1
|
Aparicio-Yuste R, Hundsdorfer L, Bastounis EE, Gomez-Benito MJ. Hybrid model to simulate host cell biomechanics and infection spread during intracellular infection of epithelial monolayers. Comput Biol Med 2024; 185:109506. [PMID: 39662314 DOI: 10.1016/j.compbiomed.2024.109506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 10/19/2024] [Accepted: 11/27/2024] [Indexed: 12/13/2024]
Abstract
Mechanical signals are crucial in regulating the response of cells in a monolayer to both physiological and pathological stressors, including intracellular bacterial infections. In particular, during intracellular infection of epithelial cells in monolayer with the food-borne bacterial pathogen Listeria monocytogenes, cellular biomechanics dictates the degree of bacterial dissemination across the monolayer. This occurs through a process whereby surrounder uninfected cells mechanically compete and eventually extrude infected cells. However, the plethora of physical mechanisms involved and their temporal dynamics are still not fully uncovered, which could inform whether they benefit or harm the host. To further investigate these mechanisms, we propose a two-dimensional hybrid computational model that combines an agent-based model with a finite element method to simulate the kinematics and dynamics of epithelial cell monolayers in the absence or presence of infection. The model accurately replicated the impact of cell density on the mechanical behaviour of uninfected monolayers, showing that increased cell density reduces cell motility and coordination of motion, cell fluidity and monolayer stresses. Moreover, when simulating the intercellular spread of infection, the model successfully reproduced the mechanical competition between uninfected and infected cells. Infected cells showed a reduction in cell area, while the surrounder cells migrated towards the infection site, exerting increased monolayer stresses, consistent with our in vitro observations. This model offers a powerful tool for studying epithelial monolayers in health and disease, by providing in silico predictions of cell shapes, kinematics and dynamics that can then be tested experimentally.
Collapse
Affiliation(s)
- Raul Aparicio-Yuste
- Multiscale in Mechanical and Biological Engineering (M2BE), Engineering Research Institute of Aragon (I3A), Department of Mechanical Engineering, Universidad de Zaragoza, Zaragoza, 50018, Spain; Interfaculty Institute of Microbiology and Infection Medicine, Cluster of Excellence "Controlling Microbes to Fight Infections" (CMFI, EXC 2124), University of Tuebingen, Tuebingen, 72074, Germany
| | - Lara Hundsdorfer
- Interfaculty Institute of Microbiology and Infection Medicine, Cluster of Excellence "Controlling Microbes to Fight Infections" (CMFI, EXC 2124), University of Tuebingen, Tuebingen, 72074, Germany
| | - Effie E Bastounis
- Interfaculty Institute of Microbiology and Infection Medicine, Cluster of Excellence "Controlling Microbes to Fight Infections" (CMFI, EXC 2124), University of Tuebingen, Tuebingen, 72074, Germany.
| | - Maria Jose Gomez-Benito
- Multiscale in Mechanical and Biological Engineering (M2BE), Engineering Research Institute of Aragon (I3A), Department of Mechanical Engineering, Universidad de Zaragoza, Zaragoza, 50018, Spain.
| |
Collapse
|
2
|
Xiang X, Yu D, Li Z, Fros JJ, Wei J, Liu K, Li Z, Shao D, Li B, Kortekaas J, van Oers MM, Ma Z, Pijlman GP, Qiu Y. Japanese encephalitis virus-induced DNA methylation contributes to blood-brain barrier permeability by modulating tight junction protein expression. J Neuroinflammation 2024; 21:277. [PMID: 39468601 PMCID: PMC11520778 DOI: 10.1186/s12974-024-03266-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2024] [Accepted: 10/18/2024] [Indexed: 10/30/2024] Open
Abstract
Japanese encephalitis virus (JEV) is a neurotropic and neuroinvasive flavivirus causing viral encephalitis, which seriously threatens the development of animal husbandry and human health. DNA methylation is a major epigenetic modification involved in viral pathogenesis, yet how DNA methylation affects JEV infection remains unknown. Here, we show genome-wide DNA methylation profiles in the brains of JEV-infected mice compared to mock-infected mice. JEV can significantly increase the overall DNA methylation levels in JEV-infected mouse brains. A total of 14,781 differentially methylated regions associated genes (DMGs) have been identified. Subsequently, KEGG pathway analysis suggested that DNA methylation modulates the tight junction signaling pathway, which can potentially impact the permeability of the blood-brain barrier (BBB). We demonstrate that hypermethylation of the tight junction gene Afdn promoter inhibited AFDN expression and increased monolayer permeability of mouse brain microvascular endothelial (bEnd.3) cells in an in vitro transwell assay. Collectively, this study reveals that DNA methylation is increased in a murine Japanese encephalitis model and that modulation of Afdn expression promotes BBB permeability.
Collapse
Affiliation(s)
- Xiao Xiang
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, CAAS, 518 Ziyue Road, Shanghai, 200241, China
- Laboratory of Virology, Wageningen University & Research, Wageningen, 6708PB, The Netherlands
| | - Du Yu
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, CAAS, 518 Ziyue Road, Shanghai, 200241, China
| | - Zhuangzhuang Li
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, CAAS, 518 Ziyue Road, Shanghai, 200241, China
| | - Jelke J Fros
- Laboratory of Virology, Wageningen University & Research, Wageningen, 6708PB, The Netherlands
| | - Jianchao Wei
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, CAAS, 518 Ziyue Road, Shanghai, 200241, China
| | - Ke Liu
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, CAAS, 518 Ziyue Road, Shanghai, 200241, China
| | - Zongjie Li
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, CAAS, 518 Ziyue Road, Shanghai, 200241, China
| | - Donghua Shao
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, CAAS, 518 Ziyue Road, Shanghai, 200241, China
| | - Beibei Li
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, CAAS, 518 Ziyue Road, Shanghai, 200241, China
| | - Jeroen Kortekaas
- Laboratory of Virology, Wageningen University & Research, Wageningen, 6708PB, The Netherlands
| | - Monique M van Oers
- Laboratory of Virology, Wageningen University & Research, Wageningen, 6708PB, The Netherlands
| | - Zhiyong Ma
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, CAAS, 518 Ziyue Road, Shanghai, 200241, China
| | - Gorben P Pijlman
- Laboratory of Virology, Wageningen University & Research, Wageningen, 6708PB, The Netherlands.
| | - Yafeng Qiu
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, CAAS, 518 Ziyue Road, Shanghai, 200241, China.
| |
Collapse
|
3
|
Fan M, Wu H, Sferruzzi-Perri AN, Wang YL, Shao X. Endocytosis at the maternal-fetal interface: balancing nutrient transport and pathogen defense. Front Immunol 2024; 15:1415794. [PMID: 38957469 PMCID: PMC11217186 DOI: 10.3389/fimmu.2024.1415794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Accepted: 06/03/2024] [Indexed: 07/04/2024] Open
Abstract
Endocytosis represents a category of regulated active transport mechanisms. These encompass clathrin-dependent and -independent mechanisms, as well as fluid phase micropinocytosis and macropinocytosis, each demonstrating varying degrees of specificity and capacity. Collectively, these mechanisms facilitate the internalization of cargo into cellular vesicles. Pregnancy is one such physiological state during which endocytosis may play critical roles. A successful pregnancy necessitates ongoing communication between maternal and fetal cells at the maternal-fetal interface to ensure immunologic tolerance for the semi-allogenic fetus whilst providing adequate protection against infection from pathogens, such as viruses and bacteria. It also requires transport of nutrients across the maternal-fetal interface, but restriction of potentially harmful chemicals and drugs to allow fetal development. In this context, trogocytosis, a specific form of endocytosis, plays a crucial role in immunological tolerance and infection prevention. Endocytosis is also thought to play a significant role in nutrient and toxin handling at the maternal-fetal interface, though its mechanisms remain less understood. A comprehensive understanding of endocytosis and its mechanisms not only enhances our knowledge of maternal-fetal interactions but is also essential for identifying the pathogenesis of pregnancy pathologies and providing new avenues for therapeutic intervention.
Collapse
Affiliation(s)
- Mingming Fan
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- Key Laboratory of Organ Regeneration and Reconstruction, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Hongyu Wu
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- Key Laboratory of Organ Regeneration and Reconstruction, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Amanda N. Sferruzzi-Perri
- Centre for Trophoblast Research, Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, United Kingdom
| | - Yan-Ling Wang
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- Key Laboratory of Organ Regeneration and Reconstruction, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, China
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, China
| | - Xuan Shao
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- Key Laboratory of Organ Regeneration and Reconstruction, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, China
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
4
|
Hugon AM, Deblois CL, Simmons HA, Mejia A, Schotzo ML, Czuprynski CJ, Suen G, Golos TG. Listeria monocytogenes infection in pregnant macaques alters the maternal gut microbiome†. Biol Reprod 2023; 109:618-634. [PMID: 37665249 PMCID: PMC10651077 DOI: 10.1093/biolre/ioad104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/05/2023] Open
Abstract
OBJECTIVES The bacterium Listeria monocytogenes (Lm) is associated with adverse pregnancy outcomes. Infection occurs through consumption of contaminated food that is disseminated to the maternal-fetal interface. The influence on the gastrointestinal microbiome during Lm infection remains unexplored in pregnancy. The objective of this study was to determine the impact of listeriosis on the gut microbiota of pregnant macaques. METHODS A non-human primate model of listeriosis in pregnancy has been previously described. Both pregnant and non-pregnant cynomolgus macaques were inoculated with Lm and bacteremia and fecal shedding were monitored for 14 days. Non-pregnant animal tissues were collected at necropsy to determine bacterial burden, and fecal samples from both pregnant and non-pregnant animals were evaluated by 16S rRNA next-generation sequencing. RESULTS Unlike pregnant macaques, non-pregnant macaques did not exhibit bacteremia, fecal shedding, or tissue colonization by Lm. Dispersion of Lm during pregnancy was associated with a significant decrease in alpha diversity of the host gut microbiome, compared to non-pregnant counterparts. The combined effects of pregnancy and listeriosis were associated with a significant loss in microbial richness, although there were increases in some genera and decreases in others. CONCLUSIONS Although pregnancy alone is not associated with gut microbiome disruption, we observed dysbiosis with listeriosis during pregnancy. The macaque model may provide an understanding of the roles that pregnancy and the gut microbiota play in the ability of Lm to establish intestinal infection and disseminate throughout the host, thereby contributing to adverse pregnancy outcomes and risk to the developing fetus.
Collapse
Affiliation(s)
- Anna Marie Hugon
- Wisconsin National Primate Research Center, University of Wisconsin–Madison, Madison, WI, USA
- Department of Pathology and Laboratory Medicine, University of Wisconsin–Madison, Madison, WI, USA
| | - Courtney L Deblois
- Department of Bacteriology, University of Wisconsin–Madison, Madison, WI, USA
- Microbiology Doctoral Training Program, University of Wisconsin–Madison, Madison, WI, USA
| | - Heather A Simmons
- Wisconsin National Primate Research Center, University of Wisconsin–Madison, Madison, WI, USA
| | - Andres Mejia
- Wisconsin National Primate Research Center, University of Wisconsin–Madison, Madison, WI, USA
| | - Michele L Schotzo
- Wisconsin National Primate Research Center, University of Wisconsin–Madison, Madison, WI, USA
| | - Charles J Czuprynski
- Department of Pathobiological Sciences, University of Wisconsin–Madison, Madison, WI, USA
| | - Garret Suen
- Department of Bacteriology, University of Wisconsin–Madison, Madison, WI, USA
| | - Thaddeus G Golos
- Wisconsin National Primate Research Center, University of Wisconsin–Madison, Madison, WI, USA
- Department of Comparative Biosciences, University of Wisconsin–Madison, Madison, WI, USA
- Department of Obstetrics and Gynecology, University of Wisconsin–Madison, Madison, WI, USA
| |
Collapse
|
5
|
Abstract
Listeria monocytogenes is a Gram-positive facultative intracellular pathogen that can cause severe invasive infections upon ingestion with contaminated food. Clinically, listerial disease, or listeriosis, most often presents as bacteremia, meningitis or meningoencephalitis, and pregnancy-associated infections manifesting as miscarriage or neonatal sepsis. Invasive listeriosis is life-threatening and a main cause of foodborne illness leading to hospital admissions in Western countries. Sources of contamination can be identified through international surveillance systems for foodborne bacteria and strains' genetic data sharing. Large-scale whole genome studies have increased our knowledge on the diversity and evolution of L. monocytogenes, while recent pathophysiological investigations have improved our mechanistic understanding of listeriosis. In this article, we present an overview of human listeriosis with particular focus on relevant features of the causative bacterium, epidemiology, risk groups, pathogenesis, clinical manifestations, and treatment and prevention.
Collapse
Affiliation(s)
- Merel M Koopmans
- Amsterdam UMC, University of Amsterdam, Department of Neurology, Amsterdam Neuroscience, Amsterdam, the Netherlands
| | - Matthijs C Brouwer
- Amsterdam UMC, University of Amsterdam, Department of Neurology, Amsterdam Neuroscience, Amsterdam, the Netherlands
| | - José A Vázquez-Boland
- Infection Medicine, Edinburgh Medical School (Biomedical Sciences), University of Edinburgh, Edinburgh, United Kingdom
| | - Diederik van de Beek
- Amsterdam UMC, University of Amsterdam, Department of Neurology, Amsterdam Neuroscience, Amsterdam, the Netherlands
| |
Collapse
|
6
|
Pourpre R, Lakisic G, Desgranges E, Cossart P, Pagliuso A, Bierne H. A bacterial virulence factor interacts with the splicing factor RBM5 and stimulates formation of nuclear RBM5 granules. Sci Rep 2022; 12:21961. [PMID: 36535993 PMCID: PMC9763339 DOI: 10.1038/s41598-022-26037-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Accepted: 12/08/2022] [Indexed: 12/23/2022] Open
Abstract
L. monocytogenes causes listeriosis, a foodborne disease that is particularly dangerous for immunocompromised individuals and fetuses. Several virulence factors of this bacterial pathogen belong to a family of leucine-rich repeat (LRR)-containing proteins called internalins. Among these, InlP is known for its role in placental infection. We report here a function of InlP in mammalian cell nucleus organization. We demonstrate that bacteria do not produce InlP under in vitro culture conditions. When ectopically expressed in human cells, InlP translocates into the nucleus and changes the morphology of nuclear speckles, which are membrane-less organelles storing splicing factors. Using yeast two-hybrid screen, immunoprecipitation and pull-down experiments, we identify the tumor suppressor and splicing factor RBM5 as a major nuclear target of InlP. InlP inhibits RBM5-induced cell death and stimulate the formation of RBM5-induced nuclear granules, where the SC35 speckle protein redistributes. Taken together, these results suggest that InlP acts as a nucleomodulin controlling compartmentalization and function of RBM5 in the nucleus and that L. monocytogenes has developed a mechanism to target the host cell splicing machinery.
Collapse
Affiliation(s)
- Renaud Pourpre
- grid.462293.80000 0004 0522 0627Université Paris-Saclay, INRAE, Micalis Institute, EpiMic Lab, Jouy-en-Josas, AgroParisTech France
| | - Goran Lakisic
- grid.462293.80000 0004 0522 0627Université Paris-Saclay, INRAE, Micalis Institute, EpiMic Lab, Jouy-en-Josas, AgroParisTech France
| | - Emma Desgranges
- grid.462293.80000 0004 0522 0627Université Paris-Saclay, INRAE, Micalis Institute, EpiMic Lab, Jouy-en-Josas, AgroParisTech France
| | - Pascale Cossart
- grid.428999.70000 0001 2353 6535Institut Pasteur, Paris, France
| | - Alessandro Pagliuso
- grid.462293.80000 0004 0522 0627Université Paris-Saclay, INRAE, Micalis Institute, EpiMic Lab, Jouy-en-Josas, AgroParisTech France
| | - Hélène Bierne
- grid.462293.80000 0004 0522 0627Université Paris-Saclay, INRAE, Micalis Institute, EpiMic Lab, Jouy-en-Josas, AgroParisTech France
| |
Collapse
|
7
|
Muenkel M, Aparicio-Yuste R, Tal MC, Kraiczy P, Bastounis EE. Spatiotemporal characterization of endothelial cell motility and physical forces during exposure to Borrelia burgdorferi. STAR Protoc 2022; 3:101832. [DOI: 10.1016/j.xpro.2022.101832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
|
8
|
Yuste RA, Muenkel M, Axarlis K, Gómez Benito MJ, Reuss A, Blacker G, Tal MC, Kraiczy P, Bastounis EE. Borrelia burgdorferi modulates the physical forces and immunity signaling in endothelial cells. iScience 2022; 25:104793. [PMID: 35992087 PMCID: PMC9389243 DOI: 10.1016/j.isci.2022.104793] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 06/09/2022] [Accepted: 07/13/2022] [Indexed: 12/04/2022] Open
Abstract
Borrelia burgdorferi (Bb), a vector-borne bacterial pathogen and the causative agent of Lyme disease, can spread to distant tissues in the human host by traveling in and through monolayers of endothelial cells (ECs) lining the vasculature. To examine whether Bb alters the physical forces of ECs to promote its dissemination, we exposed ECs to Bb and observed a sharp and transient increase in EC traction and intercellular forces, followed by a prolonged decrease in EC motility and physical forces. All variables returned to baseline at 24 h after exposure. RNA sequencing analysis revealed an upregulation of innate immune signaling pathways during early but not late Bb exposure. Exposure of ECs to heat-inactivated Bb recapitulated only the early weakening of EC mechanotransduction. The differential responses to live versus heat-inactivated Bb indicate a tight interplay between innate immune signaling and physical forces in host ECs and suggest their active modulation by Bb. Early exposure to Borrelia decreases endothelial cell motility and physical forces Early exposure to Borrelia also upregulates the host’s innate immune signaling pathways Host cell mechanics and signaling return to steady state at late exposure times Exposure to dead bacteria steadily reduces motility and physical forces of host cells
Collapse
|
9
|
Conner KN, Burke JT, Ravi J, Hardy JW. Novel internalin P homologs in Listeria. Microb Genom 2022; 8. [PMID: 35904424 PMCID: PMC9455699 DOI: 10.1099/mgen.0.000828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Listeria monocytogenes (Lm) is a bacterial pathogen that causes listeriosis in immunocompromised individuals, particularly pregnant women. Several virulence factors support the intracellular lifecycle of Lm and facilitate cell-to-cell spread, allowing it to occupy multiple niches within the host and cross-protective barriers, including the placenta. One family of virulence factors, internalins, contributes to Lm pathogenicity by inducing specific uptake and conferring tissue tropism. Over 25 internalins have been identified thus far, but only a few have been extensively studied. Internalins contain leucine-rich repeat (LRR) domains that enable protein-protein interactions, allowing Lm to bind host proteins. Notably, other Listeria species express internalins but cannot colonize human hosts, prompting questions regarding the evolution of internalins within the genus Listeria. Internalin P (InlP) promotes placental colonization through interaction with the host protein afadin. Although prior studies of InlP have begun to elucidate its role in Lm pathogenesis, there remains a lack of information regarding homologs in other Listeria species. Here, we have used a computational evolutionary approach to identify InlP homologs in additional Listeria species. We found that Listeria ivanovii londoniensis (Liv) and Listeria seeligeri (Ls) encode InlP homologs. We also found InlP-like homologs in Listeria innocua and the recently identified species Listeria costaricensis. All newly identified homologs lack the full-length LRR6 and LRR7 domains found in Lm’s InlP. These findings are informative regarding the evolution of one key Lm virulence factor, InlP, and serve as a springboard for future evolutionary studies of Lm pathogenesis as well as mechanistic studies of Listeria internalins.
Collapse
Affiliation(s)
- Kayla N Conner
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, MI, USA.,Institute for Quantitative Health Science and Engineering, Michigan State University, East Lansing, MI, USA
| | - Joseph T Burke
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, MI, USA.,Genomics and Molecular Genetics Undergraduate Program, College of Natural Science, Michigan State University, East Lansing, MI, USA.,Department of Pathobiology and Diagnostic Investigation, Michigan State University, East Lansing, MI, USA
| | - Janani Ravi
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, MI, USA.,Department of Pathobiology and Diagnostic Investigation, Michigan State University, East Lansing, MI, USA.,Department of Biomedical Informatics, Center for Health Artificial Intelligence, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Jonathan W Hardy
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, MI, USA.,Institute for Quantitative Health Science and Engineering, Michigan State University, East Lansing, MI, USA
| |
Collapse
|
10
|
Kumar M, Saadaoui M, Al Khodor S. Infections and Pregnancy: Effects on Maternal and Child Health. Front Cell Infect Microbiol 2022; 12:873253. [PMID: 35755838 PMCID: PMC9217740 DOI: 10.3389/fcimb.2022.873253] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Accepted: 05/04/2022] [Indexed: 12/22/2022] Open
Abstract
Pregnancy causes physiological and immunological adaptations that allow the mother and fetus to communicate with precision in order to promote a healthy pregnancy. At the same time, these adaptations may make pregnant women more susceptible to infections, resulting in a variety of pregnancy complications; those pathogens may also be vertically transmitted to the fetus, resulting in adverse pregnancy outcomes. Even though the placenta has developed a robust microbial defense to restrict vertical microbial transmission, certain microbial pathogens have evolved mechanisms to avoid the placental barrier and cause congenital diseases. Recent mechanistic studies have begun to uncover the striking role of the maternal microbiota in pregnancy outcomes. In this review, we discuss how microbial pathogens overcome the placental barrier to cause congenital diseases. A better understanding of the placental control of fetal infection should provide new insights into future translational research.
Collapse
Affiliation(s)
- Manoj Kumar
- Research Department, Sidra Medicine, Doha, Qatar
| | | | | |
Collapse
|
11
|
Aparicio-Yuste R, Muenkel M, Clark AG, Gómez-Benito MJ, Bastounis EE. A Stiff Extracellular Matrix Favors the Mechanical Cell Competition that Leads to Extrusion of Bacterially-Infected Epithelial Cells. Front Cell Dev Biol 2022; 10:912318. [PMID: 35813215 PMCID: PMC9257086 DOI: 10.3389/fcell.2022.912318] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Accepted: 05/31/2022] [Indexed: 11/24/2022] Open
Abstract
Cell competition refers to the mechanism whereby less fit cells (“losers”) are sensed and eliminated by more fit neighboring cells (“winners”) and arises during many processes including intracellular bacterial infection. Extracellular matrix (ECM) stiffness can regulate important cellular functions, such as motility, by modulating the physical forces that cells transduce and could thus modulate the output of cellular competitions. Herein, we employ a computational model to investigate the previously overlooked role of ECM stiffness in modulating the forceful extrusion of infected “loser” cells by uninfected “winner” cells. We find that increasing ECM stiffness promotes the collective squeezing and subsequent extrusion of infected cells due to differential cell displacements and cellular force generation. Moreover, we discover that an increase in the ratio of uninfected to infected cell stiffness as well as a smaller infection focus size, independently promote squeezing of infected cells, and this phenomenon is more prominent on stiffer compared to softer matrices. Our experimental findings validate the computational predictions by demonstrating increased collective cell extrusion on stiff matrices and glass as opposed to softer matrices, which is associated with decreased bacterial spread in the basal cell monolayer in vitro. Collectively, our results suggest that ECM stiffness plays a major role in modulating the competition between infected and uninfected cells, with stiffer matrices promoting this battle through differential modulation of cell mechanics between the two cell populations.
Collapse
Affiliation(s)
- Raúl Aparicio-Yuste
- Department of Mechanical Engineering, Multiscale in Mechanical and Biological Engineering (M2BE), Instituto de Investigación en Ingeniería de Aragón (I3A), University of Zaragoza, Zaragoza, Spain
- Interfaculty Institute of Microbiology and Infection Medicine, Cluster of Excellence “Controlling Microbes to Fight Infections” (CMFI, EXC 2124), University of Tübingen, Tübingen, Germany
| | - Marie Muenkel
- Interfaculty Institute of Microbiology and Infection Medicine, Cluster of Excellence “Controlling Microbes to Fight Infections” (CMFI, EXC 2124), University of Tübingen, Tübingen, Germany
| | - Andrew G. Clark
- Institute of Cell Biology and Immunology/Stuttgart Research Center Systems Biology, University of Stuttgart, Stuttgart, Germany
- Center for Personalized Medicine, University of Tübingen, Tübingen, Germany
| | - María J. Gómez-Benito
- Department of Mechanical Engineering, Multiscale in Mechanical and Biological Engineering (M2BE), Instituto de Investigación en Ingeniería de Aragón (I3A), University of Zaragoza, Zaragoza, Spain
- *Correspondence: María J. Gómez-Benito, ; Effie E. Bastounis,
| | - Effie E. Bastounis
- Interfaculty Institute of Microbiology and Infection Medicine, Cluster of Excellence “Controlling Microbes to Fight Infections” (CMFI, EXC 2124), University of Tübingen, Tübingen, Germany
- *Correspondence: María J. Gómez-Benito, ; Effie E. Bastounis,
| |
Collapse
|
12
|
Megli CJ, Coyne CB. Infections at the maternal-fetal interface: an overview of pathogenesis and defence. Nat Rev Microbiol 2022; 20:67-82. [PMID: 34433930 PMCID: PMC8386341 DOI: 10.1038/s41579-021-00610-y] [Citation(s) in RCA: 174] [Impact Index Per Article: 58.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/15/2021] [Indexed: 02/08/2023]
Abstract
Infections are a major threat to human reproductive health, and infections in pregnancy can cause prematurity or stillbirth, or can be vertically transmitted to the fetus leading to congenital infection and severe disease. The acronym 'TORCH' (Toxoplasma gondii, other, rubella virus, cytomegalovirus, herpes simplex virus) refers to pathogens directly associated with the development of congenital disease and includes diverse bacteria, viruses and parasites. The placenta restricts vertical transmission during pregnancy and has evolved robust mechanisms of microbial defence. However, microorganisms that cause congenital disease have likely evolved diverse mechanisms to bypass these defences. In this Review, we discuss how TORCH pathogens access the intra-amniotic space and overcome the placental defences that protect against microbial vertical transmission.
Collapse
Affiliation(s)
- Christina J Megli
- Division of Maternal-Fetal Medicine, Division of Reproductive Infectious Disease, Department of Obstetrics, Gynecology and Reproductive Sciences, University of Pittsburgh School of Medicine and the Magee Womens Research Institute, Pittsburgh, PA, USA.
| | - Carolyn B Coyne
- Department of Molecular Genetics and Microbiology and the Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC, USA.
| |
Collapse
|
13
|
Kammoun H, Kim M, Hafner L, Gaillard J, Disson O, Lecuit M. Listeriosis, a model infection to study host-pathogen interactions in vivo. Curr Opin Microbiol 2021; 66:11-20. [PMID: 34923331 DOI: 10.1016/j.mib.2021.11.015] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 10/27/2021] [Accepted: 11/30/2021] [Indexed: 12/19/2022]
Abstract
Listeria monocytogenes (Lm) is a foodborne pathogen and the etiological agent of listeriosis. This facultative intracellular Gram-positive bacterium has the ability to colonize the intestinal lumen, cross the intestinal, blood-brain and placental barriers, leading to bacteremia, neurolisteriosis and maternal-fetal listeriosis. Lm is a model microorganism for the study of the interplay between a pathogenic microbe, host tissues and microbiota in vivo. Here we review how animal models permissive to Lm-host interactions allow deciphering some of the key steps of the infectious process, from the intestinal lumen to the crossing of host barriers and dissemination within the host. We also highlight recent investigations using tagged Lm and clinically relevant strains that have shed light on within-host dynamics and the purifying selection of Lm virulence factors. Studying Lm infection in vivo is a way forward to explore host biology and unveil the mechanisms that have selected its capacity to closely associate with its vertebrate hosts.
Collapse
Affiliation(s)
- Hana Kammoun
- Institut Pasteur, Université de Paris, Inserm U1117, Biology of Infection Unit, 75015 Paris, France
| | - Minhee Kim
- Institut Pasteur, Université de Paris, Inserm U1117, Biology of Infection Unit, 75015 Paris, France
| | - Lukas Hafner
- Institut Pasteur, Université de Paris, Inserm U1117, Biology of Infection Unit, 75015 Paris, France
| | - Julien Gaillard
- Institut Pasteur, Université de Paris, Inserm U1117, Biology of Infection Unit, 75015 Paris, France
| | - Olivier Disson
- Institut Pasteur, Université de Paris, Inserm U1117, Biology of Infection Unit, 75015 Paris, France
| | - Marc Lecuit
- Institut Pasteur, Université de Paris, Inserm U1117, Biology of Infection Unit, 75015 Paris, France; Institut Pasteur, National Reference Centre and WHO Collaborating Centre Listeria, 75015 Paris, France; Necker-Enfants Malades University Hospital, Division of Infectious Diseases and Tropical Medicine, APHP, Institut Imagine, 75006 Paris, France.
| |
Collapse
|
14
|
Bagatella S, Tavares-Gomes L, Oevermann A. Listeria monocytogenes at the interface between ruminants and humans: A comparative pathology and pathogenesis review. Vet Pathol 2021; 59:186-210. [PMID: 34856818 DOI: 10.1177/03009858211052659] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The bacterium Listeria monocytogenes (Lm) is widely distributed in the environment as a saprophyte, but may turn into a lethal intracellular pathogen upon ingestion. Invasive infections occur in numerous species worldwide, but most commonly in humans and farmed ruminants, and manifest as distinct forms. Of those, neuroinfection is remarkably threatening due to its high mortality. Lm is widely studied not only as a pathogen but also as an essential model for intracellular infections and host-pathogen interactions. Many aspects of its ecology and pathogenesis, however, remain unclear and are rarely addressed in its natural hosts. This review highlights the heterogeneity and adaptability of Lm by summarizing its association with the environment, farm animals, and disease. It also provides current knowledge on key features of the pathology and (molecular) pathogenesis of various listeriosis forms in naturally susceptible species with a special focus on ruminants and on the neuroinvasive form of the disease. Moreover, knowledge gaps on pathomechanisms of listerial infections and relevant unexplored topics in Lm pathogenesis research are highlighted.
Collapse
Affiliation(s)
- Stefano Bagatella
- Division of Neurological Sciences, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| | - Leticia Tavares-Gomes
- Division of Neurological Sciences, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| | - Anna Oevermann
- Division of Neurological Sciences, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| |
Collapse
|
15
|
Quereda JJ, Morón-García A, Palacios-Gorba C, Dessaux C, García-del Portillo F, Pucciarelli MG, Ortega AD. Pathogenicity and virulence of Listeria monocytogenes: A trip from environmental to medical microbiology. Virulence 2021; 12:2509-2545. [PMID: 34612177 PMCID: PMC8496543 DOI: 10.1080/21505594.2021.1975526] [Citation(s) in RCA: 79] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Revised: 08/23/2021] [Accepted: 08/25/2021] [Indexed: 01/02/2023] Open
Abstract
Listeria monocytogenes is a saprophytic gram-positive bacterium, and an opportunistic foodborne pathogen that can produce listeriosis in humans and animals. It has evolved an exceptional ability to adapt to stress conditions encountered in different environments, resulting in a ubiquitous distribution. Because some food preservation methods and disinfection protocols in food-processing environments cannot efficiently prevent contaminations, L. monocytogenes constitutes a threat to human health and a challenge to food safety. In the host, Listeria colonizes the gastrointestinal tract, crosses the intestinal barrier, and disseminates through the blood to target organs. In immunocompromised individuals, the elderly, and pregnant women, the pathogen can cross the blood-brain and placental barriers, leading to neurolisteriosis and materno-fetal listeriosis. Molecular and cell biology studies of infection have proven L. monocytogenes to be a versatile pathogen that deploys unique strategies to invade different cell types, survive and move inside the eukaryotic host cell, and spread from cell to cell. Here, we present the multifaceted Listeria life cycle from a comprehensive perspective. We discuss genetic features of pathogenic Listeria species, analyze factors involved in food contamination, and review bacterial strategies to tolerate stresses encountered both during food processing and along the host's gastrointestinal tract. Then we dissect host-pathogen interactions underlying listerial pathogenesis in mammals from a cell biology and systemic point of view. Finally, we summarize the epidemiology, pathophysiology, and clinical features of listeriosis in humans and animals. This work aims to gather information from different fields crucial for a comprehensive understanding of the pathogenesis of L. monocytogenes.
Collapse
Affiliation(s)
- Juan J. Quereda
- Departamento de Producción y Sanidad Animal, Salud Pública Veterinaria y Ciencia y Tecnología de los Alimentos, Facultad de Veterinaria, Universidad Cardenal Herrera-CEU, CEU Universities. Valencia, Spain
| | - Alvaro Morón-García
- Departamento de Biología Celular. Facultad de Ciencias Biológicas, Universidad Complutense de Madrid. Madrid, Spain
| | - Carla Palacios-Gorba
- Departamento de Producción y Sanidad Animal, Salud Pública Veterinaria y Ciencia y Tecnología de los Alimentos, Facultad de Veterinaria, Universidad Cardenal Herrera-CEU, CEU Universities. Valencia, Spain
| | - Charlotte Dessaux
- Departamento de Biotecnología Microbiana, Centro Nacional de Biotecnología (CNB)- Consejo Superior De Investigaciones Científicas (CSIC), Madrid, Spain
| | - Francisco García-del Portillo
- Departamento de Biotecnología Microbiana, Centro Nacional de Biotecnología (CNB)- Consejo Superior De Investigaciones Científicas (CSIC), Madrid, Spain
| | - M. Graciela Pucciarelli
- Departamento de Biotecnología Microbiana, Centro Nacional de Biotecnología (CNB)- Consejo Superior De Investigaciones Científicas (CSIC), Madrid, Spain
- Centro de Biología Molecular ‘Severo Ochoa’. Departamento de Biología Molecular, Facultad de Ciencias, Universidad Autónoma de Madrid. Madrid, Spain
| | - Alvaro D. Ortega
- Departamento de Biología Celular. Facultad de Ciencias Biológicas, Universidad Complutense de Madrid. Madrid, Spain
- Departamento de Biotecnología Microbiana, Centro Nacional de Biotecnología (CNB)- Consejo Superior De Investigaciones Científicas (CSIC), Madrid, Spain
| |
Collapse
|
16
|
Ireton K, Mortuza R, Gyanwali GC, Gianfelice A, Hussain M. Role of internalin proteins in the pathogenesis of Listeria monocytogenes. Mol Microbiol 2021; 116:1407-1419. [PMID: 34704304 DOI: 10.1111/mmi.14836] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Accepted: 10/22/2021] [Indexed: 12/15/2022]
Abstract
Listeria monocytogenes is a food-borne bacterium that causes gastroenteritis, meningitis, or abortion. L. monocytogenes induces its internalization (entry) into human cells and either spreads laterally in tissues or transcytoses to traverse anatomical barriers. In this review, we discuss mechanisms by which five structurally related proteins of the "internalin" family of L. monocytogenes (InlA, InlB, InlC, InlF, and InlP) interact with distinct host receptors to promote infection of human cells and/or crossing of the intestinal, blood-brain, or placental barriers. We focus on recent results demonstrating that the internalin proteins InlA, InlB, and InlC exploit exocytic pathways to stimulate transcytosis, entry, or cell-to-cell spread, respectively. We also discuss evidence that InlA-mediated transcytosis contributes to traversal of the intestinal barrier, whereas InlF promotes entry into endothelial cells to breach the blood-brain barrier. InlB also facilitates the crossing of the blood-brain barrier, but does so by extending the longevity of infected monocytes that may subsequently act as a "Trojan horse" to transfer bacteria to the brain. InlA, InlB, and InlP each contribute to fetoplacental infection by targeting syncytiotrophoblast or cytotrophoblast layers of the placenta. This work highlights the diverse functions of internalins and the complex mechanisms by which these structurally related proteins contribute to disease.
Collapse
Affiliation(s)
- Keith Ireton
- Department of Microbiology and Immunology, University of Otago, Dunedin, New Zealand
| | - Roman Mortuza
- Department of Microbiology and Immunology, University of Otago, Dunedin, New Zealand
| | | | - Antonella Gianfelice
- Department of Microbiology and Immunology, University of Otago, Dunedin, New Zealand
| | - Mazhar Hussain
- Department of Biochemistry, University of Otago, Dunedin, New Zealand
| |
Collapse
|
17
|
Johnson LJ, Azari S, Webb A, Zhang X, Gavrilin MA, Marshall JM, Rood K, Seveau S. Human Placental Trophoblasts Infected by Listeria monocytogenes Undergo a Pro-Inflammatory Switch Associated With Poor Pregnancy Outcomes. Front Immunol 2021; 12:709466. [PMID: 34367171 PMCID: PMC8346206 DOI: 10.3389/fimmu.2021.709466] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Accepted: 07/05/2021] [Indexed: 12/21/2022] Open
Abstract
The placenta controls the growth of the fetus and ensures its immune protection. Key to these functions, the syncytiotrophoblast (SYN) is a syncytium formed by fusion of underlying mononuclear trophoblasts. The SYN covers the placental surface and is bathed in maternal blood to mediate nutritional and waste exchanges between the mother and fetus. The bacterial pathogen Listeria monocytogenes breaches the trophoblast barrier and infects the placental/fetal unit resulting in poor pregnancy outcomes. In this work, we analyzed the L. monocytogenes intracellular lifecycle in primary human trophoblasts. In accordance with previous studies, we found that the SYN is 20-fold more resistant to infection compared to mononuclear trophoblasts, forming a protective barrier to infection at the maternal interface. We show for the first time that this is due to a significant reduction in L. monocytogenes uptake by the SYN rather than inhibition of the bacterial intracellular division or motility. We here report the first transcriptomic analysis of L. monocytogenes-infected trophoblasts (RNA sequencing). Pathway analysis showed that infection upregulated TLR2, NOD-like, and cytosolic DNA sensing pathways, as well as downstream pro-inflammatory circuitry (NF-κB, AP-1, IRF4, IRF7) leading to the production of mediators known to elicit the recruitment and activation of maternal leukocytes (IL8, IL6, TNFα, MIP-1). Signature genes associated with poor pregnancy outcomes were also upregulated upon infection. Measuring the release of 54 inflammatory mediators confirmed the transcriptomic data and revealed sustained production of tolerogenic factors (IL-27, IL-10, IL-1RA, TSLP) despite infection. Both the SYN and mononuclear trophoblasts produced cytokines, but surprisingly, some cytokines were predominantly produced by the SYN (IL-8, IL-6) or by non-fused trophoblasts (TNFα). Collectively, our data support that trophoblasts act as placental gatekeepers that limit and detect L. monocytogenes infection resulting in a pro-inflammatory response, which may contribute to the poor pregnancy outcomes if the pathogen persists.
Collapse
Affiliation(s)
- Lauren J Johnson
- Department of Microbial Infection and Immunity, The Ohio State University, Columbus, OH, United States.,Department of Microbiology, The Ohio State University, Columbus, OH, United States
| | - Siavash Azari
- Department of Microbial Infection and Immunity, The Ohio State University, Columbus, OH, United States.,Department of Microbiology, The Ohio State University, Columbus, OH, United States
| | - Amy Webb
- Department of Biomedical Informatics, The Ohio State University, Columbus, OH, United States
| | - Xiaoli Zhang
- Department of Biomedical Informatics, Center for Biostatistics, The Ohio State University, Columbus, OH, United States
| | - Mikhail A Gavrilin
- Pulmonary, Critical Care and Sleep Medicine Division, Department of Internal Medicine, The Ohio State University, Columbus, OH, United States
| | - Joanna M Marshall
- Department of Microbial Infection and Immunity, The Ohio State University, Columbus, OH, United States
| | - Kara Rood
- Department of Obstetrics and Gynecology, Division of Maternal Fetal Medicine, The Ohio State University, Columbus, OH, United States
| | - Stephanie Seveau
- Department of Microbial Infection and Immunity, The Ohio State University, Columbus, OH, United States.,Department of Microbiology, The Ohio State University, Columbus, OH, United States.,Infectious Diseases Institute, The Ohio State University, Columbus, OH, United States
| |
Collapse
|
18
|
Chatterjee S, Basak AJ, Nair AV, Duraivelan K, Samanta D. Immunoglobulin-fold containing bacterial adhesins: molecular and structural perspectives in host tissue colonization and infection. FEMS Microbiol Lett 2021; 368:6045506. [PMID: 33355339 DOI: 10.1093/femsle/fnaa220] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Accepted: 12/21/2020] [Indexed: 12/16/2022] Open
Abstract
Immunoglobulin (Ig) domains are one of the most widespread protein domains encoded by the human genome and are present in a large array of proteins with diverse biological functions. These Ig domains possess a central structure, the immunoglobulin-fold, which is a sandwich of two β sheets, each made up of anti-parallel β strands, surrounding a central hydrophobic core. Apart from humans, proteins containing Ig-like domains are also distributed in a vast selection of organisms including vertebrates, invertebrates, plants, viruses and bacteria where they execute a wide array of discrete cellular functions. In this review, we have described the key structural deviations of bacterial Ig-folds when compared to the classical eukaryotic Ig-fold. Further, we have comprehensively grouped all the Ig-domain containing adhesins present in both Gram-negative and Gram-positive bacteria. Additionally, we describe the role of these particular adhesins in host tissue attachment, colonization and subsequent infection by both pathogenic and non-pathogenic Escherichia coli as well as other bacterial species. The structural properties of these Ig-domain containing adhesins, along with their interactions with specific Ig-like and non Ig-like binding partners present on the host cell surface have been discussed in detail.
Collapse
Affiliation(s)
- Shruti Chatterjee
- School of Bioscience, Indian Institute of Technology Kharagpur, Kharagpur-721302, West Bengal, India
| | - Aditya J Basak
- School of Bioscience, Indian Institute of Technology Kharagpur, Kharagpur-721302, West Bengal, India
| | - Asha V Nair
- School of Bioscience, Indian Institute of Technology Kharagpur, Kharagpur-721302, West Bengal, India
| | - Kheerthana Duraivelan
- School of Bioscience, Indian Institute of Technology Kharagpur, Kharagpur-721302, West Bengal, India
| | - Dibyendu Samanta
- School of Bioscience, Indian Institute of Technology Kharagpur, Kharagpur-721302, West Bengal, India
| |
Collapse
|
19
|
Bastounis EE, Radhakrishnan P, Prinz CK, Theriot JA. Volume measurement and biophysical characterization of mounds in epithelial monolayers after intracellular bacterial infection. STAR Protoc 2021; 2:100551. [PMID: 34095865 PMCID: PMC8165451 DOI: 10.1016/j.xpro.2021.100551] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Mechanical forces are important in (patho)physiological processes, including how host epithelial cells interact with intracellular bacterial pathogens. As these pathogens disseminate within host epithelial monolayers, large mounds of infected cells are formed due to the forceful action of surrounding uninfected cells, limiting bacterial spread across the basal cell monolayer. Here, we present a protocol for mound volume measurement and biophysical characterization of mound formation. Modifications to this protocol may be necessary for studying different host cell types or pathogenic organisms. For complete details on the use and execution of this protocol, please refer to Bastounis et al. (2021). Protocol allows for formation of mounds of extruded infected cells in cell monolayers Confocal microscopy and image processing to calculate volume of extruded domains Laser wounding protocol for tension estimation built around mounds TFM incorporated to measure traction stresses of infected mounders and surrounders
Collapse
Affiliation(s)
- Effie E Bastounis
- Department of Biology and Howard Hughes Medical Institute, University of Washington, Seattle, WA 98195, USA.,Interfaculty Institute of Microbiology and Infection Medicine, Cluster of Excellence "Controlling Microbes to Fight Infections" (CMFI, EXC 2124), University of Tübingen, Tübingen 72074, Germany
| | - Prathima Radhakrishnan
- Department of Biology and Howard Hughes Medical Institute, University of Washington, Seattle, WA 98195, USA.,Biophysics Program, Stanford University, Stanford, CA 94305, USA
| | - Christopher K Prinz
- Department of Biology and Howard Hughes Medical Institute, University of Washington, Seattle, WA 98195, USA
| | - Julie A Theriot
- Department of Biology and Howard Hughes Medical Institute, University of Washington, Seattle, WA 98195, USA
| |
Collapse
|
20
|
He Y, Yang Q, Tian L, Zhang Z, Qiu L, Tao X, Wei H. Protection of surface layer protein from Enterococcus faecium WEFA23 against Listeria monocytogenes CMCC54007 infection by modulating intestinal permeability and immunity. Appl Microbiol Biotechnol 2021; 105:4269-4284. [PMID: 33990856 DOI: 10.1007/s00253-021-11240-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2020] [Revised: 03/04/2021] [Accepted: 03/15/2021] [Indexed: 10/21/2022]
Abstract
Enterococcus faecium WEFA23 was previously found effectively against adherence and colonization of Listeria monocytogenes CMCC54007, which might be closely related to its surface layer protein (SLP). In this study, the protective of SLP of E. faecium WEFA23 against infection of L. monocytogenes CMCC54007 was systemically investigated. In vitro assay showed that SLP actively inhibited L. monocytogenes internalization into Caco-2 cell line, with decreasing mRNA level of pro-inflammation cytokines and virulence factors and restoring destroyed intestinal barrier. In vivo assay through excluding SLP of E. faecium WEFA23 by 5 M LiCl represented that SLP increased body weight, reduced mortality and cell counts of L. monocytogenes CMCC54007 in tissues of mice. Further researches showed that SLP protected against L. monocytogenes CMCC54007 infection by modulation of intestinal permeability and immunity, namely, it decreased fluorescein isothiocyanate (FITC)-Dextran in serum, ameliorated destroyed colon structure, and increased number of goblet cells and protein level of TJ protein (Claudin-1, Occludin, and ZO-1) in colon. For immunity, SLP decreased number of CD4+ and CD8+ T cells in liver, mRNA level, and content of pro-inflammatory factors IL-6, IL-1β, IFN-γ ,TNF-α, and NO, and restored the structure of liver and spleen. Key Points•SLP of E. faecium inhibited L. monocytogenes internalization and colonization•SLP of E. faecium ameliorated host intestinal barrier dysfunction•SLP of E. faecium decreased pro-inflammatory cytokines and cells.
Collapse
Affiliation(s)
- Yao He
- Jiangxi-OAI Joint Research Institute, Nanchang University, 235 Nanjing Donglu, Nanchang, Jiangxi, 330047, People's Republic of China
| | - Qin Yang
- Jiangxi-OAI Joint Research Institute, Nanchang University, 235 Nanjing Donglu, Nanchang, Jiangxi, 330047, People's Republic of China
| | - Linlin Tian
- Jiangxi-OAI Joint Research Institute, Nanchang University, 235 Nanjing Donglu, Nanchang, Jiangxi, 330047, People's Republic of China
| | - Zhihong Zhang
- Jiangxi-OAI Joint Research Institute, Nanchang University, 235 Nanjing Donglu, Nanchang, Jiangxi, 330047, People's Republic of China
| | - Liang Qiu
- Jiangxi University of Traditional Chinese Medicine, Nanchang, Jiangxi, 330004, People's Republic of China
| | - Xueying Tao
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, Jiangxi, 330047, People's Republic of China
| | - Hua Wei
- Jiangxi-OAI Joint Research Institute, Nanchang University, 235 Nanjing Donglu, Nanchang, Jiangxi, 330047, People's Republic of China.
| |
Collapse
|
21
|
Bastounis EE, Serrano-Alcalde F, Radhakrishnan P, Engström P, Gómez-Benito MJ, Oswald MS, Yeh YT, Smith JG, Welch MD, García-Aznar JM, Theriot JA. Mechanical competition triggered by innate immune signaling drives the collective extrusion of bacterially infected epithelial cells. Dev Cell 2021; 56:443-460.e11. [PMID: 33621492 PMCID: PMC7982222 DOI: 10.1016/j.devcel.2021.01.012] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Revised: 11/02/2020] [Accepted: 01/20/2021] [Indexed: 02/06/2023]
Abstract
Intracellular pathogens alter their host cells' mechanics to promote dissemination through tissues. Conversely, host cells may respond to the presence of pathogens by altering their mechanics to limit infection. Here, we monitored epithelial cell monolayers infected with intracellular bacterial pathogens, Listeria monocytogenes or Rickettsia parkeri, over days. Under conditions in which these pathogens trigger innate immune signaling through NF-κB and use actin-based motility to spread non-lytically intercellularly, we found that infected cell domains formed three-dimensional mounds. These mounds resulted from uninfected cells moving toward the infection site, collectively squeezing the softer and less contractile infected cells upward and ejecting them from the monolayer. Bacteria in mounds were less able to spread laterally in the monolayer, limiting the growth of the infection focus, while extruded infected cells underwent cell death. Thus, the coordinated forceful action of uninfected cells actively eliminates large domains of infected cells, consistent with this collective cell response representing an innate immunity-driven process.
Collapse
Affiliation(s)
- Effie E Bastounis
- Department of Biology and Howard Hughes Medical Institute, University of Washington, Seattle, WA 98195, USA
| | | | - Prathima Radhakrishnan
- Department of Biology and Howard Hughes Medical Institute, University of Washington, Seattle, WA 98195, USA; Biophysics Program, Stanford University, Stanford, CA 94305, USA
| | - Patrik Engström
- Department of Molecular and Cell Biology, University of California Berkeley, Berkeley, CA 94720, USA
| | - María J Gómez-Benito
- Department of Mechanical Engineering, University of Zaragoza, Zaragoza 50009, Spain
| | - Mackenzi S Oswald
- Department of Microbiology, University of Washington School of Medicine, Seattle, WA 98109, USA
| | - Yi-Ting Yeh
- Department of Mechanical and Aerospace Engineering, University of California, San Diego, La Jolla, CA 92093, USA
| | - Jason G Smith
- Department of Microbiology, University of Washington School of Medicine, Seattle, WA 98109, USA
| | - Matthew D Welch
- Department of Molecular and Cell Biology, University of California Berkeley, Berkeley, CA 94720, USA
| | - José M García-Aznar
- Department of Mechanical Engineering, University of Zaragoza, Zaragoza 50009, Spain
| | - Julie A Theriot
- Department of Biology and Howard Hughes Medical Institute, University of Washington, Seattle, WA 98195, USA.
| |
Collapse
|
22
|
Making Sense of the Biodiversity and Virulence of Listeria monocytogenes. Trends Microbiol 2021; 29:811-822. [PMID: 33583696 DOI: 10.1016/j.tim.2021.01.008] [Citation(s) in RCA: 89] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Revised: 01/14/2021] [Accepted: 01/15/2021] [Indexed: 01/21/2023]
Abstract
Listeria monocytogenes is a foodborne pathogen responsible for listeriosis, an infection that can manifest in humans as bacteremia, meningoencephalitis in immunocompromised patients and the elderly, and fetal-placental infection in pregnant women. Reference strains from this facultative intracellular bacterium have been instrumental in the investigation of basic mechanisms in microbiology, immunology, and cell biology. The integration of bacterial population genomics with environmental, epidemiological, and clinical data allowed the uncovering of new factors involved in the virulence of L. monocytogenes and its adaptation to different environments. This review illustrates how these investigations have led to a better understanding of the bacterium's virulence and the driving forces that shaped it.
Collapse
|
23
|
Charlier C, Disson O, Lecuit M. Maternal-neonatal listeriosis. Virulence 2020; 11:391-397. [PMID: 32363991 PMCID: PMC7199740 DOI: 10.1080/21505594.2020.1759287] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Revised: 03/14/2020] [Accepted: 03/29/2020] [Indexed: 02/06/2023] Open
Abstract
Listeriosis is a rare and severe foodborne infection caused by Listeria monocytogenes. It manifests as septicemia, neurolisteriosis, and maternal-fetal infection. In pregnancy, it may cause maternal fever, premature delivery, fetal loss, neonatal systemic and central nervous system infections. Maternal listeriosis is mostly reported during the 2nd and 3rd trimester of pregnancy, as sporadic cases or in the context of outbreaks. Strains belonging to clonal complexes 1, 4 and 6, referred to as hypervirulent, are the most associated to maternal-neonatal infections. Here we review the clinical, pathophysiological, and microbiological features of maternal-neonatal listeriosis.
Collapse
Affiliation(s)
- Caroline Charlier
- Institut Pasteur, Biology of Infection Unit, Paris, France
- Inserm U1117, Paris, France
- Institut Pasteur, French National Reference Center and WHO Collaborating Center for Listeria, Paris, France
- Hôpital Universitaire Necker-Enfants Malades, Service des Maladies Infectieuses et Tropicales, Institut Imagine, APHP, Paris, France
- Université de Paris, Paris, France
| | - Olivier Disson
- Institut Pasteur, Biology of Infection Unit, Paris, France
- Inserm U1117, Paris, France
| | - Marc Lecuit
- Institut Pasteur, Biology of Infection Unit, Paris, France
- Inserm U1117, Paris, France
- Institut Pasteur, French National Reference Center and WHO Collaborating Center for Listeria, Paris, France
- Hôpital Universitaire Necker-Enfants Malades, Service des Maladies Infectieuses et Tropicales, Institut Imagine, APHP, Paris, France
- Université de Paris, Paris, France
| |
Collapse
|
24
|
Dhanda AS, Yang D, Kooner A, Guttman JA. Distribution of PDLIM1 at actin-rich structures generated by invasive and adherent bacterial pathogens. Anat Rec (Hoboken) 2020; 304:919-938. [PMID: 33022122 DOI: 10.1002/ar.24523] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Revised: 07/06/2020] [Accepted: 07/28/2020] [Indexed: 12/15/2022]
Abstract
The enteric bacterial pathogens Listeria monocytogenes (Listeria) and enteropathogenic Escherichia coli (EPEC) remodel the eukaryotic actin cytoskeleton during their disease processes. Listeria generate slender actin-rich comet/rocket tails to move intracellularly, and later, finger-like membrane protrusions to spread amongst host cells. EPEC remain extracellular, but generate similar actin-rich membranous protrusions (termed pedestals) to move atop the host epithelia. These structures are crucial for disease as diarrheal (and systemic) infections are significantly abrogated during infections with mutant strains that are unable to generate the structures. The current repertoire of host components enriched within these structures is vast and diverse. In this protein catalog, we and others have found that host actin crosslinkers, such as palladin and α-actinin-1, are routinely exploited. To expand on this list, we set out to investigate the distribution of PDLIM1, a scaffolding protein and binding partner of palladin and α-actinin-1, during bacterial infections. We show that PDLIM1 localizes to the site of initial Listeria entry into cells. Following this, PDLIM1 localizes to actin filament clouds surrounding immotile bacteria, and then colocalizes with actin once the comet/rocket tails are generated. Unlike palladin or α-actinin-1, PDLIM1 is maintained within the actin-rich core of membrane protrusions. Conversely, α-actinin-1, but not PDLIM1 (or palladin), is enriched at the membrane invagination that internalizes the Listeria-containing membrane protrusion. We also show that PDLIM1 is a component of the EPEC pedestal core and that its recruitment is dependent on the bacterial effector Tir. Our findings highlight PDLIM1 as another protein present within pathogen-induced actin-rich structures.
Collapse
Affiliation(s)
- Aaron S Dhanda
- Department of Biological Sciences, Centre for Cell Biology, Development, and Disease, Simon Fraser University, Burnaby, British Columbia, Canada
| | - Diana Yang
- Department of Biological Sciences, Centre for Cell Biology, Development, and Disease, Simon Fraser University, Burnaby, British Columbia, Canada
| | - Avneen Kooner
- Department of Biological Sciences, Centre for Cell Biology, Development, and Disease, Simon Fraser University, Burnaby, British Columbia, Canada
| | - Julian A Guttman
- Department of Biological Sciences, Centre for Cell Biology, Development, and Disease, Simon Fraser University, Burnaby, British Columbia, Canada
| |
Collapse
|
25
|
Dhanda AS, Yang D, Guttman JA. Localization of alpha-actinin-4 during infections by actin remodeling bacteria. Anat Rec (Hoboken) 2020; 304:1400-1419. [PMID: 33099893 DOI: 10.1002/ar.24548] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Revised: 08/13/2020] [Accepted: 09/12/2020] [Indexed: 11/12/2022]
Abstract
Bacterial pathogens cause disease by subverting the structure and function of their target host cells. Several foodborne agents such as Listeria monocytogenes (L. monocytogenes), Shigella flexneri (S. flexneri), Salmonella enterica serovar Typhimurium (S. Typhimurium) and enteropathogenic Escherichia coli (EPEC) manipulate the host actin cytoskeleton to cause diarrheal (and systemic) infections. During infections, these invasive and adherent pathogens hijack the actin filaments of their host cells and rearrange them into discrete actin-rich structures that promote bacterial adhesion (via pedestals), invasion (via membrane ruffles and endocytic cups), intracellular motility (via comet/rocket tails) and/or intercellular dissemination (via membrane protrusions and invaginations). We have previously shown that actin-rich structures generated by L. monocytogenes contain the host actin cross-linker α-actinin-4. Here we set out to examine α-actinin-4 during other key steps of the L. monocytogenes infectious cycle as well as characterize the subcellular distribution of α-actinin-4 during infections with other model actin-hijacking bacterial pathogens (S. flexneri, S. Typhimurium and EPEC). Although α-actinin-4 is absent at sites of initial L. monocytogenes invasion, we show that it is a new component of the membrane invaginations formed during secondary infections of neighboring host cells. Importantly, we reveal that α-actinin-4 also localizes to the major actin-rich structures generated during cell culture infections with S. flexneri (comet/rocket tails and membrane protrusions), S. Typhimurium (membrane ruffles) and EPEC (pedestals). Taken together, these findings suggest that α-actinin-4 is a host factor that is exploited by an assortment of actin-hijacking bacterial pathogens.
Collapse
Affiliation(s)
- Aaron S Dhanda
- Department of Biological Sciences, Centre for Cell Biology, Development, and Disease, Simon Fraser University, Burnaby, British Columbia, Canada
| | - Diana Yang
- Department of Biological Sciences, Centre for Cell Biology, Development, and Disease, Simon Fraser University, Burnaby, British Columbia, Canada
| | - Julian A Guttman
- Department of Biological Sciences, Centre for Cell Biology, Development, and Disease, Simon Fraser University, Burnaby, British Columbia, Canada
| |
Collapse
|
26
|
Blanchard AM, Billenness R, Warren J, Glanvill A, Roden W, Drinkall E, Maboni G, Robinson RS, Rees CED, Pfarrer C, Tötemeyer S. Characterisation of Listeria monocytogenes isolates from cattle using a bovine caruncular epithelial cell model. Heliyon 2020; 6:e04476. [PMID: 32743095 PMCID: PMC7385464 DOI: 10.1016/j.heliyon.2020.e04476] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Revised: 05/22/2020] [Accepted: 07/13/2020] [Indexed: 11/18/2022] Open
Abstract
Listeria monocytogenes is an important foodborne pathogen in human and veterinary health, causing significant morbidity and mortality including abortion. It has a particular tropism for the gravid uterus, however, the route of infection in reproductive tissues of ruminants (i.e. placentome), is much less clear. In this study, we aimed to investigate a bovine caruncular epithelial cell (BCEC) line as a model for L. monocytogenes infection of the bovine reproductive tract. The BCEC infection model was used to assess the ability of 14 different L. monocytogenes isolates to infect these cells. Lysozyme sensitivity and bacterial survival in 580 μg lysozyme/ml correlated with attenuated ability to proliferate in BCEC (p = 0.004 and p = 0.02, respectively). Four isolates were significantly attenuated compared to the control strain 10403S. One of these strains (AR008) showed evidence of compromised cell wall leading to increased sensitivity to ß-lactam antibiotics, and another (7644) had compromised cell membrane integrity leading to increased sensitivity to cationic peptides. Whole genome sequencing followed by Multi Locus Sequence Type analysis identified that five invasive isolates had the same sequence type, ST59, despite originating from three different clinical conditions. Virulence gene analysis showed that the attenuated isolate LM4 was lacking two virulence genes (uhpT, virR) known to be involved in intracellular growth and virulence. In conclusion, the BCEC model was able to differentiate between the infective potential of different isolates. Moreover, resistance to lysozyme correlated with the ability to invade and replicate within BCEC, suggesting co-selection for surviving challenging environments as the abomasum.
Collapse
Affiliation(s)
- Adam M Blanchard
- School of Veterinary Medicine and Science, University of Nottingham, Nottingham, UK
| | - Rosemarie Billenness
- School of Veterinary Medicine and Science, University of Nottingham, Nottingham, UK
| | - Jessica Warren
- School of Veterinary Medicine and Science, University of Nottingham, Nottingham, UK
| | - Amy Glanvill
- School of Veterinary Medicine and Science, University of Nottingham, Nottingham, UK
| | - William Roden
- School of Veterinary Medicine and Science, University of Nottingham, Nottingham, UK
| | - Emma Drinkall
- School of Veterinary Medicine and Science, University of Nottingham, Nottingham, UK
| | - Grazieli Maboni
- School of Veterinary Medicine and Science, University of Nottingham, Nottingham, UK.,Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, Ontario, N1G 2W1, Canada
| | - Robert S Robinson
- School of Veterinary Medicine and Science, University of Nottingham, Nottingham, UK
| | | | - Christiane Pfarrer
- Department of Anatomy, University of Veterinary Medicine, Hannover, Germany
| | - Sabine Tötemeyer
- School of Veterinary Medicine and Science, University of Nottingham, Nottingham, UK
| |
Collapse
|
27
|
Potential Roles and Functions of Listerial Virulence Factors during Brain Entry. Toxins (Basel) 2020; 12:toxins12050297. [PMID: 32380697 PMCID: PMC7291126 DOI: 10.3390/toxins12050297] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Revised: 04/30/2020] [Accepted: 04/30/2020] [Indexed: 12/20/2022] Open
Abstract
Although it rarely induces disease in humans, Listeria monocytogenes (Lm) is important due to the frequency of serious pathological conditions—such as sepsis and meningitis—it causes in those few people that do get infected. Virulence factors (VF) of Lm—especially those involved in the passage through multiple cellular barriers of the body, including internalin (Inl) family members and listeriolysin O (LLO)—have been investigated both in vitro and in vivo, but the majority of work was focused on the mechanisms utilized during penetration of the gut and fetoplacental barriers. The role of listerial VF during entry into other organs remain as only partially solved puzzles. Here, we review the current knowledge on the entry of Lm into one of its more significant destinations, the brain, with a specific focus on the role of various VF in cellular adhesion and invasion.
Collapse
|
28
|
Dhanda AS, Yu C, Lulic KT, Vogl AW, Rausch V, Yang D, Nichols BJ, Kim SH, Polo S, Hansen CG, Guttman JA. Listeria monocytogenes Exploits Host Caveolin for Cell-to-Cell Spreading. mBio 2020; 11:e02857-19. [PMID: 31964732 PMCID: PMC6974566 DOI: 10.1128/mbio.02857-19] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Accepted: 12/10/2019] [Indexed: 02/07/2023] Open
Abstract
Listeria monocytogenes moves from one cell to another using actin-rich membrane protrusions that propel the bacterium toward neighboring cells. Despite cholesterol being required for this transfer process, the precise host internalization mechanism remains elusive. Here, we show that caveolin endocytosis is key to this event as bacterial cell-to-cell transfer is severely impaired when cells are depleted of caveolin-1. Only a subset of additional caveolar components (cavin-2 and EHD2) are present at sites of bacterial transfer, and although clathrin and the clathrin-associated proteins Eps15 and AP2 are absent from the bacterial invaginations, efficient L. monocytogenes spreading requires the clathrin-interacting protein epsin-1. We also directly demonstrated that isolated L. monocytogenes membrane protrusions can trigger the recruitment of caveolar proteins in a neighboring cell. The engulfment of these bacterial and cytoskeletal structures through a caveolin-based mechanism demonstrates that the classical nanometer-scale theoretical size limit for this internalization pathway is exceeded by these bacterial pathogens.IMPORTANCEListeria monocytogenes moves from one cell to another as it disseminates within tissues. This bacterial transfer process depends on the host actin cytoskeleton as the bacterium forms motile actin-rich membranous protrusions that propel the bacteria into neighboring cells, thus forming corresponding membrane invaginations. Here, we examine these membrane invaginations and demonstrate that caveolin-1-based endocytosis is crucial for efficient bacterial cell-to-cell spreading. We show that only a subset of caveolin-associated proteins (cavin-2 and EHD2) are involved in this process. Despite the absence of clathrin at the invaginations, the classical clathrin-associated protein epsin-1 is also required for efficient bacterial spreading. Using isolated L. monocytogenes protrusions added onto naive host cells, we demonstrate that actin-based propulsion is dispensable for caveolin-1 endocytosis as the presence of the protrusion/invagination interaction alone triggers caveolin-1 recruitment in the recipient cells. Finally, we provide a model of how this caveolin-1-based internalization event can exceed the theoretical size limit for this endocytic pathway.
Collapse
Affiliation(s)
- Aaron S Dhanda
- Department of Biological Sciences, Centre for Cell Biology, Development, and Disease, Simon Fraser University, Burnaby, British Columbia, Canada
| | - Connie Yu
- Department of Biological Sciences, Centre for Cell Biology, Development, and Disease, Simon Fraser University, Burnaby, British Columbia, Canada
| | - Katarina T Lulic
- Department of Biological Sciences, Centre for Cell Biology, Development, and Disease, Simon Fraser University, Burnaby, British Columbia, Canada
| | - A Wayne Vogl
- Life Sciences Institute, University of British Columbia, Vancouver, British Columbia, Canada
- Department of Cellular and Physiological Sciences, Faculty of Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| | - Valentina Rausch
- University of Edinburgh Centre for Inflammation Research, Queen's Medical Research Institute, Edinburgh, United Kingdom
| | - Diana Yang
- Department of Biological Sciences, Centre for Cell Biology, Development, and Disease, Simon Fraser University, Burnaby, British Columbia, Canada
| | | | - Sung Hyun Kim
- Department of Physiology, School of Medicine, Kyung Hee University, Seoul, South Korea
| | - Simona Polo
- IFOM, Fondazione Istituto FIRC di Oncologia Molecolare, Milan, Italy
- Dipartimento di oncologia ed emato-oncologia, Universita' degli Studi di Milano, Milan, Italy
| | - Carsten G Hansen
- University of Edinburgh Centre for Inflammation Research, Queen's Medical Research Institute, Edinburgh, United Kingdom
| | - Julian A Guttman
- Department of Biological Sciences, Centre for Cell Biology, Development, and Disease, Simon Fraser University, Burnaby, British Columbia, Canada
| |
Collapse
|
29
|
Papić B, Pate M, Félix B, Kušar D. Genetic diversity of Listeria monocytogenes strains in ruminant abortion and rhombencephalitis cases in comparison with the natural environment. BMC Microbiol 2019; 19:299. [PMID: 31849320 PMCID: PMC6918561 DOI: 10.1186/s12866-019-1676-3] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Accepted: 12/04/2019] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Listeria monocytogenes is the causative agent of listeriosis, a serious disease affecting both animals and humans. Here, multilocus sequence typing (MLST) was used to characterize the genetic diversity of Listeria monocytogenes strains isolated from the natural environment and animal clinical cases in Europe. The prevalence of clonal complexes (CCs) obtained was compared according to (i) the origin of isolation - clinical cases vs. natural environment - and (ii) the clinical form of animal listeriosis - rhombencephalitis vs. abortion. To this aim, two datasets were constructed. The clinical dataset consisted of 350 animal clinical isolates originating from France and Slovenia and supplemented with isolates from Switzerland and Great Britain. The natural environment dataset consisted of 253 isolates from the natural environment originating from Slovenia and supplemented with isolates from nine other European countries. RESULTS For the clinical cases, CC1, CC4-CC217 and CC412 were the most prevalent in rhombencephalitis and CC1, CC37 and CC4-CC217 in abortion. The hypervirulent CC1 and CC4-CC217 prevailed in both datasets. These results indicated that livestock is constantly exposed to hypervirulent CCs. CC1 was significantly associated with a clinical origin, whereas CC9, CC29 and CC14 were associated with the natural environment. CC1 was predominant among rhombencephalitis cases both in cattle and small ruminants, and its prevalence did not differ significantly between these two groups. A novel association of CC37 and CC6 with abortion cases was revealed. CONCLUSIONS Here, we show that CC1 and CC4-CC217 are prevalent in isolates of environmental and animal clinical origin, suggesting that ruminants are frequently exposed to hypervirulent CCs. The presence of CC4 in two mastitis cases calls for further attention due to direct threat to the consumer. We showed several associations between CCs and the origin of isolation or clinical form of listeriosis, e.g. CC37 and CC6 with abortion. This study improves our understanding of the population structure of L. monocytogenes isolates from the natural environment and animal clinical cases. Moreover, it provides a basis for future studies aiming to determine the underlying mechanisms of phenotypic traits of interest.
Collapse
Affiliation(s)
- Bojan Papić
- Institute of Microbiology and Parasitology, Veterinary Faculty, University of Ljubljana, SI-1000, Ljubljana, Slovenia.
| | - Mateja Pate
- Institute of Microbiology and Parasitology, Veterinary Faculty, University of Ljubljana, SI-1000, Ljubljana, Slovenia
| | - Benjamin Félix
- ANSES, French Agency for Food, Environmental and Occupational Health & Safety, Laboratory for Food Safety, European Union Reference Laboratory for Listeria monocytogenes, University of Paris-Est, 94700, Maisons-Alfort, France
| | - Darja Kušar
- Institute of Microbiology and Parasitology, Veterinary Faculty, University of Ljubljana, SI-1000, Ljubljana, Slovenia
| |
Collapse
|
30
|
Ortega FE, Koslover EF, Theriot JA. Listeria monocytogenes cell-to-cell spread in epithelia is heterogeneous and dominated by rare pioneer bacteria. eLife 2019; 8:40032. [PMID: 30719971 PMCID: PMC6363384 DOI: 10.7554/elife.40032] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2018] [Accepted: 11/09/2018] [Indexed: 12/12/2022] Open
Abstract
Listeria monocytogenes hijacks host actin to promote its intracellular motility and intercellular spread. While L. monocytogenes virulence hinges on cell-to-cell spread, little is known about the dynamics of bacterial spread in epithelia at a population level. Here, we use live microscopy and statistical modeling to demonstrate that L. monocytogenes cell-to-cell spread proceeds anisotropically in an epithelial monolayer in culture. We show that boundaries of infection foci are irregular and dominated by rare pioneer bacteria that spread farther than the rest. We extend our quantitative model for bacterial spread to show that heterogeneous spreading behavior can improve the chances of creating a persistent L. monocytogenes infection in an actively extruding epithelium. Thus, our results indicate that L. monocytogenes cell-to-cell spread is heterogeneous, and that rare pioneer bacteria determine the frontier of infection foci and may promote bacterial infection persistence in dynamic epithelia. Editorial note: This article has been through an editorial process in which the authors decide how to respond to the issues raised during peer review. The Reviewing Editor's assessment is that all the issues have been addressed (see decision letter). Eating food that has been contaminated with bacteria called Listeria monocytogenes can result in life-threatening infections. The bacteria first invade the epithelial cells that line the small intestine. After this, L. monocytogenes can move from one host cell to another, which allows the infection to reach other organs. Most studies into how L. monocytogenes infections spread have focused either on how single bacterial cells move from one host cell to the next, or on how millions of bacteria damage host tissues. Little was known about the intermediate steps of an infection, where the bacteria start to colonize the small intestine. To investigate, Ortega et al. recorded videos of L. monocytogenes spreading between epithelial cells grown on a glass coverslip, and developed computer simulations to try to reproduce how the bacteria spread. This revealed that the bacteria do not all move in the same way. Instead, less than 1% of the bacteria move in ‘steps’ that are up to 10 times longer than those taken by the others. Ortega et al. named these bacteria ‘pioneers’. Ortega et al. propose that the pioneers form long protrusions that allow them to spread directly from an infected cell to a non-neighboring cell. By taking these large steps, the pioneers may increase the chances that the bacteria will cause a long-lasting infection. Future research will be needed to answer further questions about the pioneers. For example, how do the pioneer bacteria differ from the majority of bacterial cells? Would targeting anti-bacterial treatments at pioneers make it easier to treat infections? It also remains to be seen if other types of bacteria also show this pioneer behavior.
Collapse
Affiliation(s)
- Fabian E Ortega
- Department of Biochemistry, Howard Hughes Medical Institute, Stanford University, Stanford, United States
| | - Elena F Koslover
- Department of Biochemistry, Howard Hughes Medical Institute, Stanford University, Stanford, United States.,Department of Physics, University of California San Diego, San Diego, United States
| | - Julie A Theriot
- Department of Biochemistry, Howard Hughes Medical Institute, Stanford University, Stanford, United States.,Department of Microbiology and Immunology, Stanford University, Stanford, United States
| |
Collapse
|