1
|
Mateescu I, Lequime S. Dengue-mediated changes in the vectorial capacity of Aedes aegypti (Diptera: Culicidae): manipulation of transmission or infection by-product? JOURNAL OF MEDICAL ENTOMOLOGY 2025; 62:19-28. [PMID: 39436782 PMCID: PMC11735268 DOI: 10.1093/jme/tjae134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 09/20/2024] [Accepted: 10/07/2024] [Indexed: 10/25/2024]
Abstract
An arthropod's vectorial capacity summarizes its disease transmission potential. Life-history traits, such as fecundity or survival, and behavioral traits, such as locomotor activity, host-seeking and feeding behavior, are important components of vectorial capacity. Studies have shown that mosquito-borne pathogens may alter important vectorial capacity traits of their mosquito vectors, thus directly impacting their transmission and epidemic potential. Here, we compile and discuss the evidence supporting dengue-mediated changes in the yellow fever mosquito Aedes aegypti (L.), its primary vector, and evaluate whether the observed effects represent an evolved trait manipulation with epidemiological implications. Dengue infection appears to manipulate essential traits that facilitate vector-host contact, such as locomotor activity, host-seeking, and feeding behavior, but the underlying mechanisms are still not understood. Conversely, life-history traits relevant to vector population dynamics, such as survival, oviposition, and fecundity, appear to be negatively impacted by dengue virus. Overall, any detrimental effects on life-history traits may be a negligible cost derived from the virulence that dengue has evolved to facilitate its transmission by manipulating Ae. aegypti behavior and feeding performance. However, methodological disparities among studies render comparisons difficult and limit the ability to reach well-supported conclusions. This highlights the need for more standardized methods for the research into changes in virus-mediated traits. Eventually, we argue that the effects on life-history traits and behavior outlined here must be considered when assessing the epidemiological impact of dengue or other arbovirus-vector-host interactions.
Collapse
Affiliation(s)
- Ioana Mateescu
- Virus Ecology and Evolution, Groningen Institute for Evolutionary Life Sciences (GELIFES), University of Groningen, Groningen, The Netherlands
- Research School of Behavioral and Cognitive Neuroscience, University of Groningen, Groningen, The Netherlands
| | - Sebastian Lequime
- Virus Ecology and Evolution, Groningen Institute for Evolutionary Life Sciences (GELIFES), University of Groningen, Groningen, The Netherlands
| |
Collapse
|
2
|
Rosales-Rosas AL, Goossens S, Chiu W, Majumder A, Soto A, Masyn S, Stoops B, Wang L, Kaptein SJF, Goethals O, Delang L. The antiviral JNJ-A07 significantly reduces dengue virus transmission by Aedes aegypti mosquitoes when delivered via blood-feeding. SCIENCE ADVANCES 2024; 10:eadr8338. [PMID: 39602538 PMCID: PMC11601208 DOI: 10.1126/sciadv.adr8338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Accepted: 10/23/2024] [Indexed: 11/29/2024]
Abstract
Dengue virus (DENV) is the most widespread mosquito-borne virus worldwide, but no antiviral therapies are available yet. The pan-serotype DENV inhibitor JNJ-A07 has shown potent activity in a mouse model. It remains unknown whether an antiviral drug ingested by mosquitoes could inhibit virus replication and thus reduce transmission to other hosts. Here, we investigated the antiviral activity of JNJ-A07 when administered in the blood meal to Aedes aegypti mosquitoes. JNJ-A07 blocked DENV-2 transmission by the mosquitoes in both pre-exposure and post-exposure settings. In addition, JNJ-A07 remained in the mosquito bodies for 7 days after blood meal. Reductions of DENV systemic infection in the mosquitoes suggested a potential for decreased proportions of DENV outbreaks in a simulated environment when the mosquitoes ingested JNJ-A07 via the blood meal.
Collapse
Affiliation(s)
- Ana L. Rosales-Rosas
- KU Leuven, Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, Virus-Host Interactions & Therapeutic Approaches (VITA) Research Group, 3000 Leuven, Belgium
| | - Sara Goossens
- KU Leuven, Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, Virus-Host Interactions & Therapeutic Approaches (VITA) Research Group, 3000 Leuven, Belgium
| | - Winston Chiu
- KU Leuven, Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, Virology, Antiviral Drug & Vaccine Research Group, 3000 Leuven, Belgium
| | | | - Alina Soto
- KU Leuven, Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, Virus-Host Interactions & Therapeutic Approaches (VITA) Research Group, 3000 Leuven, Belgium
| | - Serge Masyn
- Janssen Global Public Health, Janssen Pharmaceutica NV, Beerse, Belgium
| | | | - Lanjiao Wang
- KU Leuven, Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, Virus-Host Interactions & Therapeutic Approaches (VITA) Research Group, 3000 Leuven, Belgium
| | - Suzanne J. F. Kaptein
- KU Leuven, Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, Virology, Antiviral Drug & Vaccine Research Group, 3000 Leuven, Belgium
| | - Olivia Goethals
- Janssen Global Public Health, Janssen Pharmaceutica NV, Beerse, Belgium
| | - Leen Delang
- KU Leuven, Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, Virus-Host Interactions & Therapeutic Approaches (VITA) Research Group, 3000 Leuven, Belgium
| |
Collapse
|
3
|
Ko HY, Li YT, Yu HP, Li YY, Chiang MT, Simanjuntak Y, Lee YL, Dai SS, Chung PJ, Yu GY, Chao DY, Lin YL. Emergence and increased epidemic potential of dengue variants with the NS5 V357E mutation after consecutive years of transmission. iScience 2024; 27:110899. [PMID: 39524326 PMCID: PMC11550591 DOI: 10.1016/j.isci.2024.110899] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 06/13/2024] [Accepted: 09/04/2024] [Indexed: 11/16/2024] Open
Abstract
Arboviruses can intensify epidemics by acquiring single nucleotide variants, leading to clade replacement and severe outbreaks. We investigated dengue virus serotype 2 evolution in consecutive outbreaks from 2001 to 2003 in Taiwan, coinciding with overwintering and increased epidemic severity. The virus evolved from the early-epidemic strain (Ia) to the late-epidemic strains (Ib and II), featuring three amino acid differences. The later strains demonstrated increased replication at lower temperatures, and the NS5V357E mutation significantly boosts virus replication and virulence, regardless of the other two mutations (ET46I and NS5I271T). Crucially, the late NS5V357E signature swiftly emerged after infecting mosquitos with the early Ia strain, through thoracic injection or by feeding on Ia-infected mice. Thus, we discover the molecular events involved in overwintering and increased disease severity between consecutive dengue outbreaks. This study enhances our understanding of dengue epidemiology, aiding in predicting and monitoring the emergence of dengue strains with increased epidemic potential.
Collapse
Affiliation(s)
- Hui-Ying Ko
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
- Graduate Institute of Microbiology and Public Health, National Chung-Hsing University, Taichung, Taiwan
| | - Yao-Tsun Li
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - Han-Peng Yu
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - Ya-Yuan Li
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
- Biomedical Translation Research Center, Academia Sinica, Taipei, Taiwan
- Institute of Microbiology and Immunology, National Defense Medical Center, Taipei, Taiwan
| | - Ming-Tsai Chiang
- Biomedical Translation Research Center, Academia Sinica, Taipei, Taiwan
| | - Yogy Simanjuntak
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - Yi-Ling Lee
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - Shih-Syong Dai
- National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, Zhunan, Taiwan
| | - Pei-Jung Chung
- National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, Zhunan, Taiwan
| | - Guann-Yi Yu
- National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, Zhunan, Taiwan
| | - Day-Yu Chao
- Graduate Institute of Microbiology and Public Health, National Chung-Hsing University, Taichung, Taiwan
- Doctoral Program in Microbial Genomics, National Chung Hsing University and Academia Sinica, Taichung City, Taiwan
- Department of Post-Baccalaureate Medicine, National Chung Hsing University, Taichung City, Taiwan
| | - Yi-Ling Lin
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
- Biomedical Translation Research Center, Academia Sinica, Taipei, Taiwan
- Institute of Microbiology and Immunology, National Defense Medical Center, Taipei, Taiwan
| |
Collapse
|
4
|
Pruszynski CA, Buckner EA, Burkett-Cadena ND, Hugo LE, Leal AL, Caragata EP. Estimation of population age structure, daily survival rates, and potential to support dengue virus transmission for Florida Keys Aedes aegypti via transcriptional profiling. PLoS Negl Trop Dis 2024; 18:e0012350. [PMID: 39137188 PMCID: PMC11321583 DOI: 10.1371/journal.pntd.0012350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Accepted: 07/08/2024] [Indexed: 08/15/2024] Open
Abstract
Aedes aegypti is an important vector of dengue virus and other arboviruses that affect human health. After being ingested in an infectious bloodmeal, but before being transmitted from mosquito to human, dengue virus must disseminate from the vector midgut into the hemocoel and then the salivary glands. This process, the extrinsic incubation period, typically takes 6-14 days. Since older mosquitoes are responsible for transmission, understanding the age structure of vector populations is important. Transcriptional profiling can facilitate predictions of the age structures of mosquito populations, critical for estimating their potential for pathogen transmission. In this study, we utilized a two-gene transcript model to assess the age structure and daily survival rates of three populations (Key West, Marathon, and Key Largo) of Ae. aegypti from the Florida Keys, United States, where repeated outbreaks of autochthonous dengue transmission have recently occurred. We found that Key Largo had the youngest Ae. aegypti population with the lowest daily survival rate, while Key West had the oldest population and highest survival rate. Across sites, 22.67% of Ae. aegypti females were likely old enough to transmit dengue virus (at least 15 days post emergence). Computed estimates of the daily survival rate (0.8364 using loglinear and 0.8660 using non-linear regression), indicate that dengue vectors in the region experienced relatively low daily mortality. Collectively, our data suggest that Ae. aegypti populations across the Florida Keys harbor large numbers of older individuals, which likely contributes to the high risk of dengue transmission in the area.
Collapse
Affiliation(s)
- Catherine A. Pruszynski
- Florida Keys Mosquito Control District, Marathon, Florida, United States of America
- University of Florida, Institute of Food and Agricultural Sciences, Department of Entomology and Nematology, Florida Medical Entomology Laboratory, Vero Beach, Florida, United States of America
| | - Eva A. Buckner
- University of Florida, Institute of Food and Agricultural Sciences, Department of Entomology and Nematology, Florida Medical Entomology Laboratory, Vero Beach, Florida, United States of America
| | - Nathan D. Burkett-Cadena
- University of Florida, Institute of Food and Agricultural Sciences, Department of Entomology and Nematology, Florida Medical Entomology Laboratory, Vero Beach, Florida, United States of America
| | - Leon E. Hugo
- Mosquito Control Laboratory, QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
| | - Andrea L. Leal
- Florida Keys Mosquito Control District, Marathon, Florida, United States of America
| | - Eric P. Caragata
- University of Florida, Institute of Food and Agricultural Sciences, Department of Entomology and Nematology, Florida Medical Entomology Laboratory, Vero Beach, Florida, United States of America
| |
Collapse
|
5
|
Maire T, Lambrechts L, Hol FJH. Arbovirus impact on mosquito behavior: the jury is still out. Trends Parasitol 2024; 40:292-301. [PMID: 38423938 DOI: 10.1016/j.pt.2024.02.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 02/06/2024] [Accepted: 02/06/2024] [Indexed: 03/02/2024]
Abstract
Parasites can manipulate host behavior to enhance transmission, but our understanding of arbovirus-induced changes in mosquito behavior is limited. Here, we explore current knowledge on such behavioral alterations in mosquito vectors, focusing on host-seeking and blood-feeding behaviors. Reviewing studies on dengue, Zika, La Crosse, Sindbis, and West Nile viruses in Aedes or Culex mosquitoes reveals subtle yet potentially significant effects. However, assay heterogeneity and limited sample sizes challenge definitive conclusions. To enhance robustness, we propose using deep-learning tools for automated behavior quantification and stress the need for standardized assays. Additionally, conducting longitudinal studies across the extrinsic incubation period and integrating diverse traits into modeling frameworks are crucial for understanding the nuanced implications of arbovirus-induced behavioral changes for virus transmission dynamics.
Collapse
Affiliation(s)
- Théo Maire
- Institut Pasteur, Université Paris Cité, CNRS UMR2000, Insect-Virus Interactions Unit, Paris, France
| | - Louis Lambrechts
- Institut Pasteur, Université Paris Cité, CNRS UMR2000, Insect-Virus Interactions Unit, Paris, France
| | - Felix J H Hol
- Radboud University Medical Center, Department of Medical Microbiology, Nijmegen, The Netherlands.
| |
Collapse
|
6
|
Meyer AD, Guerrero SM, Dean NE, Anderson KB, Stoddard ST, Perkins TA. Model-based estimates of chikungunya epidemiological parameters and outbreak risk from varied data types. Epidemics 2023; 45:100721. [PMID: 37890441 DOI: 10.1016/j.epidem.2023.100721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 10/06/2023] [Accepted: 10/09/2023] [Indexed: 10/29/2023] Open
Abstract
Assessing the factors responsible for differences in outbreak severity for the same pathogen is a challenging task, since outbreak data are often incomplete and may vary in type across outbreaks (e.g., daily case counts, serology, cases per household). We propose that outbreaks described with varied data types can be directly compared by using those data to estimate a common set of epidemiological parameters. To demonstrate this for chikungunya virus (CHIKV), we developed a realistic model of CHIKV transmission, along with a Bayesian inference method that accommodates any type of outbreak data that can be simulated. The inference method makes use of the fact that all data types arise from the same transmission process, which is simulated by the model. We applied these tools to data from three real-world outbreaks of CHIKV in Italy, Cambodia, and Bangladesh to estimate nine model parameters. We found that these populations differed in several parameters, including pre-existing immunity and house-to-house differences in mosquito activity. These differences resulted in posterior predictions of local CHIKV transmission risk that varied nearly fourfold: 16% in Italy, 28% in Cambodia, and 62% in Bangladesh. Our inference method and model can be applied to improve understanding of the epidemiology of CHIKV and other pathogens for which outbreaks are described with varied data types.
Collapse
Affiliation(s)
- Alexander D Meyer
- Department of Biological Sciences, University of Notre Dame, Notre Dame, IN 46556, USA.
| | | | - Natalie E Dean
- Department of Biostatistics and Bioinformatics, Rollins School of Public Health, Emory University, Atlanta, GA 30322, USA
| | - Kathryn B Anderson
- Department of Microbiology and Immunology, The State University of New York (SUNY) Upstate Medical University, Syracuse, NY 13210, USA
| | - Steven T Stoddard
- Bavarian Nordic Inc., 6275 Nancy Ridge Drive Suite 110/120, San Diego, CA 92121, USA; Division of Health Promotion and Behavioral Sciences, School of Public Health, San Diego State University, San Diego, CA 92182, USA
| | - T Alex Perkins
- Department of Biological Sciences, University of Notre Dame, Notre Dame, IN 46556, USA
| |
Collapse
|
7
|
Agbodzi B, Sado Yousseu FB, Nemg Simo FB, Kumordjie S, Yeboah C, Mosore MT, Bentil RE, Coatsworth HG, Attram N, Nimo-Paintsil S, Fox AT, Bonney JHK, Ampofo W, Dinglasan RR, Sanders T, Wiley MR, Demanou M, Letizia AG. Whole genome sequencing of outbreak strains from 2017 to 2018 reveals an endemic clade of dengue 1 virus in Cameroon. Emerg Microbes Infect 2023; 12:2281352. [PMID: 37933502 PMCID: PMC10732222 DOI: 10.1080/22221751.2023.2281352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2023] [Accepted: 11/04/2023] [Indexed: 11/08/2023]
Abstract
Dengue fever is expanding as a global public health threat including countries within Africa. For the past few decades, Cameroon has experienced sporadic cases of arboviral infections including dengue fever. Here, we conducted genomic analyses to investigate the origin and phylogenetic profile of Cameroon DENV-1 outbreak strains and predict the impact of emerging therapeutics on these strains. Bayesian and maximum-likelihood phylogenetic inference approaches were employed in virus evolutionary analyses. An in silico analysis was performed to assess the divergence in immunotherapeutic and vaccine targets in the new genomes. Six complete DENV-1 genomes were generated from 50 samples that met a clinical definition for DENV infection. Phylogenetic analyses revealed that the strains from the current study belong to a sub-lineage of DENV-1 genotype V and form a monophyletic taxon with a 2012 strain from Gabon. The most recent common ancestor (TMRCA) of the Cameroon and Gabon strains was estimated to have existed around 2008. Comparing our sequences to the vaccine strains, 19 and 15 amino acid (aa) substitutions were observed in the immuno-protective prM-E protein segments of the Dengvaxia® and TetraVax-DV-TV003 vaccines, respectively. Epitope mapping revealed mismatches in aa residues at positions E155 and E161 located in the epitope of the human anti-DENV-1 monoclonal antibody HMAb 1F4. The new DENV strains constitute a conserved genomic pool of viruses endemic to the Central African region that needs prospective monitoring to track local viral evolution. Further work is needed to ascertain the performance of emerging therapeutics in DENV strains from the African region.
Collapse
Affiliation(s)
- Bright Agbodzi
- U.S. Naval Medical Research Unit EURAFCENT, Accra, Ghana
| | | | | | | | - Clara Yeboah
- U.S. Naval Medical Research Unit EURAFCENT, Accra, Ghana
| | | | | | - Heather G. Coatsworth
- Department of Infectious Diseases & Immunology and Emerging Pathogens Institute, College of Veterinary Medicine, University of Florida, Gainesville, Florida, USA
| | - Naiki Attram
- U.S. Naval Medical Research Unit EURAFCENT, Accra, Ghana
| | | | - Anne T. Fox
- U.S. Naval Medical Research Unit EURAFCENT, Accra, Ghana
| | - Joseph H. K. Bonney
- Virology Department, Noguchi Memorial Institute for Medical Research, University of Ghana, Accra, Ghana
| | - William Ampofo
- Virology Department, Noguchi Memorial Institute for Medical Research, University of Ghana, Accra, Ghana
| | - Rhoel R. Dinglasan
- Department of Infectious Diseases & Immunology and Emerging Pathogens Institute, College of Veterinary Medicine, University of Florida, Gainesville, Florida, USA
| | - Terrel Sanders
- U.S. Naval Medical Research Unit EURAFCENT, Accra, Ghana
| | - Michael R. Wiley
- Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, NE, USA
| | | | | |
Collapse
|
8
|
Lambrechts L, Reiner RC, Briesemeister MV, Barrera P, Long KC, Elson WH, Vizcarra A, Astete H, Bazan I, Siles C, Vilcarromero S, Leguia M, Kawiecki AB, Perkins TA, Lloyd AL, Waller LA, Kitron U, Jenkins SA, Hontz RD, Campbell WR, Carrington LB, Simmons CP, Ampuero JS, Vasquez G, Elder JP, Paz-Soldan VA, Vazquez-Prokopec GM, Rothman AL, Barker CM, Scott TW, Morrison AC. Direct mosquito feedings on dengue-2 virus-infected people reveal dynamics of human infectiousness. PLoS Negl Trop Dis 2023; 17:e0011593. [PMID: 37656759 PMCID: PMC10501553 DOI: 10.1371/journal.pntd.0011593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2023] [Revised: 09/14/2023] [Accepted: 08/14/2023] [Indexed: 09/03/2023] Open
Abstract
Dengue virus (DENV) transmission from humans to mosquitoes is a poorly documented, but critical component of DENV epidemiology. Magnitude of viremia is the primary determinant of successful human-to-mosquito DENV transmission. People with the same level of viremia, however, can vary in their infectiousness to mosquitoes as a function of other factors that remain to be elucidated. Here, we report on a field-based study in the city of Iquitos, Peru, where we conducted direct mosquito feedings on people naturally infected with DENV and that experienced mild illness. We also enrolled people naturally infected with Zika virus (ZIKV) after the introduction of ZIKV in Iquitos during the study period. Of the 54 study participants involved in direct mosquito feedings, 43 were infected with DENV-2, two with DENV-3, and nine with ZIKV. Our analysis excluded participants whose viremia was detectable at enrollment but undetectable at the time of mosquito feeding, which was the case for all participants with DENV-3 and ZIKV infections. We analyzed the probability of onward transmission during 50 feeding events involving 27 participants infected with DENV-2 based on the presence of infectious virus in mosquito saliva 7-16 days post blood meal. Transmission probability was positively associated with the level of viremia and duration of extrinsic incubation in the mosquito. In addition, transmission probability was influenced by the day of illness in a non-monotonic fashion; i.e., transmission probability increased until 2 days after symptom onset and decreased thereafter. We conclude that mildly ill DENV-infected humans with similar levels of viremia during the first two days after symptom onset will be most infectious to mosquitoes on the second day of their illness. Quantifying variation within and between people in their contribution to DENV transmission is essential to better understand the biological determinants of human infectiousness, parametrize epidemiological models, and improve disease surveillance and prevention strategies.
Collapse
Affiliation(s)
- Louis Lambrechts
- Institut Pasteur, Université Paris Cité, CNRS UMR2000, Insect-Virus Interactions Unit, Paris, France
| | - Robert C. Reiner
- University of Washington, Seattle, Washington, United States of America
| | - M. Veronica Briesemeister
- Department of Entomology and Nematology, University of California, Davis, California, United States of America
| | - Patricia Barrera
- Department of Entomology and Nematology, University of California, Davis, California, United States of America
- Genomics Laboratory, Pontificia Universidad Católica del Peru, Lima, Peru
| | - Kanya C. Long
- Department of Family Medicine and Public Health, University of California San Diego School of Medicine, La Jolla, California, United States of America
| | - William H. Elson
- Department of Entomology and Nematology, University of California, Davis, California, United States of America
| | - Alfonso Vizcarra
- Department of Entomology and Nematology, University of California, Davis, California, United States of America
| | - Helvio Astete
- Virology and Emerging Infections Department, United States Naval Medical Research Unit No. 6, Lima, Peru
- Department of Entomology, United States Naval Medical Research Unit No. 6, Lima, Peru
| | - Isabel Bazan
- Virology and Emerging Infections Department, United States Naval Medical Research Unit No. 6, Lima, Peru
| | - Crystyan Siles
- Virology and Emerging Infections Department, United States Naval Medical Research Unit No. 6, Lima, Peru
| | - Stalin Vilcarromero
- Virology and Emerging Infections Department, United States Naval Medical Research Unit No. 6, Lima, Peru
| | - Mariana Leguia
- Genomics Laboratory, Pontificia Universidad Católica del Peru, Lima, Peru
| | - Anna B. Kawiecki
- Department of Pathology, Microbiology, and Immunology, School of Veterinary Medicine, University of California, Davis, California, United States of America
| | - T. Alex Perkins
- Department of Biological Sciences and Eck Institute for Global Health, University of Notre Dame, Notre Dame, Indiana, United States of America
| | - Alun L. Lloyd
- Biomathematics Graduate Program and Department of Mathematics, North Carolina State University, Raleigh, North Carolina, United States of America
| | - Lance A. Waller
- Department of Biostatistics and Bioinformatics, Rollins School of Public Health, Emory University, Atlanta, Georgia, United States of America
| | - Uriel Kitron
- Department of Environmental Sciences, Emory University, Atlanta, Georgia, United States of America
| | - Sarah A. Jenkins
- Virology and Emerging Infections Department, United States Naval Medical Research Unit No. 6, Lima, Peru
| | - Robert D. Hontz
- Virology and Emerging Infections Department, United States Naval Medical Research Unit No. 6, Lima, Peru
| | - Wesley R. Campbell
- Virology and Emerging Infections Department, United States Naval Medical Research Unit No. 6, Lima, Peru
| | | | - Cameron P. Simmons
- Institute for Vector-Borne Disease, Monash University, Clayton, Victoria, Australia
| | - J. Sonia Ampuero
- Virology and Emerging Infections Department, United States Naval Medical Research Unit No. 6, Lima, Peru
| | - Gisella Vasquez
- Department of Entomology, United States Naval Medical Research Unit No. 6, Lima, Peru
| | - John P. Elder
- School of Public Health, San Diego State University, San Diego, California, United States of America
| | - Valerie A. Paz-Soldan
- Department of Tropical Medicine, Tulane University School of Public Health and Tropical Medicine, New Orleans, Louisiana, United States of America
| | | | - Alan L. Rothman
- Institute for Immunology and Informatics and Department of Cell and Molecular Biology, University of Rhode Island, Providence, Rhode Island, United States of America
| | - Christopher M. Barker
- Department of Pathology, Microbiology, and Immunology, School of Veterinary Medicine, University of California, Davis, California, United States of America
| | - Thomas W. Scott
- Department of Entomology and Nematology, University of California, Davis, California, United States of America
| | - Amy C. Morrison
- Department of Pathology, Microbiology, and Immunology, School of Veterinary Medicine, University of California, Davis, California, United States of America
| |
Collapse
|
9
|
Diagnosis of Dengue Virus Infections Imported to Hungary and Phylogenetic Analysis of Virus Isolates. Diagnostics (Basel) 2023; 13:diagnostics13050873. [PMID: 36900018 PMCID: PMC10001143 DOI: 10.3390/diagnostics13050873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 02/16/2023] [Accepted: 02/19/2023] [Indexed: 03/03/2023] Open
Abstract
BACKGROUND Dengue virus is one of the most important arbovirus infections of public health concern. Between 2017 and June 2022, 75 imported dengue infections were confirmed by laboratory diagnostic methods in Hungary. Our study aimed to isolate the imported Dengue strains and characterize them by whole-genome sequencing. METHODS Laboratory diagnosis of imported infections was carried out using both serological and molecular methods. Virus isolation was attempted on Vero E6 cell lines. An in-house amplicon-based whole-genome sequencing method was applied for the detailed molecular characterization of the isolated virus strains. RESULTS From 75 confirmed Dengue infected patients, 68 samples were used for virus isolation. Isolation and whole-genome sequencing were successful in the case of eleven specimens. Isolated strains belonged to Dengue-1,-2,-3 serotypes. DISCUSSION The isolated strains corresponded to the circulating genotypes of the visited geographic area, and some of the genotypes were linked with more severe DENV cases in the literature. We found that multiple factors, including viral load, specimen type, and patient antibody status, influence the isolation efficacy. CONCLUSIONS Analysis of imported DENV strains can help estimate the outcomes of a possible local DENV transmission in Hungary, a threat from the near future.
Collapse
|
10
|
Dieng I, Diallo A, Ndiaye M, Mhamadi M, Diagne MM, Sankhe S, Ndione MHD, Gaye A, Sagne SN, Heraud JM, Sall AA, Fall G, Loucoubar C, Faye O, Faye O. Full genome analysis of circulating DENV-2 in Senegal reveals a regional diversification into separate clades. J Med Virol 2022; 94:5593-5600. [PMID: 35879861 DOI: 10.1002/jmv.28027] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 07/09/2022] [Accepted: 07/21/2022] [Indexed: 12/15/2022]
Abstract
To assess the genetic diversity of circulating dengue virus 2 (DENV-2) in Senegal, we analyzed nine newly generated complete genomes of strains isolated during the 2018 outbreaks and 06 sequences obtained in 2018 and 2019 from Thiès and Rosso, respectively. Phylogenetic analyses revealed that Senegalese strains belonged to the cosmopolitan genotype of DENV-2, but we observed intragenotype variability leading to a divergence in two clades associated with specific geographic distribution. We report two DENV-2 variants belonging to two distinct clades. Isolates from the "Northern clade" (n = 8) harbored three nonsynonymous mutations (V1183M, R1405K, P2266T) located respectively on NS2A, NS2B, and NS4A, while isolates from the "Western clade" (n = 7) had two nonsynonymous mutations (V1185E, V3214E) located respectively in the NS2A and NS5 genes. These findings call for phylogeographic analysis to investigate routes of introductions, dispersal patterns, and in-depth in vitro and functional study to elucidate the impact of observed mutations on viral fitness, spread, epidemiology, and pathology.
Collapse
Affiliation(s)
- Idrissa Dieng
- Virology Department, Arboviruses and Haemorrhagic Fever Viruses Unit, Institut Pasteur de Dakar, Dakar, Senegal
| | - Amadou Diallo
- Epidemiology, Clinical Research and Data Science Department, Institut Pasteur de Dakar, Dakar, Senegal
| | - Mignane Ndiaye
- Virology Department, Arboviruses and Haemorrhagic Fever Viruses Unit, Institut Pasteur de Dakar, Dakar, Senegal
| | - Moufid Mhamadi
- Virology Department, Arboviruses and Haemorrhagic Fever Viruses Unit, Institut Pasteur de Dakar, Dakar, Senegal
| | - Moussa Moïse Diagne
- Virology Department, Arboviruses and Haemorrhagic Fever Viruses Unit, Institut Pasteur de Dakar, Dakar, Senegal
| | - Safietou Sankhe
- Virology Department, Arboviruses and Haemorrhagic Fever Viruses Unit, Institut Pasteur de Dakar, Dakar, Senegal
| | - Marie Henriette Dior Ndione
- Virology Department, Arboviruses and Haemorrhagic Fever Viruses Unit, Institut Pasteur de Dakar, Dakar, Senegal
| | - Aboubacry Gaye
- Epidemiology, Clinical Research and Data Science Department, Institut Pasteur de Dakar, Dakar, Senegal
| | - Samba Niang Sagne
- Epidemiology, Clinical Research and Data Science Department, Institut Pasteur de Dakar, Dakar, Senegal
| | - Jean Michel Heraud
- Virology Department, Arboviruses and Haemorrhagic Fever Viruses Unit, Institut Pasteur de Dakar, Dakar, Senegal
| | - Amadou Alpha Sall
- Virology Department, Arboviruses and Haemorrhagic Fever Viruses Unit, Institut Pasteur de Dakar, Dakar, Senegal
| | - Gamou Fall
- Virology Department, Arboviruses and Haemorrhagic Fever Viruses Unit, Institut Pasteur de Dakar, Dakar, Senegal
| | - Cheikh Loucoubar
- Virology Department, Arboviruses and Haemorrhagic Fever Viruses Unit, Institut Pasteur de Dakar, Dakar, Senegal
| | - Ousmane Faye
- Virology Department, Arboviruses and Haemorrhagic Fever Viruses Unit, Institut Pasteur de Dakar, Dakar, Senegal
| | - Oumar Faye
- Virology Department, Arboviruses and Haemorrhagic Fever Viruses Unit, Institut Pasteur de Dakar, Dakar, Senegal
| |
Collapse
|
11
|
Cecilia H, Vriens R, Wichgers Schreur PJ, de Wit MM, Métras R, Ezanno P, ten Bosch QA. Heterogeneity of Rift Valley fever virus transmission potential across livestock hosts, quantified through a model-based analysis of host viral load and vector infection. PLoS Comput Biol 2022; 18:e1010314. [PMID: 35867712 PMCID: PMC9348665 DOI: 10.1371/journal.pcbi.1010314] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 08/03/2022] [Accepted: 06/16/2022] [Indexed: 01/17/2023] Open
Abstract
Quantifying the variation of pathogens’ life history traits in multiple host systems is crucial to understand their transmission dynamics. It is particularly important for arthropod-borne viruses (arboviruses), which are prone to infecting several species of vertebrate hosts. Here, we focus on how host-pathogen interactions determine the ability of host species to transmit a virus to susceptible vectors upon a potentially infectious contact. Rift Valley fever (RVF) is a viral, vector-borne, zoonotic disease, chosen as a case study. The relative contributions of livestock species to RVFV transmission has not been previously quantified. To estimate their potential to transmit the virus over the course of their infection, we 1) fitted a within-host model to viral RNA and infectious virus measures, obtained daily from infected lambs, calves, and young goats, 2) estimated the relationship between vertebrate host infectious titers and probability to infect mosquitoes, and 3) estimated the net infectiousness of each host species over the duration of their infectious periods, taking into account different survival outcomes for lambs. Our results indicate that the efficiency of viral replication, along with the lifespan of infectious particles, could be sources of heterogeneity between hosts. Given available data on RVFV competent vectors, we found that, for similar infectious titers, infection rates in the Aedes genus were on average higher than in the Culex genus. Consequently, for Aedes-mediated infections, we estimated the net infectiousness of lambs to be 2.93 (median) and 3.65 times higher than that of calves and goats, respectively. In lambs, we estimated the overall infectiousness to be 1.93 times higher in individuals which eventually died from the infection than in those recovering. Beyond infectiousness, the relative contributions of host species to transmission depend on local ecological factors, including relative abundances and vector host-feeding preferences. Quantifying these contributions will ultimately help design efficient, targeted, surveillance and vaccination strategies. Viruses spread by mosquitoes present a major threat to animal and public health worldwide. When these pathogenic viruses can infect multiple species, controlling their spread becomes difficult. Rift Valley fever virus (RVFV) is such a virus. It spreads predominantly among ruminant livestock but can also spill over and cause severe disease in humans. Understanding which of these ruminant species are most important for the transmission of RVFV can help for effective control. One piece of this puzzle is to assess how effective infected animals are at transmitting RVFV to mosquitoes. To answer this question, we combine mathematical models with observations from experimental infections in cattle, sheep, and goats, and model changes in viremia over time within individuals. We then quantify the relationship between hosts’ viremia and the probability to infect mosquitoes. In combining these two analyses, we estimate the overall transmission potential of sheep, when in contact with mosquitoes, to be 3 to 5 times higher than that of goats and cattle. Further, sheep that experience a lethal infection have an even larger overall transmission potential. Once applied at the level of populations, with setting-specific herd composition and exposure to mosquitoes, these results will help unravel species’ role in RVF outbreaks.
Collapse
Affiliation(s)
- Hélène Cecilia
- INRAE, Oniris, BIOEPAR, Nantes, France
- * E-mail: (HC); (QAtB)
| | - Roosmarie Vriens
- Quantitative Veterinary Epidemiology, Wageningen University and Research, Wageningen, The Netherlands
| | | | - Mariken M. de Wit
- Quantitative Veterinary Epidemiology, Wageningen University and Research, Wageningen, The Netherlands
| | - Raphaëlle Métras
- Sorbonne Université, INSERM, Institut Pierre Louis d’Epidémiologie et de Santé Publique (IPLESP), Paris, France
| | | | - Quirine A. ten Bosch
- Quantitative Veterinary Epidemiology, Wageningen University and Research, Wageningen, The Netherlands
- * E-mail: (HC); (QAtB)
| |
Collapse
|
12
|
Castro-Jiménez TK, Gómez-Legorreta LC, López-Campa LA, Martínez-Torres V, Alvarado-Silva M, Posadas-Mondragón A, Díaz-Lima N, Angulo-Mendez HA, Mejía-Domínguez NR, Vaca-Paniagua F, Ávila-Moreno F, García-Cordero J, Cedillo-Barrón L, Aguilar-Ruíz SR, Bustos-Arriaga J. Variability in Susceptibility to Type I Interferon Response and Subgenomic RNA Accumulation Between Clinical Isolates of Dengue and Zika Virus From Oaxaca Mexico Correlate With Replication Efficiency in Human Cells and Disease Severity. Front Cell Infect Microbiol 2022; 12:890750. [PMID: 35800385 PMCID: PMC9254156 DOI: 10.3389/fcimb.2022.890750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2022] [Accepted: 04/27/2022] [Indexed: 11/16/2022] Open
Abstract
Dengue and Zika viruses cocirculate annually in endemic areas of Mexico, causing outbreaks of different magnitude and severity every year, suggesting a continuous selection of Flavivirus variants with variable phenotypes of transmissibility and virulence. To evaluate if Flavivirus variants with different phenotypes cocirculate during outbreaks, we isolated dengue and Zika viruses from blood samples of febrile patients from Oaxaca City during the 2016 and 2019 epidemic years. We compared their replication kinetics in human cells, susceptibility to type I interferon antiviral response, and the accumulation of subgenomic RNA on infected cells. We observed correlations between type I interferon susceptibility and subgenomic RNA accumulation, with high hematocrit percentage and thrombocytopenia. Our results suggest that Flaviviruses that cocirculate in Oaxaca, Mexico, have variable sensitivity to the antiviral activity of type I interferons, and this phenotypic trait correlates with the severity of the disease.
Collapse
Affiliation(s)
- Tannya Karen Castro-Jiménez
- Laboratorio de Biología Molecular e Inmunología de arbovirus, Unidad de Biomedicina, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Tlalnepantla, Mexico
| | - Laura Cristina Gómez-Legorreta
- Laboratorio de Biología Molecular e Inmunología de arbovirus, Unidad de Biomedicina, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Tlalnepantla, Mexico
| | - Laura Alejandra López-Campa
- Laboratorio de Biología Molecular e Inmunología de arbovirus, Unidad de Biomedicina, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Tlalnepantla, Mexico
| | - Valeria Martínez-Torres
- Laboratorio de Biología Molecular e Inmunología de arbovirus, Unidad de Biomedicina, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Tlalnepantla, Mexico
| | - Marcos Alvarado-Silva
- Laboratorio de Biología Molecular e Inmunología de arbovirus, Unidad de Biomedicina, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Tlalnepantla, Mexico
| | - Araceli Posadas-Mondragón
- Laboratorio de Biología Molecular e Inmunología de arbovirus, Unidad de Biomedicina, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Tlalnepantla, Mexico
| | | | | | - Nancy R. Mejía-Domínguez
- Red de Apoyo a la Investigación, Universidad Nacional Autónoma de México e Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, Mexico
| | - Felipe Vaca-Paniagua
- Unidad de Biomedicina, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Tlalnepantla, Mexico
| | - Federico Ávila-Moreno
- Unidad de Biomedicina, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Tlalnepantla, Mexico
| | - Julio García-Cordero
- Departamento de Biomedicina Molecular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Ciudad de México, Mexico
| | - Leticia Cedillo-Barrón
- Departamento de Biomedicina Molecular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Ciudad de México, Mexico
| | - Sergio Roberto Aguilar-Ruíz
- Departamento de Biomedicina Experimental, Facultad de Medicina y Cirugía de la Universidad Autónoma ‘Benito Juárez’ de Oaxaca, Oaxaca, Mexico
| | - José Bustos-Arriaga
- Laboratorio de Biología Molecular e Inmunología de arbovirus, Unidad de Biomedicina, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Tlalnepantla, Mexico
- *Correspondence: José Bustos-Arriaga,
| |
Collapse
|
13
|
Lineage Replacement Associated with Fitness Gain in Mammalian Cells and Aedes aegypti: A Catalyst for Dengue Virus Type 2 Transmission. Microorganisms 2022; 10:microorganisms10061100. [PMID: 35744618 PMCID: PMC9231088 DOI: 10.3390/microorganisms10061100] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 05/18/2022] [Accepted: 05/24/2022] [Indexed: 02/04/2023] Open
Abstract
Shifting of virus serotypes and clade replacement events are known to drive dengue epidemics. However, only a few studies have attempted to elucidate the virus attributes that contribute to such epidemics. In 2007, Singapore experienced a dengue outbreak affecting more than 8000 individuals. The outbreak ensued with the shuffling of dominant clades (from clade I to clade II) of Dengue virus 2 (DENV-2) cosmopolitan genotype, at a time when the Aedes premise index was significantly low. Therefore, we hypothesized that clade II had higher epidemic potential and fitness than clade I. To test this hypothesis, we tested the replication and apoptotic qualities of clade I and II isolates in mammalian cells and their ability to infect and disseminate in a field strain of Ae. Aegypti. Our findings indicated that clade II replicated more efficiently in mammalian cells than clade I and possessed higher transmission potential in local vectors. This could collectively improve the epidemic potential of clade II, which dominated during the outbreak in 2007. The findings exemplify complex interactions between the emergence, adaptation and transmission potential of DENV, and testify the epidemiological importance of a deeper understanding of virus and vector dynamics in endemic regions.
Collapse
|
14
|
Stephenson CJ, Coatsworth H, Waits CM, Nazario-Maldonado NM, Mathias DK, Dinglasan RR, Lednicky JA. Geographic Partitioning of Dengue Virus Transmission Risk in Florida. Viruses 2021; 13:v13112232. [PMID: 34835038 PMCID: PMC8622774 DOI: 10.3390/v13112232] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Revised: 10/28/2021] [Accepted: 11/03/2021] [Indexed: 12/17/2022] Open
Abstract
Dengue viruses (DENVs) cause the greatest public health burden globally among the arthropod-borne viruses. DENV transmission risk has also expanded from tropical to subtropical regions due to the increasing range of its principal mosquito vector, Aedes aegypti. Focal outbreaks of dengue fever (dengue) in the state of Florida (FL) in the USA have increased since 2009. However, little is known about the competence of Ae. aegypti populations across different regions of FL to transmit DENVs. To understand the effects of DENV genotype and serotype variations on vector susceptibility and transmission potential in FL, we orally infected a colony of Ae. aegypti (Orlando/ORL) with low passage or laboratory DENV-1 through -4. Low passage DENVs were more infectious to and had higher transmission potential by ORL mosquitoes. We used these same DENVs to examine natural Ae. aegypti populations to determine whether spatial distributions correlated with differential vector competence. Vector competence across all DENV serotypes was greater for mosquitoes from areas with the highest dengue incidence in south FL compared to north FL. Vector competence for low passage DENVs was significantly higher, revealing that transmission risk is influenced by virus/vector combinations. These data support a targeted mosquito-plus-pathogen screening approach to more accurately estimate DENV transmission risk.
Collapse
Affiliation(s)
- Caroline J. Stephenson
- Emerging Pathogens Institute, University of Florida, Gainesville, FL 32608, USA; (C.J.S.); (H.C.); (C.M.W.); (N.M.N.-M.); (D.K.M.)
- Department of Environmental and Global Health, University of Florida, Gainesville, FL 32608, USA
| | - Heather Coatsworth
- Emerging Pathogens Institute, University of Florida, Gainesville, FL 32608, USA; (C.J.S.); (H.C.); (C.M.W.); (N.M.N.-M.); (D.K.M.)
- Department of Infectious Diseases and Immunology, University of Florida, Gainesville, FL 32608, USA
| | - Christy M. Waits
- Emerging Pathogens Institute, University of Florida, Gainesville, FL 32608, USA; (C.J.S.); (H.C.); (C.M.W.); (N.M.N.-M.); (D.K.M.)
- Department of Infectious Diseases and Immunology, University of Florida, Gainesville, FL 32608, USA
- Navy Entomology Center of Excellence, Naval Air Station, Jacksonville, FL 32212, USA
| | - Nicole M. Nazario-Maldonado
- Emerging Pathogens Institute, University of Florida, Gainesville, FL 32608, USA; (C.J.S.); (H.C.); (C.M.W.); (N.M.N.-M.); (D.K.M.)
- Department of Infectious Diseases and Immunology, University of Florida, Gainesville, FL 32608, USA
| | - Derrick K. Mathias
- Emerging Pathogens Institute, University of Florida, Gainesville, FL 32608, USA; (C.J.S.); (H.C.); (C.M.W.); (N.M.N.-M.); (D.K.M.)
- Institute of Food and Agricultural Sciences, Florida Medical Entomology Laboratory, University of Florida, Vero Beach, FL 32962, USA
| | - Rhoel R. Dinglasan
- Emerging Pathogens Institute, University of Florida, Gainesville, FL 32608, USA; (C.J.S.); (H.C.); (C.M.W.); (N.M.N.-M.); (D.K.M.)
- Department of Infectious Diseases and Immunology, University of Florida, Gainesville, FL 32608, USA
- Correspondence: (R.R.D.); (J.A.L.)
| | - John A. Lednicky
- Emerging Pathogens Institute, University of Florida, Gainesville, FL 32608, USA; (C.J.S.); (H.C.); (C.M.W.); (N.M.N.-M.); (D.K.M.)
- Department of Environmental and Global Health, University of Florida, Gainesville, FL 32608, USA
- Correspondence: (R.R.D.); (J.A.L.)
| |
Collapse
|
15
|
O'Connor O, Ou TP, Aubry F, Dabo S, Russet S, Girault D, In S, Minier M, Lequime S, Hoem T, Boyer S, Dussart P, Pocquet N, Burtet-Sarramegna V, Lambrechts L, Duong V, Dupont-Rouzeyrol M. Potential role of vector-mediated natural selection in dengue virus genotype/lineage replacements in two epidemiologically contrasted settings. Emerg Microbes Infect 2021; 10:1346-1357. [PMID: 34139961 PMCID: PMC8259877 DOI: 10.1080/22221751.2021.1944789] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Dengue virus (DENV) evolutionary dynamics are characterized by frequent DENV genotype/lineage replacements, potentially associated with changes in disease severity and human immunity. New Caledonia (NC) and Cambodia, two contrasted epidemiological settings, respectively experienced a DENV-1 genotype IV to I replacement in 2012 and a DENV-1 genotype I lineage 3–4 replacement in 2005–2007, both followed by a massive dengue outbreak. However, their underlying evolutionary drivers have not been elucidated. Here, we tested the hypothesis that these genotype/lineage switches reflected a higher transmission fitness of the replacing DENV genotype/lineage in the mosquito vector using in vivo competition experiments. For this purpose, field-derived Aedes aegypti from NC and Cambodia were orally challenged with epidemiologically relevant pairs of four DENV-1 genotype I and IV strains from NC or four DENV-1 genotype I lineage 3 and 4 strains from Cambodia, respectively. The relative transmission fitness of each DENV-1 genotype/lineage was measured by quantitative RT–PCR for infection, dissemination, and transmission rates. Results showed a clear transmission fitness advantage of the replacing DENV-1 genotype I from NC within the vector. A similar but more subtle pattern was observed for the DENV-1 lineage 4 replacement in Cambodia. Our results support the hypothesis that vector-driven selection contributed to the DENV-1 genotype/lineage replacements in these two contrasted epidemiological settings, and reinforce the idea that natural selection taking place within the mosquito vector plays an important role in DENV short-term evolutionary dynamics.
Collapse
Affiliation(s)
- Olivia O'Connor
- Dengue and Arboviruses Research and Expertise Unit, Institut Pasteur de Nouvelle-Calédonie, Institut Pasteur International Network, Noumea, New Caledonia
| | - Tey Putita Ou
- Virology Unit, Institut Pasteur du Cambodge, Institut Pasteur International Network, Phnom Penh, Cambodia
| | - Fabien Aubry
- Insect-Virus Interactions Unit, Institut Pasteur, UMR2000, CNRS, Paris, France
| | - Stéphanie Dabo
- Insect-Virus Interactions Unit, Institut Pasteur, UMR2000, CNRS, Paris, France
| | - Sylvie Russet
- Dengue and Arboviruses Research and Expertise Unit, Institut Pasteur de Nouvelle-Calédonie, Institut Pasteur International Network, Noumea, New Caledonia
| | - Dominique Girault
- Dengue and Arboviruses Research and Expertise Unit, Institut Pasteur de Nouvelle-Calédonie, Institut Pasteur International Network, Noumea, New Caledonia
| | - Saraden In
- Virology Unit, Institut Pasteur du Cambodge, Institut Pasteur International Network, Phnom Penh, Cambodia
| | - Marine Minier
- Medical Entomology Research and Expertise Unit, Institut Pasteur de Nouvelle-Calédonie, Institut Pasteur International Network, Noumea, New Caledonia
| | - Sebastian Lequime
- Insect-Virus Interactions Unit, Institut Pasteur, UMR2000, CNRS, Paris, France
| | - Thavry Hoem
- Virology Unit, Institut Pasteur du Cambodge, Institut Pasteur International Network, Phnom Penh, Cambodia
| | - Sébastien Boyer
- Medical Entomology Unit, Institut Pasteur du Cambodge, Institut Pasteur International Network, Phnom Penh, Cambodia
| | - Philippe Dussart
- Virology Unit, Institut Pasteur du Cambodge, Institut Pasteur International Network, Phnom Penh, Cambodia
| | - Nicolas Pocquet
- Medical Entomology Research and Expertise Unit, Institut Pasteur de Nouvelle-Calédonie, Institut Pasteur International Network, Noumea, New Caledonia
| | - Valérie Burtet-Sarramegna
- Institute For Exact and Applied Sciences, Université de la Nouvelle-Calédonie, Noumea, New Caledonia
| | - Louis Lambrechts
- Insect-Virus Interactions Unit, Institut Pasteur, UMR2000, CNRS, Paris, France
| | - Veasna Duong
- Medical Entomology Research and Expertise Unit, Institut Pasteur de Nouvelle-Calédonie, Institut Pasteur International Network, Noumea, New Caledonia
| | - Myrielle Dupont-Rouzeyrol
- Dengue and Arboviruses Research and Expertise Unit, Institut Pasteur de Nouvelle-Calédonie, Institut Pasteur International Network, Noumea, New Caledonia
| |
Collapse
|
16
|
Auerswald H, Maquart PO, Chevalier V, Boyer S. Mosquito Vector Competence for Japanese Encephalitis Virus. Viruses 2021; 13:v13061154. [PMID: 34208737 PMCID: PMC8234777 DOI: 10.3390/v13061154] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Revised: 06/02/2021] [Accepted: 06/02/2021] [Indexed: 12/30/2022] Open
Abstract
Japanese encephalitis virus (JEV) is a zoonotic pathogen mainly found in East and Southeast Asia and transmitted by mosquitoes. The objective of this review is to summarize the knowledge on the diversity of JEV mosquito vector species. Therefore, we systematically analyzed reports of JEV found in field-caught mosquitoes as well as experimental vector competence studies. Based on the investigated publications, we classified 14 species as confirmed vectors for JEV due to their documented experimental vector competence and evidence of JEV found in wild mosquitoes. Additionally, we identified 11 mosquito species, belonging to five genera, with an experimentally confirmed vector competence for JEV but lacking evidence on their JEV transmission capacity from field-caught mosquitoes. Our study highlights the diversity of confirmed and potential JEV vector species. We also emphasize the variety in the study design of vector competence investigations. To account for the diversity of the vector species and regional circumstances, JEV vector competence should be studied in the local context, using local mosquitoes with local virus strains under local climate conditions to achieve reliable data. In addition, harmonization of the design of vector competence experiments would lead to better comparable data, informing vector and disease control measures.
Collapse
Affiliation(s)
- Heidi Auerswald
- Virology Unit, Institut Pasteur du Cambodge, Institut Pasteur International Network, Phnom Penh 120210, Cambodia
- Correspondence:
| | - Pierre-Olivier Maquart
- Medical and Veterinary Entomology Unit, Institut Pasteur du Cambodge, Institut Pasteur International Network, Phnom Penh 120210, Cambodia; (P.-O.M.); (S.B.)
| | - Véronique Chevalier
- Epidemiology and Public Health Unit, Institut Pasteur du Cambodge, Institut Pasteur International Network, Phnom Penh 120210, Cambodia;
- UMR ASTRE, CIRAD, INRA, Université de Montpellier, 34000 Montpellier, France
| | - Sebastien Boyer
- Medical and Veterinary Entomology Unit, Institut Pasteur du Cambodge, Institut Pasteur International Network, Phnom Penh 120210, Cambodia; (P.-O.M.); (S.B.)
- Institut Pasteur, 75015 Paris, France
| |
Collapse
|
17
|
Novelo M, Audsley MD, McGraw EA. The effects of DENV serotype competition and co-infection on viral kinetics in Wolbachia-infected and uninfected Aedes aegypti mosquitoes. Parasit Vectors 2021; 14:314. [PMID: 34108021 PMCID: PMC8190863 DOI: 10.1186/s13071-021-04816-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Accepted: 05/29/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The Aedes aegypti mosquito is responsible for the transmission of several medically important arthropod-borne viruses, including multiple serotypes of dengue virus (DENV-1, -2, -3, and -4). Competition within the mosquito between DENV serotypes can affect viral infection dynamics, modulating the transmission potential of the pathogen. Vector control remains the main method for limiting dengue fever. The insect endosymbiont Wolbachia pipientis is currently being trialed in field releases globally as a means of biological control because it reduces virus replication inside the mosquito. It is not clear how co-infection between DENV serotypes in the same mosquito might alter the pathogen-blocking phenotype elicited by Wolbachia in Ae. aegypti. METHODS Five- to 7-day-old female Ae. aegypti from two lines, namely, with (wMel) and without Wolbachia infection (WT), were fed virus-laden blood through an artificial membrane with either a mix of DENV-2 and DENV-3 or the same DENV serotypes singly. Mosquitoes were subsequently incubated inside environmental chambers and collected on the following days post-infection: 3, 4, 5, 7, 8, 9, 11, 12, and 13. Midgut, carcass, and salivary glands were collected from each mosquito at each timepoint and individually analyzed to determine the percentage of DENV infection and viral RNA load via RT-qPCR. RESULTS We saw that for WT mosquitoes DENV-3 grew to higher viral RNA loads across multiple tissues when co-infected with DENV-2 than when it was in a mono-infection. Additionally, we saw a strong pathogen-blocking phenotype in wMel mosquitoes independent of co-infection status. CONCLUSION In this study, we demonstrated that the wMel mosquito line is capable of blocking DENV serotype co-infection in a systemic way across the mosquito body. Moreover, we showed that for WT mosquitoes, serotype co-infection can affect infection frequency in a tissue- and time-specific manner and that both viruses have the potential of being transmitted simultaneously. Our findings suggest that the long-term efficacy of Wolbachia pathogen blocking is not compromised by arthropod-borne virus co-infection.
Collapse
Affiliation(s)
- M Novelo
- School of Biological Sciences, Monash University, Melbourne, VIC, 3800, Australia
- Center for Infectious Disease Dynamics, Department of Entomology, The Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, PA, 16802, USA
| | - M D Audsley
- School of Biological Sciences, Monash University, Melbourne, VIC, 3800, Australia
| | - E A McGraw
- School of Biological Sciences, Monash University, Melbourne, VIC, 3800, Australia.
- Center for Infectious Disease Dynamics, Department of Entomology, The Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, PA, 16802, USA.
| |
Collapse
|
18
|
White AV, Fan M, Mazzara JM, Roper RL, Richards SL. Mosquito-infecting virus Espirito Santo virus inhibits replication and spread of dengue virus. J Med Virol 2021; 93:3362-3373. [PMID: 33219544 DOI: 10.1002/jmv.26686] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Revised: 10/31/2020] [Accepted: 11/18/2020] [Indexed: 01/09/2023]
Abstract
The primary vector of dengue virus (DENV) is Aedes aegypti. The mosquito-infecting virus, Espirito Santo virus (ESV), does not infect Vero (mammalian) cells and grows in mosquito (C6/36) cells without cytopathic effects. Effects of ESV infection on replication of DENV were explored in vitro and in vivo, analyzing protein, RNA genome expression, and plaque formation. ESV and DENV simultaneous coinfection did not block protein synthesis from either virus but did result in inhibition of DENV replication in mosquito cells. Furthermore, ESV superinfected with DENV resulted in inhibition of DENV replication and spread in A. aegypti, thus reducing vector competence. Tissue culture experiments on viral kinetics of ESV and DENV coinfection showed that neither virus significantly affects the replication of the other in Vero, HeLa, or HEK cells. Hence, ESV blocks DENV replication in insect cells, but not the mammalian cells evaluated here. Our study provides new insights into ESV-induced suppression of DENV, a globally important pathogen impacting public health.
Collapse
Affiliation(s)
- Avian V White
- Department of Health Education and Promotion, Environmental Health Sciences Program, College of Health and Human Performance, East Carolina University, Greenville, North Carolina, USA
| | - Ming Fan
- Department of Microbiology and Immunology, Brody School of Medicine, East Carolina University, Greenville, North Carolina, USA
| | - Jordan M Mazzara
- Department of Health Education and Promotion, Environmental Health Sciences Program, College of Health and Human Performance, East Carolina University, Greenville, North Carolina, USA
| | - Rachel L Roper
- Department of Microbiology and Immunology, Brody School of Medicine, East Carolina University, Greenville, North Carolina, USA
| | - Stephanie L Richards
- Department of Health Education and Promotion, Environmental Health Sciences Program, College of Health and Human Performance, East Carolina University, Greenville, North Carolina, USA
| |
Collapse
|
19
|
Cabral AD, Oliveira LPRD, Molina JSTDO, Carmo AMDS, Suzuki RB, Oliveira CMD, Martins LPA, Prudencio CR, Eterovic A, Sperança MA. Epidemiological and genetic aspects of the largest dengue outbreak recorded in 2015 in Southeastern Brazil. Rev Inst Med Trop Sao Paulo 2021; 63:e17. [PMID: 33787737 PMCID: PMC7997670 DOI: 10.1590/s1678-9946202163017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Accepted: 01/12/2021] [Indexed: 11/22/2022] Open
Abstract
Dengue virus, the etiological agent of dengue fever (DF) occurs in four
genetically distinct serotypes (DENV1-4), being transmitted by female
Aedes mosquitoes. DF incidence is increasing in Brazil,
following vector dispersal, proliferation and DENV serotypes introduction,
co-circulation and substitution. Medium- and small-sized cities in Sao Paulo
State, such as Marilia (Midwest region), have been affected by huge epidemics.
To understand the evolution of DENV epidemics in medium-sized cities, in this
study a historical data on DENV incidence (2000-2015) in Marilia, was evaluated.
Previous studies disclosed regional and specific DF outcomes associated with
2007 outbreak in that city, when co-circulating DENV1 and DENV3 presented
different hematological profiles. In this study, characteristics of 2007 DENV
epidemics were compared to the epidemiological, hematological and demographic
outlines of the major outbreak of DENV1 in Marilia in 2015. DENV1 genetic
diversity was assessed through capsid and pre-membrane junction encoding gene
(CprM) sequencing. The results revealed circulation of DENV1 serotype from 2007
to 2015, with epidemics occurring every three-years until 2013 and then,
increasing yearly. There were significant differences in hematological profiles
of DENV1 patients between 2015 and 2007. CprM showed DENV1 genetic variability
in 2015, contrasting with the unique sequence pattern in 2007. These results
reinforce the regional and temporal characteristics of DENV epidemics that need
local public health research to improve care for people and to limit the spread
of new serotypes/genotypes to uninfected areas.
Collapse
Affiliation(s)
- Aline Diniz Cabral
- Universidade Federal do ABC, Centro de Ciências Naturais e Humanas, São Bernardo do Campo, São Paulo, Brazil.,Instituto Adolfo Lutz, Centro de Imunologia, São Paulo, São Paulo, Brazil
| | | | | | - Andreia Moreira Dos Santos Carmo
- Universidade Federal do ABC, Centro de Ciências Naturais e Humanas, São Bernardo do Campo, São Paulo, Brazil.,Instituto Adolfo Lutz; Centro de Laboratório Regional VIII, Santo André, São Paulo, Brazil
| | - Rodrigo Buzinaro Suzuki
- Universidade Federal do ABC, Centro de Ciências Naturais e Humanas, São Bernardo do Campo, São Paulo, Brazil.,Faculdade de Medicina de Marilia, Disciplina de Parasitologia, Marília, São Paulo, Brazil.,Universidade de Marilia, Faculdade de Medicina, Marília, São Paulo, Brazil
| | | | | | | | - André Eterovic
- Universidade Federal do ABC, Centro de Ciências Naturais e Humanas, Santo André, São Paulo, Brazil
| | - Márcia Aparecida Sperança
- Universidade Federal do ABC, Centro de Ciências Naturais e Humanas, São Bernardo do Campo, São Paulo, Brazil
| |
Collapse
|
20
|
Aubry F, Jacobs S, Darmuzey M, Lequime S, Delang L, Fontaine A, Jupatanakul N, Miot EF, Dabo S, Manet C, Montagutelli X, Baidaliuk A, Gámbaro F, Simon-Lorière E, Gilsoul M, Romero-Vivas CM, Cao-Lormeau VM, Jarman RG, Diagne CT, Faye O, Faye O, Sall AA, Neyts J, Nguyen L, Kaptein SJF, Lambrechts L. Recent African strains of Zika virus display higher transmissibility and fetal pathogenicity than Asian strains. Nat Commun 2021; 12:916. [PMID: 33568638 PMCID: PMC7876148 DOI: 10.1038/s41467-021-21199-z] [Citation(s) in RCA: 58] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2020] [Accepted: 01/16/2021] [Indexed: 11/09/2022] Open
Abstract
The global emergence of Zika virus (ZIKV) revealed the unprecedented ability for a mosquito-borne virus to cause congenital birth defects. A puzzling aspect of ZIKV emergence is that all human outbreaks and birth defects to date have been exclusively associated with the Asian ZIKV lineage, despite a growing body of laboratory evidence pointing towards higher transmissibility and pathogenicity of the African ZIKV lineage. Whether this apparent paradox reflects the use of relatively old African ZIKV strains in most laboratory studies is unclear. Here, we experimentally compare seven low-passage ZIKV strains representing the recently circulating viral genetic diversity. We find that recent African ZIKV strains display higher transmissibility in mosquitoes and higher lethality in both adult and fetal mice than their Asian counterparts. We emphasize the high epidemic potential of African ZIKV strains and suggest that they could more easily go unnoticed by public health surveillance systems than Asian strains due to their propensity to cause fetal loss rather than birth defects. Here, the authors compare seven low passage Zika virus (ZIKV) strains representing the recently circulating viral genetic diversity of African and Asian strains and find that African ZIKV strains have higher transmissibility in mosquitoes and higher lethality in both adult and fetal mice.
Collapse
Affiliation(s)
- Fabien Aubry
- Insect-Virus Interactions Unit, Institut Pasteur, UMR2000, CNRS, Paris, France
| | - Sofie Jacobs
- KU Leuven Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, Laboratory of Virology and Chemotherapy, Leuven, Belgium
| | - Maïlis Darmuzey
- GIGA-Stem Cells/GIGA-Neurosciences, Interdisciplinary Cluster for Applied Genoproteomics (GIGA-R), C.H.U. Sart Tilman, University of Liège, Liège, Belgium
| | - Sebastian Lequime
- KU Leuven Department of Microbiology, Immunology and Transplantation, Rega Institute, Laboratory of Clinical and Epidemiological Virology, Leuven, Belgium.,Cluster of Microbial Ecology, Groningen Institute for Evolutionary Life Sciences, University of Groningen, Groningen, The Netherlands
| | - Leen Delang
- KU Leuven Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, Laboratory of Virology and Chemotherapy, Leuven, Belgium
| | - Albin Fontaine
- Unité Parasitologie et Entomologie, Département Microbiologie et Maladies Infectieuses, Institut de Recherche Biomédicale des Armées (IRBA), Marseille, France.,IRD, SSA, AP-HM, UMR Vecteurs-Infections Tropicales et Méditerranéennes (VITROME), Aix Marseille University, Marseille, France.,IHU Méditerranée Infection, Marseille, France
| | - Natapong Jupatanakul
- Insect-Virus Interactions Unit, Institut Pasteur, UMR2000, CNRS, Paris, France.,National Center for Genetic Engineering and Biotechnology (BIOTEC), Pathum Thani, Thailand
| | - Elliott F Miot
- Insect-Virus Interactions Unit, Institut Pasteur, UMR2000, CNRS, Paris, France
| | - Stéphanie Dabo
- Insect-Virus Interactions Unit, Institut Pasteur, UMR2000, CNRS, Paris, France
| | - Caroline Manet
- Mouse Genetics Laboratory, Institut Pasteur, Paris, France
| | | | - Artem Baidaliuk
- Insect-Virus Interactions Unit, Institut Pasteur, UMR2000, CNRS, Paris, France.,Evolutionary Genomics of RNA Viruses Group, Institut Pasteur, Paris, France
| | - Fabiana Gámbaro
- Evolutionary Genomics of RNA Viruses Group, Institut Pasteur, Paris, France
| | | | - Maxime Gilsoul
- GIGA-Stem Cells/GIGA-Neurosciences, Interdisciplinary Cluster for Applied Genoproteomics (GIGA-R), C.H.U. Sart Tilman, University of Liège, Liège, Belgium
| | - Claudia M Romero-Vivas
- Laboratorio de Enfermedades Tropicales, Departamento de Medicina, Fundación Universidad del Norte, Barranquilla, Colombia
| | | | - Richard G Jarman
- Viral Diseases Branch, Walter Reed Army Institute of Research, Silver Spring, MD, USA
| | - Cheikh T Diagne
- Arbovirus and Viral Hemorrhagic Fevers Unit, Institut Pasteur Dakar, Dakar, Senegal
| | - Oumar Faye
- Arbovirus and Viral Hemorrhagic Fevers Unit, Institut Pasteur Dakar, Dakar, Senegal
| | - Ousmane Faye
- Arbovirus and Viral Hemorrhagic Fevers Unit, Institut Pasteur Dakar, Dakar, Senegal
| | - Amadou A Sall
- Arbovirus and Viral Hemorrhagic Fevers Unit, Institut Pasteur Dakar, Dakar, Senegal
| | - Johan Neyts
- KU Leuven Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, Laboratory of Virology and Chemotherapy, Leuven, Belgium
| | - Laurent Nguyen
- GIGA-Stem Cells/GIGA-Neurosciences, Interdisciplinary Cluster for Applied Genoproteomics (GIGA-R), C.H.U. Sart Tilman, University of Liège, Liège, Belgium
| | - Suzanne J F Kaptein
- KU Leuven Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, Laboratory of Virology and Chemotherapy, Leuven, Belgium.
| | - Louis Lambrechts
- Insect-Virus Interactions Unit, Institut Pasteur, UMR2000, CNRS, Paris, France.
| |
Collapse
|
21
|
Merwaiss F, Filomatori CV, Susuki Y, Bardossy ES, Alvarez DE, Saleh MC. Chikungunya Virus Replication Rate Determines the Capacity of Crossing Tissue Barriers in Mosquitoes. J Virol 2021; 95:e01956-20. [PMID: 33148794 PMCID: PMC7925089 DOI: 10.1128/jvi.01956-20] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Accepted: 10/27/2020] [Indexed: 12/12/2022] Open
Abstract
Chikungunya virus (CHIKV) is a reemerging and rapidly spreading pathogen transmitted by mosquitoes. The emergence of new epidemic variants of the virus is associated with genetic evolutionary traits, including duplication of repeated RNA elements in the 3' untranslated region (UTR) that seemingly favor transmission by mosquitoes. The transmission potential of a given variant results from a complex interplay between virus populations and anatomical tissue barriers in the mosquito. Here, we used the wild-type CHIKV Caribbean strain and an engineered mutant harboring a deletion in the 3' UTR to dissect the interactions of virus variants with the anatomical barriers that impede transmission during the replication cycle of the virus in Aedes mosquitoes. Compared to the 3'-UTR mutant, we observed that the wild-type virus had a short extrinsic incubation period (EIP) after an infectious blood meal and was expectorated into mosquito saliva much more efficiently. We found that high viral titers in the midgut are not sufficient to escape the midgut escape barrier. Rather, viral replication kinetics play a crucial role in determining midgut escape and the transmission ability of CHIKV. Finally, competition tests in mosquitoes coinfected with wild-type and mutant viruses revealed that both viruses successfully colonized the midgut, but wild-type viruses effectively displaced mutant viruses during systemic infection due to their greater efficiency of escaping from the midgut into secondary tissues. Overall, our results uncover a link between CHIKV replication kinetics and the effect of bottlenecks on population diversity, as slowly replicating variants are less able to overcome the midgut escape barrier.IMPORTANCE It is well established that selective pressures in mosquito vectors impose population bottlenecks for arboviruses. Here, we used a CHIKV Caribbean lineage mutant carrying a deletion in the 3' UTR to study host-virus interactions in vivo in the epidemic mosquito vector Aedes aegypti We found that the mutant virus had a delayed replication rate in mosquitoes, which lengthened the extrinsic incubation period (EIP) and reduced fitness relative to the wild-type virus. As a result, the mutant virus displayed a reduced capacity to cross anatomical barriers during the infection cycle in mosquitoes, thus reducing the virus transmission rate. Our findings show how selective pressures act on CHIKV noncoding regions to select variants with shorter EIPs that are preferentially transmitted by the mosquito vector.
Collapse
Affiliation(s)
- Fernando Merwaiss
- Instituto de Investigaciones Biotecnológicas, Universidad Nacional de San Martín, Buenos Aires, Argentina
- Institut Pasteur, Viruses and RNA Interference Unit, Centre National de la Recherche Scientifique UMR 3569, Paris, France
| | - Claudia V Filomatori
- Instituto de Investigaciones Biotecnológicas, Universidad Nacional de San Martín, Buenos Aires, Argentina
| | - Yasutsugu Susuki
- Institut Pasteur, Viruses and RNA Interference Unit, Centre National de la Recherche Scientifique UMR 3569, Paris, France
| | - Eugenia S Bardossy
- Instituto de Investigaciones Biotecnológicas, Universidad Nacional de San Martín, Buenos Aires, Argentina
| | - Diego E Alvarez
- Instituto de Investigaciones Biotecnológicas, Universidad Nacional de San Martín, Buenos Aires, Argentina
| | - María-Carla Saleh
- Institut Pasteur, Viruses and RNA Interference Unit, Centre National de la Recherche Scientifique UMR 3569, Paris, France
| |
Collapse
|
22
|
Lequime S, Dehecq JS, Matheus S, de Laval F, Almeras L, Briolant S, Fontaine A. Modeling intra-mosquito dynamics of Zika virus and its dose-dependence confirms the low epidemic potential of Aedes albopictus. PLoS Pathog 2020; 16:e1009068. [PMID: 33382858 PMCID: PMC7774846 DOI: 10.1371/journal.ppat.1009068] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Accepted: 10/14/2020] [Indexed: 01/01/2023] Open
Abstract
Originating from African forests, Zika virus (ZIKV) has now emerged worldwide in urbanized areas, mainly transmitted by Aedes aegypti mosquitoes. Although Aedes albopictus can transmit ZIKV experimentally and was suspected to be a ZIKV vector in Central Africa, the potential of this species to sustain virus transmission was yet to be uncovered until the end of 2019, when several autochthonous transmissions of the virus vectored by Ae. albopictus occurred in France. Aside from these few locally acquired ZIKV infections, most territories colonized by Ae. albopictus have been spared so far. The risk level of ZIKV emergence in these areas remains however an open question. To assess Ae. albopictus' vector potential for ZIKV and identify key virus outbreak predictors, we built a complete framework using the complementary combination of (i) dose-dependent experimental Ae. albopictus exposure to ZIKV followed by time-dependent assessment of infection and systemic infection rates, (ii) modeling of intra-human ZIKV viremia dynamics, and (iii) in silico epidemiological simulations using an Agent-Based Model. The highest risk of transmission occurred during the pre-symptomatic stage of the disease, at the peak of viremia. At this dose, mosquito infection probability was estimated to be 20%, and 21 days were required to reach the median systemic infection rates. Mosquito population origin, either temperate or tropical, had no impact on infection rates or intra-host virus dynamic. Despite these unfavorable characteristics for transmission, Ae. albopictus was still able to trigger and yield large outbreaks in a simulated environment in the presence of sufficiently high mosquito biting rates. Our results reveal a low but existing epidemic potential of Ae. albopictus for ZIKV, that might explain the absence of large scale ZIKV epidemics so far in territories occupied only by Ae. albopictus. They nevertheless support active surveillance and eradication programs in these territories to maintain the risk of emergence to a low level.
Collapse
Affiliation(s)
- Sebastian Lequime
- Cluster of Microbial Ecology, Groningen Institute for Evolutionary Life Sciences, University of Groningen, Groningen, The Netherlands
- KU Leuven Department of Microbiology, Immunology and Transplantation, Rega Institute, Laboratory of Clinical and Epidemiological Virology, Leuven, Belgium
| | - Jean-Sébastien Dehecq
- French Ministry of Health, Agence Régionale de Santé de La Réunion, Vector control Unit, La Reunion Island, Saint-Denis, France
| | - Séverine Matheus
- Laboratory of Virology, National Reference Center for Arboviruses, Institut Pasteur, Guyane Française, Cayenne, France
- Environment and infections risks unit, Institut Pasteur, Paris, France
| | - Franck de Laval
- SSA, Service de Santé des Armées, CESPA, Centre d’épidémiologie et de santé publique des armées, Marseille, France
- Aix Marseille Univ, INSERM, IRD, SESSTIM, Sciences Economiques & Sociales de la Santé & Traitement de l’Information Médicale, Marseille, France
| | - Lionel Almeras
- Unité Parasitologie et Entomologie, Département Microbiologie et maladies infectieuses, Institut de Recherche Biomédicale des Armées (IRBA), Marseille, France
- Aix Marseille Univ, IRD, SSA, AP-HM, UMR Vecteurs–Infections Tropicales et Méditerranéennes (VITROME), Marseille, France
- IHU Méditerranée Infection, Marseille, France
| | - Sébastien Briolant
- Unité Parasitologie et Entomologie, Département Microbiologie et maladies infectieuses, Institut de Recherche Biomédicale des Armées (IRBA), Marseille, France
- Aix Marseille Univ, IRD, SSA, AP-HM, UMR Vecteurs–Infections Tropicales et Méditerranéennes (VITROME), Marseille, France
- IHU Méditerranée Infection, Marseille, France
| | - Albin Fontaine
- Unité Parasitologie et Entomologie, Département Microbiologie et maladies infectieuses, Institut de Recherche Biomédicale des Armées (IRBA), Marseille, France
- Aix Marseille Univ, IRD, SSA, AP-HM, UMR Vecteurs–Infections Tropicales et Méditerranéennes (VITROME), Marseille, France
- IHU Méditerranée Infection, Marseille, France
| |
Collapse
|
23
|
Del Valle-Mendoza J, Vasquez-Achaya F, Aguilar-Luis MA, Martins-Luna J, Bazán-Mayra J, Zavaleta-Gavidia V, Silva-Caso W, Carrillo-Ng H, Tarazona-Castro Y, Aquino-Ortega R, Del Valle LJ. Unidentified dengue serotypes in DENV positive samples and detection of other pathogens responsible for an acute febrile illness outbreak 2016 in Cajamarca, Peru. BMC Res Notes 2020; 13:467. [PMID: 33023645 PMCID: PMC7541171 DOI: 10.1186/s13104-020-05318-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Accepted: 09/28/2020] [Indexed: 02/07/2023] Open
Abstract
Objective To describe the prevalence of dengue virus serotypes, as well as other viral and bacterial pathogens that cause acute febrile illness during an outbreak in Cajamarca in 2016. Results Dengue virus (DENV) was the most frequent etiologic agent detected in 25.8% of samples (32/124), followed by Rickettsia spp. in 8.1% (10/124), Zika virus in 4.8% (6/124), Chikungunya virus 2.4% (3/124) and Bartonella bacilliformis 1.6% (2/124) cases. No positive cases were detected of Oropouche virus and Leptospira spp. DENV serotypes identification was only achieved in 23% of the total positive for DENV, two samples for DENV-2 and four samples for DENV-4. During the 2016 outbreak in Cajamarca—Peru, it was observed that in a large percentage of positive samples for DENV, the infecting serotype could not be determined by conventional detection assays. This represents a problem for the national surveillance system and for public health due to its epidemiological and clinical implications. Other viral and bacterial pathogens responsible for acute febrile syndrome were less frequently identified.
Collapse
Affiliation(s)
- Juana Del Valle-Mendoza
- School of Medicine, Research and Innovation Center of the Faculty of Health Sciences, Universidad Peruana de Ciencias Aplicadas, Av. San Marcos cuadra 2, Chorrillos, Lima, Peru. .,Laboratorio de Biologia Molecular, Instituto de Investigación Nutricional, Lima, Peru.
| | - Fernando Vasquez-Achaya
- School of Medicine, Research and Innovation Center of the Faculty of Health Sciences, Universidad Peruana de Ciencias Aplicadas, Av. San Marcos cuadra 2, Chorrillos, Lima, Peru
| | - Miguel Angel Aguilar-Luis
- School of Medicine, Research and Innovation Center of the Faculty of Health Sciences, Universidad Peruana de Ciencias Aplicadas, Av. San Marcos cuadra 2, Chorrillos, Lima, Peru.,Laboratorio de Biologia Molecular, Instituto de Investigación Nutricional, Lima, Peru
| | - Johanna Martins-Luna
- School of Medicine, Research and Innovation Center of the Faculty of Health Sciences, Universidad Peruana de Ciencias Aplicadas, Av. San Marcos cuadra 2, Chorrillos, Lima, Peru.,Laboratorio de Biologia Molecular, Instituto de Investigación Nutricional, Lima, Peru
| | - Jorge Bazán-Mayra
- Laboratorio Regional de Cajamarca, Dirección Regional de Salud de Cajamarca (DIRESA), Cajamarca, Peru
| | - Victor Zavaleta-Gavidia
- Laboratorio Regional de Cajamarca, Dirección Regional de Salud de Cajamarca (DIRESA), Cajamarca, Peru
| | - Wilmer Silva-Caso
- School of Medicine, Research and Innovation Center of the Faculty of Health Sciences, Universidad Peruana de Ciencias Aplicadas, Av. San Marcos cuadra 2, Chorrillos, Lima, Peru.,Laboratorio de Biologia Molecular, Instituto de Investigación Nutricional, Lima, Peru
| | - Hugo Carrillo-Ng
- School of Medicine, Research and Innovation Center of the Faculty of Health Sciences, Universidad Peruana de Ciencias Aplicadas, Av. San Marcos cuadra 2, Chorrillos, Lima, Peru.,Laboratorio de Biologia Molecular, Instituto de Investigación Nutricional, Lima, Peru
| | - Yordi Tarazona-Castro
- Laboratorio de Biologia Molecular, Instituto de Investigación Nutricional, Lima, Peru.,Escuela Profesional de Genética y Biotecnología. Facultad de Ciencias Biológicas, Universidad Nacional Mayor de San Marcos, Lima, Peru
| | - Ronald Aquino-Ortega
- School of Medicine, Research and Innovation Center of the Faculty of Health Sciences, Universidad Peruana de Ciencias Aplicadas, Av. San Marcos cuadra 2, Chorrillos, Lima, Peru.,Laboratorio de Biologia Molecular, Instituto de Investigación Nutricional, Lima, Peru
| | - Luis J Del Valle
- Barcelona Research Center for Multiscale Science and Engineering, Departament D'Enginyeria Química, EEBE, Universitat Politècnica de Catalunya (UPC), Barcelona, Spain.
| |
Collapse
|
24
|
Ekwudu O, Marquart L, Webb L, Lowry KS, Devine GJ, Hugo LE, Frentiu FD. Effect of Serotype and Strain Diversity on Dengue Virus Replication in Australian Mosquito Vectors. Pathogens 2020; 9:pathogens9080668. [PMID: 32824792 PMCID: PMC7460537 DOI: 10.3390/pathogens9080668] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Revised: 08/13/2020] [Accepted: 08/17/2020] [Indexed: 11/18/2022] Open
Abstract
Dengue virus (DENV) is the most important mosquito-borne viral pathogen of humans, comprising four serotypes (DENV-1 to -4) with a myriad of genotypes and strains. The kinetics of DENV replication within the mosquito following ingestion of a blood meal influence the pathogen’s ability to reach the salivary glands and thus the transmission potential. The influence of DENV serotype and strain diversity on virus kinetics in the two main vector species, Aedes aegypti and Ae. albopictus, has been poorly characterized. We tested whether DENV replication kinetics vary systematically among serotypes and strains, using Australian strains of the two vectors. Mosquitoes were blood fed with two strains per serotype, and sampled at 3, 6, 10 and 14-days post-exposure. Virus infection in mosquito bodies, and dissemination of virus to legs and wings, was detected using qRT-PCR. For both vectors, we found significant differences among serotypes in proportions of mosquitoes infected, with higher numbers for DENV-1 and -2 versus other serotypes. Consistent with this, we observed that DENV-1 and -2 generally replicated to higher RNA levels than other serotypes, particularly at earlier time points. There were no significant differences in either speed of infection or dissemination between the mosquito species. Our results suggest that DENV diversity may have important epidemiological consequences by influencing virus kinetics in mosquito vectors.
Collapse
Affiliation(s)
- O’mezie Ekwudu
- Institute of Health and Biomedical Innovation, School of Biomedical Sciences, Queensland University of Technology, Brisbane 4000, Australia; (O.E.); (K.S.L.)
- Mosquito Control Laboratory, QIMR Berghofer Medical Research Institute, Brisbane 4006, Australia; (G.J.D.); (L.E.H.)
- Department of Microbiology, Chukwuemeka Odumegwu Ojukwu University, Uli 431124, Nigeria
| | - Louise Marquart
- Statistics Unit, QIMR Berghofer Medical Research Institute, Brisbane 4006, Australia; (L.M.); (L.W.)
- Clinical Malaria, QIMR Berghofer Medical Research Institute, Brisbane 4006, Australia
| | - Lachlan Webb
- Statistics Unit, QIMR Berghofer Medical Research Institute, Brisbane 4006, Australia; (L.M.); (L.W.)
| | - Kym S. Lowry
- Institute of Health and Biomedical Innovation, School of Biomedical Sciences, Queensland University of Technology, Brisbane 4000, Australia; (O.E.); (K.S.L.)
| | - Gregor J. Devine
- Mosquito Control Laboratory, QIMR Berghofer Medical Research Institute, Brisbane 4006, Australia; (G.J.D.); (L.E.H.)
| | - Leon E. Hugo
- Mosquito Control Laboratory, QIMR Berghofer Medical Research Institute, Brisbane 4006, Australia; (G.J.D.); (L.E.H.)
| | - Francesca D. Frentiu
- Institute of Health and Biomedical Innovation, School of Biomedical Sciences, Queensland University of Technology, Brisbane 4000, Australia; (O.E.); (K.S.L.)
- Correspondence:
| |
Collapse
|
25
|
Lequime S, Bastide P, Dellicour S, Lemey P, Baele G. nosoi: A stochastic agent-based transmission chain simulation framework in r. Methods Ecol Evol 2020; 11:1002-1007. [PMID: 32983401 PMCID: PMC7496779 DOI: 10.1111/2041-210x.13422] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Accepted: 05/13/2020] [Indexed: 12/22/2022]
Abstract
The transmission process of an infectious agent creates a connected chain of hosts linked by transmission events, known as a transmission chain. Reconstructing transmission chains remains a challenging endeavour, except in rare cases characterized by intense surveillance and epidemiological inquiry. Inference frameworks attempt to estimate or approximate these transmission chains but the accuracy and validity of such methods generally lack formal assessment on datasets for which the actual transmission chain was observed.We here introduce nosoi, an open-source r package that offers a complete, tunable and expandable agent-based framework to simulate transmission chains under a wide range of epidemiological scenarios for single-host and dual-host epidemics. nosoi is accessible through GitHub and CRAN, and is accompanied by extensive documentation, providing help and practical examples to assist users in setting up their own simulations.Once infected, each host or agent can undergo a series of events during each time step, such as moving (between locations) or transmitting the infection, all of these being driven by user-specified rules or data, such as travel patterns between locations. nosoi is able to generate a multitude of epidemic scenarios, that can-for example-be used to validate a wide range of reconstruction methods, including epidemic modelling and phylodynamic analyses. nosoi also offers a comprehensive framework to leverage empirically acquired data, allowing the user to explore how variations in parameters can affect epidemic potential. Aside from research questions, nosoi can provide lecturers with a complete teaching tool to offer students a hands-on exploration of the dynamics of epidemiological processes and the factors that impact it. Because the package does not rely on mathematical formalism but uses a more intuitive algorithmic approach, even extensive changes of the entire model can be easily and quickly implemented.
Collapse
Affiliation(s)
- Sebastian Lequime
- Department of Microbiology, Immunology and TransplantationRega InstituteKU LeuvenLeuvenBelgium
- Cluster of Microbial EcologyGroningen Institute for Evolutionary Life SciencesUniversity of GroningenGroningenThe Netherlands
| | - Paul Bastide
- Department of Microbiology, Immunology and TransplantationRega InstituteKU LeuvenLeuvenBelgium
- IMAGCNRSUniversity of MontpellierMontpellierFrance
| | - Simon Dellicour
- Department of Microbiology, Immunology and TransplantationRega InstituteKU LeuvenLeuvenBelgium
- Spatial Epidemiology Lab (SpELL)Université Libre de BruxellesBrusselsBelgium
| | - Philippe Lemey
- Department of Microbiology, Immunology and TransplantationRega InstituteKU LeuvenLeuvenBelgium
| | - Guy Baele
- Department of Microbiology, Immunology and TransplantationRega InstituteKU LeuvenLeuvenBelgium
| |
Collapse
|
26
|
Ko HY, Salem GM, Chang GJJ, Chao DY. Application of Next-Generation Sequencing to Reveal How Evolutionary Dynamics of Viral Population Shape Dengue Epidemiology. Front Microbiol 2020; 11:1371. [PMID: 32636827 PMCID: PMC7318875 DOI: 10.3389/fmicb.2020.01371] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Accepted: 05/27/2020] [Indexed: 12/13/2022] Open
Abstract
Dengue viral (DENV) infection results in a wide spectrum of clinical manifestations from asymptomatic, mild fever to severe hemorrhage diseases upon infection. Severe dengue is the leading cause of pediatric deaths and/or hospitalizations, which are a major public health burden in dengue-endemic or hyperendemic countries. Like other RNA viruses, DENV continues to evolve. Adaptive mutations are obscured by the major consensus sequence (so-called wild-type sequences) and can only be identified once they become the dominant viruses in the virus population, a process that can take months or years. Traditional surveillance systems still rely on Sanger consensus sequencing. However, with the recent advancement of high-throughput next-generation sequencing (NGS) technologies, the genome-wide investigation of virus population within-host and between-hosts becomes achievable. Thus, viral population sequencing by NGS can increase our understanding of the changing epidemiology and evolution of viral genomics at the molecular level. This review focuses on the studies within the recent decade utilizing NGS in different experimental and epidemiological settings to understand how the adaptive evolution of dengue variants shapes the dengue epidemic and disease severity through its transmission. We propose three types of studies that can be pursued in the future to enhance our surveillance for epidemic prediction and better medical management.
Collapse
Affiliation(s)
- Hui-Ying Ko
- Graduate Institute of Microbiology and Public Health, College of Veterinary Medicine, National Chung-Hsing University, Taichung, Taiwan
| | - Gielenny M Salem
- Graduate Institute of Microbiology and Public Health, College of Veterinary Medicine, National Chung-Hsing University, Taichung, Taiwan
| | - Gwong-Jen J Chang
- Arboviral Diseases Branch, Division of Vector-Borne Diseases, Centers for Disease Control and Prevention, Fort Collins, CO, United States
| | - Day-Yu Chao
- Graduate Institute of Microbiology and Public Health, College of Veterinary Medicine, National Chung-Hsing University, Taichung, Taiwan
| |
Collapse
|
27
|
Liu Y, Lillepold K, Semenza JC, Tozan Y, Quam MBM, Rocklöv J. Reviewing estimates of the basic reproduction number for dengue, Zika and chikungunya across global climate zones. ENVIRONMENTAL RESEARCH 2020; 182:109114. [PMID: 31927301 DOI: 10.1016/j.envres.2020.109114] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2019] [Revised: 01/01/2020] [Accepted: 01/02/2020] [Indexed: 05/14/2023]
Abstract
BACKGROUND Globally, dengue, Zika virus, and chikungunya are important viral mosquito-borne diseases that infect millions of people annually. Their geographic range includes not only tropical areas but also sub-tropical and temperate zones such as Japan and Italy. The relative severity of these arboviral disease outbreaks can vary depending on the setting. In this study we explore variation in the epidemiologic potential of outbreaks amongst these climatic zones and arboviruses in order to elucidate potential reasons behind such differences. METHODOLOGY We reviewed the peer-reviewed literature (PubMed) to obtain basic reproduction number (R0) estimates for dengue, Zika virus, and chikungunya from tropical, sub-tropical and temperate regions. We also computed R0 estimates for temperate and sub-tropical climate zones, based on the outbreak curves in the initial outbreak phase. Lastly we compared these estimates across climate zones, defined by latitude. RESULTS Of 2115 studies, we reviewed the full text of 128 studies and included 65 studies in our analysis. Our results suggest that the R0 of an arboviral outbreak depends on climate zone, with lower R0 estimates, on average, in temperate zones (R0 = 2.03) compared to tropical (R0 = 3.44) and sub-tropical zones (R0 = 10.29). The variation in R0 was considerable, ranging from 0.16 to 65. The largest R0 was for dengue (65) and was estimated by the Ross-Macdonald model in the tropical zone, whereas the smallest R0 (0.16) was for Zika virus and was estimated statistically from an outbreak curve in the sub-tropical zone. CONCLUSIONS The results indicate climate zone to be an important determinant of the basic reproduction number, R0, for dengue, Zika virus, and chikungunya. The role of other factors as determinants of R0, such as methods, environmental and social conditions, and disease control, should be further investigated. The results suggest that R0 may increase in temperate regions in response to global warming, and highlight the increasing need for strengthening preparedness and control activities.
Collapse
Affiliation(s)
- Ying Liu
- School of International Business, Xiamen University Tan Kah Kee College, Zhangzhou, 363105, China.
| | - Kate Lillepold
- European Centre for Disease Prevention and Control, Stockholm, Sweden
| | - Jan C Semenza
- European Centre for Disease Prevention and Control, Stockholm, Sweden
| | - Yesim Tozan
- New York University, College of Global Public Health, New York, NY, USA.
| | - Mikkel B M Quam
- Department of Public Health and Clinical Medicine, Section of Sustainable Health, Umeå University, Umeå, Sweden
| | - Joacim Rocklöv
- Department of Public Health and Clinical Medicine, Section of Sustainable Health, Umeå University, Umeå, Sweden.
| |
Collapse
|
28
|
Kamiya T, Greischar MA, Wadhawan K, Gilbert B, Paaijmans K, Mideo N. Temperature-dependent variation in the extrinsic incubation period elevates the risk of vector-borne disease emergence. Epidemics 2019; 30:100382. [PMID: 32004794 DOI: 10.1016/j.epidem.2019.100382] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2019] [Revised: 11/29/2019] [Accepted: 12/01/2019] [Indexed: 12/24/2022] Open
Abstract
Identifying ecological drivers of disease transmission is central to understanding disease risks. For vector-borne diseases, temperature is a major determinant of transmission because vital parameters determining the fitness of parasites and vectors are highly temperature-sensitive, including the extrinsic incubation period required for parasites to develop within the vector. Temperature also underlies dramatic differences in the individual-level variation in the extrinsic incubation period, yet the influence of this variation in disease transmission is largely unexplored. We incorporate empirical estimates of dengue virus extrinsic incubation period and its variation across a range of temperatures into a stochastic model to examine the consequences for disease emergence. We find that such variation impacts the probability of disease emergence because exceptionally rapid, but empirically observed incubation - typically ignored by modelling only the average - increases the chance of disease emergence even at the limits of the temperature range for dengue transmission. We show that variation in the extrinsic incubation period causes the greatest proportional increase in the risk of disease emergence at cooler temperatures where the mean incubation period is long, and associated variation is large. Thus, ignoring EIP variation will likely lead to underestimation of the risk of vector-borne disease emergence in temperate climates.
Collapse
Affiliation(s)
- Tsukushi Kamiya
- Department of Ecology & Evolutionary Biology, University of Toronto, Toronto, ON M5S 3B2, Canada.
| | - Megan A Greischar
- Department of Ecology & Evolutionary Biology, University of Toronto, Toronto, ON M5S 3B2, Canada
| | - Kiran Wadhawan
- Department of Ecology & Evolutionary Biology, University of Toronto, Toronto, ON M5S 3B2, Canada
| | - Benjamin Gilbert
- Department of Ecology & Evolutionary Biology, University of Toronto, Toronto, ON M5S 3B2, Canada
| | - Krijn Paaijmans
- Center for Evolution & Medicine, Biodesign Center for Immunotherapy, Vaccines and Virotherapy, School of Life Sciences, Arizona State University, Tempe, AZ, USA
| | - Nicole Mideo
- Department of Ecology & Evolutionary Biology, University of Toronto, Toronto, ON M5S 3B2, Canada
| |
Collapse
|
29
|
Novelo M, Hall MD, Pak D, Young PR, Holmes EC, McGraw EA. Intra-host growth kinetics of dengue virus in the mosquito Aedes aegypti. PLoS Pathog 2019; 15:e1008218. [PMID: 31790509 PMCID: PMC6907869 DOI: 10.1371/journal.ppat.1008218] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Revised: 12/12/2019] [Accepted: 11/14/2019] [Indexed: 12/15/2022] Open
Abstract
Dengue virus (DENV) transmission by mosquitoes is a time-dependent process that begins with the consumption of an infectious blood-meal. DENV infection then proceeds stepwise through the mosquito from the midgut to the carcass, and ultimately to the salivary glands, where it is secreted into saliva and then transmitted anew on a subsequent bite. We examined viral kinetics in tissues of the Aedes aegypti mosquito over a finely graded time course, and as per previous studies, found that initial viral dose and serotype strain diversity control infectivity. We also found that a threshold level of virus is required to establish body-wide infections and that replication kinetics in the early and intermediate tissues do not predict those of the salivary glands. Our findings have implications for mosquito GMO design, modeling the contribution of transmission to vector competence and the role of mosquito kinetics in the overall DENV epidemiological landscape. DENV infection in the mosquito is a complex and dynamic process. Following ingestion of an infected blood meal, DENV enters the mosquito midgut epithelial cells, where it replicates. Subsequently, the virus disseminates and infects other tissues, including hemocytes, fat body and reproductive organs, ultimately reaching the salivary glands. The kinetics of infection are influenced by genetic variation in the virus. Comparisons between strains within single serotypes, have revealed variation in infection rates in mosquitoes. To explore the role of infectious dose, serotype and tissue in viral infection kinetics we sampled DENV loads in populations of infected mosquitoes over numerous, sequential time-points. We reveal that the kinetics of DENV infection in the midgut, carcass and salivary glands of the mosquito Aedes aegypti are strikingly different among the strains selected for this study, and that these differences are also driven by the initial infectious dose.
Collapse
Affiliation(s)
- Mario Novelo
- School of Biological Sciences, Monash University, Melbourne, Victoria, Australia
- Center for Infectious Disease Dynamics, Department of Entomology, The Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, Pennsylvania, United States of America
| | - Matthew D. Hall
- School of Biological Sciences, Monash University, Melbourne, Victoria, Australia
| | - Damie Pak
- Center for Infectious Disease Dynamics, Department of Biology, The Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, Pennsylvania, United States of America
| | - Paul R. Young
- Australian Infectious Diseases Research Centre, School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, Queensland, Australia
| | - Edward C. Holmes
- Marie Bashir Institute for Infectious Diseases and Biosecurity, Charles Perkins Centre, School of Life and Environmental Sciences and Sydney Medical School, The University of Sydney, New South Wales, Australia
| | - Elizabeth A. McGraw
- School of Biological Sciences, Monash University, Melbourne, Victoria, Australia
- Center for Infectious Disease Dynamics, Department of Entomology, The Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, Pennsylvania, United States of America
- * E-mail:
| |
Collapse
|
30
|
Prudhomme J, Fontaine A, Lacour G, Gantier JC, Diancourt L, Velo E, Bino S, Reiter P, Mercier A. The native European Aedes geniculatus mosquito species can transmit chikungunya virus. Emerg Microbes Infect 2019; 8:962-972. [PMID: 31259662 PMCID: PMC6609326 DOI: 10.1080/22221751.2019.1634489] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Europe is the world’s leading tourism destination and is receiving every year travellers from areas with active arbovirus transmission. There is thus a threat of mosquito-borne virus emergence in Europe due to the presence of the invasive mosquito vector Aedes albopictus. Little attention has been paid about the possible role of indigenous mosquito species as vectors of emerging arboviruses. Here, we assessed the vector competence dynamic of Aedes geniculatus, a European anthropophilic mosquito species, for chikungunya virus (CHIKV) in comparison with an European population of Ae. albopictus. We revealed that Ae. geniculatus is highly susceptible to CHIKV infection and could transmit the virus. By specifically exploring the vector competence dynamic in both mosquito species, we revealed that the cumulative distribution of CHIKV incubation period in Ae. geniculatus was delayed by several days as compared to Ae. albopictus. Our results strengthen the importance of considering indigenous species as potential vectors for emerging arboviruses. They also revealed the importance of considering variation in arbovirus dissemination or transmission dynamics in mosquitoes when performing vector competence assays. We will discuss the implications of our results on a CHIKV outbreak dynamic in a theoretical framework.
Collapse
Affiliation(s)
- Jorian Prudhomme
- a UMR MIVEGEC, IRD 224, CNRS 5290, Université de Montpellier Montpellier , France
| | - Albin Fontaine
- b Unité de Parasitologie et Entomologie , Institut de Recherche Biomédicale des Armées (IRBA) , Marseille , France.,c IRD, AP-HM, SSA, UMR Vecteurs - Infections Tropicales et Méditerranéennes (VITROME), IHU - Méditerranée Infection , Aix Marseille Université , Marseille , France
| | - Guillaume Lacour
- d Unité Contrôle et Adaptation des Vecteurs , Institut Pasteur de la Guyane , Cayenne , France
| | - Jean-Charles Gantier
- e Laboratoire des Identifications Fongiques et Entomo-parasitologiques , Mennecy , France
| | - Laure Diancourt
- f Genotyping of Pathogens and Public Health , Institut Pasteur , Paris , France
| | - Enkelejda Velo
- g Control of Infectious Diseases Department , Institute of Public Health , Tirana , Albania
| | - Silva Bino
- g Control of Infectious Diseases Department , Institute of Public Health , Tirana , Albania
| | - Paul Reiter
- h Unité Insectes et Maladies Infectieuses , Institut Pasteur , Paris , France
| | - Aurélien Mercier
- h Unité Insectes et Maladies Infectieuses , Institut Pasteur , Paris , France.,i INSERM, U1094 , Neuroépidémiologie Tropicale , Limoges , France
| |
Collapse
|
31
|
Chen Y, Gao J, Yang L, Li C, Chen R, Xie Z, Ren R. A predominant dengue virus-1 endemic strain and the vector competence of Aedes albopictus from Guangzhou City, China. Acta Trop 2019; 199:104975. [PMID: 30943381 DOI: 10.1016/j.actatropica.2019.03.029] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2018] [Revised: 03/13/2019] [Accepted: 03/29/2019] [Indexed: 11/25/2022]
Abstract
INTRODUCTION Dengue has been a serious public health burden and dengue virus-1 (DENV-1) is the predominant strain in Guangdong province, China. Differences exist in the transmission dynamics amongAedes albopictus and DENV in different geographical regions. However, little is known about the vector competence of indigenous Aedes albopictus for the predominant dengue strain in Guangdong province, China. METHODOLOGY In this study, the field-derivedAedes albopictus collected from Guangzhou city, Guangdong province were infected with the predominant DENV endemic strain DENV-1 GZ201401 by feeding on serially diluted artificial infectious blood or infected suckling mice. DENV-infected mosquitoes were evaluated for viral load at five-time intervals in three tissues, the head, body and legs using reverse transcription-quantitative PCR (RT-qPCR). The vertical transmission of DENV in Ades albopictus was also analysed. Suckling mice were used to assess the transmission of DENV by Aedes albopictus. RESULTS There was no difference in infection rates between mosquitoes infected by infected suckling mice or by artificial infectious blood. The proportion of DENV-1 positive mosquitoes increased over time after an infectious blood meal, but there was no difference in the positive rate beyond 7days after the blood meal. The positive rate of DENV-1 infected mosquitoes increased with the DENV titer in the blood meal. Most of the infections the infected mosquitoes were disseminated more than 7 days after imbibing the artificial infectious blood. The median infective doses (MID50) at 7,14,21 and 28 days after artificial infectious blood meal [7, 14, 21 and 28 days post-infection (dpi)] were 7.86 × 107, 1.57 × 107, 6.39 × 106 and 4.96 × 106 TCID50 (50% tissue culture infective dose)/ml, respectively. The mosquitoes can spread DENV-1 GZ201401 to hosts as early as 3 dpi. The vertical transmission of DENV-1 was documented with a cumulative rate of 17.61%. CONCLUSION Our results demonstrated that Aedes albopictus mosquitoes are competent vectors for DENV-1, and are capable of maintaining autochthonous dengue outbreaks in Guangdong province, China, which may have been promoted by vertical transmission.
Collapse
|
32
|
Dieng H, The CC, Satho T, Miake F, Wydiamala E, Kassim NFA, Hashim NA, Morales Vargas RE, Morales NP. The electronic song "Scary Monsters and Nice Sprites" reduces host attack and mating success in the dengue vector Aedes aegypti. Acta Trop 2019; 194:93-99. [PMID: 30922800 DOI: 10.1016/j.actatropica.2019.03.027] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2019] [Revised: 03/24/2019] [Accepted: 03/24/2019] [Indexed: 10/27/2022]
Abstract
Sound and its reception are crucial for reproduction, survival, and population maintenance of many animals. In insects, low-frequency vibrations facilitate sexual interactions, whereas noise disrupts the perception of signals from conspecifics and hosts. Despite evidence that mosquitoes respond to sound frequencies beyond fundamental ranges, including songs, and that males and females need to struggle to harmonize their flight tones, the behavioral impacts of music as control targets remain unexplored. In this study, we examined the effects of electronic music (Scary Monsters and Nice Sprites by Skrillex) on foraging, host attack, and sexual activities of the dengue vector Aedes aegypti. Adults were presented with two sound environments (music-off or music-on). Discrepancies in visitation, blood feeding, and copulation patterns were compared between environments with and without music. Ae. aegypti females maintained in the music-off environment initiated host visits earlier than those in the music-on environment. They visited the host significantly less often in the music-on than the music-off condition. Females exposed to music attacked hosts much later than their non-exposed peers. The occurrence of blood feeding activity was lower when music was being played. Adults exposed to music copulated far less often than their counterparts kept in an environment where there was no music. In addition to providing insight into the auditory sensitivity of Ae. aegypti to sound, our results indicated the vulnerability of its key vectorial capacity traits to electronic music. The observation that such music can delay host attack, reduce blood feeding, and disrupt mating provides new avenues for the development of music-based personal protective and control measures against Aedes-borne diseases.
Collapse
|
33
|
Oidtman RJ, Lai S, Huang Z, Yang J, Siraj AS, Reiner RC, Tatem AJ, Perkins TA, Yu H. Inter-annual variation in seasonal dengue epidemics driven by multiple interacting factors in Guangzhou, China. Nat Commun 2019; 10:1148. [PMID: 30850598 PMCID: PMC6408462 DOI: 10.1038/s41467-019-09035-x] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2018] [Accepted: 02/12/2019] [Indexed: 02/07/2023] Open
Abstract
Vector-borne diseases display wide inter-annual variation in seasonal epidemic size due to their complex dependence on temporally variable environmental conditions and other factors. In 2014, Guangzhou, China experienced its worst dengue epidemic on record, with incidence exceeding the historical average by two orders of magnitude. To disentangle contributions from multiple factors to inter-annual variation in epidemic size, we fitted a semi-mechanistic model to time series data from 2005-2015 and performed a series of factorial simulation experiments in which seasonal epidemics were simulated under all combinations of year-specific patterns of four time-varying factors: imported cases, mosquito density, temperature, and residual variation in local conditions not explicitly represented in the model. Our results indicate that while epidemics in most years were limited by unfavorable conditions with respect to one or more factors, the epidemic in 2014 was made possible by the combination of favorable conditions for all factors considered in our analysis.
Collapse
Affiliation(s)
- Rachel J Oidtman
- Department of Biological Sciences and Eck Institute for Global Health, University of Notre Dame, Notre Dame, 46556, IN, USA
| | - Shengjie Lai
- School of Public Health, Fudan University, Key Laboratory of Public Health Safety, Ministry of Education, Shanghai, 200032, China
- WorldPop, Department of Geography and Environment, University of Southampton, Southampton, SO17 1BJ, UK
- Flowminder Foundation, Stockholm, SE-11355, Sweden
| | - Zhoujie Huang
- School of Public Health, Fudan University, Key Laboratory of Public Health Safety, Ministry of Education, Shanghai, 200032, China
| | - Juan Yang
- School of Public Health, Fudan University, Key Laboratory of Public Health Safety, Ministry of Education, Shanghai, 200032, China
| | - Amir S Siraj
- Department of Biological Sciences and Eck Institute for Global Health, University of Notre Dame, Notre Dame, 46556, IN, USA
| | - Robert C Reiner
- Institute for Health and Metrics and Evaluation, University of Washington, Seattle, 98195, WA, USA
| | - Andrew J Tatem
- WorldPop, Department of Geography and Environment, University of Southampton, Southampton, SO17 1BJ, UK
- Flowminder Foundation, Stockholm, SE-11355, Sweden
| | - T Alex Perkins
- Department of Biological Sciences and Eck Institute for Global Health, University of Notre Dame, Notre Dame, 46556, IN, USA.
| | - Hongjie Yu
- School of Public Health, Fudan University, Key Laboratory of Public Health Safety, Ministry of Education, Shanghai, 200032, China.
| |
Collapse
|
34
|
Abstract
Flaviviruses include a diverse group of medically important viruses that cycle between mosquitoes and humans. During this natural process of switching hosts, each species imposes different selective forces on the viral population. Using dengue virus (DENV) as model, we found that paralogous RNA structures originating from duplications in the viral 3' untranslated region (UTR) are under different selective pressures in the two hosts. These RNA structures, known as dumbbells (DB1 and DB2), were originally proposed to be enhancers of viral replication. Analysis of viruses obtained from infected mosquitoes showed selection of mutations that mapped in DB2. Recombinant viruses carrying the identified variations confirmed that these mutations greatly increase viral replication in mosquito cells, with low or no impact in human cells. Use of viruses lacking each of the DB structures revealed opposite viral phenotypes. While deletion of DB1 reduced viral replication about 10-fold, viruses lacking DB2 displayed a great increase of fitness in mosquitoes, confirming a functional diversification of these similar RNA elements. Mechanistic analysis indicated that DB1 and DB2 differentially modulate viral genome cyclization and RNA replication. We found that a pseudoknot formed within DB2 competes with long-range RNA-RNA interactions that are necessary for minus-strand RNA synthesis. Our results support a model in which a functional diversification of duplicated RNA elements in the viral 3' UTR is driven by host-specific requirements. This study provides new ideas for understanding molecular aspects of the evolution of RNA viruses that naturally jump between different species.IMPORTANCE Flaviviruses constitute the most relevant group of arthropod-transmitted viruses, including important human pathogens such as the dengue, Zika, yellow fever, and West Nile viruses. The natural alternation of these viruses between vertebrate and invertebrate hosts shapes the viral genome population, which leads to selection of different viral variants with potential implications for epidemiological fitness and pathogenesis. However, the selective forces and mechanisms acting on the viral RNA during host adaptation are still largely unknown. Here, we found that two almost identical tandem RNA structures present at the viral 3' untranslated region are under different selective pressures in the two hosts. Mechanistic studies indicated that the two RNA elements, known as dumbbells, contain sequences that overlap essential RNA cyclization elements involved in viral RNA synthesis. The data support a model in which the duplicated RNA structures differentially evolved to accommodate distinct functions for viral replication in the two hosts.
Collapse
|
35
|
Kar M, Nisheetha A, Kumar A, Jagtap S, Shinde J, Singla M, M S, Pandit A, Chandele A, Kabra SK, Krishna S, Roy R, Lodha R, Pattabiraman C, Medigeshi GR. Isolation and molecular characterization of dengue virus clinical isolates from pediatric patients in New Delhi. Int J Infect Dis 2018; 84S:S25-S33. [PMID: 30528666 DOI: 10.1016/j.ijid.2018.12.003] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2018] [Revised: 12/01/2018] [Accepted: 12/04/2018] [Indexed: 01/26/2023] Open
Abstract
OBJECTIVE To characterize the in vitro replication fitness, viral diversity, and phylogeny of dengue viruses (DENV) isolated from Indian patients. METHODS DENV was isolated from whole blood collected from patients by passaging in cell culture. Passage 3 viruses were used for growth kinetics in C6/36 mosquito cells. Parallel efforts also focused on the isolation of DENV RNA from plasma samples of the same patients, which were processed for next-generation sequencing. RESULTS It was possible to isolate 64 clinical isolates of DENV, mostly DENV-2. Twenty-five of these were further used for growth curve analysis in vitro, which showed a wide range of replication kinetics. The highest viral titers were associated with isolates from patients with dengue with warning signs and severe dengue cases. Full genome sequences of 21 DENV isolates were obtained. Genome analysis mapped the circulating DENV-2 strains to the Cosmopolitan genotype. CONCLUSIONS The replication kinetics of isolates from patients with mild or severe infection did not differ significantly, but the viral titers varied by two orders of magnitude between the isolates, suggesting differences in replication fitness among the circulating DENV-2.
Collapse
Affiliation(s)
- Meenakshi Kar
- Translational Health Science and Technology Institute, Faridabad, Haryana, India
| | - Amul Nisheetha
- National Centre for Biological Sciences, TIFR, Bengaluru, India
| | - Anuj Kumar
- National Centre for Biological Sciences, TIFR, Bengaluru, India
| | - Suraj Jagtap
- Department of Chemical Engineering, Indian Institute of Science, Bengaluru, India
| | - Jitendra Shinde
- Translational Health Science and Technology Institute, Faridabad, Haryana, India
| | - Mohit Singla
- Department of Pediatrics, All India Institute of Medical Sciences, New Delhi, India
| | - Saranya M
- Molecular Biophysics Unit, Indian Institute of Science, Bengaluru, India
| | - Awadhesh Pandit
- National Centre for Biological Sciences, TIFR, Bengaluru, India
| | - Anmol Chandele
- ICGEB-Emory Vaccine Center, ICGEB Campus, New Delhi, India
| | - Sushil K Kabra
- Department of Pediatrics, All India Institute of Medical Sciences, New Delhi, India
| | - Sudhir Krishna
- National Centre for Biological Sciences, TIFR, Bengaluru, India
| | - Rahul Roy
- Department of Chemical Engineering, Indian Institute of Science, Bengaluru, India; Molecular Biophysics Unit, Indian Institute of Science, Bengaluru, India; Center for Biosystems Science and Engineering, Indian Institute of Science, Bengaluru, India
| | - Rakesh Lodha
- Department of Pediatrics, All India Institute of Medical Sciences, New Delhi, India
| | | | | |
Collapse
|