1
|
Liu Y, Li Y, Wang A, Xu Z, Li C, Wang Z, Guo B, Chen Y, Tang F, Li J. Enhancing cold resistance in Banana (Musa spp.) through EMS-induced mutagenesis, L-Hyp pressure selection: phenotypic alterations, biomass composition, and transcriptomic insights. BMC PLANT BIOLOGY 2024; 24:101. [PMID: 38331759 PMCID: PMC10854111 DOI: 10.1186/s12870-024-04775-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Accepted: 01/29/2024] [Indexed: 02/10/2024]
Abstract
BACKGROUND The cultivation of bananas encounters substantial obstacles, particularly due to the detrimental effects of cold stress on their growth and productivity. A potential remedy that has gained attention is the utilization of ethyl mesylate (EMS)-induced mutagenesis technology, which enables the creation of a genetically varied group of banana mutants. This complex procedure entails subjecting the mutants to further stress screening utilizing L-Hyp in order to identify those exhibiting improved resistance to cold. This study conducted a comprehensive optimization of the screening conditions for EMS mutagenesis and L-Hyp, resulting in the identification of the mutant cm784, which exhibited remarkable cold resistance. Subsequent investigations further elucidated the physiological and transcriptomic responses of cm784 to low-temperature stress. RESULTS EMS mutagenesis had a substantial effect on banana seedlings, resulting in modifications in shoot and root traits, wherein a majority of seedlings exhibited delayed differentiation and limited elongation. Notably, mutant leaves displayed altered biomass composition, with starch content exhibiting the most pronounced variation. The application of L-Hyp pressure selection aided in the identification of cold-resistant mutants among seedling-lethal phenotypes. The mutant cm784 demonstrated enhanced cold resistance, as evidenced by improved survival rates and reduced symptoms of chilling injury. Physiological analyses demonstrated heightened activities of antioxidant enzymes and increased proline production in cm784 when subjected to cold stress. Transcriptome analysis unveiled 946 genes that were differentially expressed in cm784, with a notable enrichment in categories related to 'Carbohydrate transport and metabolism' and 'Secondary metabolites biosynthesis, transport, and catabolism'. CONCLUSION The present findings provide insights into the molecular mechanisms that contribute to the heightened cold resistance observed in banana mutants. These mechanisms encompass enhanced carbohydrate metabolism and secondary metabolite biosynthesis, thereby emphasizing the adaptive strategies employed to mitigate the detrimental effects induced by cold stress.
Collapse
Affiliation(s)
- Yumeng Liu
- National Key Laboratory for Tropical Crop Breeding, Tropical Crops Genetic Resources Institute, Chinese Academy of Tropical Agricultural Sciences, Sanya/Haikou, Hainan, 572024/571101, China
- College of Plant Science & Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Yujia Li
- National Key Laboratory for Tropical Crop Breeding, Tropical Crops Genetic Resources Institute, Chinese Academy of Tropical Agricultural Sciences, Sanya/Haikou, Hainan, 572024/571101, China
- Hainan Banana Healthy Seedling Propagation Engineering Research Center, Haikou Experimental Station, Chinese Academy of Tropical Agricultural Sciences, Haikou, 571101, Hainan, China
| | - Anbang Wang
- National Key Laboratory for Tropical Crop Breeding, Tropical Crops Genetic Resources Institute, Chinese Academy of Tropical Agricultural Sciences, Sanya/Haikou, Hainan, 572024/571101, China
- Hainan Banana Healthy Seedling Propagation Engineering Research Center, Haikou Experimental Station, Chinese Academy of Tropical Agricultural Sciences, Haikou, 571101, Hainan, China
| | - Zhuye Xu
- Hainan Banana Healthy Seedling Propagation Engineering Research Center, Haikou Experimental Station, Chinese Academy of Tropical Agricultural Sciences, Haikou, 571101, Hainan, China
- College of Horticulture, Hainan University, Haikou, 571101, Hainan, China
| | - Chunfang Li
- Collage of Tropical Crop, Yunnan Agricultural University, Puer, 611101, Yunnan, China
| | - Zuo Wang
- Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, 571101, Hainan, China
| | - Borui Guo
- National Key Laboratory for Tropical Crop Breeding, Tropical Crops Genetic Resources Institute, Chinese Academy of Tropical Agricultural Sciences, Sanya/Haikou, Hainan, 572024/571101, China
- College of Plant Science & Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Yan Chen
- Collage of Tropical Crop, Yunnan Agricultural University, Puer, 611101, Yunnan, China
| | - Fenling Tang
- National Key Laboratory for Tropical Crop Breeding, Tropical Crops Genetic Resources Institute, Chinese Academy of Tropical Agricultural Sciences, Sanya/Haikou, Hainan, 572024/571101, China
- Hainan Banana Healthy Seedling Propagation Engineering Research Center, Haikou Experimental Station, Chinese Academy of Tropical Agricultural Sciences, Haikou, 571101, Hainan, China
| | - Jingyang Li
- National Key Laboratory for Tropical Crop Breeding, Tropical Crops Genetic Resources Institute, Chinese Academy of Tropical Agricultural Sciences, Sanya/Haikou, Hainan, 572024/571101, China.
- Hainan Banana Healthy Seedling Propagation Engineering Research Center, Haikou Experimental Station, Chinese Academy of Tropical Agricultural Sciences, Haikou, 571101, Hainan, China.
| |
Collapse
|
2
|
Zhang H, Zhang L, Ren G, Si H, Song X, Liu X, Suo X, Hu D. Forward genetic analysis of monensin and diclazuril resistance in Eimeria tenella. Int J Parasitol Drugs Drug Resist 2023; 22:44-51. [PMID: 37247559 PMCID: PMC10238932 DOI: 10.1016/j.ijpddr.2023.05.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 05/01/2023] [Accepted: 05/18/2023] [Indexed: 05/31/2023]
Abstract
Worldwide distributed coccidiosis is caused by infection of both Eimeria species and Cystoisospora in the host intestine and causes huge economic losses to the livestock industry, especially the poultry industry. The control of such diseases relies mainly on chemoprophylaxis with anticoccidials, which has led to a very common drug resistance in this field. However, the genetic mechanisms underlying resistance to many anticoccidial drugs remain unknown. In this study, strains of E. tenella resistant to 250 mg/kg monensin were generated and characterized. Forward genetic approaches based on pooled genome sequencing, including experimental evolution and linkage group selection, were used to locate candidate targets responsible for resistance to monensin and diclazuril in E. tenella. A total of 16 nonsynonymous mutants in protein-coding genes were identified in monensin-resistant strains, and two genomic regions with strong selection signals were also detected in diclazuril-resistant strains. Our study reveals the genetic characterization of the experimental evolution and linkage group selection in Eimeria species, and also provides important information that contributes to the understanding of the molecular mechanism of drug resistance in coccidia.
Collapse
Affiliation(s)
- Hongtao Zhang
- College of Animal Science and Technology, Guangxi University, China
| | - Lei Zhang
- College of Animal Science and Technology, Guangxi University, China
| | - Ganglin Ren
- College of Animal Science and Technology, Guangxi University, China
| | - Hongbin Si
- College of Animal Science and Technology, Guangxi University, China; Guangxi Zhuang Autonomous Region Engineering Research Center of Veterinary Biologics, China; Guangxi Key Laboratory of Animal Breeding, Disease Control and Prevention, Nanning, 530004, China
| | - Xingju Song
- College of Animal Science and Technology, Guangxi University, China; Guangxi Zhuang Autonomous Region Engineering Research Center of Veterinary Biologics, China; Guangxi Key Laboratory of Animal Breeding, Disease Control and Prevention, Nanning, 530004, China
| | - Xianyong Liu
- Key Laboratory of Animal Epidemiology and Zoonosis of Ministry of Agriculture, National Animal Protozoa Laboratory, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Xun Suo
- Key Laboratory of Animal Epidemiology and Zoonosis of Ministry of Agriculture, National Animal Protozoa Laboratory, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Dandan Hu
- College of Animal Science and Technology, Guangxi University, China; Guangxi Zhuang Autonomous Region Engineering Research Center of Veterinary Biologics, China; Guangxi Key Laboratory of Animal Breeding, Disease Control and Prevention, Nanning, 530004, China.
| |
Collapse
|
3
|
Ramaprasad A, Culleton R. A song for the unsung: The relevance of Plasmodium vinckei as a laboratory rodent malaria system. Parasitol Int 2023; 92:102680. [DOI: 10.1016/j.parint.2022.102680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 09/02/2022] [Accepted: 09/12/2022] [Indexed: 12/01/2022]
|
4
|
Su XZ, Wu J, Xu F, Pattaradilokrat S. Genetic mapping of determinants in drug resistance, virulence, disease susceptibility, and interaction of host-rodent malaria parasites. Parasitol Int 2022; 91:102637. [PMID: 35926693 PMCID: PMC9452477 DOI: 10.1016/j.parint.2022.102637] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Accepted: 07/28/2022] [Indexed: 12/31/2022]
Abstract
Genetic mapping has been widely employed to search for genes linked to phenotypes/traits of interest. Because of the ease of maintaining rodent malaria parasites in laboratory mice, many genetic crosses of rodent malaria parasites have been performed to map the parasite genes contributing to malaria parasite development, drug resistance, host immune response, and disease pathogenesis. Drs. Richard Carter, David Walliker, and colleagues at the University of Edinburgh, UK, were the pioneers in developing the systems for genetic mapping of malaria parasite traits, including characterization of genetic markers to follow the inheritance and recombination of parasite chromosomes and performing the first genetic cross using rodent malaria parasites. Additionally, many genetic crosses of inbred mice have been performed to link mouse chromosomal loci to the susceptibility to malaria parasite infections. In this chapter, we review and discuss past and recent advances in genetic marker development, performing genetic crosses, and genetic mapping of both parasite and host genes. Genetic mappings using models of rodent malaria parasites and inbred mice have contributed greatly to our understanding of malaria, including parasite development within their hosts, mechanism of drug resistance, and host-parasite interaction.
Collapse
Affiliation(s)
- Xin-Zhuan Su
- Malaria Functional Genomics Section, Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Disease, National Institutes of Health, Bethesda, MD, USA.
| | - Jian Wu
- Malaria Functional Genomics Section, Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Disease, National Institutes of Health, Bethesda, MD, USA
| | - Fangzheng Xu
- Malaria Functional Genomics Section, Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Disease, National Institutes of Health, Bethesda, MD, USA
| | | |
Collapse
|
5
|
Li X, Kumar S, Brenneman KV, Anderson TJC. Bulk segregant linkage mapping for rodent and human malaria parasites. Parasitol Int 2022; 91:102653. [PMID: 36007706 DOI: 10.1016/j.parint.2022.102653] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 08/18/2022] [Accepted: 08/19/2022] [Indexed: 11/25/2022]
Abstract
In 2005 Richard Carter's group surprised the malaria genetics community with an elegant approach to rapidly mapping the genetic basis of phenotypic traits in rodent malaria parasites. This approach, which he termed "linkage group selection", utilized bulk pools of progeny, rather than individual clones, and exploited simple selection schemes to identify genome regions underlying resistance to drug treatment (or other phenotypes). This work was the first application of "bulk segregant" methodologies for genetic mapping in microbes: this approach is now widely used in yeast, and across multiple recombining pathogens ranging from Aspergillus fungi to Schistosome parasites. Genetic crosses of human malaria parasites (for which Richard Carter was also a pioneer) can now be conducted in humanized mice, providing new opportunities for exploiting bulk segregant approaches for a wide variety of malaria parasite traits. We review the application of bulk segregant approaches to mapping malaria parasite traits and suggest additional developments that may further expand the utility of this powerful approach.
Collapse
Affiliation(s)
- Xue Li
- Program in Disease Intervention and Prevention, Texas Biomedical Research Institute, San Antonio, TX, USA.
| | - Sudhir Kumar
- Center for Global Infectious Disease Research, Seattle Children's Research Institute, Seattle, Washington, USA
| | - Katelyn Vendrely Brenneman
- Eck Institute for Global Health, Department of Biological Sciences, University of Notre Dame, Notre Dame, IN, USA
| | - Tim J C Anderson
- Program in Disease Intervention and Prevention, Texas Biomedical Research Institute, San Antonio, TX, USA.
| |
Collapse
|
6
|
Kumar S, Li X, McDew-White M, Reyes A, Delgado E, Sayeed A, Haile MT, Abatiyow BA, Kennedy SY, Camargo N, Checkley LA, Brenneman KV, Button-Simons KA, Duraisingh MT, Cheeseman IH, Kappe SHI, Nosten F, Ferdig MT, Vaughan AM, Anderson TJC. A Malaria Parasite Cross Reveals Genetic Determinants of Plasmodium falciparum Growth in Different Culture Media. Front Cell Infect Microbiol 2022; 12:878496. [PMID: 35711667 PMCID: PMC9197316 DOI: 10.3389/fcimb.2022.878496] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Accepted: 04/28/2022] [Indexed: 12/21/2022] Open
Abstract
What genes determine in vitro growth and nutrient utilization in asexual blood-stage malaria parasites? Competition experiments between NF54, clone 3D7, a lab-adapted African parasite, and a recently isolated Asian parasite (NHP4026) reveal contrasting outcomes in different media: 3D7 outcompetes NHP4026 in media containing human serum, while NHP4026 outcompetes 3D7 in media containing AlbuMAX, a commercial lipid-rich bovine serum formulation. To determine the basis for this polymorphism, we conducted parasite genetic crosses using humanized mice and compared genome-wide allele frequency changes in three independent progeny populations cultured in media containing human serum or AlbuMAX. This bulk segregant analysis detected three quantitative trait loci (QTL) regions [on chromosome (chr) 2 containing aspartate transaminase AST; chr 13 containing EBA-140; and chr 14 containing cysteine protease ATG4] linked with differential growth in serum or AlbuMAX in each of the three independent progeny pools. Selection driving differential growth was strong (s = 0.10 – 0.23 per 48-hour lifecycle). We conducted validation experiments for the strongest QTL on chr 13: competition experiments between ΔEBA-140 and 3D7 wildtype parasites showed fitness reversals in the two medium types as seen in the parental parasites, validating this locus as the causative gene. These results (i) demonstrate the effectiveness of bulk segregant analysis for dissecting fitness traits in P. falciparum genetic crosses, and (ii) reveal intimate links between red blood cell invasion and nutrient composition of growth media. Use of parasite crosses combined with bulk segregant analysis will allow systematic dissection of key nutrient acquisition/metabolism and red blood cell invasion pathways in P. falciparum.
Collapse
Affiliation(s)
- Sudhir Kumar
- Center for Global Infectious Disease Research, Seattle Children’s Research Institute, Seattle, WA, United States
| | - Xue Li
- Program in Disease Intervention and Prevention, Texas Biomedical Research Institute, San Antonio, TX, United States
| | - Marina McDew-White
- Program in Disease Intervention and Prevention, Texas Biomedical Research Institute, San Antonio, TX, United States
| | - Ann Reyes
- Program in Disease Intervention and Prevention, Texas Biomedical Research Institute, San Antonio, TX, United States
| | - Elizabeth Delgado
- Program in Disease Intervention and Prevention, Texas Biomedical Research Institute, San Antonio, TX, United States
| | - Abeer Sayeed
- Program in Disease Intervention and Prevention, Texas Biomedical Research Institute, San Antonio, TX, United States
| | - Meseret T. Haile
- Center for Global Infectious Disease Research, Seattle Children’s Research Institute, Seattle, WA, United States
| | - Biley A. Abatiyow
- Center for Global Infectious Disease Research, Seattle Children’s Research Institute, Seattle, WA, United States
| | - Spencer Y. Kennedy
- Center for Global Infectious Disease Research, Seattle Children’s Research Institute, Seattle, WA, United States
| | - Nelly Camargo
- Center for Global Infectious Disease Research, Seattle Children’s Research Institute, Seattle, WA, United States
| | - Lisa A. Checkley
- Department of Biological Sciences, Eck Institute for Global Health, University of Notre Dame, Notre Dame, IN, United States
| | - Katelyn V. Brenneman
- Department of Biological Sciences, Eck Institute for Global Health, University of Notre Dame, Notre Dame, IN, United States
| | - Katrina A. Button-Simons
- Department of Biological Sciences, Eck Institute for Global Health, University of Notre Dame, Notre Dame, IN, United States
| | - Manoj T. Duraisingh
- Immunology and Infectious Diseases Department, Harvard T.H. Chan School of Public Health, Boston, MA, United States
| | - Ian H. Cheeseman
- Program in Host Pathogen Interactions, Texas Biomedical Research Institute, San Antonio, TX, United States
| | - Stefan H. I. Kappe
- Center for Global Infectious Disease Research, Seattle Children’s Research Institute, Seattle, WA, United States
- Department of Pediatrics, University of Washington, Seattle, WA, United States
| | - François Nosten
- Shoklo Malaria Research Unit, Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Mae Sot, Thailand
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine Research building, University of Oxford, Oxford, United Kingdom
| | - Michael T. Ferdig
- Department of Biological Sciences, Eck Institute for Global Health, University of Notre Dame, Notre Dame, IN, United States
| | - Ashley M. Vaughan
- Center for Global Infectious Disease Research, Seattle Children’s Research Institute, Seattle, WA, United States
- Department of Pediatrics, University of Washington, Seattle, WA, United States
- *Correspondence: Ashley M. Vaughan, ; Tim J. C. Anderson,
| | - Tim J. C. Anderson
- Program in Disease Intervention and Prevention, Texas Biomedical Research Institute, San Antonio, TX, United States
- *Correspondence: Ashley M. Vaughan, ; Tim J. C. Anderson,
| |
Collapse
|
7
|
Brenneman KV, Li X, Kumar S, Delgado E, Checkley LA, Shoue DA, Reyes A, Abatiyow BA, Haile MT, Tripura R, Peto T, Lek D, Button-Simons KA, Kappe SH, Dhorda M, Nosten F, Nkhoma SC, Cheeseman IH, Vaughan AM, Ferdig MT, Anderson TJ. Optimizing bulk segregant analysis of drug resistance using Plasmodium falciparum genetic crosses conducted in humanized mice. iScience 2022; 25:104095. [PMID: 35372813 PMCID: PMC8971943 DOI: 10.1016/j.isci.2022.104095] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 02/24/2022] [Accepted: 03/11/2022] [Indexed: 01/15/2023] Open
Abstract
Classical malaria parasite genetic crosses involve isolation, genotyping, and phenotyping of progeny parasites, which is time consuming and laborious. We tested a rapid alternative approach-bulk segregant analysis (BSA)-that utilizes sequencing of bulk progeny populations with and without drug selection for rapid identification of drug resistance loci. We used dihydroartemisinin (DHA) selection in two genetic crosses and investigated how synchronization, cryopreservation, and the drug selection regimen impacted BSA success. We detected a robust quantitative trait locus (QTL) at kelch13 in both crosses but did not detect QTLs at four other candidate loci. QTLs were detected using synchronized, but not unsynchronized progeny pools, consistent with the stage-specific action of DHA. We also successfully applied BSA to cryopreserved progeny pools, expanding the utility of this approach. We conclude that BSA provides a powerful approach for investigating the genetic architecture of drug resistance in Plasmodium falciparum.
Collapse
Affiliation(s)
- Katelyn Vendrely Brenneman
- Eck Institute for Global Health, Department of Biological Sciences, University of Notre Dame, Notre Dame, IN, USA
| | - Xue Li
- Program in Disease Intervention and Prevention, Texas Biomedical Research Institute, San Antonio, TX, USA
| | - Sudhir Kumar
- Center for Global Infectious Disease Research, Seattle Children’s Research Institute, Seattle, WA, USA
| | - Elizabeth Delgado
- Program in Disease Intervention and Prevention, Texas Biomedical Research Institute, San Antonio, TX, USA
| | - Lisa A. Checkley
- Eck Institute for Global Health, Department of Biological Sciences, University of Notre Dame, Notre Dame, IN, USA
| | - Douglas A. Shoue
- Eck Institute for Global Health, Department of Biological Sciences, University of Notre Dame, Notre Dame, IN, USA
| | - Ann Reyes
- Program in Disease Intervention and Prevention, Texas Biomedical Research Institute, San Antonio, TX, USA
| | - Biley A. Abatiyow
- Center for Global Infectious Disease Research, Seattle Children’s Research Institute, Seattle, WA, USA
| | - Meseret T. Haile
- Center for Global Infectious Disease Research, Seattle Children’s Research Institute, Seattle, WA, USA
| | - Rupam Tripura
- Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine Research Building, University of Oxford Old Road Campus, Oxford, UK
| | - Tom Peto
- Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine Research Building, University of Oxford Old Road Campus, Oxford, UK
| | - Dysoley Lek
- National Center for Parasitology, Entomology and Malaria Control, Phnom Penh, Cambodia
- School of Public Health, National Institute of Public Health, Phnom Penh, Cambodia
| | - Katrina A. Button-Simons
- Eck Institute for Global Health, Department of Biological Sciences, University of Notre Dame, Notre Dame, IN, USA
| | - Stefan H.I. Kappe
- Center for Global Infectious Disease Research, Seattle Children’s Research Institute, Seattle, WA, USA
- Department of Pediatrics, University of Washington, Seattle, WA, USA
| | - Mehul Dhorda
- Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine Research Building, University of Oxford Old Road Campus, Oxford, UK
| | - François Nosten
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine Research Building, University of Oxford Old Road Campus, Oxford, UK
- Shoklo Malaria Research Unit, Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Mae Sot, Thailand
| | | | - Ian H. Cheeseman
- Program in Host Pathogen Interactions, Texas Biomedical Research Institute, San Antonio, TX, USA
| | - Ashley M. Vaughan
- Center for Global Infectious Disease Research, Seattle Children’s Research Institute, Seattle, WA, USA
- Department of Pediatrics, University of Washington, Seattle, WA, USA
- Corresponding author
| | - Michael T. Ferdig
- Eck Institute for Global Health, Department of Biological Sciences, University of Notre Dame, Notre Dame, IN, USA
- Corresponding author
| | - Tim J.C. Anderson
- Program in Disease Intervention and Prevention, Texas Biomedical Research Institute, San Antonio, TX, USA
- Corresponding author
| |
Collapse
|
8
|
Baltrušis P, Doyle SR, Halvarsson P, Höglund J. Genome-wide analysis of the response to ivermectin treatment by a Swedish field population of Haemonchus contortus. Int J Parasitol Drugs Drug Resist 2022; 18:12-19. [PMID: 34959200 PMCID: PMC8718930 DOI: 10.1016/j.ijpddr.2021.12.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Revised: 12/20/2021] [Accepted: 12/20/2021] [Indexed: 11/24/2022]
Abstract
Haemonchus contortus is a pathogenic gastrointestinal nematode of small ruminants and, in part due to its capacity to develop resistance to drugs, contributes to significant losses in the animal production sector worldwide. Despite decades of research, comparatively little is known about the specific mechanism(s) driving resistance to drugs such as ivermectin in this species. Here we describe a genome-wide approach to detect evidence of selection by ivermectin treatment in a field population of H. contortus from Sweden, using parasites sampled from the same animals before and seven days after ivermectin exposure followed by whole-genome sequencing. Despite an 89% reduction in parasites recovered after treatment measured by the fecal egg count reduction test, the surviving population was highly genetically similar to the population before treatment, suggesting that resistance has likely evolved over time and that resistance alleles are present on diverse haplotypes. Pairwise gene and SNP frequency comparisons indicated the highest degree of differentiation was found at the terminal end of chromosome 4, whereas the most striking difference in nucleotide diversity was observed in a region on chromosome 5 previously reported to harbor a major quantitative trait locus involved in ivermectin resistance. These data provide novel insight into the genome-wide effect of ivermectin selection in a field population as well as confirm the importance of the previously established quantitative trait locus in the development of resistance to ivermectin.
Collapse
Affiliation(s)
- Paulius Baltrušis
- Department of Biomedical Sciences and Veterinary Public Health, Section for Parasitology, Swedish University of Agricultural Sciences, P.O. Box 7036, Uppsala, Sweden.
| | - Stephen R Doyle
- Wellcome Sanger Institute, Hinxton, Cambridgeshire, CB10 1SA, UK
| | - Peter Halvarsson
- Department of Biomedical Sciences and Veterinary Public Health, Section for Parasitology, Swedish University of Agricultural Sciences, P.O. Box 7036, Uppsala, Sweden
| | - Johan Höglund
- Department of Biomedical Sciences and Veterinary Public Health, Section for Parasitology, Swedish University of Agricultural Sciences, P.O. Box 7036, Uppsala, Sweden
| |
Collapse
|
9
|
Button-Simons KA, Kumar S, Carmago N, Haile MT, Jett C, Checkley LA, Kennedy SY, Pinapati RS, Shoue DA, McDew-White M, Li X, Nosten FH, Kappe SH, Anderson TJC, Romero-Severson J, Ferdig MT, Emrich SJ, Vaughan AM, Cheeseman IH. The power and promise of genetic mapping from Plasmodium falciparum crosses utilizing human liver-chimeric mice. Commun Biol 2021; 4:734. [PMID: 34127785 PMCID: PMC8203791 DOI: 10.1038/s42003-021-02210-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Accepted: 04/30/2021] [Indexed: 12/30/2022] Open
Abstract
Genetic crosses are most powerful for linkage analysis when progeny numbers are high, parental alleles segregate evenly and numbers of inbred progeny are minimized. We previously developed a novel genetic crossing platform for the human malaria parasite Plasmodium falciparum, an obligately sexual, hermaphroditic protozoan, using mice carrying human hepatocytes (the human liver-chimeric FRG NOD huHep mouse) as the vertebrate host. We report on two genetic crosses-(1) an allopatric cross between a laboratory-adapted parasite (NF54) of African origin and a recently patient-derived Asian parasite, and (2) a sympatric cross between two recently patient-derived Asian parasites. We generated 144 unique recombinant clones from the two crosses, doubling the number of unique recombinant progeny generated in the previous 30 years. The allopatric African/Asian cross has minimal levels of inbreeding and extreme segregation distortion, while in the sympatric Asian cross, inbred progeny predominate and parental alleles segregate evenly. Using simulations, we demonstrate that these progeny provide the power to map small-effect mutations and epistatic interactions. The segregation distortion in the allopatric cross slightly erodes power to detect linkage in several genome regions. We greatly increase the power and the precision to map biomedically important traits with these new large progeny panels.
Collapse
Affiliation(s)
- Katrina A Button-Simons
- Eck Institute for Global Health, Department of Biological Sciences, University of Notre Dame, Notre Dame, IN, USA.
| | - Sudhir Kumar
- Center for Global Infectious Disease Research, Seattle Children's Research Institute, Seattle, WA, USA
| | - Nelly Carmago
- Center for Global Infectious Disease Research, Seattle Children's Research Institute, Seattle, WA, USA
| | - Meseret T Haile
- Center for Global Infectious Disease Research, Seattle Children's Research Institute, Seattle, WA, USA
| | - Catherine Jett
- Host Pathogen Interactions Program, Texas Biomedical Research Institute, San Antonio, TX, USA
| | - Lisa A Checkley
- Eck Institute for Global Health, Department of Biological Sciences, University of Notre Dame, Notre Dame, IN, USA
| | - Spencer Y Kennedy
- Center for Global Infectious Disease Research, Seattle Children's Research Institute, Seattle, WA, USA
| | | | - Douglas A Shoue
- Eck Institute for Global Health, Department of Biological Sciences, University of Notre Dame, Notre Dame, IN, USA
| | - Marina McDew-White
- Disease Intervention and Prevention Program, Texas Biomedical Research Institute, San Antonio, TX, USA
| | - Xue Li
- Disease Intervention and Prevention Program, Texas Biomedical Research Institute, San Antonio, TX, USA
| | - François H Nosten
- Shoklo Malaria Research Unit, Mahidol-Oxford Tropical Medicine Research Unit, Mahidol University, Mae Sot, Thailand
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine Research Building, University of Oxford Old Road Campus, Oxford, UK
| | - Stefan H Kappe
- Center for Global Infectious Disease Research, Seattle Children's Research Institute, Seattle, WA, USA
| | - Timothy J C Anderson
- Disease Intervention and Prevention Program, Texas Biomedical Research Institute, San Antonio, TX, USA
| | | | - Michael T Ferdig
- Eck Institute for Global Health, Department of Biological Sciences, University of Notre Dame, Notre Dame, IN, USA
| | | | - Ashley M Vaughan
- Center for Global Infectious Disease Research, Seattle Children's Research Institute, Seattle, WA, USA
| | - Ian H Cheeseman
- Host Pathogen Interactions Program, Texas Biomedical Research Institute, San Antonio, TX, USA.
| |
Collapse
|
10
|
Ramaprasad A, Klaus S, Douvropoulou O, Culleton R, Pain A. Plasmodium vinckei genomes provide insights into the pan-genome and evolution of rodent malaria parasites. BMC Biol 2021; 19:69. [PMID: 33888092 PMCID: PMC8063448 DOI: 10.1186/s12915-021-00995-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Accepted: 02/25/2021] [Indexed: 01/27/2023] Open
Abstract
Background Rodent malaria parasites (RMPs) serve as tractable tools to study malaria parasite biology and host-parasite-vector interactions. Among the four RMPs originally collected from wild thicket rats in sub-Saharan Central Africa and adapted to laboratory mice, Plasmodium vinckei is the most geographically widespread with isolates collected from five separate locations. However, there is a lack of extensive phenotype and genotype data associated with this species, thus hindering its use in experimental studies. Results We have generated a comprehensive genetic resource for P. vinckei comprising of five reference-quality genomes, one for each of its subspecies, blood-stage RNA sequencing data for five P. vinckei isolates, and genotypes and growth phenotypes for ten isolates. Additionally, we sequenced seven isolates of the RMP species Plasmodium chabaudi and Plasmodium yoelii, thus extending genotypic information for four additional subspecies enabling a re-evaluation of the genotypic diversity and evolutionary history of RMPs. The five subspecies of P. vinckei have diverged widely from their common ancestor and have undergone large-scale genome rearrangements. Comparing P. vinckei genotypes reveals region-specific selection pressures particularly on genes involved in mosquito transmission. Using phylogenetic analyses, we show that RMP multigene families have evolved differently across the vinckei and berghei groups of RMPs and that family-specific expansions in P. chabaudi and P. vinckei occurred in the common vinckei group ancestor prior to speciation. The erythrocyte membrane antigen 1 and fam-c families in particular show considerable expansions among the lowland forest-dwelling P. vinckei parasites. The subspecies from the highland forests of Katanga, P. v. vinckei, has a uniquely smaller genome, a reduced multigene family repertoire and is also amenable to transfection making it an ideal parasite for reverse genetics. We also show that P. vinckei parasites are amenable to genetic crosses. Conclusions Plasmodium vinckei isolates display a large degree of phenotypic and genotypic diversity and could serve as a resource to study parasite virulence and immunogenicity. Inclusion of P. vinckei genomes provide new insights into the evolution of RMPs and their multigene families. Amenability to genetic crossing and transfection make them also suitable for classical and functional genetics to study Plasmodium biology. Supplementary Information The online version contains supplementary material available at 10.1186/s12915-021-00995-5.
Collapse
Affiliation(s)
- Abhinay Ramaprasad
- Pathogen Genomics Group, BESE Division, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Kingdom of Saudi Arabia.,Malaria Unit, Department of Pathology, Institute of Tropical Medicine (NEKKEN), Nagasaki University, 1-12-4 Sakamoto, Nagasaki, 852-8523, Japan.,Present address: Malaria Biochemistry Laboratory, Francis Crick Institute, London, NW1 1AT, UK
| | - Severina Klaus
- Malaria Unit, Department of Pathology, Institute of Tropical Medicine (NEKKEN), Nagasaki University, 1-12-4 Sakamoto, Nagasaki, 852-8523, Japan.,Biomedical Sciences, University of Heidelberg, Heidelberg, Germany
| | - Olga Douvropoulou
- Pathogen Genomics Group, BESE Division, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Kingdom of Saudi Arabia
| | - Richard Culleton
- Malaria Unit, Department of Pathology, Institute of Tropical Medicine (NEKKEN), Nagasaki University, 1-12-4 Sakamoto, Nagasaki, 852-8523, Japan. .,Division of Molecular Parasitology, Proteo-Science Center, Ehime University, 454 Shitsukawa, Toon, Ehime, 791-0295, Japan. .,Department of Protozoology, Institute of Tropical Medicine (NEKKEN), Nagasaki University, 1-12-4 Sakamoto, Nagasaki, 852-8523, Japan.
| | - Arnab Pain
- Pathogen Genomics Group, BESE Division, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Kingdom of Saudi Arabia. .,Center for Zoonosis Control, Global Institution for Collaborative Research and Education (GI-CoRE), Hokkaido University, N20 W10 Kita-ku, Sapporo, 001-0020, Japan.
| |
Collapse
|
11
|
Yuguchi T, Kanoi BN, Nagaoka H, Miura T, Ito D, Takeda H, Tsuboi T, Takashima E, Otsuki H. Plasmodium yoelii Erythrocyte Binding Like Protein Interacts With Basigin, an Erythrocyte Surface Protein. Front Cell Infect Microbiol 2021; 11:656620. [PMID: 33937099 PMCID: PMC8079763 DOI: 10.3389/fcimb.2021.656620] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Accepted: 03/25/2021] [Indexed: 11/30/2022] Open
Abstract
Erythrocyte recognition and invasion is critical for the intra-erythrocytic development of Plasmodium spp. parasites. The multistep invasion process involves specific interactions between parasite ligands and erythrocyte receptors. Erythrocyte-binding-like (EBL) proteins, type I integral transmembrane proteins released from the merozoite micronemes, are known to play an important role in the initiation and formation of tight junctions between the apical end of the merozoite and the erythrocyte surface. In Plasmodium yoelii EBL (PyEBL), a single amino acid substitution in the putative Duffy binding domain dramatically changes parasite growth rate and virulence. This suggests that PyEBL is important for modulating the virulence of P. yoelii parasites. Based on these observations, we sought to elucidate the receptor of PyEBL that mediates its role as an invasion ligand. Using the eukaryotic wheat germ cell-free system, we systematically developed and screened a library of mouse erythrocyte proteins against native PyEBL using AlphaScreen technology. We report that PyEBL specifically interacts with basigin, an erythrocyte surface protein. We further confirmed that the N-terminal cysteine-rich Duffy binding-like region (EBL region 2), is responsible for the interaction, and that the binding is not affected by the C351Y mutation, which was previously shown to modulate virulence of P. yoelii. The identification of basigin as the putative PyEBL receptor offers new insights into the role of this molecule and provides an important base for in-depth studies towards developing novel interventions against malaria.
Collapse
Affiliation(s)
- Takaaki Yuguchi
- Division of Malaria Research, Proteo-Science Center, Ehime University, Matsuyama, Japan
| | - Bernard N Kanoi
- Division of Malaria Research, Proteo-Science Center, Ehime University, Matsuyama, Japan
| | - Hikaru Nagaoka
- Division of Malaria Research, Proteo-Science Center, Ehime University, Matsuyama, Japan
| | - Toyokazu Miura
- Division of Malaria Research, Proteo-Science Center, Ehime University, Matsuyama, Japan
| | - Daisuke Ito
- Division of Medical Zoology, Department of Microbiology and Immunology, Faculty of Medicine, Tottori University, Yonago, Japan
| | - Hiroyuki Takeda
- Division of Proteo-Drug-Discovery Sciences, Proteo-Science Center, Ehime University, Matsuyama, Japan
| | - Takafumi Tsuboi
- Division of Malaria Research, Proteo-Science Center, Ehime University, Matsuyama, Japan
| | - Eizo Takashima
- Division of Malaria Research, Proteo-Science Center, Ehime University, Matsuyama, Japan
| | - Hitoshi Otsuki
- Division of Medical Zoology, Department of Microbiology and Immunology, Faculty of Medicine, Tottori University, Yonago, Japan
| |
Collapse
|
12
|
Su XZ, Zhang C, Joy DA. Host-Malaria Parasite Interactions and Impacts on Mutual Evolution. Front Cell Infect Microbiol 2020; 10:587933. [PMID: 33194831 PMCID: PMC7652737 DOI: 10.3389/fcimb.2020.587933] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Accepted: 09/22/2020] [Indexed: 12/22/2022] Open
Abstract
Malaria is the most deadly parasitic disease, affecting hundreds of millions of people worldwide. Malaria parasites have been associated with their hosts for millions of years. During the long history of host-parasite co-evolution, both parasites and hosts have applied pressure on each other through complex host-parasite molecular interactions. Whereas the hosts activate various immune mechanisms to remove parasites during an infection, the parasites attempt to evade host immunity by diversifying their genome and switching expression of targets of the host immune system. Human intervention to control the disease such as antimalarial drugs and vaccination can greatly alter parasite population dynamics and evolution, particularly the massive applications of antimalarial drugs in recent human history. Vaccination is likely the best method to prevent the disease; however, a partially protective vaccine may have unwanted consequences that require further investigation. Studies of host-parasite interactions and co-evolution will provide important information for designing safe and effective vaccines and for preventing drug resistance. In this essay, we will discuss some interesting molecules involved in host-parasite interactions, including important parasite antigens. We also discuss subjects relevant to drug and vaccine development and some approaches for studying host-parasite interactions.
Collapse
Affiliation(s)
- Xin-Zhuan Su
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, United States
| | - Cui Zhang
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, United States
| | - Deirdre A Joy
- Parasitology and International Programs Branch, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, United States
| |
Collapse
|
13
|
Vendrely KM, Kumar S, Li X, Vaughan AM. Humanized Mice and the Rebirth of Malaria Genetic Crosses. Trends Parasitol 2020; 36:850-863. [PMID: 32891493 DOI: 10.1016/j.pt.2020.07.009] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Revised: 07/10/2020] [Accepted: 07/18/2020] [Indexed: 12/18/2022]
Abstract
The first experimental crosses carried out with the human malaria parasite Plasmodium falciparum played a key role in determining the genetic loci responsible for drug resistance, virulence, invasion, growth rate, and transmission. These crosses relied on splenectomized chimpanzees to complete the liver stage of the parasite's life cycle and the subsequent transition to asexual blood stage culture followed by cloning of recombinant progeny in vitro. Crosses can now be routinely carried out using human-liver-chimeric mice infused with human erythrocytes to generate hundreds of unique recombinant progeny for genetic linkage mapping, bulk segregant analysis, and high-throughput 'omics readouts. The high number of recombinant progeny should allow for unprecedented power and efficiency in the execution of a systems genetics approach to study P. falciparum biology.
Collapse
Affiliation(s)
- Katelyn M Vendrely
- Eck Institute for Global Health, Department of Biological Sciences, University of Notre Dame, Notre Dame, IN, USA
| | - Sudhir Kumar
- Center for Global Infectious Disease Research, Seattle Children's Research Institute, Seattle, WA, USA
| | - Xue Li
- Disease Intervention and Prevention Program, Texas Biomedical Research Institute, San Antonio, TX, USA
| | - Ashley M Vaughan
- Center for Global Infectious Disease Research, Seattle Children's Research Institute, Seattle, WA, USA; Department of Pediatrics, University of Washington, Seattle, WA, USA.
| |
Collapse
|
14
|
Li X, Kumar S, McDew-White M, Haile M, Cheeseman IH, Emrich S, Button-Simons K, Nosten F, Kappe SHI, Ferdig MT, Anderson TJC, Vaughan AM. Genetic mapping of fitness determinants across the malaria parasite Plasmodium falciparum life cycle. PLoS Genet 2019; 15:e1008453. [PMID: 31609965 PMCID: PMC6821138 DOI: 10.1371/journal.pgen.1008453] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Revised: 10/30/2019] [Accepted: 10/01/2019] [Indexed: 12/14/2022] Open
Abstract
Determining the genetic basis of fitness is central to understanding evolution and transmission of microbial pathogens. In human malaria parasites (Plasmodium falciparum), most experimental work on fitness has focused on asexual blood stage parasites, because this stage can be easily cultured, although the transmission of malaria requires both female Anopheles mosquitoes and vertebrate hosts. We explore a powerful approach to identify the genetic determinants of parasite fitness across both invertebrate and vertebrate life-cycle stages of P. falciparum. This combines experimental genetic crosses using humanized mice, with selective whole genome amplification and pooled sequencing to determine genome-wide allele frequencies and identify genomic regions under selection across multiple lifecycle stages. We applied this approach to genetic crosses between artemisinin resistant (ART-R, kelch13-C580Y) and ART-sensitive (ART-S, kelch13-WT) parasites, recently isolated from Southeast Asian patients. Two striking results emerge: we observed (i) a strong genome-wide skew (>80%) towards alleles from the ART-R parent in the mosquito stage, that dropped to ~50% in the blood stage as selfed ART-R parasites were selected against; and (ii) repeatable allele specific skews in blood stage parasites with particularly strong selection (selection coefficient (s) ≤ 0.18/asexual cycle) against alleles from the ART-R parent at loci on chromosome 12 containing MRP2 and chromosome 14 containing ARPS10. This approach robustly identifies selected loci and has strong potential for identifying parasite genes that interact with the mosquito vector or compensatory loci involved in drug resistance.
Collapse
Affiliation(s)
- Xue Li
- Texas Biomedical Research Institute, San Antonio, Texas, United States of America
| | - Sudhir Kumar
- Center for Global Infectious Disease Research, Seattle Children’s Research Institute, Seattle, Washington, United States of America
| | - Marina McDew-White
- Texas Biomedical Research Institute, San Antonio, Texas, United States of America
| | - Meseret Haile
- Center for Global Infectious Disease Research, Seattle Children’s Research Institute, Seattle, Washington, United States of America
| | - Ian H. Cheeseman
- Texas Biomedical Research Institute, San Antonio, Texas, United States of America
| | - Scott Emrich
- Eck Institute for Global Health, Department of Biological Sciences, University of Notre Dame, Notre Dame, Indiana, United States of America
- Electrical Engineering and Computer Science, University of Tennessee, Knoxville, Tennessee, United States of America
| | - Katie Button-Simons
- Eck Institute for Global Health, Department of Biological Sciences, University of Notre Dame, Notre Dame, Indiana, United States of America
| | - François Nosten
- Shoklo Malaria Research Unit, Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Mae Sot, Thailand
- Centre for Tropical Medicine and Global Health, University of Oxford, Oxford, United Kingdom
| | - Stefan H. I. Kappe
- Center for Global Infectious Disease Research, Seattle Children’s Research Institute, Seattle, Washington, United States of America
- Department of Global Health, University of Washington, Seattle, Washington, United States of America
| | - Michael T. Ferdig
- Eck Institute for Global Health, Department of Biological Sciences, University of Notre Dame, Notre Dame, Indiana, United States of America
| | - Tim J. C. Anderson
- Texas Biomedical Research Institute, San Antonio, Texas, United States of America
- * E-mail: (TJCA); (AMV)
| | - Ashley M. Vaughan
- Center for Global Infectious Disease Research, Seattle Children’s Research Institute, Seattle, Washington, United States of America
- * E-mail: (TJCA); (AMV)
| |
Collapse
|
15
|
Doyle SR, Illingworth CJR, Laing R, Bartley DJ, Redman E, Martinelli A, Holroyd N, Morrison AA, Rezansoff A, Tracey A, Devaney E, Berriman M, Sargison N, Cotton JA, Gilleard JS. Population genomic and evolutionary modelling analyses reveal a single major QTL for ivermectin drug resistance in the pathogenic nematode, Haemonchus contortus. BMC Genomics 2019; 20:218. [PMID: 30876405 PMCID: PMC6420744 DOI: 10.1186/s12864-019-5592-6] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2018] [Accepted: 03/11/2019] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Infections with helminths cause an enormous disease burden in billions of animals and plants worldwide. Large scale use of anthelmintics has driven the evolution of resistance in a number of species that infect livestock and companion animals, and there are growing concerns regarding the reduced efficacy in some human-infective helminths. Understanding the mechanisms by which resistance evolves is the focus of increasing interest; robust genetic analysis of helminths is challenging, and although many candidate genes have been proposed, the genetic basis of resistance remains poorly resolved. RESULTS Here, we present a genome-wide analysis of two genetic crosses between ivermectin resistant and sensitive isolates of the parasitic nematode Haemonchus contortus, an economically important gastrointestinal parasite of small ruminants and a model for anthelmintic research. Whole genome sequencing of parental populations, and key stages throughout the crosses, identified extensive genomic diversity that differentiates populations, but after backcrossing and selection, a single genomic quantitative trait locus (QTL) localised on chromosome V was revealed to be associated with ivermectin resistance. This QTL was common between the two geographically and genetically divergent resistant populations and did not include any leading candidate genes, suggestive of a previously uncharacterised mechanism and/or driver of resistance. Despite limited resolution due to low recombination in this region, population genetic analyses and novel evolutionary models supported strong selection at this QTL, driven by at least partial dominance of the resistant allele, and that large resistance-associated haplotype blocks were enriched in response to selection. CONCLUSIONS We have described the genetic architecture and mode of ivermectin selection, revealing a major genomic locus associated with ivermectin resistance, the most conclusive evidence to date in any parasitic nematode. This study highlights a novel genome-wide approach to the analysis of a genetic cross in non-model organisms with extreme genetic diversity, and the importance of a high-quality reference genome in interpreting the signals of selection so identified.
Collapse
Affiliation(s)
| | - Christopher J. R. Illingworth
- Department of Genetics, University of Cambridge, Downing Street, Cambridge, CB2 3EH UK
- Department of Applied Maths and Theoretical Physics, Wilberforce Road, Cambridge, CB3 0WA UK
| | - Roz Laing
- Institute of Biodiversity Animal Health and Comparative Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, Garscube Campus, Glasgow, G61 1QH UK
| | - David J. Bartley
- Moredun Research Institute, Pentlands Science Park, Bush Loan, Penicuik, EH26 0PZ UK
| | - Elizabeth Redman
- Department of Comparative Biology and Experimental Medicine, Faculty of Veterinary Medicine, University of Calgary, Calgary, Alberta Canada
| | - Axel Martinelli
- Wellcome Sanger Institute, Hinxton, Cambridgeshire, CB10 1SA UK
- Present Address: Global Station for Zoonosis Control, Global Institution for Collaborative Research and Education (GI-CoRE), Hokkaido University, Sapporo, Japan
- Present Address: Biological and Environmental Sciences and Engineering (BESE) Division, King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | - Nancy Holroyd
- Wellcome Sanger Institute, Hinxton, Cambridgeshire, CB10 1SA UK
| | - Alison A. Morrison
- Moredun Research Institute, Pentlands Science Park, Bush Loan, Penicuik, EH26 0PZ UK
| | - Andrew Rezansoff
- Department of Comparative Biology and Experimental Medicine, Faculty of Veterinary Medicine, University of Calgary, Calgary, Alberta Canada
| | - Alan Tracey
- Wellcome Sanger Institute, Hinxton, Cambridgeshire, CB10 1SA UK
| | - Eileen Devaney
- Institute of Biodiversity Animal Health and Comparative Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, Garscube Campus, Glasgow, G61 1QH UK
| | | | - Neil Sargison
- University of Edinburgh, Royal (Dick) School of Veterinary Studies, Edinburgh, EH25 9RG UK
| | - James A. Cotton
- Wellcome Sanger Institute, Hinxton, Cambridgeshire, CB10 1SA UK
| | - John S. Gilleard
- Department of Comparative Biology and Experimental Medicine, Faculty of Veterinary Medicine, University of Calgary, Calgary, Alberta Canada
| |
Collapse
|
16
|
Lin JW, Reid AJ, Cunningham D, Böhme U, Tumwine I, Keller-Mclaughlin S, Sanders M, Berriman M, Langhorne J. Genomic and transcriptomic comparisons of closely related malaria parasites differing in virulence and sequestration pattern. Wellcome Open Res 2018; 3:142. [PMID: 30542666 DOI: 10.12688/wellcomeopenres.14797.1] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/24/2018] [Indexed: 12/27/2022] Open
Abstract
Background: Malaria parasite species differ greatly in the harm they do to humans. While P. falciparum kills hundreds of thousands per year, P. vivax kills much less often and P. malariae is relatively benign. Strains of the rodent malaria parasite Plasmodium chabaudi show phenotypic variation in virulence during infections of laboratory mice. This make it an excellent species to study genes which may be responsible for this trait. By understanding the mechanisms which underlie differences in virulence we can learn how parasites adapt to their hosts and how we might prevent disease. Methods: Here we present a complete reference genome sequence for a more virulent P. chabaudi strain, PcCB, and perform a detailed comparison with the genome of the less virulent PcAS strain. Results: We found the greatest variation in the subtelomeric regions, in particular amongst the sequences of the pir gene family, which has been associated with virulence and establishment of chronic infection. Despite substantial variation at the sequence level, the repertoire of these genes has been largely maintained, highlighting the requirement for functional conservation as well as diversification in host-parasite interactions. However, a subset of pir genes, previously associated with increased virulence, were more highly expressed in PcCB, suggesting a role for this gene family in virulence differences between strains. We found that core genes involved in red blood cell invasion have been under positive selection and that the more virulent strain has a greater preference for reticulocytes, which has elsewhere been associated with increased virulence. Conclusions: These results provide the basis for a mechanistic understanding of the phenotypic differences between Plasmodium chabaudi strains, which might ultimately be translated into a better understanding of malaria parasites affecting humans.
Collapse
Affiliation(s)
- Jing-Wen Lin
- Malaria Immunology laboratory, Francis Crick Institute, London, NW1 1AT, UK.,Division of Pediatric Infectious Diseases, Sichuan University and Collaboration Innovation Centre, Chengdu, 610041, China
| | - Adam J Reid
- Parasites & Microbes, Wellcome Trust Sanger Institute, Cambridge, CB10 1SA, UK
| | - Deirdre Cunningham
- Malaria Immunology laboratory, Francis Crick Institute, London, NW1 1AT, UK
| | - Ulrike Böhme
- Parasites & Microbes, Wellcome Trust Sanger Institute, Cambridge, CB10 1SA, UK
| | - Irene Tumwine
- Malaria Immunology laboratory, Francis Crick Institute, London, NW1 1AT, UK
| | | | - Mandy Sanders
- Parasites & Microbes, Wellcome Trust Sanger Institute, Cambridge, CB10 1SA, UK
| | - Matthew Berriman
- Parasites & Microbes, Wellcome Trust Sanger Institute, Cambridge, CB10 1SA, UK
| | - Jean Langhorne
- Malaria Immunology laboratory, Francis Crick Institute, London, NW1 1AT, UK
| |
Collapse
|
17
|
Lin JW, Reid AJ, Cunningham D, Böhme U, Tumwine I, Keller-Mclaughlin S, Sanders M, Berriman M, Langhorne J. Genomic and transcriptomic comparisons of closely related malaria parasites differing in virulence and sequestration pattern. Wellcome Open Res 2018; 3:142. [PMID: 30542666 PMCID: PMC6259598 DOI: 10.12688/wellcomeopenres.14797.2] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/27/2018] [Indexed: 01/01/2023] Open
Abstract
Background: Malaria parasite species differ greatly in the harm they do to humans. While
P. falciparum kills hundreds of thousands per year,
P. vivax kills much less often and
P. malariae is relatively benign. Strains of the rodent malaria parasite
Plasmodium chabaudi show phenotypic variation in virulence during infections of laboratory mice. This make it an excellent species to study genes which may be responsible for this trait. By understanding the mechanisms which underlie differences in virulence we can learn how parasites adapt to their hosts and how we might prevent disease. Methods: Here we present a complete reference genome sequence for a more virulent
P. chabaudi strain, PcCB, and perform a detailed comparison with the genome of the less virulent PcAS strain. Results: We found the greatest variation in the subtelomeric regions, in particular amongst the sequences of the
pir gene family, which has been associated with virulence and establishment of chronic infection. Despite substantial variation at the sequence level, the repertoire of these genes has been largely maintained, highlighting the requirement for functional conservation as well as diversification in host-parasite interactions. However, a subset of
pir genes, previously associated with increased virulence, were more highly expressed in PcCB, suggesting a role for this gene family in virulence differences between strains. We found that core genes involved in red blood cell invasion have been under positive selection and that the more virulent strain has a greater preference for reticulocytes, which has elsewhere been associated with increased virulence. Conclusions: These results provide the basis for a mechanistic understanding of the phenotypic differences between
Plasmodium chabaudi strains, which might ultimately be translated into a better understanding of malaria parasites affecting humans.
Collapse
Affiliation(s)
- Jing-Wen Lin
- Malaria Immunology laboratory, Francis Crick Institute, London, NW1 1AT, UK.,Division of Pediatric Infectious Diseases, Sichuan University and Collaboration Innovation Centre, Chengdu, 610041, China
| | - Adam J Reid
- Parasites & Microbes, Wellcome Trust Sanger Institute, Cambridge, CB10 1SA, UK
| | - Deirdre Cunningham
- Malaria Immunology laboratory, Francis Crick Institute, London, NW1 1AT, UK
| | - Ulrike Böhme
- Parasites & Microbes, Wellcome Trust Sanger Institute, Cambridge, CB10 1SA, UK
| | - Irene Tumwine
- Malaria Immunology laboratory, Francis Crick Institute, London, NW1 1AT, UK
| | | | - Mandy Sanders
- Parasites & Microbes, Wellcome Trust Sanger Institute, Cambridge, CB10 1SA, UK
| | - Matthew Berriman
- Parasites & Microbes, Wellcome Trust Sanger Institute, Cambridge, CB10 1SA, UK
| | - Jean Langhorne
- Malaria Immunology laboratory, Francis Crick Institute, London, NW1 1AT, UK
| |
Collapse
|
18
|
Kegawa Y, Asada M, Ishizaki T, Yahata K, Kaneko O. Critical role of Erythrocyte Binding-Like protein of the rodent malaria parasite Plasmodium yoelii to establish an irreversible connection with the erythrocyte during invasion. Parasitol Int 2018; 67:706-714. [PMID: 30025976 DOI: 10.1016/j.parint.2018.07.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2018] [Revised: 07/13/2018] [Accepted: 07/14/2018] [Indexed: 01/14/2023]
Abstract
Plasmodium malaria parasites multiply within erythrocytes and possess a repertoire of proteins whose function is to recognize and invade these vertebrate host cells. One such protein involved in erythrocyte invasion is the micronemal protein, Erythrocyte Binding-Like (EBL), which has been studied as a potential target of vaccine development in Plasmodium vivax (PvDBP) and Plasmodium falciparum (EBA-175). In the rodent malaria parasite model Plasmodium yoelii, specific substitutions in the EBL regions responsible for intracellular trafficking (17XL parasite line) or receptor recognition (17X1.1pp. parasite line), paradoxically increase invasion ability and virulence rather than abolish EBL function. Attempts to disrupt the ebl gene locus in the 17XL and 17XNL lines were unsuccessful, suggesting EBL essentiality. To understand the mechanisms behind these potentially conflicting outcomes, we generated 17XL-based transfectants in which ebl expression is suppressed with anhydrotetracycline (ATc) and investigated merozoite behavior during erythrocyte invasion. In the absence of ATc, EBL was secreted to the merozoite surface, whereas following ATc administration parasitemia was negligible in vivo. Merozoites lacking EBL were unable to invade erythrocytes in vitro, indicating that EBL has a critical role for erythrocyte invasion. Quantitative time-lapse imaging revealed that with ATc administration a significant number of merozoites were detached from the erythrocyte after the erythrocyte deformation event and no echinocytosis was observed, indicating that EBL is required for merozoites to establish an irreversible connection with erythrocytes during invasion.
Collapse
Affiliation(s)
- Yuto Kegawa
- Program for Nurturing Global Leaders in Tropical and Emerging Communicable Diseases, Graduate School of Biomedical Sciences, Nagasaki University, 1-12-4 Sakamoto, Nagasaki 852-8523, Japan; Department of Protozoology, Institute of Tropical Medicine (NEKKEN), Nagasaki University, 1-12-4 Sakamoto, Nagasaki 852-8523, Japan.
| | - Masahito Asada
- Program for Nurturing Global Leaders in Tropical and Emerging Communicable Diseases, Graduate School of Biomedical Sciences, Nagasaki University, 1-12-4 Sakamoto, Nagasaki 852-8523, Japan; Department of Protozoology, Institute of Tropical Medicine (NEKKEN), Nagasaki University, 1-12-4 Sakamoto, Nagasaki 852-8523, Japan.
| | - Takahiro Ishizaki
- Program for Nurturing Global Leaders in Tropical and Emerging Communicable Diseases, Graduate School of Biomedical Sciences, Nagasaki University, 1-12-4 Sakamoto, Nagasaki 852-8523, Japan; Department of Protozoology, Institute of Tropical Medicine (NEKKEN), Nagasaki University, 1-12-4 Sakamoto, Nagasaki 852-8523, Japan.
| | - Kazuhide Yahata
- Department of Protozoology, Institute of Tropical Medicine (NEKKEN), Nagasaki University, 1-12-4 Sakamoto, Nagasaki 852-8523, Japan.
| | - Osamu Kaneko
- Program for Nurturing Global Leaders in Tropical and Emerging Communicable Diseases, Graduate School of Biomedical Sciences, Nagasaki University, 1-12-4 Sakamoto, Nagasaki 852-8523, Japan; Department of Protozoology, Institute of Tropical Medicine (NEKKEN), Nagasaki University, 1-12-4 Sakamoto, Nagasaki 852-8523, Japan.
| |
Collapse
|