1
|
Yoo K, Bhattacharya S, Oliveira NK, Pereira de Sa N, Matos GS, Del Poeta M, Fries BC. With age comes resilience: how mitochondrial modulation drives age-associated fluconazole tolerance in Cryptococcus neoformans. mBio 2024; 15:e0184724. [PMID: 39136442 PMCID: PMC11389405 DOI: 10.1128/mbio.01847-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Accepted: 07/09/2024] [Indexed: 08/21/2024] Open
Abstract
Cryptococcus neoformans (Cn) is an opportunistic fungal microorganism that causes life-threatening meningoencephalitis. During the infection, the microbial population is heterogeneously composed of cells with varying generational ages, with older cells accumulating during chronic infections. This is attributed to their enhanced resistance to phagocytic killing and tolerance of antifungals like fluconazole (FLC). In this study, we investigated the role of ergosterol synthesis, ATP-binding cassette (ABC) transporters, and mitochondrial metabolism in the regulation of age-dependent FLC tolerance. We find that old Cn cells increase the production of ergosterol and exhibit upregulation of ABC transporters. Old cells also show transcriptional and phenotypic characteristics consistent with increased metabolic activity, leading to increased ATP production. This is accompanied by increased production of reactive oxygen species, which results in mitochondrial fragmentation. This study demonstrates that the metabolic changes occurring in the mitochondria of old cells drive the increase in ergosterol synthesis and the upregulation of ABC transporters, leading to FLC tolerance. IMPORTANCE Infections caused by Cryptococcus neoformans cause more than 180,000 deaths annually. Estimated 1-year mortality for patients receiving care ranges from 20% in developed countries to 70% in developing countries, suggesting that current treatments are inadequate. Some fungal cells can persist and replicate despite the usage of current antifungal regimens, leading to death or treatment failure. Aging in fungi is associated with enhanced tolerance against antifungals and resistance to killing by host cells. This study shows that age-dependent increase in mitochondrial reactive oxygen species drive changes in the regulation of membrane transporters and ergosterol synthesis, ultimately leading to the heightened tolerance against fluconazole in old C. neoformans cells. Understanding the underlying molecular mechanisms of this age-associated antifungal tolerance will enable more targeted antifungal therapies for cryptococcal infections.
Collapse
Affiliation(s)
- Kyungyoon Yoo
- Department of Microbiology and Immunology, Renaissance School of Medicine, Stony Brook University, Stony Brook, New York, USA
| | - Somanon Bhattacharya
- Division of Infectious Diseases, Department of Medicine, Stony Brook University, Stony Brook, New York, USA
| | - Natalia Kronbauer Oliveira
- Department of Microbiology and Immunology, Renaissance School of Medicine, Stony Brook University, Stony Brook, New York, USA
| | - Nivea Pereira de Sa
- Department of Microbiology and Immunology, Renaissance School of Medicine, Stony Brook University, Stony Brook, New York, USA
| | - Gabriel Soares Matos
- Department of Microbiology and Immunology, Renaissance School of Medicine, Stony Brook University, Stony Brook, New York, USA
| | - Maurizio Del Poeta
- Department of Microbiology and Immunology, Renaissance School of Medicine, Stony Brook University, Stony Brook, New York, USA
- Division of Infectious Diseases, Department of Medicine, Stony Brook University, Stony Brook, New York, USA
- Veterans Administration Medical Center, Northport, New York, USA
- Institute of Chemical Biology and Drug Discovery, Stony Brook, New York, USA
| | - Bettina C Fries
- Department of Microbiology and Immunology, Renaissance School of Medicine, Stony Brook University, Stony Brook, New York, USA
- Division of Infectious Diseases, Department of Medicine, Stony Brook University, Stony Brook, New York, USA
- Veterans Administration Medical Center, Northport, New York, USA
| |
Collapse
|
2
|
Silva VKA, Min S, Yoo K, Fries BC. Host-Pathogen Interactions and Correlated Factors That Are Affected in Replicative-Aged Cryptococcus neoformans. J Fungi (Basel) 2024; 10:279. [PMID: 38667950 PMCID: PMC11050866 DOI: 10.3390/jof10040279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 03/27/2024] [Accepted: 04/04/2024] [Indexed: 04/28/2024] Open
Abstract
Cryptococcus neoformans is a facultative intracellular fungal pathogen. Ten-generation-old (10GEN) C. neoformans cells are more resistant to phagocytosis and killing by macrophages than younger daughter cells. However, mechanisms that mediate this resistance and intracellular parasitism are poorly understood. Here, we identified important factors for the intracellular survival of 10GEN C. neoformans, such as urease activity, capsule synthesis, and DNA content using flow cytometry and fluorescent microscopy techniques. The real-time visualization of time-lapse imaging was applied to determine the phagosomal acidity, membrane permeability, and vomocytosis (non-lytic exocytosis) rate in J774 macrophages that phagocytosed C. neoformans of different generational ages. Our results showed that old C. neoformans exhibited higher urease activity and enhanced Golgi activity. In addition, old C. neoformans were more likely to be arrested in the G2 phase, resulting in the occasional formation of aberrant trimera-like cells. To finish, the advanced generational age of the yeast cells slightly reduced vomocytosis events within host cells, which might be associated with increased phagolysosome pH and membrane permeability. Altogether, our results suggest that old C. neoformans prevail within acidic phagolysosomes and can manipulate the phagosome pH. These strategies may be used by old C. neoformans to resist phagosomal killing and drive cryptococcosis pathogenesis. The comprehension of these essential host-pathogen interactions could further shed light on mechanisms that bring new insights for novel antifungal therapeutic design.
Collapse
Affiliation(s)
- Vanessa K. A. Silva
- Division of Infectious Diseases, Department of Medicine, Stony Brook University, Stony Brook, NY 11794, USA; (V.K.A.S.); (S.M.)
| | - Sungyun Min
- Division of Infectious Diseases, Department of Medicine, Stony Brook University, Stony Brook, NY 11794, USA; (V.K.A.S.); (S.M.)
| | - Kyungyoon Yoo
- Department of Microbiology and Immunology, Renaissance School of Medicine, Stony Brook University, Stony Brook, NY 11794, USA;
| | - Bettina C. Fries
- Division of Infectious Diseases, Department of Medicine, Stony Brook University, Stony Brook, NY 11794, USA; (V.K.A.S.); (S.M.)
- Department of Microbiology and Immunology, Renaissance School of Medicine, Stony Brook University, Stony Brook, NY 11794, USA;
- Veterans Administration Medical Center, Northport, NY 11768, USA
| |
Collapse
|
3
|
Yoo K, Oliveira NK, Bhattacharya S, Fries BC. Achieving Resilience in Aging: How Mitochondrial Modulation Drives Age-associated Fluconazole Tolerance in Cryptococcus neoformans. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.26.586817. [PMID: 38585804 PMCID: PMC10996610 DOI: 10.1101/2024.03.26.586817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/09/2024]
Abstract
Cryptococcus neoformans ( Cn ) is an opportunistic fungal microorganism that causes life-threatening meningoencephalitis. During the infection, the microbial population is heterogeneously composed of cells with varying generational ages, with older cells accumulating during chronic infections. This is attributed to their enhanced resistance to phagocytic killing and tolerance of antifungals like fluconazole (FLC). In this study, we investigated the role of ergosterol synthesis, ATP-binding cassette (ABC) transporters, and mitochondrial metabolism in the regulation of age-dependent FLC tolerance. We find that old Cn cells increase the production of ergosterol and exhibit upregulation of ABC transporters. Old cells also show transcriptional and phenotypic characteristics consistent with increased metabolic activity, leading to increased ATP production. This is accompanied by increased production of reactive oxygen species (ROS), which results in mitochondrial fragmentation. This study demonstrates that the metabolic changes occurring in the mitochondria of old cells drive the increase in ergosterol synthesis and the upregulation of ABC transporters, leading to FLC tolerance. IMPORTANCE Infections caused by Cryptococcus neoformans cause more than 180,000 deaths annually. Estimated one-year mortality for patients receiving care ranges from 20% in developed countries to 70% in developing countries, suggesting that current treatments are inadequate. Some fungal cells can persist and replicate despite the usage of current antifungal regimens, leading to death or treatment failure. In replicative aging, older cells display a resilient phenotype, characterized by their enhanced tolerance against antifungals and resistance to killing by host cells. This study shows that age-dependent increase in mitochondrial reactive oxygen species drive changes in ABC transporters and ergosterol synthesis, ultimately leading to the heightened tolerance against fluconazole in old C. neoformans cells. Understanding the underlying molecular mechanisms of this age-associated antifungal tolerance will enable more targeted antifungal therapies for cryptococcal infections.
Collapse
|
4
|
Silva VKA, Oliveira NK, Fries BC. Measuring Replicative Lifespan in Cryptococcus neoformans. Methods Mol Biol 2024; 2775:375-384. [PMID: 38758331 DOI: 10.1007/978-1-0716-3722-7_25] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/18/2024]
Abstract
Advances in understanding cellular aging research have been possible due to the analysis of the replicative lifespan of yeast cells. Studying longevity in the pathogenic yeast Cryptococcus neoformans is essential because old yeast cells with age-related phenotypes accumulate during infection and are associated with increased virulence and antifungal tolerance. Microdissection and microfluidic devices are valuable tools for continuously tracking cells at the single-cell level. In this chapter, we describe the features of these two platforms and outline technical limitations and information to study aging mechanisms while assessing the lifespan of yeast cells.
Collapse
Affiliation(s)
- Vanessa K A Silva
- Department of Medicine, Division of Infectious Diseases, Stony Brook University, Stony Brook, NY, USA
| | - Natalia K Oliveira
- Department of Microbiology and Immunology, Renaissance School of Medicine, Stony Brook University, Stony Brook, NY, USA
| | - Bettina C Fries
- Department of Medicine, Division of Infectious Diseases, Stony Brook University, Stony Brook, NY, USA.
- Department of Microbiology and Immunology, Renaissance School of Medicine, Stony Brook University, Stony Brook, NY, USA.
- Veterans Administration Medical Center, Northport, NY, USA.
| |
Collapse
|
5
|
Romero V, Kalinhoff C, Saa LR, Sánchez A. Fungi's Swiss Army Knife: Pleiotropic Effect of Melanin in Fungal Pathogenesis during Cattle Mycosis. J Fungi (Basel) 2023; 9:929. [PMID: 37755037 PMCID: PMC10532448 DOI: 10.3390/jof9090929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 09/05/2023] [Accepted: 09/08/2023] [Indexed: 09/28/2023] Open
Abstract
Fungal threats to public health, food security, and biodiversity have escalated, with a significant rise in mycosis cases globally. Around 300 million people suffer from severe fungal diseases annually, while one-third of food crops are decimated by fungi. Vertebrate, including livestock, are also affected. Our limited understanding of fungal virulence mechanisms hampers our ability to prevent and treat cattle mycoses. Here we aim to bridge knowledge gaps in fungal virulence factors and the role of melanin in evading bovine immune responses. We investigate mycosis in bovines employing a PRISMA-based methodology, bioinformatics, and data mining techniques. Our analysis identified 107 fungal species causing mycoses, primarily within the Ascomycota division. Candida, Aspergillus, Malassezia, and Trichophyton were the most prevalent genera. Of these pathogens, 25% produce melanin. Further research is required to explore the involvement of melanin and develop intervention strategies. While the literature on melanin-mediated fungal evasion mechanisms in cattle is lacking, we successfully evaluated the transferability of immunological mechanisms from other model mammals through homology. Bioinformatics enables knowledge transfer and enhances our understanding of mycosis in cattle. This synthesis fills critical information gaps and paves the way for proposing biotechnological strategies to mitigate the impact of mycoses in cattle.
Collapse
Affiliation(s)
- Víctor Romero
- Maestría en Biotecnología Agropecuaria, Universidad Técnica Particular de Loja, San Cayetano Alto, Calle París s/n, Loja 1101608, Ecuador
- Museo de Zoología, Universidad Técnica Particular de Loja, San Cayetano Alto, Calle París s/n, Loja 1101608, Ecuador
| | - Carolina Kalinhoff
- Departamento de Ciencias Biológicas y Agropecuarias, Facultad de Ciencias Exactas y Naturales, Universidad Técnica Particular de Loja, San Cayetano Alto, Calle París s/n, Loja 1101608, Ecuador; (C.K.)
| | - Luis Rodrigo Saa
- Departamento de Ciencias Biológicas y Agropecuarias, Facultad de Ciencias Exactas y Naturales, Universidad Técnica Particular de Loja, San Cayetano Alto, Calle París s/n, Loja 1101608, Ecuador; (C.K.)
| | - Aminael Sánchez
- Departamento de Ciencias Biológicas y Agropecuarias, Facultad de Ciencias Exactas y Naturales, Universidad Técnica Particular de Loja, San Cayetano Alto, Calle París s/n, Loja 1101608, Ecuador; (C.K.)
| |
Collapse
|
6
|
The Candida glabrata Parent Strain Trap: How Phenotypic Diversity Affects Metabolic Fitness and Host Interactions. Microbiol Spectr 2023; 11:e0372422. [PMID: 36633405 PMCID: PMC9927409 DOI: 10.1128/spectrum.03724-22] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Reference strains improve reproducibility by standardizing observations and methodology, which has ultimately led to important insights into fungal pathogenesis. However, recent investigations have highlighted significant genotypic and phenotypic heterogeneity across isolates that influence genetic circuitry and virulence within a species. Candida glabrata is the second leading cause of candidiasis, a life-threatening infection, and undergoes extensive karyotype and phenotypic changes in response to stress. Much of the work conducted on this pathogen has focused on two sequenced strains, CBS138 (ATCC 2001) and BG2. Few studies have compared these strains in detail, but key differences include mating type and altered patterns of expression of EPA adhesins. In fact, most C. glabrata isolates and BG2 are MATa, while CBS138 is MATα. However, it is not known if other phenotypic differences between these strains play a role in our understanding of C. glabrata pathogenesis. Thus, we set out to characterize metabolic, cell wall, and host-interaction attributes for CBS138 and BG2. We found that BG2 utilized a broader range of nitrogen sources and had reduced cell wall size and carbohydrate exposure than CBS138, which we hypothesized results in differences in innate immune interactions and virulence. We observed that, although both strains were phagocytosed to a similar extent, BG2 replicated to higher numbers in macrophages and was more virulent during Galleria mellonella infection than CBS138 in a dose-dependent manner. Interestingly, deletion of SNF3, a major nutrient sensor, did not affect virulence in G. mellonella for BG2, but significantly enhanced larval killing in the CBS138 background compared to the parent strain. Understanding these fundamental differences in metabolism and host interactions will allow more robust conclusions to be drawn in future studies of C. glabrata pathogenesis. IMPORTANCE Reference strains provide essential insights into the mechanisms underlying virulence in fungal pathogens. However, recent studies in Candida albicans and other species have revealed significant genotypic and phenotypic diversity within clinical isolates that are challenging paradigms regarding key virulence factors and their regulation. Candida glabrata is the second leading cause of candidiasis, and many studies use BG2 or CBS138 for their investigations. Therefore, we aimed to characterize important virulence-related phenotypes for both strains that might alter conclusions about C. glabrata pathogenesis. Our study provides context for metabolic and cell wall changes and how these may influence host interaction phenotypes. Understanding these differences is necessary to support robust conclusions about how virulence factors may function in these and other very different strain backgrounds.
Collapse
|
7
|
Hernando-Ortiz A, Eraso E, Quindós G, Mateo E. Candidiasis by Candida glabrata, Candida nivariensis and Candida bracarensis in Galleria mellonella: Virulence and Therapeutic Responses to Echinocandins. J Fungi (Basel) 2021; 7:jof7120998. [PMID: 34946981 PMCID: PMC8708380 DOI: 10.3390/jof7120998] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Revised: 11/15/2021] [Accepted: 11/19/2021] [Indexed: 12/13/2022] Open
Abstract
Candida albicans is the major etiological agent of invasive candidiasis but the increasing prevalence of emerging species of Candida, such as Candida glabrata and phylogenetically closely related species, Candida nivariensis and Candida bracarensis, requires special attention. Differences in virulence among these species and their therapeutic responses using in vivo non-mammalian models are scarcely analysed. The aim of this study was analyse the survival of G. mellonella and host-pathogen interactions during infection by C. glabrata, C. nivariensis and C. bracarensis. Moreover, therapeutic responses to echinocandins were also assessed in the G. mellonella model of candidiasis. These three species produced lethal infection in G. mellonella; C. glabrata was the most virulent species and C. bracarensis the less. Haemocytes of G. mellonella phagocytised C. bracarensis cells more effectively than those of the other two species. Treatment with caspofungin and micafungin was most effective to protect larvae during C. glabrata and C. nivariensis infections while anidulafungin was during C. bracarensis infection. The model of candidiasis in G. mellonella is simple and appropriate to assess the virulence and therapeutic response of these emerging Candida species. Moreover, it successfully allows for detecting differences in the immune system of the host depending on the virulence of pathogens.
Collapse
|
8
|
Hassan Y, Chew SY, Than LTL. Candida glabrata: Pathogenicity and Resistance Mechanisms for Adaptation and Survival. J Fungi (Basel) 2021; 7:jof7080667. [PMID: 34436206 PMCID: PMC8398317 DOI: 10.3390/jof7080667] [Citation(s) in RCA: 56] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 08/05/2021] [Accepted: 08/05/2021] [Indexed: 02/06/2023] Open
Abstract
Candida glabrata is a yeast of increasing medical relevance, particularly in critically ill patients. It is the second most isolated Candida species associated with invasive candidiasis (IC) behind C. albicans. The attributed higher incidence is primarily due to an increase in the acquired immunodeficiency syndrome (AIDS) population, cancer, and diabetic patients. The elderly population and the frequent use of indwelling medical devices are also predisposing factors. This work aimed to review various virulence factors that facilitate the survival of pathogenic C. glabrata in IC. The available published research articles related to the pathogenicity of C. glabrata were retrieved and reviewed from four credible databases, mainly Google Scholar, ScienceDirect, PubMed, and Scopus. The articles highlighted many virulence factors associated with pathogenicity in C. glabrata, including adherence to susceptible host surfaces, evading host defences, replicative ageing, and producing hydrolytic enzymes (e.g., phospholipases, proteases, and haemolysins). The factors facilitate infection initiation. Other virulent factors include iron regulation and genetic mutations. Accordingly, biofilm production, tolerance to high-stress environments, resistance to neutrophil killings, and development of resistance to antifungal drugs, notably to fluconazole and other azole derivatives, were reported. The review provided evident pathogenic mechanisms and antifungal resistance associated with C. glabrata in ensuring its sustenance and survival.
Collapse
Affiliation(s)
- Yahaya Hassan
- Department of Medical Laboratory Science, Faculty of Allied Health Sciences, Bayero University Kano, Kano 700241, Nigeria;
- Department of Medical Microbiology, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia (UPM), Serdang 43400, Selangor, Malaysia;
| | - Shu Yih Chew
- Department of Medical Microbiology, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia (UPM), Serdang 43400, Selangor, Malaysia;
| | - Leslie Thian Lung Than
- Department of Medical Microbiology, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia (UPM), Serdang 43400, Selangor, Malaysia;
- Institute of Bioscience, Universiti Putra Malaysia (UPM), Serdang 43400, Selangor, Malaysia
- Correspondence: ; Tel.: +60-39769-2373
| |
Collapse
|
9
|
F. Q. Smith D, Casadevall A. Fungal immunity and pathogenesis in mammals versus the invertebrate model organism Galleria mellonella. Pathog Dis 2021; 79:ftab013. [PMID: 33544836 PMCID: PMC7981337 DOI: 10.1093/femspd/ftab013] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Accepted: 02/03/2021] [Indexed: 02/07/2023] Open
Abstract
In recent decades, Galleria mellonella (Lepidoptera: Pyralidae) have emerged as a model system to explore experimental aspects of fungal pathogenesis. The benefits of the G. mellonella model include being faster, cheaper, higher throughput and easier compared with vertebrate models. Additionally, as invertebrates, their use is subject to fewer ethical and regulatory issues. However, for G. mellonella models to provide meaningful insight into fungal pathogenesis, the G. mellonella-fungal interactions must be comparable to mammalian-fungal interactions. Indeed, as discussed in the review, studies suggest that G. mellonella and mammalian immune systems share many similarities, and fungal virulence factors show conserved functions in both hosts. While the moth model has opened novel research areas, many comparisons are superficial and leave large gaps of knowledge that need to be addressed concerning specific mechanisms underlying G. mellonella-fungal interactions. Closing these gaps in understanding will strengthen G. mellonella as a model for fungal virulence in the upcoming years. In this review, we provide comprehensive comparisons between fungal pathogenesis in mammals and G. mellonella from immunological and virulence perspectives. When information on an antifungal immune component is unknown in G. mellonella, we include findings from other well-studied Lepidoptera. We hope that by outlining this information available in related species, we highlight areas of needed research and provide a framework for understanding G. mellonella immunity and fungal interactions.
Collapse
Affiliation(s)
- Daniel F. Q. Smith
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, The Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21205, USA
| | - Arturo Casadevall
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, The Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21205, USA
| |
Collapse
|
10
|
Effect of Antifungal-Treated Host Macrophages on Candida glabrata. ACTA ACUST UNITED AC 2021; 2021:8838444. [PMID: 33680221 PMCID: PMC7906804 DOI: 10.1155/2021/8838444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2020] [Revised: 02/07/2021] [Accepted: 02/09/2021] [Indexed: 11/17/2022]
Abstract
Objective Candida glabrata (C. glabrata) causes infections associated with severe sepsis and high mortality. This study describes the effects of micafungin (MCF), itraconazole (ICZ), and amphotericin B (AmB) on the function of macrophages during C. glabrata infection. Methods RAW264.1 macrophages were treated with MCF, ICZ, or AmB and then challenged with C. glabrata. Cytokines from infected macrophage supernatants and the levels of superoxide dismutase (SOD) in macrophages were measured at different time points after phagocytosis. Results The activity of SOD was significantly increased in RAW264.1 cells that phagocytized C. glabrata and reached a peak level at 6 hours (P < 0.05). ICZ and AmB did not affect the SOD activity in cells that phagocytized C. glabrata versus that in untreated macrophage. C. glabrata stimulated macrophages to secrete cytokines. Neither ICZ nor AmB affected the secretion of interleukin-6 (IL-6), interleukin-8 (IL-8), or tumor necrosis factor-α (TNF-α) by C. glabrata-infected macrophages. However, MCF downregulated the secretion of TNF-α by infected macrophages and reduced the SOD activity of C. glabrata compared with those in untreated controls. Conclusion Echinocandins may increase their antifungal efficacy by altering the innate immune response of macrophages and attenuating antioxidants of this organism.
Collapse
|
11
|
Replicative Aging Remodels the Cell Wall and Is Associated with Increased Intracellular Trafficking in Human Pathogenic Yeasts. mBio 2021; 13:e0019022. [PMID: 35164553 PMCID: PMC8844920 DOI: 10.1128/mbio.00190-22] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Replicative aging is an underexplored field of research in medical mycology. Cryptococcus neoformans (Cn) and Candida glabrata (Cg) are dreaded fungal pathogens that cause fatal invasive infections. The fungal cell wall is essential for yeast viability and pathogenesis. In this study, we provide data characterizing age-associated modifications to the cell wall of Cn and Cg. Here, we report that old yeast cells upregulate genes of cell wall biosynthesis, leading to cell wall reorganization and increased levels of all major components, including glucan, chitin, and its derivatives, as well as mannan. This results in a significant thickening of the cell wall in aged cells. Old-generation yeast cells exhibited drastic ultrastructural changes, including the presence of abundant vesicle-like particles in the cytoplasm, and enlarged vacuoles with altered pH homeostasis. Our findings suggest that the cell wall modifications could be enabled by augmented intracellular trafficking. This work furthers our understanding of the cell phenotype that emerges during aging. It highlights differences in these two fungal pathogens and elucidates mechanisms that explain the enhanced resistance of old cells to antifungals and phagocytic attacks. IMPORTANCE Cryptococcus neoformans and Candida glabrata are two opportunistic human fungal pathogens that cause life-threatening diseases. During infection, both microorganisms have the ability to persist for long periods, and treatment failure can occur even if standard testing identifies the yeasts to be sensitive to antifungals. Replicative life span is a trait that is measured by the number of divisions a cell undergoes before death. Aging in fungi is associated with enhanced tolerance to antifungals and resistance to phagocytosis, and characterization of old cells may help identify novel antifungal targets. The cell wall remains an attractive target for new therapies because it is essential for fungi and is not present in humans. This study shows that the organization of the fungal cell wall changes remarkably during aging and becomes thicker and is associated with increased intracellular trafficking as well as the alteration of vacuole morphology and pH homeostasis.
Collapse
|
12
|
Bhattacharya S, Bouklas T, Fries BC. Replicative Aging in Pathogenic Fungi. J Fungi (Basel) 2020; 7:6. [PMID: 33375605 PMCID: PMC7824483 DOI: 10.3390/jof7010006] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 12/16/2020] [Accepted: 12/23/2020] [Indexed: 12/14/2022] Open
Abstract
Candida albicans, Candida auris, Candida glabrata, and Cryptococcus neoformans are pathogenic yeasts which can cause systemic infections in immune-compromised as well as immune-competent individuals. These yeasts undergo replicative aging analogous to a process first described in the nonpathogenic yeast Saccharomyces cerevisiae. The hallmark of replicative aging is the asymmetric cell division of mother yeast cells that leads to the production of a phenotypically distinct daughter cell. Several techniques to study aging that have been pioneered in S. cerevisiae have been adapted to study aging in other pathogenic yeasts. The studies indicate that aging is relevant for virulence in pathogenic fungi. As the mother yeast cell progressively ages, every ensuing asymmetric cell division leads to striking phenotypic changes, which results in increased antifungal and antiphagocytic resistance. This review summarizes the various techniques that are used to study replicative aging in pathogenic fungi along with their limitations. Additionally, the review summarizes some key phenotypic variations that have been identified and are associated with changes in virulence or resistance and thus promote persistence of older cells.
Collapse
Affiliation(s)
- Somanon Bhattacharya
- Department of Medicine, Stony Brook University, Stony Brook, NY 11794, USA; (T.B.); (B.C.F.)
| | - Tejas Bouklas
- Department of Medicine, Stony Brook University, Stony Brook, NY 11794, USA; (T.B.); (B.C.F.)
- Department of Biological Sciences, State University of New York College at Old Westbury, Old Westbury, NY 11568, USA
| | - Bettina C. Fries
- Department of Medicine, Stony Brook University, Stony Brook, NY 11794, USA; (T.B.); (B.C.F.)
- Department of Microbiology and Immunology, Stony Brook University, Stony Brook, NY 11794, USA
- Veterans Administration Medical Center, Northport, NY 11768, USA
| |
Collapse
|
13
|
Kuna E, Bocian A, Hus KK, Petrilla V, Petrillova M, Legath J, Lewinska A, Wnuk M. Evaluation of Antifungal Activity of Naja pallida and Naja mossambica Venoms against Three Candida Species. Toxins (Basel) 2020; 12:toxins12080500. [PMID: 32759763 PMCID: PMC7472363 DOI: 10.3390/toxins12080500] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Revised: 07/21/2020] [Accepted: 07/31/2020] [Indexed: 01/28/2023] Open
Abstract
In contrast to comprehensively investigated antibacterial activity of snake venoms, namely crude venoms and their selected components, little is known about antifungal properties of elapid snake venoms. In the present study, the proteome of two venoms of red spitting cobra Naja pallida (NPV) and Mozambique spitting cobra Naja mossambica (NMV) was characterized using LC-MS/MS approach, and the antifungal activity of crude venoms against three Candida species was established. A complex response to venom treatment was revealed. NPV and NMV, when used at relatively high concentrations, decreased cell viability of C. albicans and C. tropicalis, affected cell cycle of C. albicans, inhibited C. tropicalis-based biofilm formation and promoted oxidative stress in C. albicans, C. glabrata and C. tropicalis cells. NPV and NMV also modulated ammonia pulses during colony development and aging in three Candida species. All these observations provide evidence that NPV and NMV may diminish selected pathogenic features of Candida species. However, NPV and NMV also promoted the secretion of extracellular phospholipases that may facilitate Candida pathogenicity and limit their usefulness as anti-candidal agents. In conclusion, antifungal activity of snake venoms should be studied with great caution and a plethora of pathogenic biomarkers should be considered in the future experiments.
Collapse
Affiliation(s)
- Ewelina Kuna
- Department of Biotechnology, Institute of Biology and Biotechnology, University of Rzeszow, 35-310 Rzeszow, Poland;
| | - Aleksandra Bocian
- Department of Biotechnology and Bioinformatics, Faculty of Chemistry, Rzeszow University of Technology, 35-959 Rzeszow, Poland; (A.B.); (K.K.H.); (J.L.)
| | - Konrad K. Hus
- Department of Biotechnology and Bioinformatics, Faculty of Chemistry, Rzeszow University of Technology, 35-959 Rzeszow, Poland; (A.B.); (K.K.H.); (J.L.)
| | - Vladimir Petrilla
- Department of Physiology, University of Veterinary Medicine and Pharmacy, 041 81 Kosice, Slovak Republic;
- Zoological Department, Zoological Garden Kosice, 040 06 Kosice, Slovak Republic
| | - Monika Petrillova
- Department of General Education Subjects, University of Veterinary Medicine and Pharmacy, 041 81 Kosice, Slovak Republic;
| | - Jaroslav Legath
- Department of Biotechnology and Bioinformatics, Faculty of Chemistry, Rzeszow University of Technology, 35-959 Rzeszow, Poland; (A.B.); (K.K.H.); (J.L.)
- Department of Pharmacology and Toxicology, University of Veterinary Medicine and Pharmacy, 041 81 Kosice, Slovak Republic
| | - Anna Lewinska
- Department of Biotechnology, Institute of Biology and Biotechnology, University of Rzeszow, 35-310 Rzeszow, Poland;
- Correspondence: (A.L.); (M.W.); Tel.: +48-17-851-86-09 (A.L. & M.W.)
| | - Maciej Wnuk
- Department of Biotechnology, Institute of Biology and Biotechnology, University of Rzeszow, 35-310 Rzeszow, Poland;
- Correspondence: (A.L.); (M.W.); Tel.: +48-17-851-86-09 (A.L. & M.W.)
| |
Collapse
|
14
|
Absence of AfuXpot, the yeast Los1 homologue, limits Aspergillus fumigatus growth under amino acid deprived condition. World J Microbiol Biotechnol 2020; 36:28. [PMID: 32002680 DOI: 10.1007/s11274-020-2805-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2019] [Accepted: 01/22/2020] [Indexed: 02/06/2023]
Abstract
In Saccharomyces cerevisiae, los1 encodes a nuclear tRNA exporter. Despite the non-essentiality, the deletion of los1 has been shown to extend replicative life span in yeast. Here, we characterized AfuXpot, the los1 homologue in human pathogen Aspergillus fumigatus and found that it is continuously expressed during fungal growth. Microscopic examination of an AfuXpot-GFP-expressing transformant confirmed the nuclear localization of the fusion protein. The targeted gene deletion affirmed the non-essential role of AfuXpot in hyphal growth and sporulation. However, the growth of the deletion mutant was affected by amino acid, but not glucose, deprivation. The susceptibility of the deletant strain to protein and DNA/RNA synthesis inhibitors was also altered. Using bioinformatics tools, some transcription factor binding sites were predicted in AfuXpot promoter. Expression analyses of potential AfuXpot-interacting genes showed a marked down-regulation of sfp1 and mtr10 homologues in ΔAfuXpot strain. Our data demonstrates some conserved aspects of AfuXpot as a tRNA exporter in A. fumigatus.
Collapse
|
15
|
Orner EP, Bhattacharya S, Kalenja K, Hayden D, Del Poeta M, Fries BC. Cell Wall-Associated Virulence Factors Contribute to Increased Resilience of Old Cryptococcus neoformans Cells. Front Microbiol 2019; 10:2513. [PMID: 31787940 PMCID: PMC6854031 DOI: 10.3389/fmicb.2019.02513] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Accepted: 10/18/2019] [Indexed: 12/29/2022] Open
Abstract
As Cryptococcus neoformans mother cells generationally age, their cell walls become thicker and cell-wall associated virulence factors are upregulated. Antiphagocytic protein 1 (App1), and laccase enzymes (Lac1 and Lac2) are virulence factors known to contribute to virulence of C. neoformans during infection through inhibition of phagocytic uptake and melanization. Here we show that these cell-wall-associated proteins are not only significantly upregulated in old C. neoformans cells, but also that their upregulation likely contributes to the increased resistance to antifungal and host-mediated killing during infection and to the subsequent accumulation of old cells. We found that old cells melanize to a greater extent than younger cells and as a consequence, old melanized cells are more resistant to killing by amphotericin B compared to young melanized cells. A decrease in melanization of old lacΔ mutants lead to a decrease in old-cell resilience, indicating that age-related melanization is contributing to the overall resilience of older cells and is being mediated by laccase genes. Additionally, we found that older cells are more resistant to macrophage phagocytosis, but this resistance is lost when APP1 is knocked out, indicating that upregulation of APP1 in older cells is in part responsible for their increased resistance to phagocytosis by macrophages. Finally, infections with old cells in the Galleria mellonella model support our conclusions, as loss of the APP1, LAC1, and LAC2 gene ablates the enhanced virulence of old cells, indicating their importance in age-dependent resilience.
Collapse
Affiliation(s)
- Erika P Orner
- Department of Microbiology and Immunology, Stony Brook University, Stony Brook, NY, United States
| | - Somanon Bhattacharya
- Department of Medicine, Division of Infectious Disease, Stony Brook University, Stony Brook, NY, United States
| | - Klea Kalenja
- Department of Microbiology and Immunology, Stony Brook University, Stony Brook, NY, United States
| | - Danielle Hayden
- Department of Microbiology and Immunology, Stony Brook University, Stony Brook, NY, United States
| | - Maurizio Del Poeta
- Department of Microbiology and Immunology, Stony Brook University, Stony Brook, NY, United States.,Department of Medicine, Division of Infectious Disease, Stony Brook University, Stony Brook, NY, United States.,Northport Veterans Affairs Medical Center, Northport, NY, United States
| | - Bettina C Fries
- Department of Microbiology and Immunology, Stony Brook University, Stony Brook, NY, United States.,Department of Medicine, Division of Infectious Disease, Stony Brook University, Stony Brook, NY, United States.,Northport Veterans Affairs Medical Center, Northport, NY, United States
| |
Collapse
|
16
|
Abstract
The enigmatic yeast Candida auris has emerged over the last decade and rapidly penetrated our consciousness. The global threat from this multidrug-resistant yeast has generated a call to arms from within the medical mycology community. Over the past decade, our understanding of how this yeast has spread globally, its clinical importance, and how it tolerates and resists antifungal agents has expanded. This review highlights the clinical importance of antifungal resistance in C. auris and explores our current understanding of the mechanisms associated with azole, polyene, and echinocandin resistance. We also discuss the impact of phenotypic tolerance, with particular emphasis on biofilm-mediated resistance, and present new pipelines of antifungal drugs that promise new hope in the management of C. auris infection.
Collapse
Affiliation(s)
- Ryan Kean
- Department of Biological and Biomedical Sciences, School of Health and Life Sciences, Glasgow Caledonian University, Glasgow, United Kingdom
| | - Gordon Ramage
- Oral Sciences Research Group, School of Medicine, Dentistry and Nursing, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom
| |
Collapse
|
17
|
Orner EP, Zhang P, Jo MC, Bhattacharya S, Qin L, Fries BC. High-Throughput Yeast Aging Analysis for Cryptococcus (HYAAC) microfluidic device streamlines aging studies in Cryptococcus neoformans. Commun Biol 2019; 2:256. [PMID: 31312725 PMCID: PMC6620289 DOI: 10.1038/s42003-019-0504-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2018] [Accepted: 06/14/2019] [Indexed: 12/14/2022] Open
Abstract
Cryptococcus neoformans (Cn) is a deadly fungal pathogen responsible for ~ 180,000 deaths per year and despite effective antifungals, treatment failure and resistance to antifungals are increasingly problematic. Aging and age-related phenotypes are prominent virulence traits that contribute to the resilience of Cn to host responses and antifungals. Traditional methods to study aging in Cn are expensive, inefficient and in need of improvement. Here, we demonstrate the development and use of a High-Throughput Yeast Aging Analysis for Cryptococcus (HYAAC) microfluidic device to better study aging and age-associated genes in Cn. Compared to traditional methods, the HYAAC is superior in its efficiency to isolate, manipulate and observe old cells for analysis. It allows for the trapping and tracking of individual cells over the course of their lifespan, allowing for more precise measurements of lifespan, tracking of age-related phenotypes with age, and a more high-throughput ability to investigate genes associated with aging.
Collapse
Affiliation(s)
- Erika P. Orner
- Department of Molecular Genetics and Microbiology, Stony Brook University, Stony Brook, NY 11794 USA
| | - Pengchao Zhang
- Department of Nanomedicine, Houston Methodist Research Institute, Houston, TX 77030 USA
- Department of Cell and Developmental Biology, Weill Cornell Medical College, New York, NY 10065 USA
| | - Myeong C. Jo
- Department of Nanomedicine, Houston Methodist Research Institute, Houston, TX 77030 USA
- Department of Cell and Developmental Biology, Weill Cornell Medical College, New York, NY 10065 USA
| | | | - Lidong Qin
- Department of Nanomedicine, Houston Methodist Research Institute, Houston, TX 77030 USA
- Department of Cell and Developmental Biology, Weill Cornell Medical College, New York, NY 10065 USA
| | - Bettina C. Fries
- Department of Molecular Genetics and Microbiology, Stony Brook University, Stony Brook, NY 11794 USA
- Department of Medicine, Stony Brook University, Stony Brook, NY 11794 USA
- Department of Medicine, Northport VA Medical Center, Northport, NY 11794 USA
| |
Collapse
|
18
|
Potocki L, Kuna E, Filip K, Kasprzyk B, Lewinska A, Wnuk M. Activation of transposable elements and genetic instability during long-term culture of the human fungal pathogen Candida albicans. Biogerontology 2019; 20:457-474. [PMID: 30989423 PMCID: PMC6593122 DOI: 10.1007/s10522-019-09809-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2019] [Accepted: 04/08/2019] [Indexed: 02/08/2023]
Abstract
It has been repeatedly reported that transposable elements (TE) become active and/or mobile in the genomes of replicatively and stress-induced senescent mammalian cells. However, the biological role of senescence-associated transposon activation and its occurrence and relevance in other eukaryotic cells remain to be elucidated. In the present study, Candida albicans, a prevalent opportunistic fungal pathogen in humans, was used to analyze changes in gene copy number of selected TE, namely Cirt2, Moa and Cmut1 during long-term culture (up to 90 days). The effects of stress stimuli (fluconazole, hydrogen peroxide, hypochlorite) and ploidy state (haploid, diploid, tetraploid cells) were also considered. An increase in copy number of Cirt2 and Moa was the most accented in tetraploid cells after 90 days of culture that was accompanied by changes in karyotype patterns and slightly more limited growth rate compared to haploid and diploid cells. Stress stimuli did not potentiate TE activity. Elevation in chromosomal DNA breaks was also observed during long-term culture of cells of different ploidy, however this was not correlated with increased TE activity. Our results suggest that increased TE activity may promote genomic diversity and plasticity, and cellular heterogeneity during long-term culture of C. albicans cells.
Collapse
Affiliation(s)
- Leszek Potocki
- Department of Genetics, Faculty of Biotechnology, University of Rzeszow, Pigonia 1, 35-310, Rzeszow, Poland
| | - Ewelina Kuna
- Department of Genetics, Faculty of Biotechnology, University of Rzeszow, Pigonia 1, 35-310, Rzeszow, Poland
| | - Kamila Filip
- Department of Genetics, Faculty of Biotechnology, University of Rzeszow, Pigonia 1, 35-310, Rzeszow, Poland
| | - Beata Kasprzyk
- Department of Genetics, Faculty of Biotechnology, University of Rzeszow, Pigonia 1, 35-310, Rzeszow, Poland
| | - Anna Lewinska
- Department of Cell Biochemistry, Faculty of Biotechnology, University of Rzeszow, Pigonia 1, 35-310, Rzeszow, Poland.
| | - Maciej Wnuk
- Department of Genetics, Faculty of Biotechnology, University of Rzeszow, Pigonia 1, 35-310, Rzeszow, Poland.
| |
Collapse
|
19
|
Abstract
Abstract
Purpose of Review
Pervasive fungal infection among the immunocompromised population, in conjunction with a lack of effective treatment options, has demanded further scrutiny. Millions of people are still dying annually from fungal infections. While existing treatment for these fungal infections exists, it is difficult to administer without adverse effects in the immunocompromised and is slowly becoming obsolete due to varying mutation rates and rising resistance in multiple species. Thus, vaccines may be a viable target for preventing and treating fungal infections and addressing the critical challenge of such infections.
Recent Findings
Candida albicans, along with other non-albicans Candida species, is among the more virulent class of fungal specimens considered for vaccine development. C. albicans is responsible for a large percentage of invasive fungal infections among immunocompromised and immunocompetent populations and carries a relatively high mortality rate. In the last decade, a recent increase in infective capacity among Candida species has shed light on the lack of adequate fungal vaccine choices. While roadblocks still exist in the development of antifungal vaccines, several novel targets have been examined and proposed as candidates.
Summary
Success in vaccine development has universal appeal; an anti-Candida vaccine formulation could be modified to work against other fungal infections and thus bolster the antifungal pipeline.
Collapse
|
20
|
Gene Duplication Associated with Increased Fluconazole Tolerance in Candida auris cells of Advanced Generational Age. Sci Rep 2019; 9:5052. [PMID: 30911079 PMCID: PMC6434143 DOI: 10.1038/s41598-019-41513-6] [Citation(s) in RCA: 62] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2018] [Accepted: 03/04/2019] [Indexed: 12/20/2022] Open
Abstract
Candida auris is an emerging multi-drug resistant yeast that causes systemic infections. Here we show that C. auris undergoes replicative aging (RA) that results from asymmetric cell division and causes phenotypic differences between mother and daughter cells similar to other pathogenic yeasts. Importantly, older C. auris cells (10 generations) exhibited higher tolerance to fluconazole (FLC), micafungin, 5- flucytosine and amphotericin B compared to younger (0–3 generation) cells. Increased FLC tolerance was associated with increased Rhodamine 6G (R6G) efflux and therapeutic failure of FLC in a Galleria infection model. The higher efflux in the older cells correlated with overexpression of the efflux pump encoding gene CDR1 (4-fold). In addition, 8-fold upregulation of the azole target encoding gene ERG11 was noted in the older cells. Analysis of genomic DNA from older cells by qPCR indicates that transient gene duplication of CDR1 and ERG11 causes the observed age-dependent enhanced FLC tolerance in C. auris strains. Furthermore, older cells exhibited a thickened cell wall, decreased neutrophil killing (24% vs 50%), increased epithelial cell adhesion (31.6% vs 17.8%) and upregulation of adhesin protein Als5p. Thus, this study demonstrates that transient gene duplication can occur during RA, causing increased FLC tolerance in old C. auris cells.
Collapse
|
21
|
Knorre DA, Azbarova AV, Galkina KV, Feniouk BA, Severin FF. Replicative aging as a source of cell heterogeneity in budding yeast. Mech Ageing Dev 2018; 176:24-31. [DOI: 10.1016/j.mad.2018.09.001] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2018] [Revised: 09/18/2018] [Accepted: 09/19/2018] [Indexed: 02/06/2023]
|
22
|
Novel, Broadly Reactive Anticapsular Antibodies against Carbapenem-Resistant Klebsiella pneumoniae Protect from Infection. mBio 2018; 9:mBio.00091-18. [PMID: 29615497 PMCID: PMC5885035 DOI: 10.1128/mbio.00091-18] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Carbapenem-resistant (CR) sequence type 258 (ST258) Klebsiella pneumoniae has become an urgent health care threat, causing an increasing number of high-mortality infections. Its resistance to numerous antibiotics and threat to immunocompromised patients necessitate finding new therapies to combat these infections. Previous successes in the laboratory, as well as the conservation of capsular polysaccharide (CPS) among the members of the ST258 clone, suggest that monoclonal antibody (MAb) therapy targeting the outer polysaccharide capsule of K. pneumoniae could serve as a valuable treatment alternative for afflicted patients. Here, we isolated several IgG antibodies from mice inoculated with a mixture of CR K. pneumoniae CPS conjugated to anthrax protective antigen. Two of these MAbs, 17H12 and 8F12, bind whole and oligosaccharide epitopes of the CPS of clade 2 ST258 CR K. pneumoniae, which is responsible for the most virulent CR K. pneumoniae infections in the United States. These antibodies were shown to agglutinate all clade 2 strains and were also shown to promote extracellular processes killing these bacteria, including biofilm inhibition, complement deposition, and deployment of neutrophil extracellular traps. Additionally, they promoted opsonophagocytosis and intracellular killing of CR K. pneumoniae by human-derived neutrophils and cultured murine macrophages. Finally, when mice were intratracheally infected with preopsonized clade 2 CR K. pneumoniae, these MAbs reduced bacterial dissemination to organs. Our data suggest that broadly reactive anticapsular antibodies and vaccines against clade 2 ST258 CR K. pneumoniae are possible. Such MAbs and vaccines would benefit those susceptible populations at risk of infection with this group of multidrug-resistant bacteria.IMPORTANCE Carbapenem-resistant Klebsiella pneumoniae is an enteric bacterium that has been responsible for an increasing number of deadly outbreaks and hospital-acquired infections. The pathogen's resistance to numerous antibiotics, including new drugs, leaves few therapeutic options available for infected patients, who often are too sick to fight the infection themselves. Immunotherapy utilizing monoclonal antibodies has been successful in other medical fields, and antibodies targeting the outer polysaccharide capsule of these bacteria could be a valuable treatment alternative. This study presents two anticapsular antibodies, 17H12 and 8F12, that were found to be protective against the most virulent carbapenem-resistant K. pneumoniae clinical strains. These antibodies are shown to promote the killing of these strains through several extracellular and intracellular processes and prevent the spread of infection in mice from the lungs to distal organs. Thus, they could ultimately treat or protect patients infected or at risk of infection by this multidrug-resistant bacterium.
Collapse
|
23
|
Enhanced Efflux Pump Activity in Old Candida glabrata Cells. Antimicrob Agents Chemother 2018; 62:AAC.02227-17. [PMID: 29311061 DOI: 10.1128/aac.02227-17] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2017] [Accepted: 01/01/2018] [Indexed: 12/11/2022] Open
Abstract
We investigated the effect of replicative aging on antifungal resistance in Candida glabrata Our studies demonstrate significantly increased transcription of ABC transporters and efflux pump activity in old versus young C. glabrata cells of a fluconazole-sensitive and -resistant strain. In addition, higher tolerance to killing by micafungin and amphotericin B was noted and is associated with higher transcription of glucan synthase gene FKS1 and lower ergosterol content in older cells.
Collapse
|
24
|
Bouklas T, Masone L, Fries BC. Differences in Sirtuin Regulation in Response to Calorie Restriction in Cryptococcus neoformans. J Fungi (Basel) 2018; 4:E26. [PMID: 29463010 PMCID: PMC5872329 DOI: 10.3390/jof4010026] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2018] [Revised: 02/15/2018] [Accepted: 02/16/2018] [Indexed: 12/17/2022] Open
Abstract
Cryptococcus neoformans successfully replicates in low glucose in infected patients. In the serotype A strain, H99, growth in this condition prolongs lifespan regulated by SIR2, and can be modulated with SIR2-specific drugs. Previous studies show that lifespan modulation of a cryptococcal population affects its sensitivity to antifungals, and survival in an infection model. Sirtuins and their role in longevity are conserved among fungi; however, the effect of glucose starvation is not confirmed even in Saccharomyces cerevisiae. Lifespan analysis of C. neoformans strains in low glucose showed that 37.5% exhibited pro-longevity, and lifespan of a serotype D strain, RC2, was shortened. Transcriptome comparison of H99 and RC2 under calorie restriction demonstrated differences, confirmed by real-time PCR showing that SIR2, TOR1, SCH9, and PKA1 expression correlated with lifespan response to calorie restriction. As expected, RC2-sir2Δ cells exhibited a shortened lifespan, which was reconstituted. However, shortened lifespan from calorie restriction was independent of SIR2. In contrast to H99 but consistent with altered SIR2 regulation, SIR2-specific drugs did not affect outcome of RC2 infection. These data suggest that SIR2 regulation and response to calorie restriction varies in C. neoformans, which should be considered when Sirtuins are investigated as potential therapy targets for fungal infections.
Collapse
Affiliation(s)
- Tejas Bouklas
- Department of Biomedical Sciences, Long Island University-Post, Brookville, NY 11548, USA.
| | - Lindsey Masone
- Department of Biomedical Sciences, Long Island University-Post, Brookville, NY 11548, USA.
| | - Bettina C Fries
- Department of Medicine (Division of Infectious Diseases) and Department of Molecular Genetics and Microbiology, Stony Brook University, Stony Brook, NY 11794 USA.
| |
Collapse
|
25
|
Verma S, Shakya VPS, Idnurm A. Exploring and exploiting the connection between mitochondria and the virulence of human pathogenic fungi. Virulence 2018; 9:426-446. [PMID: 29261004 PMCID: PMC5955198 DOI: 10.1080/21505594.2017.1414133] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2017] [Revised: 12/04/2017] [Accepted: 12/04/2017] [Indexed: 12/17/2022] Open
Abstract
Mitochondria are best known for their role in the production of ATP; however, recent research implicates other mitochondrial functions in the virulence of human pathogenic fungi. Inhibitors of mitochondrial succinate dehydrogenase or the electron transport chain are successfully used to combat plant pathogenic fungi, but similar inhibition of mitochondrial functions has not been pursued for applications in medical mycology. Advances in understanding mitochondrial function relevant to human pathogenic fungi are in four major directions: 1) the role of mitochondrial morphology in virulence, 2) mitochondrial genetics, with a focus on mitochondrial DNA recombination and mitochondrial inheritance 3) the role of mitochondria in drug resistance, and 4) the interaction of mitochondria with other organelles. Collectively, despite the similarities in mitochondrial functions between fungi and animals, this organelle is currently an under-explored potential target to treat medical mycoses. Future research could define and then exploit those mitochondrial components best suited as drug targets.
Collapse
Affiliation(s)
- Surbhi Verma
- Department of Biochemistry, University of Utah School of Medicine, Salt Lake City, Utah, USA
| | - Viplendra P. S. Shakya
- Department of Biochemistry, University of Utah School of Medicine, Salt Lake City, Utah, USA
| | - Alexander Idnurm
- School of BioSciences, University of Melbourne, Parkville, VIC, Australia
| |
Collapse
|
26
|
Azbarova AV, Galkina KV, Sorokin MI, Severin FF, Knorre DA. The contribution of Saccharomyces cerevisiae replicative age to the variations in the levels of Trx2p, Pdr5p, Can1p and Idh isoforms. Sci Rep 2017; 7:13220. [PMID: 29038504 PMCID: PMC5643315 DOI: 10.1038/s41598-017-13576-w] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2017] [Accepted: 09/25/2017] [Indexed: 01/09/2023] Open
Abstract
Asymmetrical division can be a reason for microbial populations heterogeneity. In particular, budding yeast daughter cells are more vulnerable to stresses than the mothers. It was suggested that yeast mother cells could also differ from each other depending on their replicative age. To test this, we measured the levels of Idh1-GFP, Idh2-GFP, Trx2-GFP, Pdr5-GFP and Can1-GFP proteins in cells of the few first, most represented, age cohorts. Pdr5p and Can1p were selected because of the pronounced mother-bud asymmetry for these proteins distributions, Trx2p as indicator of oxidative stress. Isocitrate dehydrogenase subunits Idh1p and Idh2p were assessed because their levels are regulated by mitochondria. We found a small negative correlation between yeast replicative age and Idh1-GFP or Idh2-GFP but not Trx2-GFP levels. Mitochondrial network fragmentation was also confirmed as an early event of replicative aging. No significant difference in the membrane proteins levels Pdr5p and Can1p was found. Moreover, the elder mother cells showed lower coefficient of variation for Pdr5p levels compared to the younger ones and the daughters. Our data suggest that the levels of stress-response proteins Pdr5p and Trx2p in the mother cells are stable during the first few cell cycles regardless of their mother-bud asymmetry.
Collapse
Affiliation(s)
- Aglaia V Azbarova
- Faculty of Bioengineering and Bioinformatics, Moscow State University, Leninskiye Gory 1-73, Moscow, 119991, Russia.,Belozersky Institute of Physico-Chemical Biology, Moscow State University, Leninskiye Gory 1-40, Moscow, 119991, Russia
| | - Kseniia V Galkina
- Faculty of Bioengineering and Bioinformatics, Moscow State University, Leninskiye Gory 1-73, Moscow, 119991, Russia
| | - Maxim I Sorokin
- Belozersky Institute of Physico-Chemical Biology, Moscow State University, Leninskiye Gory 1-40, Moscow, 119991, Russia.,National Research Centre Kurchatov Institute, Centre for Convergence of Nano-, Bio-Information and Cognitive Sciences and Technologies, Moscow, 123182, Russia.,OmicsWay Corp., 340S Lemon Ave, Walnut, CA, 91789, USA
| | - Fedor F Severin
- Belozersky Institute of Physico-Chemical Biology, Moscow State University, Leninskiye Gory 1-40, Moscow, 119991, Russia
| | - Dmitry A Knorre
- Belozersky Institute of Physico-Chemical Biology, Moscow State University, Leninskiye Gory 1-40, Moscow, 119991, Russia.
| |
Collapse
|