of pathology in commercial white broad breasted turkeys inoculated with A/turkey/Minnesota/12582/2015 (H5N2) HPAIV clade 2.3.4.4A, a virus from the largest HPAI poultry outbreak that affected the Unites States in 2014-2015. Turkeys infected at 6-weeks of age showed inapparent to little clinical signs with rapid disease progression, reaching 100% mortality at 3 days post infection (dpi). In contrast, turkeys infected at 16-weeks of age developed ataxia and lethargy and reached 100% mortality by 5 dpi. Infection in the 6-weeks old turkeys resulted in peracute lesions consistent of extensive hemorrhages, edema and necrosis, but inflammation was not prominent. In the 16-weeks old turkeys, necrosis and hemorrhages in tissues were accompanied by a more prominent subacute inflammatory infiltrate. Both age groups showed presence of avian influenza virus (AIV) nucleoprotein (NP) in multiple cell types including neurons, glial cells, ependymal cells, respiratory epithelial cells, air capillary epithelium and pulmonary macrophages, cardiac myocytes, smooth muscle fibers, pancreatic acini and ductal cells. Cells of the vascular walls stained strongly positive for viral antigens, but no positivity was found in the endothelial cells of any organs. These findings indicate that age is a determinant factor in the progression of the disease and delay of mortality during infection with the H5N2 clade 2.3.4.4A HPAI virus in naïve white broad breasted turkeys.
Collapse
|
27
|
Fay EJ, Langlois RA. MicroRNA-Attenuated Virus Vaccines. Noncoding RNA 2018; 4:E25. [PMID: 30279330 PMCID: PMC6316615 DOI: 10.3390/ncrna4040025] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2018] [Revised: 09/25/2018] [Accepted: 09/28/2018] [Indexed: 12/18/2022] Open
Abstract
Live-attenuated vaccines are the most effective way to establish robust, long-lasting immunity against viruses. However, the possibility of reversion to wild type replication and pathogenicity raises concerns over the safety of these vaccines. The use of host-derived microRNAs (miRNAs) to attenuate viruses has been accomplished in an array of biological contexts. The broad assortment of effective tissue- and species-specific miRNAs, and the ability to target a virus with multiple miRNAs, allow for targeting to be tailored to the virus of interest. While escape is always a concern, effective strategies have been developed to improve the safety and stability of miRNA-attenuated viruses. In this review, we discuss the various approaches that have been used to engineer miRNA-attenuated viruses, the steps that have been taken to improve their safety, and the potential use of these viruses as vaccines.
Collapse
Affiliation(s)
- Elizabeth J Fay
- Biochemistry, Molecular Biology, and Biophysics Graduate Program, University of Minnesota, Minneapolis, MN 55455, USA.
- Center for Immunology, University of Minnesota, Minneapolis, MN 55455, USA.
| | - Ryan A Langlois
- Biochemistry, Molecular Biology, and Biophysics Graduate Program, University of Minnesota, Minneapolis, MN 55455, USA.
- Center for Immunology, University of Minnesota, Minneapolis, MN 55455, USA.
- Department of Microbiology and Immunology, University of Minnesota, Minneapolis, MN 55455, USA.
| |
Collapse
|
28
|
Horman WSJ, Nguyen THO, Kedzierska K, Bean AGD, Layton DS. The Drivers of Pathology in Zoonotic Avian Influenza: The Interplay Between Host and Pathogen. Front Immunol 2018; 9:1812. [PMID: 30135686 PMCID: PMC6092596 DOI: 10.3389/fimmu.2018.01812] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2018] [Accepted: 07/23/2018] [Indexed: 12/19/2022] Open
Abstract
The emergence of zoonotic strains of avian influenza (AI) that cause high rates of mortality in people has caused significant global concern, with a looming threat that one of these strains may develop sustained human-to-human transmission and cause a pandemic outbreak. Most notable of these viral strains are the H5N1 highly pathogenic AI and the H7N9 low pathogenicity AI viruses, both of which have mortality rates above 30%. Understanding of their mechanisms of infection and pathobiology is key to our preparation for these and future viral strains of high consequence. AI viruses typically circulate in wild bird populations, commonly infecting waterfowl and also regularly entering commercial poultry flocks. Live poultry markets provide an ideal environment for the spread AI and potentially the selection of mutants with a greater propensity for infecting humans because of the potential for spill over from birds to humans. Pathology from these AI virus infections is associated with a dysregulated immune response, which is characterized by systemic spread of the virus, lymphopenia, and hypercytokinemia. It has been well documented that host/pathogen interactions, particularly molecules of the immune system, play a significant role in both disease susceptibility as well as disease outcome. Here, we review the immune/virus interactions in both avian and mammalian species, and provide an overview or our understanding of how immune dysregulation is driven. Understanding these susceptibility factors is critical for the development of new vaccines and therapeutics to combat the next pandemic influenza.
Collapse
Affiliation(s)
- William S J Horman
- Department of Microbiology and Immunology, University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Parkville, VIC, Australia.,Australian Animal Health Laboratory, Health and Biosecurity, Commonwealth Scientific and Industrial Research Organisation (CSIRO), East Geelong, VIC, Australia
| | - Thi H O Nguyen
- Department of Microbiology and Immunology, University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Parkville, VIC, Australia
| | - Katherine Kedzierska
- Department of Microbiology and Immunology, University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Parkville, VIC, Australia
| | - Andrew G D Bean
- Australian Animal Health Laboratory, Health and Biosecurity, Commonwealth Scientific and Industrial Research Organisation (CSIRO), East Geelong, VIC, Australia
| | - Daniel S Layton
- Australian Animal Health Laboratory, Health and Biosecurity, Commonwealth Scientific and Industrial Research Organisation (CSIRO), East Geelong, VIC, Australia
| |
Collapse
|
29
|
Crane MJ, Lee KM, FitzGerald ES, Jamieson AM. Surviving Deadly Lung Infections: Innate Host Tolerance Mechanisms in the Pulmonary System. Front Immunol 2018; 9:1421. [PMID: 29988424 PMCID: PMC6024012 DOI: 10.3389/fimmu.2018.01421] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2018] [Accepted: 06/07/2018] [Indexed: 12/16/2022] Open
Abstract
Much research on infectious diseases focuses on clearing the pathogen through the use of antimicrobial drugs, the immune response, or a combination of both. Rapid clearance of pathogens allows for a quick return to a healthy state and increased survival. Pathogen-targeted approaches to combating infection have inherent limitations, including their pathogen-specific nature, the potential for antimicrobial resistance, and poor vaccine efficacy, among others. Another way to survive an infection is to tolerate the alterations to homeostasis that occur during a disease state through a process called host tolerance or resilience, which is independent from pathogen burden. Alterations in homeostasis during infection are numerous and include tissue damage, increased inflammation, metabolic changes, temperature changes, and changes in respiration. Given its importance and sensitivity, the lung is a good system for understanding host tolerance to infectious disease. Pneumonia is the leading cause of death for children under five worldwide. One reason for this is because when the pulmonary system is altered dramatically it greatly impacts the overall health and survival of a patient. Targeting host pathways involved in maintenance of pulmonary host tolerance during infection could provide an alternative therapeutic avenue that may be broadly applicable across a variety of pathologies. In this review, we will summarize recent findings on tolerance to host lung infection. We will focus on the involvement of innate immune responses in tolerance and how an initial viral lung infection may alter tolerance mechanisms in leukocytic, epithelial, and endothelial compartments to a subsequent bacterial infection. By understanding tolerance mechanisms in the lung we can better address treatment options for deadly pulmonary infections.
Collapse
Affiliation(s)
| | | | | | - Amanda M. Jamieson
- Division of Biology and Medicine, Department of Molecular Microbiology and Immunology, Brown University, Providence, RI, United States
| |
Collapse
|
30
|
Fu C, Luo J, Ye S, Yuan Z, Li S. Integrated Lung and Tracheal mRNA-Seq and miRNA-Seq Analysis of Dogs with an Avian-Like H5N1 Canine Influenza Virus Infection. Front Microbiol 2018; 9:303. [PMID: 29556219 PMCID: PMC5844969 DOI: 10.3389/fmicb.2018.00303] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2017] [Accepted: 02/09/2018] [Indexed: 12/12/2022] Open
Abstract
Avian-like H5N1 canine influenza virus (CIV) causes severe respiratory infections in dogs. However, the mechanism underlying H5N1 CIV infection in dogs is unknown. The present study aimed to identify differentially expressed miRNAs and mRNAs in the lungs and trachea in H5N1 CIV-infected dogs through a next-generation sequencing-based method. Eighteen 40-day-old beagles were inoculated intranasally with CIV, A/canine/01/Guangdong/2013 (H5N1) at a tissue culture infectious dose 50 (TCID50) of 106, and lung and tracheal tissues were harvested at 3 and 7 d post-inoculation. The tissues were processed for miRNA and mRNA analysis. By means of miRNA-gene expression integrative negative analysis, we found miRNA–mRNA pairs. Lung and trachea tissues showed 138 and 135 negative miRNA–mRNA pairs, respectively. One hundred and twenty negative miRNA–mRNA pairs were found between the different tissues. In particular, pathways including the influenza A pathway, chemokine signaling pathways, and the PI3K-Akt signaling pathway were significantly enriched in all groups in responses to virus infection. Furthermore, dysregulation of miRNA and mRNA expression was observed in the respiratory tract of H5N1 CIV-infected dogs and notably, TLR4 (miR-146), NF-κB (miR-34c) and CCL5 (miR-335), CCL10 (miR-8908-5p), and GNGT2 (miR-122) were found to play important roles in regulating pathways that resist virus infection. To our knowledge, the present study is the first to analyze miRNA and mRNA expression in H5N1 CIV-infected dogs; furthermore, the present findings provide insights into the molecular mechanisms underlying influenza virus infection.
Collapse
Affiliation(s)
- Cheng Fu
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Prevention and Control for Severe Clinical Animal Diseases, Guangzhou, China.,Guangdong Technological Engineering Research Center for Pet, Guangzhou, China
| | - Jie Luo
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Prevention and Control for Severe Clinical Animal Diseases, Guangzhou, China.,Guangdong Technological Engineering Research Center for Pet, Guangzhou, China
| | - Shaotang Ye
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Prevention and Control for Severe Clinical Animal Diseases, Guangzhou, China.,Guangdong Technological Engineering Research Center for Pet, Guangzhou, China
| | - Ziguo Yuan
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Prevention and Control for Severe Clinical Animal Diseases, Guangzhou, China
| | - Shoujun Li
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Prevention and Control for Severe Clinical Animal Diseases, Guangzhou, China.,Guangdong Technological Engineering Research Center for Pet, Guangzhou, China
| |
Collapse
|
31
|
Zhang N, Bao YJ, Tong AHY, Zuyderduyn S, Bader GD, Malik Peiris JS, Lok S, Lee SMY. Whole transcriptome analysis reveals differential gene expression profile reflecting macrophage polarization in response to influenza A H5N1 virus infection. BMC Med Genomics 2018; 11:20. [PMID: 29475453 PMCID: PMC6389164 DOI: 10.1186/s12920-018-0335-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2017] [Accepted: 01/25/2018] [Indexed: 11/10/2022] Open
Abstract
Background Avian influenza A H5N1 virus can cause lethal disease in humans. The virus can trigger severe pneumonia and lead to acute respiratory distress syndrome. Data from clinical, in vitro and in vivo suggest that virus-induced cytokine dysregulation could be a contributory factor to the pathogenesis of human H5N1 disease. However, the precise mechanism of H5N1 infection eliciting the unique host response are still not well understood. Methods To obtain a better understanding of the molecular events at the earliest time points, we used RNA-Seq to quantify and compare the host mRNA and miRNA transcriptomes induced by the highly pathogenic influenza A H5N1 (A/Vietnam/3212/04) or low virulent H1N1 (A/Hong Kong/54/98) viruses in human monocyte-derived macrophages at 1-, 3-, and 6-h post infection. Results Our data reveals that two macrophage populations corresponding to M1 (classically activated) and M2 (alternatively activated) macrophage subtypes respond distinctly to H5N1 virus infection when compared to H1N1 virus or mock infection, a distinction that could not be made from previous microarray studies. When this confounding variable is considered in our statistical model, a clear set of dysregulated genes and pathways emerges specifically in H5N1 virus-infected macrophages at 6-h post infection, whilst was not found with H1N1 virus infection. Furthermore, altered expression of genes in these pathways, which have been previously implicated in viral host response, occurs specifically in the M1 subtype. We observe a significant up-regulation of genes in the RIG-I-like receptor signaling pathway. In particular, interferons, and interferon-stimulated genes are broadly affected. The negative regulators of interferon signaling, the suppressors of cytokine signaling, SOCS-1 and SOCS-3, were found to be markedly up-regulated in the initial round of H5N1 virus replication. Elevated levels of these suppressors could lead to the eventual suppression of cellular antiviral genes, contributing to pathophysiology of H5N1 virus infection. Conclusions Our study provides important mechanistic insights into the understanding of H5N1 viral pathogenesis and the multi-faceted host immune responses. The dysregulated genes could be potential candidates as therapeutic targets for treating H5N1 disease. Electronic supplementary material The online version of this article (10.1186/s12920-018-0335-0) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Na Zhang
- Centre for Genomic Sciences, The University of Hong Kong, Hong Kong, China
| | - Yun-Juan Bao
- Centre for Genomic Sciences, The University of Hong Kong, Hong Kong, China.,W.M. Keck Center for Transgene Research, University of Notre Dame, Notre Dame, IN, USA
| | - Amy Hin-Yan Tong
- Centre for Genomic Sciences, The University of Hong Kong, Hong Kong, China.,The Donnelly Centre, University of Toronto, Toronto, ON, Canada
| | | | - Gary D Bader
- The Donnelly Centre, University of Toronto, Toronto, ON, Canada
| | - J S Malik Peiris
- HKU-Pasteur Research Pole and Centre of Influenza Research, School of Public Health, The University of Hong Kong, Hong Kong, China
| | - Si Lok
- Centre for Genomic Sciences, The University of Hong Kong, Hong Kong, China. .,The Centre for Applied Genomics (TCAG), The Hospital for Sick Children, Toronto, ON, Canada.
| | - Suki Man-Yan Lee
- HKU-Pasteur Research Pole and Centre of Influenza Research, School of Public Health, The University of Hong Kong, Hong Kong, China.
| |
Collapse
|
32
|
Saito LB, Diaz-Satizabal L, Evseev D, Fleming-Canepa X, Mao S, Webster RG, Magor KE. IFN and cytokine responses in ducks to genetically similar H5N1 influenza A viruses of varying pathogenicity. J Gen Virol 2018; 99:464-474. [PMID: 29458524 DOI: 10.1099/jgv.0.001015] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Ducks, the reservoir host, are generally permissive to influenza A virus infection without disease symptoms. This natural ecology was upset by the emergence of H5N1 strains, which can kill ducks. To better understand host-virus interactions in the reservoir host, and influenza strain-specific molecular contributions to virulence, we infected White Pekin ducks with three similar H5N1 viruses, with known differences in pathogenicity and replication rate. We quantified viral replication and innate immune gene activation by qPCR, in lung and spleen tissues, isolated on each of the first 3 days of infection. The three viruses replicated well, as measured by accumulation of matrix gene transcript, and viral load declined over time in the spleen. The ducks produced rapid, but temporally limited, IFN and cytokine responses, peaking on the first day post-infection. IFN and proinflammatory cytokine gene induction were greater in response to infection with the more lethal viruses, compared to an attenuated strain. We conclude that a well-regulated IFN response, with the ability to overcome early viral immune inhibition, without hyperinflammation, contributes to the ability of ducks to survive H5N1 influenza replication in their airways, and yet clear systemic infection and limit disease.
Collapse
Affiliation(s)
- Leina B Saito
- Department of Biological Sciences and Li Ka Shing Institute of Virology, University of Alberta, Edmonton, AB, Canada
| | - Laura Diaz-Satizabal
- Department of Biological Sciences and Li Ka Shing Institute of Virology, University of Alberta, Edmonton, AB, Canada
| | - Danyel Evseev
- Department of Biological Sciences and Li Ka Shing Institute of Virology, University of Alberta, Edmonton, AB, Canada
| | - Ximena Fleming-Canepa
- Department of Biological Sciences and Li Ka Shing Institute of Virology, University of Alberta, Edmonton, AB, Canada
| | - Sai Mao
- Department of Biological Sciences and Li Ka Shing Institute of Virology, University of Alberta, Edmonton, AB, Canada.,Institute of Preventative Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan, PR China
| | - Robert G Webster
- Division of Virology, Department of Infectious Diseases, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Katharine E Magor
- Department of Biological Sciences and Li Ka Shing Institute of Virology, University of Alberta, Edmonton, AB, Canada
| |
Collapse
|
33
|
Li H, Bradley KC, Long JS, Frise R, Ashcroft JW, Hartgroves LC, Shelton H, Makris S, Johansson C, Cao B, Barclay WS. Internal genes of a highly pathogenic H5N1 influenza virus determine high viral replication in myeloid cells and severe outcome of infection in mice. PLoS Pathog 2018; 14:e1006821. [PMID: 29300777 PMCID: PMC5771632 DOI: 10.1371/journal.ppat.1006821] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2017] [Revised: 01/17/2018] [Accepted: 12/15/2017] [Indexed: 12/26/2022] Open
Abstract
The highly pathogenic avian influenza (HPAI) H5N1 influenza virus has been a public health concern for more than a decade because of its frequent zoonoses and the high case fatality rate associated with human infections. Severe disease following H5N1 influenza infection is often associated with dysregulated host innate immune response also known as cytokine storm but the virological and cellular basis of these responses has not been clearly described. We rescued a series of 6:2 reassortant viruses that combined a PR8 HA/NA pairing with the internal gene segments from human adapted H1N1, H3N2, or avian H5N1 viruses and found that mice infected with the virus with H5N1 internal genes suffered severe weight loss associated with increased lung cytokines but not high viral load. This phenotype did not map to the NS gene segment, and NS1 protein of H5N1 virus functioned as a type I IFN antagonist as efficient as NS1 of H1N1 or H3N2 viruses. Instead we discovered that the internal genes of H5N1 virus supported a much higher level of replication of viral RNAs in myeloid cells in vitro, but not in epithelial cells and that this was associated with high induction of type I IFN in myeloid cells. We also found that in vivo during H5N1 recombinant virus infection cells of haematopoetic origin were infected and produced type I IFN and proinflammatory cytokines. Taken together our data infer that human and avian influenza viruses are differently controlled by host factors in alternative cell types; internal gene segments of avian H5N1 virus uniquely drove high viral replication in myeloid cells, which triggered an excessive cytokine production, resulting in severe immunopathology. Some avian influenza viruses, including highly pathogenic H5N1 virus, cause severe disease in humans and in experimental animal models associated with excessive cytokine production. We aimed to understand the virological mechanism behind the cytokine storm, and particularly the contribution of internal gene segments that encode the viral polymerase and the non-structural proteins, since these might be retained in a pandemic virus. We found that the internal genes from an H5N1 avian influenza virus allowed virus to replicate to strikingly higher levels in myeloid cells compared to internal genes of human adapted strains. The higher viral RNA levels did not lead to higher viral load but drove excessive cytokine production and more severe outcome in infected mice. The remarkable difference in viral replication in myeloid cells was not observed in lung epithelial cells, suggesting that cell type specific differences in host factors were responsible. Understanding the molecular basis of excessive viral replication in myeloid cells may guide future therapeutic options for viruses that have recently crossed into humans from birds.
Collapse
MESH Headings
- A549 Cells
- Animals
- Cells, Cultured
- Dogs
- Female
- Genes, Viral/physiology
- HEK293 Cells
- Humans
- Immunity, Innate/physiology
- Influenza A Virus, H5N1 Subtype/genetics
- Influenza A Virus, H5N1 Subtype/immunology
- Influenza A Virus, H5N1 Subtype/pathogenicity
- Influenza A Virus, H5N1 Subtype/physiology
- Influenza, Human/genetics
- Influenza, Human/immunology
- Influenza, Human/virology
- Madin Darby Canine Kidney Cells
- Mice
- Mice, Inbred BALB C
- Mice, Inbred C57BL
- Mice, Knockout
- Myeloid Cells/immunology
- Myeloid Cells/metabolism
- Myeloid Cells/virology
- Orthomyxoviridae Infections/genetics
- Orthomyxoviridae Infections/immunology
- Orthomyxoviridae Infections/mortality
- Orthomyxoviridae Infections/virology
- Severity of Illness Index
- Virus Replication/genetics
Collapse
Affiliation(s)
- Hui Li
- China-Japan Friendship Hospital, Capital Medical University, Beijing, China
- Section of Virology, Department of Medicine, Imperial College London, London, United Kingdom
| | - Konrad C. Bradley
- Section of Virology, Department of Medicine, Imperial College London, London, United Kingdom
| | - Jason S. Long
- Section of Virology, Department of Medicine, Imperial College London, London, United Kingdom
| | - Rebecca Frise
- Section of Virology, Department of Medicine, Imperial College London, London, United Kingdom
| | - Jonathan W. Ashcroft
- Section of Virology, Department of Medicine, Imperial College London, London, United Kingdom
| | - Lorian C. Hartgroves
- Section of Virology, Department of Medicine, Imperial College London, London, United Kingdom
| | - Holly Shelton
- Section of Virology, Department of Medicine, Imperial College London, London, United Kingdom
| | - Spyridon Makris
- Section of Respiratory Infections, National Heart and Lung Institute, Imperial College London
| | - Cecilia Johansson
- Section of Respiratory Infections, National Heart and Lung Institute, Imperial College London
| | - Bin Cao
- Department of Respiratory Medicine, Capital Medical University; Center for Respiratory Diseases, Department of Pulmonary and Critical Care Medicine, China-Japan Friendship Hospital, Beijing, China
- * E-mail: (WSB); (BC)
| | - Wendy S. Barclay
- Section of Virology, Department of Medicine, Imperial College London, London, United Kingdom
- * E-mail: (WSB); (BC)
| |
Collapse
|
34
|
Abstract
Implementation of reverse genetics for influenza A virus, that is, the DNA-based generation of infectious viral particles in cell culture, opened new avenues to investigate the function of viral proteins and their interplay with host factors on a molecular level. This powerful technique allows the introduction, depletion, or manipulation of any given sequence in the viral genome, as long as it gives rise to replicating virus progeny. Reverse genetics can be used to generate targeted reassortant viruses by mixing segments of different viral strains, thus providing insight into phenotypes of potentially pandemic viruses arising from natural reassortment. It was further instrumental for the development of novel vaccine strategies, allowing rapid and targeted exchange of viral surface antigens on a well-replicating genetic backbone of cell culture-adapted or cold-adapted/attenuated viral strains. Establishment of reverse genetics and rescue of molecular clones of influenza A virus have been extensively described before. Here we give a detailed stand-alone protocol encompassing clinical sampling of influenza A virus specimens and subsequent plasmid-based genetics to rescue, manipulate, and confirm a fully infectious molecular clone. This protocol is based on the combined techniques and experience of a number of influenza laboratories, which are credited and referenced whenever appropriate.
Collapse
|
35
|
Peng S, Wang J, Wei S, Li C, Zhou K, Hu J, Ye X, Yan J, Liu W, Gao GF, Fang M, Meng S. Endogenous Cellular MicroRNAs Mediate Antiviral Defense against Influenza A Virus. MOLECULAR THERAPY-NUCLEIC ACIDS 2017; 10:361-375. [PMID: 29499948 PMCID: PMC5862538 DOI: 10.1016/j.omtn.2017.12.016] [Citation(s) in RCA: 66] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/12/2017] [Revised: 12/20/2017] [Accepted: 12/21/2017] [Indexed: 11/29/2022]
Abstract
The reciprocal interaction between influenza virus and host microRNAs (miRNAs) has been implicated in the regulation of viral replication and host tropism. However, the global roles of the cellular miRNA repertoire and the mechanisms of miRNA-mediated antiviral defense await further elucidation. In this study, we systematically screened 297 cellular miRNAs from human and mouse epithelial cells and identified five inhibitory miRNAs that efficiently inhibited influenza virus replication in vitro and in vivo. Among these miRNAs, hsa-mir-127-3p, hsa-mir-486-5p, hsa-mir-593-5p, and mmu-mir-487b-5p were found to target at least one viral gene segment of both the human seasonal influenza H3N2 and the attenuated PR8 (H1N1) virus, whereas hsa-miR-1-3p inhibited viral replication by targeting the supportive host factor ATP6V1A. Moreover, the number of miRNA binding sites in viral RNA segments was positively associated with the activity of host miRNA-induced antiviral defense. Treatment with a combination of the five miRNAs through agomir delivery pronouncedly suppressed viral replication and effectively improved protection against lethal challenge with PR8 in mice. These data suggest that the highly expressed miRNAs in respiratory epithelial cells elicit effective antiviral defenses against influenza A viruses and will be useful for designing miRNA-based therapies against viral infection.
Collapse
Affiliation(s)
- Shanxin Peng
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences (CAS), Beijing, China; University of Chinese Academy of Sciences, Beijing, China
| | - Jing Wang
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences (CAS), Beijing, China; University of Chinese Academy of Sciences, Beijing, China
| | - Songtao Wei
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences (CAS), Beijing, China
| | - Changfei Li
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences (CAS), Beijing, China
| | - Kai Zhou
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences (CAS), Beijing, China
| | - Jun Hu
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences (CAS), Beijing, China
| | - Xin Ye
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences (CAS), Beijing, China
| | - Jinghua Yan
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences (CAS), Beijing, China
| | - Wenjun Liu
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences (CAS), Beijing, China
| | - George F Gao
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences (CAS), Beijing, China
| | - Min Fang
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences (CAS), Beijing, China; International College, University of Chinese Academy of Sciences, Beijing, China.
| | - Songdong Meng
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences (CAS), Beijing, China; Savaid Medical School, University of Chinese Academy of Sciences, Beijing, China.
| |
Collapse
|
36
|
Zhang C, Feng S, Zhang W, Chen N, Hegazy AM, Chen W, Liu X, Zhao L, Li J, Lin L, Tu J. MicroRNA miR-214 Inhibits Snakehead Vesiculovirus Replication by Promoting IFN-α Expression via Targeting Host Adenosine 5'-Monophosphate-Activated Protein Kinase. Front Immunol 2017; 8:1775. [PMID: 29312306 PMCID: PMC5732478 DOI: 10.3389/fimmu.2017.01775] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2017] [Accepted: 11/28/2017] [Indexed: 12/16/2022] Open
Abstract
Background Snakehead vesiculovirus (SHVV), a new rhabdovirus isolated from diseased hybrid snakehead, has emerged as an important pathogen during the past few years in China with great economical losses in snakehead fish cultures. However, little is known about the mechanism of its pathogenicity. MicroRNAs are small noncoding RNAs that posttranscriptionally modulate gene expression and have been indicated to regulate almost all cellular processes. Our previous study has revealed that miR-214 was downregulated upon SHVV infection. Results The overexpression of miR-214 in striped snakehead (SSN-1) cells inhibited SHVV replication and promoted IFN-α expression, while miR-214 inhibitor facilitated SHVV replication and reduced IFN-α expression. These findings suggested that miR-214 negatively regulated SHVV replication probably through positively regulating IFN-α expression. Further investigation revealed that adenosine 5′-monophosphate-activated protein kinase (AMPK) was a target gene of miR-214. Knockdown of AMPK by siRNA inhibited SHVV replication and promoted IFN-α expression, suggesting that cellular AMPK positively regulated SHVV replication and negatively regulated IFN-α expression. Moreover, we found that siAMPK-mediated inhibition of SHVV replication could be partially restored by miR-214 inhibitor, indicating that miR-214 inhibited SHVV replication at least partially via targeting AMPK. Conclusion The findings of this study complemented our early study, and provide insights for the mechanism of SHVV pathogenicity. SHVV infection downregulated miR-214, and in turn, the downregulated miR-214 increased the expression of its target gene AMPK, which promoted SHVV replication via reducing IFN-α expression. It can therefore assume that cellular circumstance with low level of miR-214 is beneficial for SHVV replication and that SHVV evades host antiviral innate immunity through decreasing IFN-α expression via regulating cellular miR-214 expression.
Collapse
Affiliation(s)
- Chi Zhang
- Department of Aquatic Animal Medicine, College of Fisheries, Huazhong Agricultural University, Wuhan, China.,Guangzhou Key Laboratory of Aquatic Animal Diseases and Waterfowl Breeding, Guangdong Provincial Key Laboratory of Waterfowl Healthy Breeding, College of Animal Sciences and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou, China
| | - Shuangshuang Feng
- Department of Aquatic Animal Medicine, College of Fisheries, Huazhong Agricultural University, Wuhan, China
| | - Wenting Zhang
- Key Laboratory of Prevention and Control Agents for Animal Bacteriosis, Institute of Animal Husbandry and Veterinary, Hubei Academy of Agricultural Sciences, Wuhan, China
| | - Nan Chen
- Department of Aquatic Animal Medicine, College of Fisheries, Huazhong Agricultural University, Wuhan, China
| | - Abeer M Hegazy
- Department of Aquatic Animal Medicine, College of Fisheries, Huazhong Agricultural University, Wuhan, China.,Central Laboratory for Environmental Quality Monitoring (CLEQM), National Water Research Center (NWRC), Cairo, Egypt
| | - Wenjie Chen
- Guangzhou Key Laboratory of Aquatic Animal Diseases and Waterfowl Breeding, Guangdong Provincial Key Laboratory of Waterfowl Healthy Breeding, College of Animal Sciences and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou, China
| | - Xueqin Liu
- Department of Aquatic Animal Medicine, College of Fisheries, Huazhong Agricultural University, Wuhan, China
| | - Lijuan Zhao
- Guangzhou Key Laboratory of Aquatic Animal Diseases and Waterfowl Breeding, Guangdong Provincial Key Laboratory of Waterfowl Healthy Breeding, College of Animal Sciences and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou, China
| | - Jun Li
- Guangzhou Key Laboratory of Aquatic Animal Diseases and Waterfowl Breeding, Guangdong Provincial Key Laboratory of Waterfowl Healthy Breeding, College of Animal Sciences and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou, China.,School of Biological Sciences, Lake Superior State University, Sault Ste. Marie, MI, United States.,Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Li Lin
- Department of Aquatic Animal Medicine, College of Fisheries, Huazhong Agricultural University, Wuhan, China.,Guangzhou Key Laboratory of Aquatic Animal Diseases and Waterfowl Breeding, Guangdong Provincial Key Laboratory of Waterfowl Healthy Breeding, College of Animal Sciences and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou, China.,Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Jiagang Tu
- Department of Aquatic Animal Medicine, College of Fisheries, Huazhong Agricultural University, Wuhan, China.,Hubei Engineering Technology Research Center for Aquatic Animal Diseases Control and Prevention, Huazhong Agricultural University, Wuhan, China
| |
Collapse
|
37
|
Zhang C, Yi L, Feng S, Liu X, Su J, Lin L, Tu J. MicroRNA miR-214 inhibits snakehead vesiculovirus replication by targeting the coding regions of viral N and P. J Gen Virol 2017; 98:1611-1619. [PMID: 28699870 DOI: 10.1099/jgv.0.000854] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Snakeheadvesiculovirus (SHVV), a new member of the family Rhabdoviridae, has caused enormous economic losses in snakehead fish culture during the past years in China; however, little is known about the molecular mechanisms of its pathogenicity. MicroRNAs (miRNAs) are small non-coding RNAs that play important roles in virus infection. In this study, we identified that SHVV infection downregulated miR-214 in striped snakehead (SSN-1) cells in a time- and dose-dependent manner. Notably, transfecting SSN-1 cells with miR-214 mimic significantly inhibitedSHVV replication, whereas miR-214 inhibitor promoted it, suggesting that miR-214 acted as a negative regulator of SHVV replication. Our study further demonstrated that N and P of SHVV were the target genes of miR-214. Over-expression of P, but not N, inhibited IFN-α production in SHVV-infected cells, which could be restored by over-expression of miR-214. Taken together, these results suggest that miR-214 is downregulated during SHVV infection, and the downregulated miR-214 in turn increased N and P expression and decreased IFN-α production, thus facilitating SHVV replication. This study provides a better understanding of the molecular mechanisms on the pathogenesis of SHVV and a potential antiviral strategy against SHVV infection.
Collapse
Affiliation(s)
- Chi Zhang
- Department of Aquatic Animal Medicine, College of Fisheries, Huazhong Agricultural University, Wuhan, Hubei 430070, PR China
| | - Lizhu Yi
- Department of Aquatic Animal Medicine, College of Fisheries, Huazhong Agricultural University, Wuhan, Hubei 430070, PR China
| | - Shuangshuang Feng
- Department of Aquatic Animal Medicine, College of Fisheries, Huazhong Agricultural University, Wuhan, Hubei 430070, PR China
| | - Xueqin Liu
- Department of Aquatic Animal Medicine, College of Fisheries, Huazhong Agricultural University, Wuhan, Hubei 430070, PR China
| | - Jianguo Su
- Department of Aquatic Animal Medicine, College of Fisheries, Huazhong Agricultural University, Wuhan, Hubei 430070, PR China
| | - Li Lin
- Department of Aquatic Animal Medicine, College of Fisheries, Huazhong Agricultural University, Wuhan, Hubei 430070, PR China.,College of Animal Sciences and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou, Guangdong 510225, PR China
| | - Jiagang Tu
- Department of Aquatic Animal Medicine, College of Fisheries, Huazhong Agricultural University, Wuhan, Hubei 430070, PR China
| |
Collapse
|