1
|
Gil E, Hatcher J, Saram SD, Guy RL, Lamagni T, Brown JS. Streptococcus intermedius: an underestimated pathogen in brain infection? Future Microbiol 2024:1-15. [PMID: 39552595 DOI: 10.1080/17460913.2024.2423524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Accepted: 10/28/2024] [Indexed: 11/19/2024] Open
Abstract
Streptococcus intermedius is an oral commensal organism belonging to the Streptococcus anginosus group (SAG). S. intermedius causes periodontitis as well as invasive, pyogenic infection of the central nervous system, pleural space or liver. Compared with other SAG organisms, S. intermedius has a higher mortality as well as a predilection for intracranial infection, suggesting it is likely to possess virulence factors that mediate specific interactions with the host resulting in bacteria reaching the brain. The mechanisms involved are not well described. Intracranial suppuration (ICS) due to S. intermedius infection can manifest as an abscess within the brain parenchyma, or a collection of pus (empyema) in the sub- or extra-dural space. These infections necessitate neurosurgery and prolonged antibiotic treatment and are associated with a considerable burden of morbidity and mortality. The incidence of ICS is increasing in several settings, with SAG species accounting for an increasing proportion of cases. There is a paucity of published literature regarding S. intermedius pathogenesis as well as few published genomes, hampering molecular epidemiological research. This perspective evaluates what is known about the clinical features and pathogenesis of ICS due to S. intermedius and explores hypothetical explanations why the incidence of these infections may be increasing.
Collapse
Affiliation(s)
- Eliza Gil
- UCL Respiratory, Division of Medicine, University College London, London, WC1E 6JF, UK
- Clinical Research Department, London School of Hygiene & Tropical Medicine, London, WC1E 7HT, UK
- Division of Infection, University College London Hospital, London, NW1 2BU, UK
- Department of Microbiology, Virology & Infection Control, Great Ormond Street Hospital for Children, NHS Foundation Trust, London, WC1N 1EH, UK
| | - James Hatcher
- Department of Microbiology, Virology & Infection Control, Great Ormond Street Hospital for Children, NHS Foundation Trust, London, WC1N 1EH, UK
- Department of Infection, Immunity & Inflammation, UCL Great Ormond Street Institute of Child Health, London, WC1N 1EH, UK
| | - Sophia de Saram
- Division of Infection, University College London Hospital, London, NW1 2BU, UK
| | - Rebecca L Guy
- Healthcare-Associated Infection & Antimicrobial Resistance Division, UK Health Security Agency, London, NW9 5EQ, United Kingdom
| | - Theresa Lamagni
- Healthcare-Associated Infection & Antimicrobial Resistance Division, UK Health Security Agency, London, NW9 5EQ, United Kingdom
| | - Jeremy S Brown
- UCL Respiratory, Division of Medicine, University College London, London, WC1E 6JF, UK
| |
Collapse
|
2
|
Liu Y, Ai H. Current research update on group B streptococcal infection related to obstetrics and gynecology. Front Pharmacol 2024; 15:1395673. [PMID: 38953105 PMCID: PMC11215423 DOI: 10.3389/fphar.2024.1395673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Accepted: 05/31/2024] [Indexed: 07/03/2024] Open
Abstract
Group B streptococcal (GBS) is a Gram-positive bacterium that is commonly found in the gastrointestinal tract and urogenital tract. GBS infestation during pregnancy is a significant contributor to maternal and neonatal morbidity and mortality globally. This article aims to discuss the infectious diseases caused by GBS in the field of obstetrics and gynecology, as well as the challenges associated with the detection, treatment, and prevention of GBS.
Collapse
Affiliation(s)
| | - Hao Ai
- Liaoning Provincial Key Laboratory of Follicular Development and Reproductive Health, Jinzhou Medical University, Jinzhou, Liaoning, China
| |
Collapse
|
3
|
Joyce LR, Kim S, Spencer BL, Christensen PM, Palmer KL, Guan Z, Siegenthaler JA, Doran KS. Streptococcus agalactiae glycolipids promote virulence by thwarting immune cell clearance. SCIENCE ADVANCES 2024; 10:eadn7848. [PMID: 38809989 PMCID: PMC11135403 DOI: 10.1126/sciadv.adn7848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Accepted: 04/25/2024] [Indexed: 05/31/2024]
Abstract
Streptococcus agalactiae [group B Streptococcus (GBS)] is a leading cause of neonatal meningitis, with late-onset disease (LOD) occurring after gastrointestinal tract colonization in infants. Bacterial membrane lipids are essential for host-pathogen interactions, and the functions of glycolipids are yet to be fully elucidated. GBS synthesizes three major glycolipids: glucosyl-diacylglycerol (Glc-DAG), diglucosyl-DAG (Glc2-DAG), and lysyl-Glc-DAG (Lys-Glc-DAG). Here, we identify the enzyme, IagB, as responsible for biosynthesis of Glc-DAG, the precursor for the two other glycolipids in GBS. To examine the collective role of glycolipids to GBS virulence, we adapted a murine model of neonatal meningitis to simulate LOD. The GBS∆iagB mutant traversed the gut-epithelial barrier comparable to wild type but was severely attenuated in bloodstream survival, resulting in decreased bacterial loads in the brain. The GBS∆iagB mutant was more susceptible to neutrophil killing and membrane targeting by host antimicrobial peptides. This work reveals an unexplored function of GBS glycolipids with their ability to protect the bacterial cell from host antimicrobial killing.
Collapse
Affiliation(s)
- Luke R. Joyce
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, CO, USA
| | - Sol Kim
- Department of Pediatrics, Section of Developmental Biology, University of Colorado School of Medicine, Aurora, CO, USA
| | - Brady L. Spencer
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, CO, USA
| | - Priya M. Christensen
- Department of Biological Sciences, The University of Texas at Dallas, Richardson, TX, USA
| | - Kelli L. Palmer
- Department of Biological Sciences, The University of Texas at Dallas, Richardson, TX, USA
| | - Ziqiang Guan
- Department of Biochemistry, Duke University Medical Center, Durham, NC, USA
| | - Julie A. Siegenthaler
- Department of Pediatrics, Section of Developmental Biology, University of Colorado School of Medicine, Aurora, CO, USA
| | - Kelly S. Doran
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, CO, USA
| |
Collapse
|
4
|
Ma J, Wu H, Ma Z, Wu Z. Bacterial and host factors involved in zoonotic Streptococcal meningitis. Microbes Infect 2024:105335. [PMID: 38582147 DOI: 10.1016/j.micinf.2024.105335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 04/01/2024] [Accepted: 04/02/2024] [Indexed: 04/08/2024]
Abstract
Zoonotic streptococci cause several invasive diseases with high mortality rates, especially meningitis. Numerous studies elucidated the meningitis pathogenesis of zoonotic streptococci, some specific to certain bacterial species. In contrast, others are shared among different bacterial species, involving colonization and invasion of mucosal barriers, survival in the bloodstream, breaching the blood-brain and/or blood-cerebrospinal fluid barrier to access the central nervous system, and triggering inflammation of the meninges. This review focuses on the recent advancements in comprehending the molecular and cellular events of five major zoonotic streptococci responsible for causing meningitis in humans or animals, including Streptococcus agalactiae, Streptococcus equi subspecies zooepidemicus, Streptococcus suis, Streptococcus dysgalactiae, and Streptococcus iniae. The underlying mechanism was summarized into four themes, including 1) bacterial survival in blood, 2) brain microvascular endothelial cell adhesion and invasion, 3) penetration of the blood-brain barrier, and 4) activation of the immune system and inflammatory reaction within the brain. This review may contribute to developing therapeutics to prevent or mitigate injury of streptococcal meningitis and improve risk stratification.
Collapse
Affiliation(s)
- Jiale Ma
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210014, China; Key Lab of Animal Bacteriology, Ministry of Agriculture, Nanjing 210014, China; WOAH Reference Lab for Swine Streptococcosis, Nanjing 210014, China
| | - Huizhen Wu
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210014, China; Key Lab of Animal Bacteriology, Ministry of Agriculture, Nanjing 210014, China; WOAH Reference Lab for Swine Streptococcosis, Nanjing 210014, China
| | - Zhe Ma
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210014, China; Key Lab of Animal Bacteriology, Ministry of Agriculture, Nanjing 210014, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, China.
| | - Zongfu Wu
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210014, China; Key Lab of Animal Bacteriology, Ministry of Agriculture, Nanjing 210014, China; WOAH Reference Lab for Swine Streptococcosis, Nanjing 210014, China; Guangdong Provincial Key Laboratory of Research on the Technology of Pig-breeding and Pig-disease Prevention, Guangzhou 511400, China.
| |
Collapse
|
5
|
Chen N, Wan X, Wang M, Li Y, Wang X, Zeng L, Zhou J, Zhang Y, Cheng S, Shen Y. Cross-talk between Vimentin and autophagy regulates blood-testis barrier disruption induced by cadmium. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 346:123625. [PMID: 38401636 DOI: 10.1016/j.envpol.2024.123625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 02/06/2024] [Accepted: 02/20/2024] [Indexed: 02/26/2024]
Abstract
The blood-testis barrier (BTB) plays a vital role in mammalian spermatogenesis by separating the seminiferous epithelium into an adluminal and a basal compartment. Cadmium (Cd) is a toxic heavy metal that is widely present in the environment. We observed that Cd can induce BTB disruption, leading to apoptosis of testicular cells. However, the molecular mechanisms contributing to BTB injury induced by Cd have not yet been fully clarified. Vimentin (Vim) is an important desmosome-like junction protein that mediates robust adhesion in the BTB. In this study, we investigated how Vim responds to Cd. We found that Cd treatment led to a significant decrease in Vim expression, accompanied by a marked increase in LC3-II expression and a higer number of autophagosomes. Interestingly, we also observed that Cd-induced autophagy was associated with decreased Vim activity and enhanced apoptosis of testicular cells. To further investigate the role of autophagy in Vim regulation under Cd exposure, we treated cells with an autophagy inhibitor called 3-MA. We found that 3-MA treatment enhanced Vim expression and improved the disruption of the BTB under Cd exposure. Additionally, the inhibition of Vim confirmed the role of autophagy in modulating Vim expression. These results reveal a previously unknown regulatory mechanism of Cd involving the interplay between a heavy metal and a protein.
Collapse
Affiliation(s)
- Na Chen
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, PR China
| | - Xiaoyan Wan
- Department of Obstetrics and Gynecology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, 510620, PR China
| | - Mei Wang
- Center for Reproductive Medicine, Zhongnan Hospital of Wuhan University, Wuhan, 430071, Hubei, PR China
| | - Yamin Li
- Department of Woman's Health Care, Maternal and Child Health Hospital of Hubei Province, Wuhan, 430071, Hubei, PR China
| | - Xiaofei Wang
- Center for Reproductive Medicine, Yichang Central People's Hospital, The First College of Clinical Medical Science, China Three Gorges University, Yichang, 443000, Hubei, PR China
| | - Ling Zeng
- Medical Genetics Center, Maternal and Child Health Hospital of Hubei Province, Wuhan, 430070, PR China
| | - Jinzhao Zhou
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, PR China
| | - Yanwei Zhang
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, PR China
| | - Shun Cheng
- College of Zhixing, Hubei University, Wuhan, 430011, PR China
| | - Yi Shen
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, PR China.
| |
Collapse
|
6
|
Suprewicz Ł, Zakrzewska M, Okła S, Głuszek K, Sadzyńska A, Deptuła P, Fiedoruk K, Bucki R. Extracellular vimentin as a modulator of the immune response and an important player during infectious diseases. Immunol Cell Biol 2024; 102:167-178. [PMID: 38211939 DOI: 10.1111/imcb.12721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Revised: 11/27/2023] [Accepted: 12/21/2023] [Indexed: 01/13/2024]
Abstract
Vimentin, an intermediate filament protein primarily recognized for its intracellular role in maintaining cellular structure, has recently garnered increased attention and emerged as a pivotal extracellular player in immune regulation and host-pathogen interactions. While the functions of extracellular vimentin were initially overshadowed by its cytoskeletal role, accumulating evidence now highlights its significance in diverse physiological and pathological events. This review explores the multifaceted role of extracellular vimentin in modulating immune responses and orchestrating interactions between host cells and pathogens. It delves into the mechanisms underlying vimentin's release into the extracellular milieu, elucidating its unconventional secretion pathways and identifying critical molecular triggers. In addition, the future perspectives of using extracellular vimentin in diagnostics and as a target protein in the treatment of diseases are discussed.
Collapse
Affiliation(s)
- Łukasz Suprewicz
- Department of Medical Microbiology and Nanobiomedical Engineering, Medical University of Białystok, Białystok, Poland
| | - Magdalena Zakrzewska
- Department of Medical Microbiology and Nanobiomedical Engineering, Medical University of Białystok, Białystok, Poland
| | - Sławomir Okła
- Institute of Medical Sciences, Collegium Medicum, Jan Kochanowski University of Kielce, Kielce, Poland
| | - Katarzyna Głuszek
- Institute of Medical Sciences, Collegium Medicum, Jan Kochanowski University of Kielce, Kielce, Poland
| | - Alicja Sadzyńska
- State Higher Vocational School of Prof. Edward F. Szczepanik in Suwałki, Suwałki, Poland
| | - Piotr Deptuła
- Independent Laboratory of Nanomedicine, Medical University of Białystok, Białystok, Poland
| | - Krzysztof Fiedoruk
- Department of Medical Microbiology and Nanobiomedical Engineering, Medical University of Białystok, Białystok, Poland
| | - Robert Bucki
- Department of Medical Microbiology and Nanobiomedical Engineering, Medical University of Białystok, Białystok, Poland
| |
Collapse
|
7
|
Zhao S, Miao C, Gao X, Li Z, Eriksson JE, Jiu Y. Vimentin cage - A double-edged sword in host anti-infection defense. Curr Opin Cell Biol 2024; 86:102317. [PMID: 38171142 DOI: 10.1016/j.ceb.2023.102317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 12/06/2023] [Accepted: 12/19/2023] [Indexed: 01/05/2024]
Abstract
Vimentin, a type III intermediate filament, reorganizes into what is termed the 'vimentin cage' in response to various pathogenic infections. This cage-like structure provides an envelope to key components of the pathogen's life cycle. In viral infections, the vimentin cage primarily serves as a scaffold and organizer for the replication factory, promoting viral replication. However, it also occasionally contributes to antiviral functions. For bacterial infections, the cage mainly supports bacterial proliferation in most observed cases. These consistent structural alterations in vimentin, induced by a range of viruses and bacteria, highlight the vimentin cage's crucial role. Pathogen-specific factors add complexity to this interaction. In this review, we provide a thorough overview of the functions and mechanisms of the vimentin cage and speculate on vimentin's potential as a novel target for anti-pathogen strategies.
Collapse
Affiliation(s)
- Shuangshuang Zhao
- The Center for Microbes, Development and Health, Key Laboratory of Molecular Virology and Immunology, Shanghai Institute of Immunity and Infection, Chinese Academy of Sciences, Shanghai 200031, China
| | - Chenglin Miao
- The Center for Microbes, Development and Health, Key Laboratory of Molecular Virology and Immunology, Shanghai Institute of Immunity and Infection, Chinese Academy of Sciences, Shanghai 200031, China; University of Chinese Academy of Sciences, Yuquan Road No. 19(A), Shijingshan District, Beijing 100049, China
| | - Xuedi Gao
- The Center for Microbes, Development and Health, Key Laboratory of Molecular Virology and Immunology, Shanghai Institute of Immunity and Infection, Chinese Academy of Sciences, Shanghai 200031, China; University of Chinese Academy of Sciences, Yuquan Road No. 19(A), Shijingshan District, Beijing 100049, China
| | - Zhifang Li
- The Center for Microbes, Development and Health, Key Laboratory of Molecular Virology and Immunology, Shanghai Institute of Immunity and Infection, Chinese Academy of Sciences, Shanghai 200031, China
| | - John E Eriksson
- Cell Biology, Biosciences, Faculty of Science and Engineering, Åbo Akademi University, Turku FI-20520, Finland; Turku Bioscience Centre, University of Turku and Åbo Akademi University, Turku FI-20520, Finland.
| | - Yaming Jiu
- The Center for Microbes, Development and Health, Key Laboratory of Molecular Virology and Immunology, Shanghai Institute of Immunity and Infection, Chinese Academy of Sciences, Shanghai 200031, China; University of Chinese Academy of Sciences, Yuquan Road No. 19(A), Shijingshan District, Beijing 100049, China.
| |
Collapse
|
8
|
Parvanian S, Coelho-Rato LS, Eriksson JE, Patteson AE. The molecular biophysics of extracellular vimentin and its role in pathogen-host interactions. Curr Opin Cell Biol 2023; 85:102233. [PMID: 37677998 PMCID: PMC10841047 DOI: 10.1016/j.ceb.2023.102233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 08/08/2023] [Accepted: 08/10/2023] [Indexed: 09/09/2023]
Abstract
Vimentin, an intermediate filament protein typically located in the cytoplasm of mesenchymal cells, can also be secreted as an extracellular protein. The organization of extracellular vimentin strongly determines its functions in physiological and pathological conditions, making it a promising target for future therapeutic interventions. The extracellular form of vimentin has been found to play a role in the interaction between host cells and pathogens. In this review, we first discuss the molecular biophysics of extracellular vimentin, including its structure, secretion, and adhesion properties. We then provide a general overview of the role of extracellular vimentin in mediating pathogen-host interactions, with a focus on its interactions with viruses and bacteria. We also discuss the implications of these findings for the development of new therapeutic strategies for combating infectious diseases.
Collapse
Affiliation(s)
- Sepideh Parvanian
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, 20520, Turku, Finland; Faculty of Science and Engineering, Cell Biology, Åbo Akademi University, 20520, Turku, Finland; Center for Systems Biology, Massachusetts General Hospital Research Institute and Harvard Medical School, Boston, MA 02114, USA
| | - Leila S Coelho-Rato
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, 20520, Turku, Finland; Faculty of Science and Engineering, Cell Biology, Åbo Akademi University, 20520, Turku, Finland
| | - John E Eriksson
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, 20520, Turku, Finland; Faculty of Science and Engineering, Cell Biology, Åbo Akademi University, 20520, Turku, Finland; Euro-Bioimaging ERIC, 20520, Turku, Finland
| | - Alison E Patteson
- Physics Department and BioInspired Institute, Syracuse University, Syracuse, NY, 13244, USA.
| |
Collapse
|
9
|
Du C, Cai N, Dong J, Xu C, Wang Q, Zhang Z, Li J, Huang C, Ma T. Uncovering the role of cytoskeleton proteins in the formation of neutrophil extracellular traps. Int Immunopharmacol 2023; 123:110607. [PMID: 37506501 DOI: 10.1016/j.intimp.2023.110607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 06/23/2023] [Accepted: 07/03/2023] [Indexed: 07/30/2023]
Abstract
Neutrophils are a type of lymphocyte involved in innate immune defense. In response to specific stimuli, these phagocytic cells undergo a unique form of cell death, NETosis, during which they release neutrophil extracellular traps (NETs) composed of modified chromatin structures decorated with cytoplasmic and granular proteins. Multiple proteins and pathways have been implicated in the formation of NETs. The cytoskeleton, an interconnected network of filamentous polymers and regulatory proteins, plays a crucial role in resisting deformation, transporting intracellular cargo, and changing shape during movement of eukaryotic cells. It may also have evolved to defend eukaryotic organisms against infection. Recent research focuses on understanding the mechanisms underlying NETs formation and how cytoskeletal networks contribute to this process, by identifying enzymes that trigger NETosis or interact with NETs and influence cellular behavior through cytoskeletal dynamics. An enhanced understanding of the complex relationship between the cytoskeleton and NET formation will provide a framework for future research and the development of targeted therapeutic strategies, and supports the notion that the long-lived cytoskeleton structures may have a lasting impact on this area of research.
Collapse
Affiliation(s)
- Changlin Du
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei 230032, China
| | - Na Cai
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei 230032, China
| | - Jiahui Dong
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei 230032, China
| | - Chuanting Xu
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei 230032, China
| | - Qi Wang
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei 230032, China
| | - Zhenming Zhang
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei 230032, China
| | - Jun Li
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei 230032, China
| | - Cheng Huang
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei 230032, China.
| | - Taotao Ma
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei 230032, China.
| |
Collapse
|
10
|
Pan F, Zhu M, Liang Y, Yuan C, Zhang Y, Wang Y, Fan H, Waldor MK, Ma Z. Membrane vesicle delivery of a streptococcal M protein disrupts the blood-brain barrier by inducing autophagic endothelial cell death. Proc Natl Acad Sci U S A 2023; 120:e2219435120. [PMID: 37276410 PMCID: PMC10268326 DOI: 10.1073/pnas.2219435120] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Accepted: 05/08/2023] [Indexed: 06/07/2023] Open
Abstract
M family proteins are critical virulence determinants of Streptococci. Streptococcus equi subsp. zooepidemicus (SEZ) are Group C streptococci that cause meningitis in animals and humans. SzM, the M protein of SEZ, has been linked to SEZ brain invasion. Here, we demonstrate that SzM is important in SEZ disruption of the blood-brain barrier (BBB). SEZ release SzM-bound membrane vesicles (MVs), and endocytosis of these vesicles by human brain endothelial microvascular cells (hBMECs) results in SzM-dependent cytotoxicity. Furthermore, administration of SzM-bound MVs disrupted the murine BBB. A CRISPR screen revealed that SzM cytotoxicity in hBMECs depends on PTEN-related activation of autophagic cell death. Pharmacologic inhibition of PTEN activity prevented SEZ disruption of the murine BBB and delayed mortality. Our data show that MV delivery of SzM to host cells plays a key role in SEZ pathogenicity and suggests that MV delivery of streptococcal M family proteins is likely a common streptococcal virulence mechanism.
Collapse
Affiliation(s)
- Fei Pan
- Ministry of Agriculture Key Laboratory of Animal Bacteriology, the International Joint Laboratory of Animal Health and Food Safety, and College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu210095, China
| | - Mingli Zhu
- Ministry of Agriculture Key Laboratory of Animal Bacteriology, the International Joint Laboratory of Animal Health and Food Safety, and College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu210095, China
| | - Ying Liang
- Ministry of Agriculture Key Laboratory of Animal Bacteriology, the International Joint Laboratory of Animal Health and Food Safety, and College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu210095, China
| | - Chen Yuan
- Ministry of Agriculture Key Laboratory of Animal Bacteriology, the International Joint Laboratory of Animal Health and Food Safety, and College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu210095, China
| | - Yu Zhang
- Ministry of Agriculture Key Laboratory of Animal Bacteriology, the International Joint Laboratory of Animal Health and Food Safety, and College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu210095, China
| | - Yuchang Wang
- Ministry of Agriculture Key Laboratory of Animal Bacteriology, the International Joint Laboratory of Animal Health and Food Safety, and College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu210095, China
| | - Hongjie Fan
- Ministry of Agriculture Key Laboratory of Animal Bacteriology, the International Joint Laboratory of Animal Health and Food Safety, and College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu210095, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou225009, China
| | - Matthew K. Waldor
- HHMI, Boston, MA02115
- Brigham and Women’s HospitalDivision of Infectious Diseases, Boston, MA02115
- Department of Microbiology, Harvard Medical School, Boston, MA02115
| | - Zhe Ma
- Ministry of Agriculture Key Laboratory of Animal Bacteriology, the International Joint Laboratory of Animal Health and Food Safety, and College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu210095, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou225009, China
| |
Collapse
|
11
|
Peng K, Liao Y, Li X, Zeng D, Ye Y, Chen L, Zeng Z, Zeng Y. Vimentin Is an Attachment Receptor for Mycoplasma pneumoniae P1 Protein. Microbiol Spectr 2023; 11:e0448922. [PMID: 36912679 PMCID: PMC10100666 DOI: 10.1128/spectrum.04489-22] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Accepted: 02/06/2023] [Indexed: 03/14/2023] Open
Abstract
Mycoplasma pneumoniae is the most common pathogen causing respiratory tract infection, and the P1 protein on its adhesion organelle plays a crucial role during the pathogenic process. Currently, there are many studies on P1 and receptors on host cells, but the adhesion mechanism of P1 protein is still unclear. In this study, a modified virus overlay protein binding assay (VOPBA) and liquid chromatography-mass spectrometry (LC-MS) were performed to screen for proteins that specifically bind to the region near the carboxyl terminus of the recombinant P1 protein (rP1-C). The interaction between rP1-C and vimentin or β-4-tubulin were confirmed by far-Western blotting and coimmunoprecipitation. Results verified that vimentin and β-4-tubulin were mainly distributed on the cell membrane and cytoplasm of human bronchial epithelial (BEAS-2B) cells, but only vimentin could interact with rP1-C. The results of the adhesion and adhesion inhibition assays indicated that the adhesion of M. pneumoniae and rP1-C to cells could be partly inhibited by vimentin and its antibody. When vimentin was downregulated with the corresponding small interfering RNA (siRNA) or overexpressed in BEAS-2B cells, the adhesion of M. pneumoniae and rP1-C to cells was decreased or increased, respectively, which indicated that vimentin was closely associated with the adhesion of M. pneumoniae and rP1-C to BEAS-2B cells. Our results demonstrate that vimentin could be a receptor on human bronchial epithelial cells for the P1 protein and plays an essential role in the adhesion of M. pneumoniae to cells, which may clarify the pathogenesis of M. pneumoniae. IMPORTANCE Mycoplasma pneumoniae is the most common pathogen causing respiratory tract infection, and the P1 protein on its adhesion organelle plays a crucial role during the pathogenic process. A variety of experiments, including enzyme-linked immunosorbent assay (ELISA), coimmunoprecipitation, adhesion, and adhesion inhibition assay, have demonstrated that the M. pneumoniae P1 protein can interact with vimentin, that the adhesion of M. pneumoniae and recombinant P1 protein to BEAS-2B cells was affected by the expression level of vimentin. This provides a new idea for the prevention and treatment of Mycoplasma pneumoniae infection.
Collapse
Affiliation(s)
- Kailan Peng
- Institute of Pathogenic Biology, Basic Medical School, Hengyang Medical College, Hunan Provincial Key Laboratory for Special Pathogens Prevention and Control, University of South China, Hengyang, Hunan Province, People’s Republic of China
| | - Yating Liao
- Institute of Pathogenic Biology, Basic Medical School, Hengyang Medical College, Hunan Provincial Key Laboratory for Special Pathogens Prevention and Control, University of South China, Hengyang, Hunan Province, People’s Republic of China
| | - Xia Li
- Institute of Pathogenic Biology, Basic Medical School, Hengyang Medical College, Hunan Provincial Key Laboratory for Special Pathogens Prevention and Control, University of South China, Hengyang, Hunan Province, People’s Republic of China
| | - Dongdong Zeng
- Department of Cardiocascular Medicine, the Third Affiliated Hospital, University of South China, Hengyang, Hunan Province, People’s Republic of China
| | - Youyuan Ye
- Institute of Pathogenic Biology, Basic Medical School, Hengyang Medical College, Hunan Provincial Key Laboratory for Special Pathogens Prevention and Control, University of South China, Hengyang, Hunan Province, People’s Republic of China
| | - Li Chen
- Institute of Pathogenic Biology, Basic Medical School, Hengyang Medical College, Hunan Provincial Key Laboratory for Special Pathogens Prevention and Control, University of South China, Hengyang, Hunan Province, People’s Republic of China
| | - Zhuo Zeng
- Institute of Pathogenic Biology, Basic Medical School, Hengyang Medical College, Hunan Provincial Key Laboratory for Special Pathogens Prevention and Control, University of South China, Hengyang, Hunan Province, People’s Republic of China
| | - Yanhua Zeng
- Institute of Pathogenic Biology, Basic Medical School, Hengyang Medical College, Hunan Provincial Key Laboratory for Special Pathogens Prevention and Control, University of South China, Hengyang, Hunan Province, People’s Republic of China
| |
Collapse
|
12
|
Pinho-Ribeiro FA, Deng L, Neel DV, Erdogan O, Basu H, Yang D, Choi S, Walker AJ, Carneiro-Nascimento S, He K, Wu G, Stevens B, Doran KS, Levy D, Chiu IM. Bacteria hijack a meningeal neuroimmune axis to facilitate brain invasion. Nature 2023; 615:472-481. [PMID: 36859544 PMCID: PMC10593113 DOI: 10.1038/s41586-023-05753-x] [Citation(s) in RCA: 37] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Accepted: 01/23/2023] [Indexed: 03/03/2023]
Abstract
The meninges are densely innervated by nociceptive sensory neurons that mediate pain and headache1,2. Bacterial meningitis causes life-threatening infections of the meninges and central nervous system, affecting more than 2.5 million people a year3-5. How pain and neuroimmune interactions impact meningeal antibacterial host defences are unclear. Here we show that Nav1.8+ nociceptors signal to immune cells in the meninges through the neuropeptide calcitonin gene-related peptide (CGRP) during infection. This neuroimmune axis inhibits host defences and exacerbates bacterial meningitis. Nociceptor neuron ablation reduced meningeal and brain invasion by two bacterial pathogens: Streptococcus pneumoniae and Streptococcus agalactiae. S. pneumoniae activated nociceptors through its pore-forming toxin pneumolysin to release CGRP from nerve terminals. CGRP acted through receptor activity modifying protein 1 (RAMP1) on meningeal macrophages to polarize their transcriptional responses, suppressing macrophage chemokine expression, neutrophil recruitment and dural antimicrobial defences. Macrophage-specific RAMP1 deficiency or pharmacological blockade of RAMP1 enhanced immune responses and bacterial clearance in the meninges and brain. Therefore, bacteria hijack CGRP-RAMP1 signalling in meningeal macrophages to facilitate brain invasion. Targeting this neuroimmune axis in the meninges can enhance host defences and potentially produce treatments for bacterial meningitis.
Collapse
Affiliation(s)
- Felipe A Pinho-Ribeiro
- Department of Immunology, Blavatnik Institute, Harvard Medical School, Boston, MA, USA
- Division of Dermatology, John T. Milliken Department of Medicine, Washington University School of Medicine in St Louis, St Louis, MO, USA
| | - Liwen Deng
- Department of Immunology, Blavatnik Institute, Harvard Medical School, Boston, MA, USA
| | - Dylan V Neel
- Department of Immunology, Blavatnik Institute, Harvard Medical School, Boston, MA, USA
| | - Ozge Erdogan
- Department of Restorative Dentistry and Biomaterial Sciences, Harvard School of Dental Medicine, Boston, MA, USA
| | - Himanish Basu
- Department of Immunology, Blavatnik Institute, Harvard Medical School, Boston, MA, USA
| | - Daping Yang
- Department of Immunology, Blavatnik Institute, Harvard Medical School, Boston, MA, USA
| | - Samantha Choi
- Department of Immunology, Blavatnik Institute, Harvard Medical School, Boston, MA, USA
| | - Alec J Walker
- F.M. Kirby Neurobiology Center, Boston Children's Hospital, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
- Stanley Center for Psychiatric Research, The Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Simone Carneiro-Nascimento
- Departments of Anesthesia, Critical Care and Pain Medicine, Beth Israel Deaconess Medical Center, Boston, MA, USA
| | - Kathleen He
- Department of Immunology, Blavatnik Institute, Harvard Medical School, Boston, MA, USA
| | - Glendon Wu
- Department of Immunology, Blavatnik Institute, Harvard Medical School, Boston, MA, USA
| | - Beth Stevens
- F.M. Kirby Neurobiology Center, Boston Children's Hospital, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
- Stanley Center for Psychiatric Research, The Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Howard Hughes Medical Institute, Boston Children's Hospital, Boston, MA, USA
| | - Kelly S Doran
- Department of Immunology and Microbiology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Dan Levy
- Harvard Medical School, Boston, MA, USA
- Departments of Anesthesia, Critical Care and Pain Medicine, Beth Israel Deaconess Medical Center, Boston, MA, USA
| | - Isaac M Chiu
- Department of Immunology, Blavatnik Institute, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
13
|
Comparative Genome Analysis of Enterococcus cecorum Reveals Intercontinental Spread of a Lineage of Clinical Poultry Isolates. mSphere 2023; 8:e0049522. [PMID: 36794931 PMCID: PMC10117131 DOI: 10.1128/msphere.00495-22] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/17/2023] Open
Abstract
Enterococcus cecorum is an emerging pathogen responsible for osteomyelitis, spondylitis, and femoral head necrosis causing animal suffering and mortality and requiring antimicrobial use in poultry. Paradoxically, E. cecorum is a common inhabitant of the intestinal microbiota of adult chickens. Despite evidence suggesting the existence of clones with pathogenic potential, the genetic and phenotypic relatedness of disease-associated isolates remains little investigated. Here, we sequenced and analyzed the genomes and characterized the phenotypes of more than 100 isolates, the majority of which were collected over the last 10 years from 16 French broiler farms. Comparative genomics, genome-wide association studies, and the measured susceptibility to serum, biofilm-forming capacity, and adhesion to chicken type II collagen were used to identify features associated with clinical isolates. We found that none of the tested phenotypes could discriminate the origin of the isolates or the phylogenetic group. Instead, we found that most clinical isolates are grouped phylogenetically, and our analyses selected six genes that discriminate 94% of isolates associated with disease from those that are not. Analysis of the resistome and the mobilome revealed that multidrug-resistant clones of E. cecorum cluster into a few clades and that integrative conjugative elements and genomic islands are the main carriers of antimicrobial resistance. This comprehensive genomic analysis shows that disease-associated clones of E. cecorum belong mainly to one phylogenetic clade. IMPORTANCE Enterococcus cecorum is an important pathogen of poultry worldwide. It causes a number of locomotor disorders and septicemia, particularly in fast-growing broilers. Animal suffering, antimicrobial use, and associated economic losses require a better understanding of disease-associated E. cecorum isolates. To address this need, we performed whole-genome sequencing and analysis of a large collection of isolates responsible for outbreaks in France. By providing the first data set on the genetic diversity and resistome of E. cecorum strains circulating in France, we pinpoint an epidemic lineage that is probably also circulating elsewhere that should be targeted preferentially by preventive strategies in order to reduce the burden of E. cecorum-related diseases.
Collapse
|
14
|
Meng Y, Lin S, Niu K, Ma Z, Lin H, Fan H. Vimentin affects inflammation and neutrophil recruitment in airway epithelium during Streptococcus suis serotype 2 infection. Vet Res 2023; 54:7. [PMID: 36717839 PMCID: PMC9885403 DOI: 10.1186/s13567-023-01135-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Accepted: 11/19/2022] [Indexed: 01/31/2023] Open
Abstract
Streptococcus suis serotype 2 (SS2) frequently colonizes the swine upper respiratory tract and can cause Streptococcal disease in swine with clinical manifestations of pneumonia, meningitis, and septicemia. Previously, we have shown that vimentin, a kind of intermediate filament protein, is involved in the penetration of SS2 through the tracheal epithelial barrier. The initiation of invasive disease is closely related to SS2-induced excessive local inflammation; however, the role of vimentin in airway epithelial inflammation remains unclear. Here, we show that vimentin deficient mice exhibit attenuated lung injury, diminished production of proinflammatory cytokines interleukin-6 (IL-6), tumor necrosis factor-alpha (TNF-α), and the IL-8 homolog, keratinocyte-derived chemokine (KC), and substantially reduced neutrophils in the lungs following intranasal infection with SS2. We also found that swine tracheal epithelial cells (STEC) without vimentin show decreased transcription of IL-6, TNF-α, and IL-8. SS2 infection caused reassembly of vimentin in STEC, and pharmacological disruption of vimentin filaments prevented the transcription of those proinflammatory cytokines. Furthermore, deficiency of vimentin failed to increase the transcription of nucleotide oligomerization domain protein 2 (NOD2), which is known to interact with vimentin, and the phosphorylation of NF-κB protein p65. This study provides insights into how vimentin promotes excessive airway inflammation, thereby exacerbating airway injury and SS2-induced systemic infection.
Collapse
Affiliation(s)
- Yu Meng
- grid.27871.3b0000 0000 9750 7019MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Shaojie Lin
- grid.27871.3b0000 0000 9750 7019MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Kai Niu
- grid.27871.3b0000 0000 9750 7019MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Zhe Ma
- grid.27871.3b0000 0000 9750 7019MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Huixing Lin
- grid.27871.3b0000 0000 9750 7019MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Hongjie Fan
- grid.27871.3b0000 0000 9750 7019MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China ,grid.268415.cJiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, China
| |
Collapse
|
15
|
Keogh RA, Haeberle AL, Langouët-Astrié CJ, Kavanaugh JS, Schmidt EP, Moore GD, Horswill AR, Doran KS. Group B Streptococcus adaptation promotes survival in a hyperinflammatory diabetic wound environment. SCIENCE ADVANCES 2022; 8:eadd3221. [PMID: 36367946 PMCID: PMC9651866 DOI: 10.1126/sciadv.add3221] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Accepted: 09/22/2022] [Indexed: 06/16/2023]
Abstract
Diabetic wounds have poor healing outcomes due to the presence of numerous pathogens and a dysregulated immune response. Group B Streptococcus (GBS) is commonly isolated from diabetic wound infections, but the mechanisms of GBS virulence during these infections have not been investigated. Here, we develop a murine model of GBS diabetic wound infection and, using dual RNA sequencing, demonstrate that GBS infection triggers an inflammatory response. GBS adapts to this hyperinflammatory environment by up-regulating virulence factors including those known to be regulated by the two-component system covRS, such as the surface protein pbsP, and the cyl operon, which is responsible for hemolysin/pigmentation production. We recover hyperpigmented/hemolytic GBS colonies from the murine diabetic wound, which we determined encode mutations in covR. We further demonstrate that GBS mutants in cylE and pbsP are attenuated in the diabetic wound. This foundational study provides insight into the pathogenesis of GBS diabetic wound infections.
Collapse
Affiliation(s)
- Rebecca A. Keogh
- Department of Immunology and Microbiology, University of Colorado Anschutz, Aurora, CO, USA
| | - Amanda L. Haeberle
- Department of Immunology and Microbiology, University of Colorado Anschutz, Aurora, CO, USA
| | | | - Jeffrey S. Kavanaugh
- Department of Immunology and Microbiology, University of Colorado Anschutz, Aurora, CO, USA
| | - Eric P. Schmidt
- Department of Medicine–Pulmonary Sciences and Critical Care, University of Colorado Anschutz, Aurora, CO, USA
| | - Garrett D. Moore
- Department of Orthopedics, University of Colorado, Anschutz Medical Campus, Aurora, CO, USA
| | - Alexander R. Horswill
- Department of Immunology and Microbiology, University of Colorado Anschutz, Aurora, CO, USA
- Department of Veterans Affairs Eastern Colorado Healthcare System, Aurora, CO, USA
| | - Kelly S. Doran
- Department of Immunology and Microbiology, University of Colorado Anschutz, Aurora, CO, USA
| |
Collapse
|
16
|
Different Involvement of Vimentin during Invasion by Listeria monocytogenes at the Blood–Brain and the Blood–Cerebrospinal Fluid Barriers In Vitro. Int J Mol Sci 2022; 23:ijms232112908. [DOI: 10.3390/ijms232112908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 10/13/2022] [Accepted: 10/20/2022] [Indexed: 11/17/2022] Open
Abstract
The human central nervous system (CNS) is separated from the blood by distinct cellular barriers, including the blood–brain barrier (BBB) and the blood–cerebrospinal fluid (CFS) barrier (BCSFB). Whereas at the center of the BBB are the endothelial cells of the brain capillaries, the BCSFB is formed by the epithelium of the choroid plexus. Invasion of cells of either the BBB or the BCSFB is a potential first step during CNS entry by the Gram-positive bacterium Listeria monocytogenes (Lm). Lm possesses several virulence factors mediating host cell entry, such as the internalin protein family—including internalin (InlA), which binds E-cadherin (Ecad) on the surface of target cells, and internalin B (InlB)—interacting with the host cell receptor tyrosine kinase Met. A further family member is internalin (InlF), which targets the intermediate filament protein vimentin. Whereas InlF has been shown to play a role during brain invasion at the BBB, its function during infection at the BCSFB is not known. We use human brain microvascular endothelial cells (HBMEC) and human choroid plexus epithelial papilloma (HIBCPP) cells to investigate the roles of InlF and vimentin during CNS invasion by Lm. Whereas HBMEC present intracellular and surface vimentin (besides Met), HIBCPP cells do not express vimentin (except Met and Ecad). Treatment with the surface vimentin modulator withaferin A (WitA) inhibited invasion of Lm into HBMEC, but not HIBCPP cells. Invasion of Lm into HBMEC and HIBCPP cells is, however, independent of InlF, since a deletion mutant of Lm lacking InlF did not display reduced invasion rates.
Collapse
|
17
|
Manzer HS, Nguyen DT, Park JY, Park N, Seo KS, Thornton JA, Nobbs AH, Doran KS. The Group B Streptococcal Adhesin BspC Interacts with Host Cytokeratin 19 To Promote Colonization of the Female Reproductive Tract. mBio 2022; 13:e0178122. [PMID: 36069447 PMCID: PMC9600255 DOI: 10.1128/mbio.01781-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Accepted: 08/16/2022] [Indexed: 02/02/2023] Open
Abstract
Streptococcus agalactiae, otherwise known as Group B Streptococcus (GBS), is an opportunistic pathogen that vaginally colonizes approximately one third of healthy women. During pregnancy, this can lead to in utero infection, resulting in premature rupture of membranes, chorioamnionitis, and stillbirths. Furthermore, GBS causes serious infection in newborns, including sepsis, pneumonia, and meningitis. Previous studies have indicated that GBS antigen (Ag) I/II family proteins promote interaction with vaginal epithelial cells; thus, we hypothesized that the Ag I/II Group B streptococcal surface protein C (BspC) contributes to GBS colonization of the female reproductive tract (FRT). Here, we show that a ΔbspC mutant has decreased bacterial adherence to vaginal, ecto-, and endocervical cells, as well as decreased auto-aggregation and biofilm-like formation on cell monolayers. Using a murine model of vaginal colonization, we observed that the ΔbspC mutant strain exhibited a significant fitness defect compared to wild-type (WT) GBS and was less able to ascend to the cervix and uterus in vivo, resulting in reduced neutrophil chemokine signaling. Furthermore, we determined that BspC interacts directly with the host intermediate filament protein cytokeratin 19 (K19). Surface localization of K19 was increased during GBS infection, and interaction was mediated by the BspC variable (V) domain. Finally, mice treated with a drug that targets the BspC V-domain exhibited reduced bacterial loads in the vaginal lumen and reproductive tissues. These results demonstrate the importance of BspC in promoting GBS colonization of the FRT and that it may be targeted therapeutically to reduce GBS vaginal persistence and ascending infection. IMPORTANCE Group B Streptococcus (GBS) asymptomatically colonizes the female reproductive tract (FRT) of up to one third of women, but GBS carriage can lead to adverse pregnancy outcomes, including premature rupture of membranes, preterm labor, and chorioamnionitis. GBS colonization during pregnancy is also the largest predisposing factor for neonatal GBS disease, including pneumonia, sepsis, and meningitis. The molecular interactions between bacterial surface proteins and the host cell receptors that promote GBS colonization are vastly understudied, and a better understanding would facilitate development of novel therapeutics to prevent GBS colonization and disease. Here, we characterize the role of the GBS surface protein BspC in colonization of the FRT. We show for the first time that GBS infection induces cytokeratin 19 (K19) surface localization on vaginal epithelial cells; GBS then uses the BspC V-domain to interact with K19 to promote colonization and ascending infection. Furthermore, this interaction can be targeted therapeutically to reduce GBS carriage.
Collapse
Affiliation(s)
- Haider S. Manzer
- University of Colorado Anschutz Medical Campus, Department of Immunology and Microbiology, Aurora, Colorado, USA
| | - Dustin T. Nguyen
- University of Colorado Anschutz Medical Campus, Department of Immunology and Microbiology, Aurora, Colorado, USA
| | - Joo Youn Park
- Mississippi State University, Department of Comparative Biomedical Sciences, College of Veterinary Medicine, Mississippi State, Mississippi, USA
| | - Nogi Park
- Mississippi State University, Department of Comparative Biomedical Sciences, College of Veterinary Medicine, Mississippi State, Mississippi, USA
| | - Keun Seok Seo
- Mississippi State University, Department of Comparative Biomedical Sciences, College of Veterinary Medicine, Mississippi State, Mississippi, USA
| | - Justin A. Thornton
- Mississippi State University, Department of Biological Sciences, Mississippi State, Mississippi, USA
| | - Angela H. Nobbs
- University of Bristol, Bristol Dental School, Bristol, United Kingdom
| | - Kelly S. Doran
- University of Colorado Anschutz Medical Campus, Department of Immunology and Microbiology, Aurora, Colorado, USA
| |
Collapse
|
18
|
Chen KZ, Liu SX, Li YW, He T, Zhao J, Wang T, Qiu XX, Wu HF. Vimentin as a potential target for diverse nervous system diseases. Neural Regen Res 2022; 18:969-975. [PMID: 36254976 PMCID: PMC9827761 DOI: 10.4103/1673-5374.355744] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
Vimentin is a major type III intermediate filament protein that plays important roles in several basic cellular functions including cell migration, proliferation, and division. Although vimentin is a cytoplasmic protein, it also exists in the extracellular matrix and at the cell surface. Previous studies have shown that vimentin may exert multiple physiological effects in different nervous system injuries and diseases. For example, the studies of vimentin in spinal cord injury and stroke mainly focus on the formation of reactive astrocytes. Reduced glial scar, increased axonal regeneration, and improved motor function have been noted after spinal cord injury in vimentin and glial fibrillary acidic protein knockout (GFAP-/-VIM-/-) mice. However, attenuated glial scar formation in post-stroke in GFAP-/- VIM-/- mice resulted in abnormal neuronal network restoration and worse neurological recovery. These opposite results have been attributed to the multiple roles of glial scar in different temporal and spatial conditions. In addition, extracellular vimentin may be a neurotrophic factor that promotes axonal extension by interaction with the insulin-like growth factor 1 receptor. In the pathogenesis of bacterial meningitis, cell surface vimentin is a meningitis facilitator, acting as a receptor of multiple pathogenic bacteria, including E. coli K1, Listeria monocytogenes, and group B streptococcus. Compared with wild type mice, VIM-/- mice are less susceptible to bacterial infection and exhibit a reduced inflammatory response, suggesting that vimentin is necessary to induce the pathogenesis of meningitis. Recently published literature showed that vimentin serves as a double-edged sword in the nervous system, regulating axonal regrowth, myelination, apoptosis, and neuroinflammation. This review aims to provide an overview of vimentin in spinal cord injury, stroke, bacterial meningitis, gliomas, and peripheral nerve injury and to discuss the potential therapeutic methods involving vimentin manipulation in improving axonal regeneration, alleviating infection, inhibiting brain tumor progression, and enhancing nerve myelination.
Collapse
Affiliation(s)
- Kang-Zhen Chen
- Department of Anesthesiology, Guangzhou Huadu Hospital Affiliated to Guangdong Medical University (Guangzhou Huadu District Maternal and Child Health Care Hospital), Guangzhou, Guangdong Province, China,Dongguan City Key Laboratory of Stem Cell and Regenerative Tissue Engineering, Guangdong Medical University, Dongguan, Guangdong Province, China
| | - Shu-Xian Liu
- Department of Anesthesiology, Guangzhou Huadu Hospital Affiliated to Guangdong Medical University (Guangzhou Huadu District Maternal and Child Health Care Hospital), Guangzhou, Guangdong Province, China
| | - Yan-Wei Li
- Department of Anesthesiology, Guangzhou Huadu Hospital Affiliated to Guangdong Medical University (Guangzhou Huadu District Maternal and Child Health Care Hospital), Guangzhou, Guangdong Province, China
| | - Tao He
- Dongguan City Key Laboratory of Stem Cell and Regenerative Tissue Engineering, Guangdong Medical University, Dongguan, Guangdong Province, China
| | - Jie Zhao
- Dongguan City Key Laboratory of Stem Cell and Regenerative Tissue Engineering, Guangdong Medical University, Dongguan, Guangdong Province, China
| | - Tao Wang
- Department of Surgery, the Third Hospital of Guangdong Medical University (Longjiang Hospital of Shunde District), Foshan, Guangdong Province, China,Correspondence to: Hong-Fu Wu, ; Xian-Xiu Qiu, ; Tao Wang, .
| | - Xian-Xiu Qiu
- Dongguan City Key Laboratory of Stem Cell and Regenerative Tissue Engineering, Guangdong Medical University, Dongguan, Guangdong Province, China,Correspondence to: Hong-Fu Wu, ; Xian-Xiu Qiu, ; Tao Wang, .
| | - Hong-Fu Wu
- Department of Anesthesiology, Guangzhou Huadu Hospital Affiliated to Guangdong Medical University (Guangzhou Huadu District Maternal and Child Health Care Hospital), Guangzhou, Guangdong Province, China,Dongguan City Key Laboratory of Stem Cell and Regenerative Tissue Engineering, Guangdong Medical University, Dongguan, Guangdong Province, China,Correspondence to: Hong-Fu Wu, ; Xian-Xiu Qiu, ; Tao Wang, .
| |
Collapse
|
19
|
Meng Y, Wang Q, Ma Z, Li W, Niu K, Zhu T, Lin H, Lu C, Fan H. Streptococcal autolysin promotes dysfunction of swine tracheal epithelium by interacting with vimentin. PLoS Pathog 2022; 18:e1010765. [PMID: 35921364 PMCID: PMC9377611 DOI: 10.1371/journal.ppat.1010765] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2022] [Revised: 08/15/2022] [Accepted: 07/25/2022] [Indexed: 11/24/2022] Open
Abstract
Streptococcus suis serotype 2 (SS2) is a major zoonotic pathogen resulting in manifestations as pneumonia and septic shock. The upper respiratory tract is typically thought to be the main colonization and entry site of SS2 in pigs, but the mechanism through which it penetrates the respiratory barrier is still unclear. In this study, a mutant with low invasive potential to swine tracheal epithelial cells (STECs) was screened from the TnYLB-1 transposon insertion mutant library of SS2, and the interrupted gene was identified as autolysin (atl). Compared to wild-type (WT) SS2, Δatl mutant exhibited lower ability to penetrate the tracheal epithelial barrier in a mouse model. Purified Atl also enhanced SS2 translocation across STEC monolayers in Transwell inserts. Furthermore, Atl redistributed the tight junctions (TJs) in STECs through myosin light chain kinase (MLCK) signaling, which led to increased barrier permeability. Using mass spectrometry, co-immunoprecipitation (co-IP), pull-down, bacterial two-hybrid and saturation binding experiments, we showed that Atl binds directly to vimentin. CRISPR/Cas9-targeted deletion of vimentin in STECs (VIM KO STECs) abrogated the capacity of SS2 to translocate across the monolayers, SS2-induced phosphorylation of myosin II regulatory light chain (MLC) and MLCK transcription, indicating that vimentin is indispensable for MLCK activation. Consistently, vimentin null mice were protected from SS2 infection and exhibited reduced tracheal and lung injury. Thus, MLCK-mediated epithelial barrier opening caused by the Atl-vimentin interaction is found to be likely the key mechanism by which SS2 penetrates the tracheal epithelium. Streptococcus suis serotype 2 (SS2), an emerging zoonotic agent, can breach the respiratory barrier and cause invasive disease in pigs. Here, we identified the novel role of autolysin Atl in penetration of the respiratory barrier by SS2 and its systemic dissemination and identified its binding partner, vimentin, a type III intermediate filament protein. Atl contributed to the MLCK-triggered redistribution of tight junctions to open the tracheal epithelial barrier. Knockout of vimentin abolished the ability of SS2 to penetrate the monolayer barrier and the activation of MLCK. Furthermore, vimentin null mice were protected from infection by intranasally administered SS2. This study is the first to demonstrate that the interaction between the GBS Bsp-like domain of Atl and vimentin promotes MLCK-mediated dysfunction of the epithelial barrier, which may provide theoretical information for prophylactic and/or therapeutic treatments against diseases caused by similar respiratory pathogens.
Collapse
Affiliation(s)
- Yu Meng
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Qing Wang
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Zhe Ma
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, China
| | - Weiyi Li
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Kai Niu
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Ting Zhu
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Huixing Lin
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, China
| | - Chengping Lu
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, China
| | - Hongjie Fan
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, China
- * E-mail:
| |
Collapse
|
20
|
SssP1, a Fimbria-like component of Streptococcus suis, binds to the vimentin of host cells and contributes to bacterial meningitis. PLoS Pathog 2022; 18:e1010710. [PMID: 35853077 PMCID: PMC9337661 DOI: 10.1371/journal.ppat.1010710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Revised: 07/29/2022] [Accepted: 06/27/2022] [Indexed: 11/19/2022] Open
Abstract
Streptococcus suis (S. suis) is one of the important pathogens that cause bacterial meningitis in pigs and humans. Evading host immune defences and penetrating the blood-brain barrier (BBB) are the preconditions for S. suis to cause meningitis, while the underlying mechanisms during these pathogenic processes are not fully understood. By detecting the red blood and white blood cells counts, IL-8 expression, and the pathological injury of brain in a mouse infection model, a serine-rich repeat (SRR) glycoprotein, designated as SssP1, was identified as a critical facilitator in the process of causing meningitis in this study. SssP1 was exported to assemble a fimbria-like component, thus contributed to the bacterial adhesion to and invasion into human brain microvascular endothelial cells (HBMECs), and activates the host inflammatory response during meningitis but is not involved in the actin cytoskeleton rearrangement and the disruption of tight junctions. Furthermore, the deletion of sssP1 significantly attenuates the ability of S. suis to traverse the BBB in vivo and in vitro. A pull-down analysis identified vimentin as the potential receptors of SssP1 during meningitis and following Far-Western blot results confirmed this ligand-receptor binding mediated by the NR2 (the second nonrepeat region) region of SssP1. The co-localisation of vimentin and S. suis observed by laser scanning confocal microscopy with multiplex fluorescence indicated that vimentin significantly enhances the interaction between SssP1 and BBB. Further study identified that the NR216-781 and NR1711-2214 fragments of SssP1 play critical roles to bind to the BBB depending on the sialylation of vimentin, and this binding is significantly attenuated when the antiserum of NR216-781 or NR1711-2214 blocked the bacterial cells, or the vimentin antibody blocked the BBB. Similar binding attenuations are observed when the bacterial cells were preincubated with the vimentin, or the BBB was preincubated with the recombinant protein NR216-781, NR1711-2214 or sialidase. In conclusion, these results reveal a novel receptor-ligand interaction that enhances adhesion to and penetration of the BBB to cause bacterial meningitis in the S. suis infection and highlight the importance of vimentin in host-pathogen interactions. Streptococcus suis (S. suis) is considered an important zoonotic pathogen capable of causing meningitis in humans. Penetrating the blood-brain barrier (BBB) is one of the preconditions for S. suis to cause meningitis, while its underlying mechanism is incompletely understood. Here we identified a previously uncharacterised pathogenic mechanism associated with S. suis meningitis mediated by the interaction between bacterial SRR glycoproteins and a host cytoskeletal component. During the bacterial infection, SRR protein SssP1 is exported to assemble a fimbria-like component, which drives a strong binding effect with the BBB depending on the sialylation of vimentin. This interaction contributes to the bacterial adhesion to and penetration of the BBB and induces a robust inflammatory response during meningitis. This overall observation underscores the significance of host cell surface vimentin interactions in microbial pathogenesis and markedly improves our understanding of host barrier penetration during meningitis.
Collapse
|
21
|
Lalioti V, González-Sanz S, Lois-Bermejo I, González-Jiménez P, Viedma-Poyatos Á, Merino A, Pajares MA, Pérez-Sala D. Cell surface detection of vimentin, ACE2 and SARS-CoV-2 Spike proteins reveals selective colocalization at primary cilia. Sci Rep 2022; 12:7063. [PMID: 35487944 PMCID: PMC9052736 DOI: 10.1038/s41598-022-11248-y] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Accepted: 04/04/2022] [Indexed: 12/24/2022] Open
Abstract
The SARS-CoV-2 Spike protein mediates docking of the virus onto cells prior to viral invasion. Several cellular receptors facilitate SARS-CoV-2 Spike docking at the cell surface, of which ACE2 plays a key role in many cell types. The intermediate filament protein vimentin has been reported to be present at the surface of certain cells and act as a co-receptor for several viruses; furthermore, its potential involvement in interactions with Spike proteins has been proposed. Nevertheless, the potential colocalization of vimentin with Spike and its receptors on the cell surface has not been explored. Here we have assessed the binding of Spike protein constructs to several cell types. Incubation of cells with tagged Spike S or Spike S1 subunit led to discrete dotted patterns at the cell surface, which consistently colocalized with endogenous ACE2, but sparsely with a lipid raft marker. Vimentin immunoreactivity mostly appeared as spots or patches unevenly distributed at the surface of diverse cell types. Of note, vimentin could also be detected in extracellular particles and in the cytoplasm underlying areas of compromised plasma membrane. Interestingly, although overall colocalization of vimentin-positive spots with ACE2 or Spike was moderate, a selective enrichment of the three proteins was detected at elongated structures, positive for acetylated tubulin and ARL13B. These structures, consistent with primary cilia, concentrated Spike binding at the top of the cells. Our results suggest that a vimentin-Spike interaction could occur at selective locations of the cell surface, including ciliated structures, which can act as platforms for SARS-CoV-2 docking.
Collapse
Affiliation(s)
- Vasiliki Lalioti
- Department of Structural and Chemical Biology, Centro de Investigaciones Biológicas Margarita Salas, CSIC, Ramiro de Maeztu, 9, 28040, Madrid, Spain
| | - Silvia González-Sanz
- Department of Structural and Chemical Biology, Centro de Investigaciones Biológicas Margarita Salas, CSIC, Ramiro de Maeztu, 9, 28040, Madrid, Spain
| | - Irene Lois-Bermejo
- Department of Structural and Chemical Biology, Centro de Investigaciones Biológicas Margarita Salas, CSIC, Ramiro de Maeztu, 9, 28040, Madrid, Spain
| | - Patricia González-Jiménez
- Department of Structural and Chemical Biology, Centro de Investigaciones Biológicas Margarita Salas, CSIC, Ramiro de Maeztu, 9, 28040, Madrid, Spain
| | - Álvaro Viedma-Poyatos
- Department of Structural and Chemical Biology, Centro de Investigaciones Biológicas Margarita Salas, CSIC, Ramiro de Maeztu, 9, 28040, Madrid, Spain
| | - Andrea Merino
- Department of Structural and Chemical Biology, Centro de Investigaciones Biológicas Margarita Salas, CSIC, Ramiro de Maeztu, 9, 28040, Madrid, Spain
| | - María A Pajares
- Department of Structural and Chemical Biology, Centro de Investigaciones Biológicas Margarita Salas, CSIC, Ramiro de Maeztu, 9, 28040, Madrid, Spain
| | - Dolores Pérez-Sala
- Department of Structural and Chemical Biology, Centro de Investigaciones Biológicas Margarita Salas, CSIC, Ramiro de Maeztu, 9, 28040, Madrid, Spain.
| |
Collapse
|
22
|
Abstract
Neonatal bacterial meningitis is a devastating disease, associated with high mortality and neurological disability, in both developed and developing countries. Streptococcus agalactiae, commonly referred to as group B Streptococcus (GBS), remains the most common bacterial cause of meningitis among infants younger than 90 days. Maternal colonization with GBS in the gastrointestinal and/or genitourinary tracts is the primary risk factor for neonatal invasive disease. Despite prophylactic intrapartum antibiotic administration to colonized women and improved neonatal intensive care, the incidence and morbidity associated with GBS meningitis have not declined since the 1970s. Among meningitis survivors, a significant number suffer from complex neurological or neuropsychiatric sequelae, implying that the pathophysiology and pathogenic mechanisms leading to brain injury and devastating outcomes are not yet fully understood. It is imperative to develop new therapeutic and neuroprotective approaches aiming at protecting the developing brain. In this review, we provide updated clinical information regarding the understanding of neonatal GBS meningitis, including epidemiology, diagnosis, management, and human evidence of the disease's underlying mechanisms. Finally, we explore the experimental models used to study GBS meningitis and discuss their clinical and physiologic relevance to the complexities of human disease.
Collapse
Affiliation(s)
- Teresa Tavares
- Instituto de Ciências Biomédicas de Abel Salazar, Universidade do Porto, Porto, Portugal
| | - Liliana Pinho
- Centro Hospitalar Universitário do Porto, Centro Materno Infantil do Norte, Porto, Portugal
| | - Elva Bonifácio Andrade
- Instituto de Ciências Biomédicas de Abel Salazar, Universidade do Porto, Porto, Portugal
- Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
- Instituto de Biologia Molecular e Celular, Universidade do Porto, Porto, Portugal
| |
Collapse
|
23
|
Furuta A, Brokaw A, Manuel G, Dacanay M, Marcell L, Seepersaud R, Rajagopal L, Adams Waldorf K. Bacterial and Host Determinants of Group B Streptococcal Infection of the Neonate and Infant. Front Microbiol 2022; 13:820365. [PMID: 35265059 PMCID: PMC8899651 DOI: 10.3389/fmicb.2022.820365] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Accepted: 01/27/2022] [Indexed: 12/15/2022] Open
Abstract
Group B streptococci (GBS) are Gram-positive β-hemolytic bacteria that can cause serious and life-threatening infections in neonates manifesting as sepsis, pneumonia, meningitis, osteomyelitis, and/or septic arthritis. Invasive GBS infections in neonates in the first week of life are referred to as early-onset disease (EOD) and thought to be acquired by the fetus through exposure to GBS in utero or to vaginal fluids during birth. Late-onset disease (LOD) refers to invasive GBS infections between 7 and 89 days of life. LOD transmission routes are incompletely understood, but may include breast milk, household contacts, nosocomial, or community sources. Invasive GBS infections and particularly meningitis may result in significant neurodevelopmental injury and long-term disability that persists into childhood and adulthood. Globally, EOD and LOD occur in more than 300,000 neonates and infants annually, resulting in 90,000 infant deaths and leaving more than 10,000 infants with a lifelong disability. In this review, we discuss the clinical impact of invasive GBS neonatal infections and then summarize virulence and host factors that allow the bacteria to exploit the developing neonatal immune system and target organs. Specifically, we consider the mechanisms known to enable GBS invasion into the neonatal lung, blood vessels and brain. Understanding mechanisms of GBS invasion and pathogenesis relevant to infections in the neonate and infant may inform the development of therapeutics to prevent or mitigate injury, as well as improve risk stratification.
Collapse
Affiliation(s)
- Anna Furuta
- Center for Global Infectious Disease Research, Seattle Children's Research Institute, Seattle, WA, United States.,Department of Global Health, University of Washington, Seattle, WA, United States
| | - Alyssa Brokaw
- Center for Global Infectious Disease Research, Seattle Children's Research Institute, Seattle, WA, United States.,Department of Global Health, University of Washington, Seattle, WA, United States
| | - Gygeria Manuel
- Morehouse School of Medicine, Atlanta, GA, United States
| | - Matthew Dacanay
- Department of Obstetrics & Gynecology, University of Washington, Seattle, WA, United States
| | - Lauren Marcell
- Department of Obstetrics & Gynecology, University of Washington, Seattle, WA, United States
| | - Ravin Seepersaud
- Center for Global Infectious Disease Research, Seattle Children's Research Institute, Seattle, WA, United States
| | - Lakshmi Rajagopal
- Center for Global Infectious Disease Research, Seattle Children's Research Institute, Seattle, WA, United States.,Department of Global Health, University of Washington, Seattle, WA, United States.,Department of Pediatrics, University of Washington, Seattle, WA, United States
| | - Kristina Adams Waldorf
- Department of Global Health, University of Washington, Seattle, WA, United States.,Department of Obstetrics & Gynecology, University of Washington, Seattle, WA, United States.,Department of Obstetrics and Gynecology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| |
Collapse
|
24
|
Manzer HS, Villarreal RI, Doran KS. Targeting the BspC-vimentin interaction to develop anti-virulence therapies during Group B streptococcal meningitis. PLoS Pathog 2022; 18:e1010397. [PMID: 35316308 PMCID: PMC8939794 DOI: 10.1371/journal.ppat.1010397] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Accepted: 02/25/2022] [Indexed: 12/21/2022] Open
Abstract
Bacterial infections are a major cause of morbidity and mortality worldwide and the rise of antibiotic resistance necessitates development of alternative treatments. Pathogen adhesins that bind to host cells initiate disease pathogenesis and represent potential therapeutic targets. We have shown previously that the BspC adhesin in Group B Streptococcus (GBS), the leading cause of bacterial neonatal meningitis, interacts with host vimentin to promote attachment to brain endothelium and disease development. Here we determined that the BspC variable (V-) domain contains the vimentin binding site and promotes GBS adherence to brain endothelium. Site directed mutagenesis identified a binding pocket necessary for GBS host cell interaction and development of meningitis. Using a virtual structure-based drug screen we identified compounds that targeted the V-domain binding pocket, which blocked GBS adherence and entry into the brain in vivo. These data indicate the utility of targeting the pathogen-host interface to develop anti-virulence therapeutics.
Collapse
Affiliation(s)
- Haider S. Manzer
- University of Colorado Anschutz Medical Campus, Department of Immunology and Microbiology, Aurora, Colorado, United States of America
| | - Ricardo I. Villarreal
- University of Colorado Anschutz Medical Campus, Department of Immunology and Microbiology, Aurora, Colorado, United States of America
| | - Kelly S. Doran
- University of Colorado Anschutz Medical Campus, Department of Immunology and Microbiology, Aurora, Colorado, United States of America
| |
Collapse
|
25
|
Lane JR, Tata M, Briles DE, Orihuela CJ. A Jack of All Trades: The Role of Pneumococcal Surface Protein A in the Pathogenesis of Streptococcus pneumoniae. Front Cell Infect Microbiol 2022; 12:826264. [PMID: 35186799 PMCID: PMC8847780 DOI: 10.3389/fcimb.2022.826264] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Accepted: 01/10/2022] [Indexed: 12/11/2022] Open
Abstract
Streptococcus pneumoniae (Spn), or the pneumococcus, is a Gram-positive bacterium that colonizes the upper airway. Spn is an opportunistic pathogen capable of life-threatening disease should it become established in the lungs, gain access to the bloodstream, or disseminate to vital organs including the central nervous system. Spn is encapsulated, allowing it to avoid phagocytosis, and current preventative measures against infection include polyvalent vaccines composed of capsular polysaccharide corresponding to its most prevalent serotypes. The pneumococcus also has a plethora of surface components that allow the bacteria to adhere to host cells, facilitate the evasion of the immune system, and obtain vital nutrients; one family of these are the choline-binding proteins (CBPs). Pneumococcal surface protein A (PspA) is one of the most abundant CBPs and confers protection against the host by inhibiting recognition by C-reactive protein and neutralizing the antimicrobial peptide lactoferricin. Recently our group has identified two new roles for PspA: binding to dying host cells via host-cell bound glyceraldehyde 3-phosphate dehydrogenase and co-opting of host lactate dehydrogenase to enhance lactate availability. These properties have been shown to influence Spn localization and enhance virulence in the lower airway, respectively. Herein, we review the impact of CBPs, and in particular PspA, on pneumococcal pathogenesis. We discuss the potential and limitations of using PspA as a conserved vaccine antigen in a conjugate vaccine formulation. PspA is a vital component of the pneumococcal virulence arsenal - therefore, understanding the molecular aspects of this protein is essential in understanding pneumococcal pathogenesis and utilizing PspA as a target for treating or preventing pneumococcal pneumonia.
Collapse
Affiliation(s)
| | | | | | - Carlos J. Orihuela
- Department of Microbiology, The University of Alabama at Birmingham, Birmingham, AL, United States
| |
Collapse
|
26
|
Vimentin: Regulation and pathogenesis. Biochimie 2022; 197:96-112. [DOI: 10.1016/j.biochi.2022.02.003] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 01/11/2022] [Accepted: 02/09/2022] [Indexed: 12/18/2022]
|
27
|
Joyce LR, Manzer HS, da C. Mendonça J, Villarreal R, Nagao PE, Doran KS, Palmer KL, Guan Z. Identification of a novel cationic glycolipid in Streptococcus agalactiae that contributes to brain entry and meningitis. PLoS Biol 2022; 20:e3001555. [PMID: 35180210 PMCID: PMC8893666 DOI: 10.1371/journal.pbio.3001555] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Revised: 03/03/2022] [Accepted: 01/26/2022] [Indexed: 12/17/2022] Open
Abstract
Bacterial membrane lipids are critical for membrane bilayer formation, cell division, protein localization, stress responses, and pathogenesis. Despite their critical roles, membrane lipids have not been fully elucidated for many pathogens. Here, we report the discovery of a novel cationic glycolipid, lysyl-glucosyl-diacylglycerol (Lys-Glc-DAG), which is synthesized in high abundance by the bacterium Streptococcus agalactiae (Group B Streptococcus, GBS). To our knowledge, Lys-Glc-DAG is more positively charged than any other known lipids. Lys-Glc-DAG carries 2 positive net charges per molecule, distinct from the widely described lysylated phospholipid lysyl-phosphatidylglycerol (Lys-PG) that carries one positive net charge due to the presence of a negatively charged phosphate moiety. We use normal phase liquid chromatography (NPLC) coupled with electrospray ionization (ESI) high-resolution tandem mass spectrometry (HRMS/MS) and genetic approaches to determine that Lys-Glc-DAG is synthesized by the enzyme MprF in GBS, which covalently modifies the neutral glycolipid Glc-DAG with the cationic amino acid lysine. GBS is a leading cause of neonatal meningitis, which requires traversal of the endothelial blood–brain barrier (BBB). We demonstrate that GBS strains lacking mprF exhibit a significant decrease in the ability to invade BBB endothelial cells. Further, mice challenged with a GBSΔmprF mutant developed bacteremia comparably to wild-type (WT) infected mice yet had less recovered bacteria from brain tissue and a lower incidence of meningitis. Thus, our data suggest that Lys-Glc-DAG may contribute to bacterial uptake into host cells and disease progression. Importantly, our discovery provides a platform for further study of cationic lipids at the host–pathogen interface. Bacterial membrane lipids are critical for membrane bilayer formation, cell division, protein localization, stress responses, and pathogenesis. This study shows that the enzyme MprF in Streptococcus agalactiae synthesizes a novel cationic lipid, Lysyl-Glucosyl-Diacylglycerol, which aids meningitis progression in vivo.
Collapse
Affiliation(s)
- Luke R. Joyce
- Department of Biological Sciences, The University of Texas at Dallas, Richardson, Texas, United States of America
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, Colorado, United States of America
| | - Haider S. Manzer
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, Colorado, United States of America
| | - Jéssica da C. Mendonça
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, Colorado, United States of America
- Rio de Janeiro State University, Roberto Alcântara Gomes Biology Institute, Rio de Janeiro, Rio de Janeiro, Brazil
| | - Ricardo Villarreal
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, Colorado, United States of America
| | - Prescilla E. Nagao
- Rio de Janeiro State University, Roberto Alcântara Gomes Biology Institute, Rio de Janeiro, Rio de Janeiro, Brazil
| | - Kelly S. Doran
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, Colorado, United States of America
- * E-mail: (KSD); (KLP); (ZG)
| | - Kelli L. Palmer
- Department of Biological Sciences, The University of Texas at Dallas, Richardson, Texas, United States of America
- * E-mail: (KSD); (KLP); (ZG)
| | - Ziqiang Guan
- Department of Biochemistry, Duke University Medical Center, Durham, North Carolina, United States of America
- * E-mail: (KSD); (KLP); (ZG)
| |
Collapse
|
28
|
Vimentin Regulates Chemokine Expression and NOD2 Activation in Brain Endothelium during Group B Streptococcal Infection. Infect Immun 2021; 89:e0034021. [PMID: 34491787 DOI: 10.1128/iai.00340-21] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Streptococcus agalactiae (group B Streptococcus, or GBS) is an opportunistic pathogen capable of causing invasive disease in susceptible individuals, including the newborn. Currently, GBS is the leading cause of meningitis in the neonatal period. We have recently shown that GBS interacts directly with host type III intermediate filament vimentin to gain access to the central nervous system. This results in characteristic meningeal inflammation and disease progression; however, the specific role of vimentin in the inflammatory process is unknown. Here, we investigate the contribution of vimentin to the pathogenesis of GBS meningitis. We show that a CRISPR-targeted deletion of vimentin in human cerebral microvascular endothelial cells (hCMEC) reduced GBS induction of neutrophil attractants interleukin-8 (IL-8) and CXCL-1 as well as NF-κB activation. We further show that inhibition of vimentin localization also prevented similar chemokine activation by GBS. One known chemokine regulator is the nucleotide-binding oligomerization domain containing protein 2 (NOD2), which is known to interact directly with vimentin. Thus, we hypothesized that NOD2 would also promote GBS chemokine induction. We show that GBS infection induced NOD2 transcription in hCMEC comparably to the muramyl dipeptide (MDP) NOD2 agonist, and the chemokine induction was reduced in the presence of a NOD2 inhibitor. Using a mouse model of GBS meningitis, we also observed increased NOD2 transcript and NOD2 activation in brain tissue of infected mice. Lastly, we show that NOD2-mediated IL-8 and CXCL1 induction required vimentin, further indicating the importance of vimentin in mediating inflammatory responses in brain endothelium.
Collapse
|
29
|
van de Beek D, Brouwer MC, Koedel U, Wall EC. Community-acquired bacterial meningitis. Lancet 2021; 398:1171-1183. [PMID: 34303412 DOI: 10.1016/s0140-6736(21)00883-7] [Citation(s) in RCA: 85] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 03/25/2021] [Accepted: 04/07/2021] [Indexed: 12/19/2022]
Abstract
Progress has been made in the prevention and treatment of community-acquired bacterial meningitis during the past three decades but the burden of the disease remains high globally. Conjugate vaccines against the three most common causative pathogens (Streptococcus pneumoniae, Neisseria meningitidis, and Haemophilus influenzae) have reduced the incidence of disease, but with the replacement by non-vaccine pneumococcal serotypes and the emergence of bacterial strains with reduced susceptibility to antimicrobial treatment, meningitis continues to pose a major health challenge worldwide. In patients presenting with bacterial meningitis, typical clinical characteristics (such as the classic triad of neck stiffness, fever, and an altered mental status) might be absent and cerebrospinal fluid examination for biochemistry, microscopy, culture, and PCR to identify bacterial DNA are essential for the diagnosis. Multiplex PCR point-of-care panels in cerebrospinal fluid show promise in accelerating the diagnosis, but diagnostic accuracy studies to justify routine implementation are scarce and randomised, controlled studies are absent. Early administration of antimicrobial treatment (within 1 hour of presentation) improves outcomes and needs to be adjusted according to local emergence of drug resistance. Adjunctive dexamethasone treatment has proven efficacy beyond the neonatal age but only in patients from high-income countries. Further progress can be expected from implementing preventive measures, especially the development of new vaccines, implementation of hospital protocols aimed at early treatment, and new treatments targeting checkpoints of the inflammatory cascade.
Collapse
Affiliation(s)
- Diederik van de Beek
- Department of Neurology, Amsterdam UMC, University of Amsterdam, Amsterdam Neuroscience, Meibergdreef, Amsterdam, Netherlands.
| | - Matthijs C Brouwer
- Department of Neurology, Amsterdam UMC, University of Amsterdam, Amsterdam Neuroscience, Meibergdreef, Amsterdam, Netherlands
| | - Uwe Koedel
- Department of Neurology, Ludwig-Maximilians-University, Munich, Germany
| | - Emma C Wall
- Research Department of Infection, University College London, London, UK; Francis Crick Institute, London, UK
| |
Collapse
|
30
|
Structure-function characterization of Streptococcus intermedius surface antigen Pas. J Bacteriol 2021; 203:e0017521. [PMID: 34339301 DOI: 10.1128/jb.00175-21] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Streptococcus intermedius, an oral commensal bacterium, is found at various sites including subgingival dental plaque, purulent infections, and in cystic fibrosis lungs. Oral streptococci utilize proteins on their surface to adhere to tissues and/or surfaces localizing the bacteria, which subsequently leads to the development of biofilms, colonization and infection. Among the 19 genomically annotated cell-wall attached surface proteins on S. intermedius, Pas is an adhesin that belongs to the Antigen I/II (AgI/II) family. Here we have structurally and functionally characterized Pas, particularly focusing on its microbial-host as well as microbial-microbial interactions. The crystal structures of VPas and C123Pas show high similarity with AgI/II of S. mutans. VPas hosts a conserved metal binding site, and likewise the C123Pas structure retains its conserved metal binding sites and isopeptide bonds within its three DEv-IgG domains. Pas interacts with nanomolar affinity to lung alveolar glycoprotein 340 (Gp340), its scavenger receptor cysteine rich domains (SRCRs) and with fibrinogen. Both Candida albicans and Pseudomonas aeruginosa, the opportunistic pathogens that cohabitate with S. intermedius in the lungs of CFTR patients were studied in dual-species biofilm studies. The Pas deficient mutant (Δpas) displayed significant reduction in dual biofilm formation with C. albicans. In similar studies with P. aeruginosa, Pas did not mediate the biofilm formation with either the acute isolate (PAO1), or the chronic isolate (FRD1). However, the Sortase A deficient mutant (ΔsrtA) displayed reduced biofilm formation with both C. albicans and P. aeruginosa FRD1. Taken together, our findings highlight the role of Pas in both microbial-host and interkingdom interactions and expose its potential role in disease outcomes. Importance Streptococcus intermedius, an oral commensal bacterium, has been clinically observed in subgingival dental plaque, purulent infections, and in cystic fibrosis lungs. In this study, we have (a) determined the crystal structure of the V- and C-regions of Pas; (b) shown that its surface protein Pas adheres to fibrinogen, which could potentially ferry the microbe through the blood stream from the oral cavity; (c) characterized Pas's high affinity adherence to lung alveolar protein Gp340 that could fixate the microbe on lung epithelial cells; and (d) most importantly shown that these surface proteins on the oral commensal S. intermedius enhances biofilms of known pathogens Candida albicans and Pseudomonas aeruginosa.
Collapse
|
31
|
Molecular Characteristics of IS 1216 Carrying Multidrug Resistance Gene Cluster in Serotype III/Sequence Type 19 Group B Streptococcus. mSphere 2021; 6:e0054321. [PMID: 34319128 PMCID: PMC8386385 DOI: 10.1128/msphere.00543-21] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Streptococcus agalactiae is the leading cause of meningitis in newborns and a significant cause of invasive diseases in pregnant women and adults with underlying diseases. Antibiotic resistance against erythromycin and clindamycin in group B streptococcus (GBS) isolates has been increasing worldwide. GBS expresses the Srr1 and Srr2 proteins, which have important roles in bacterial infection. They have been investigated as novel vaccine candidates against GBS infection, with promising results. But a recent study detected non-srr1/2-expressing clinical isolates belonging to serotype III. Thus, we aimed to analyze the genotypes of non-srr1/2 GBS clinical isolates collected between 2013 and 2016 in South Korea. Forty-one (13.4%) of the 305 serotype III isolates were identified as non-srr1/2 strains, including sequence type 19 (ST19) (n = 16) and ST27 (n = 18) strains. The results of the comparative genomic analysis of the ST19/serotype III/non-srr1/2 strains further revealed four unique gene clusters. Site 4 in the srr1 gene locus was replaced by an lsa(E)-lnu(B)-aadK-aac-aph-aadE-carrying multidrug-resistant gene cluster flanked by two IS1216 transposases with 99% homology to the enterococcal plasmid pKUB3007-1. Despite the Srr1 and Srr2 deficiencies, which resulted in reduced fibrinogen binding, the adherence of non-srr1/2 strains to endothelial and epithelial cells was comparable to that of Srr1- or Srr2-expressing strains. Moreover, their virulence in mouse models of meningitis was not significantly affected. Furthermore, additional adhesin-encoding genes, including a gene encoding a BspA-like protein, which may contribute to colonization by non-srr1/2 strains, were identified via whole-genome analysis. Thus, our study provides important findings that can aid in the development of vaccines and antibiotics against GBS. IMPORTANCE Most previously isolated group B streptococcus (GBS) strains express either the Srr1 or Srr2 glycoprotein, which plays an important role in bacterial colonization and invasion. These glycoproteins are potential protein vaccine candidates. In this study, we first report GBS clinical isolates in which the srr1/2 gene was deleted or replaced with foreign genes. Despite Srr1/2 deficiency, in vitro adherence to mammalian cells and in vivo virulence in murine models were not affected, suggesting that the isolates might have another adherence mechanism that enhanced their virulence aside from Srr1/2-fibrinogen-mediated adherence. In addition, several non-srr1/2 isolates replaced the srr1/2 gene with the lnu(B) and lsa(E) antibiotic resistance genes flanked by IS1216, effectively causing multidrug resistance. Collectively, we believe that our study identifies the underlying genes responsible for the pathogenesis of new GBS serotype III. Furthermore, our study emphasizes the need for alternative antibiotics for patients who are allergic to β-lactams and for those who are pregnant.
Collapse
|
32
|
Derk J, Jones HE, Como C, Pawlikowski B, Siegenthaler JA. Living on the Edge of the CNS: Meninges Cell Diversity in Health and Disease. Front Cell Neurosci 2021; 15:703944. [PMID: 34276313 PMCID: PMC8281977 DOI: 10.3389/fncel.2021.703944] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2021] [Accepted: 06/08/2021] [Indexed: 12/30/2022] Open
Abstract
The meninges are the fibrous covering of the central nervous system (CNS) which contain vastly heterogeneous cell types within its three layers (dura, arachnoid, and pia). The dural compartment of the meninges, closest to the skull, is predominantly composed of fibroblasts, but also includes fenestrated blood vasculature, an elaborate lymphatic system, as well as immune cells which are distinct from the CNS. Segregating the outer and inner meningeal compartments is the epithelial-like arachnoid barrier cells, connected by tight and adherens junctions, which regulate the movement of pathogens, molecules, and cells into and out of the cerebral spinal fluid (CSF) and brain parenchyma. Most proximate to the brain is the collagen and basement membrane-rich pia matter that abuts the glial limitans and has recently be shown to have regional heterogeneity within the developing mouse brain. While the meninges were historically seen as a purely structural support for the CNS and protection from trauma, the emerging view of the meninges is as an essential interface between the CNS and the periphery, critical to brain development, required for brain homeostasis, and involved in a variety of diseases. In this review, we will summarize what is known regarding the development, specification, and maturation of the meninges during homeostatic conditions and discuss the rapidly emerging evidence that specific meningeal cell compartments play differential and important roles in the pathophysiology of a myriad of diseases including: multiple sclerosis, dementia, stroke, viral/bacterial meningitis, traumatic brain injury, and cancer. We will conclude with a list of major questions and mechanisms that remain unknown, the study of which represent new, future directions for the field of meninges biology.
Collapse
Affiliation(s)
- Julia Derk
- Section of Developmental Biology, Department of Pediatrics, University of Colorado, Aurora, CO, United States
| | - Hannah E. Jones
- Section of Developmental Biology, Department of Pediatrics, University of Colorado, Aurora, CO, United States
- Cell Biology, Stem Cells and Development Graduate Program, University of Colorado, Anschutz Medical Campus, Aurora, CO, United States
| | - Christina Como
- Section of Developmental Biology, Department of Pediatrics, University of Colorado, Aurora, CO, United States
- Neuroscience Graduate Program, University of Colorado, Aurora, CO, United States
| | - Bradley Pawlikowski
- Section of Developmental Biology, Department of Pediatrics, University of Colorado, Aurora, CO, United States
| | - Julie A. Siegenthaler
- Section of Developmental Biology, Department of Pediatrics, University of Colorado, Aurora, CO, United States
- Cell Biology, Stem Cells and Development Graduate Program, University of Colorado, Anschutz Medical Campus, Aurora, CO, United States
- Neuroscience Graduate Program, University of Colorado, Aurora, CO, United States
| |
Collapse
|
33
|
Bayir E, Sendemir A. Role of Intermediate Filaments in Blood-Brain Barrier in Health and Disease. Cells 2021; 10:cells10061400. [PMID: 34198868 PMCID: PMC8226756 DOI: 10.3390/cells10061400] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2021] [Revised: 05/31/2021] [Accepted: 06/02/2021] [Indexed: 12/11/2022] Open
Abstract
The blood–brain barrier (BBB) is a highly selective cellular monolayer unique to the microvasculature of the central nervous system (CNS), and it mediates the communication of the CNS with the rest of the body by regulating the passage of molecules into the CNS microenvironment. Limitation of passage of substances through the BBB is mainly due to tight junctions (TJ) and adherens junctions (AJ) between brain microvascular endothelial cells. The importance of actin filaments and microtubules in establishing and maintaining TJs and AJs has been indicated; however, recent studies have shown that intermediate filaments are also important in the formation and function of cell–cell junctions. The most common intermediate filament protein in endothelial cells is vimentin. Vimentin plays a role in blood–brain barrier permeability in both cell–cell and cell–matrix interactions by affecting the actin and microtubule reorganization and by binding directly to VE-cadherin or integrin proteins. The BBB permeability increases due to the formation of stress fibers and the disruption of VE–cadherin interactions between two neighboring cells in various diseases, disrupting the fiber network of intermediate filament vimentin in different ways. Intermediate filaments may be long ignored key targets in regulation of BBB permeability in health and disease.
Collapse
Affiliation(s)
- Ece Bayir
- Ege University Central Research Test and Analysis Laboratory Application and Research Center (EGE-MATAL), Ege University, 35100 Izmir, Turkey;
| | - Aylin Sendemir
- Department of Bioengineering, Faculty of Engineering, Ege University, 35100 Izmir, Turkey
- Department of Biomedical Technologies, Graduate School of Natural and Applied Science, Ege University, 35100 Izmir, Turkey
- Correspondence: ; Tel.: +90-232-3114817
| |
Collapse
|
34
|
van Sorge NM, Bonsor DA, Deng L, Lindahl E, Schmitt V, Lyndin M, Schmidt A, Nilsson OR, Brizuela J, Boero E, Sundberg EJ, van Strijp JAG, Doran KS, Singer BB, Lindahl G, McCarthy AJ. Bacterial protein domains with a novel Ig-like fold target human CEACAM receptors. EMBO J 2021; 40:e106103. [PMID: 33522633 PMCID: PMC8013792 DOI: 10.15252/embj.2020106103] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 12/08/2020] [Accepted: 12/10/2020] [Indexed: 01/19/2023] Open
Abstract
Streptococcus agalactiae, also known as group B Streptococcus (GBS), is the major cause of neonatal sepsis in humans. A critical step to infection is adhesion of bacteria to epithelial surfaces. GBS adhesins have been identified to bind extracellular matrix components and cellular receptors. However, several putative adhesins have no host binding partner characterised. We report here that surface-expressed β protein of GBS binds to human CEACAM1 and CEACAM5 receptors. A crystal structure of the complex showed that an IgSF domain in β represents a novel Ig-fold subtype called IgI3, in which unique features allow binding to CEACAM1. Bioinformatic assessment revealed that this newly identified IgI3 fold is not exclusively present in GBS but is predicted to be present in adhesins from other clinically important human pathogens. In agreement with this prediction, we found that CEACAM1 binds to an IgI3 domain found in an adhesin from a different streptococcal species. Overall, our results indicate that the IgI3 fold could provide a broadly applied mechanism for bacteria to target CEACAMs.
Collapse
Affiliation(s)
- Nina M van Sorge
- Department of Medical MicrobiologyUniversity Medical Center UtrechtUtrecht UniversityUtrechtThe Netherlands
- Present address:
Department of Medical Microbiology,Infection Prevention and Netherlands Reference Laboratory for Bacterial MeningitisAmsterdam University Medical CenterUniversity of AmsterdamAmsterdamThe Netherlands
| | - Daniel A Bonsor
- Institute of Human VirologyUniversity of Maryland School of MedicineUniversity of MarylandBaltimoreMDUSA
| | - Liwen Deng
- Department of Immunology & MicrobiologyUniversity of Colorado Anschutz Medical CampusAuroraCOUSA
| | - Erik Lindahl
- Department of Biochemistry and BiophysicsScience for Life LaboratoryStockholm UniversityStockholmSweden
| | - Verena Schmitt
- Institute of AnatomyMedical Faculty, University Duisburg‐EssenEssenGermany
| | - Mykola Lyndin
- Institute of AnatomyMedical Faculty, University Duisburg‐EssenEssenGermany
- Department of PathologySumy State UniversitySumyUkraine
| | - Alexej Schmidt
- Department of Medical BiosciencesUmeå UniversityPathology, UmeåSweden
| | - Olof R Nilsson
- Department of Laboratory MedicineDivision of Medical MicrobiologyLund UniversityLundSweden
| | - Jaime Brizuela
- Department of Infectious Disease, MRC Centre for Molecular Bacteriology & InfectionImperial College LondonLondonUK
| | - Elena Boero
- Department of Medical MicrobiologyUniversity Medical Center UtrechtUtrecht UniversityUtrechtThe Netherlands
| | - Eric J Sundberg
- Institute of Human VirologyUniversity of Maryland School of MedicineUniversity of MarylandBaltimoreMDUSA
- Department of BiochemistryEmory University School of MedicineAtlantaGAUSA
| | - Jos A G van Strijp
- Department of Medical MicrobiologyUniversity Medical Center UtrechtUtrecht UniversityUtrechtThe Netherlands
| | - Kelly S Doran
- Department of Immunology & MicrobiologyUniversity of Colorado Anschutz Medical CampusAuroraCOUSA
| | - Bernhard B Singer
- Institute of AnatomyMedical Faculty, University Duisburg‐EssenEssenGermany
| | - Gunnar Lindahl
- Department of Laboratory MedicineDivision of Medical MicrobiologyLund UniversityLundSweden
- Department of ChemistryDivision of Applied MicrobiologyLund UniversityLundSweden
| | - Alex J McCarthy
- Department of Medical MicrobiologyUniversity Medical Center UtrechtUtrecht UniversityUtrechtThe Netherlands
- Department of Infectious Disease, MRC Centre for Molecular Bacteriology & InfectionImperial College LondonLondonUK
| |
Collapse
|
35
|
Lannes-Costa PS, de Oliveira JSS, da Silva Santos G, Nagao PE. A current review of pathogenicity determinants of Streptococcus sp. J Appl Microbiol 2021; 131:1600-1620. [PMID: 33772968 DOI: 10.1111/jam.15090] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 03/16/2021] [Accepted: 03/24/2021] [Indexed: 12/16/2022]
Abstract
The genus Streptococcus comprises important pathogens, many of them are part of the human or animal microbiota. Advances in molecular genetics, taxonomic approaches and phylogenomic studies have led to the establishment of at least 100 species that have a severe impact on human health and are responsible for substantial economic losses to agriculture. The infectivity of the pathogens is linked to cell-surface components and/or secreted virulence factors. Bacteria have evolved sophisticated and multifaceted adaptation strategies to the host environment, including biofilm formation, survival within professional phagocytes, escape the host immune response, amongst others. This review focuses on virulence mechanism and zoonotic potential of Streptococcus species from pyogenic (S. agalactiae, S. pyogenes) and mitis groups (S. pneumoniae).
Collapse
Affiliation(s)
- P S Lannes-Costa
- Laboratory of Molecular Biology and Physiology of Streptococci, Institute of Biology Roberto Alcantara Gomes, Rio de Janeiro State University (UERJ), Rio de Janeiro, Rio de Janeiro, Brazil
| | - J S S de Oliveira
- Laboratory of Molecular Biology and Physiology of Streptococci, Institute of Biology Roberto Alcantara Gomes, Rio de Janeiro State University (UERJ), Rio de Janeiro, Rio de Janeiro, Brazil
| | - G da Silva Santos
- Laboratory of Molecular Biology and Physiology of Streptococci, Institute of Biology Roberto Alcantara Gomes, Rio de Janeiro State University (UERJ), Rio de Janeiro, Rio de Janeiro, Brazil
| | - P E Nagao
- Laboratory of Molecular Biology and Physiology of Streptococci, Institute of Biology Roberto Alcantara Gomes, Rio de Janeiro State University (UERJ), Rio de Janeiro, Rio de Janeiro, Brazil
| |
Collapse
|
36
|
Manzer HS, Nobbs AH, Doran KS. The Multifaceted Nature of Streptococcal Antigen I/II Proteins in Colonization and Disease Pathogenesis. Front Microbiol 2020; 11:602305. [PMID: 33329493 PMCID: PMC7732690 DOI: 10.3389/fmicb.2020.602305] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Accepted: 10/29/2020] [Indexed: 12/22/2022] Open
Abstract
Streptococci are Gram-positive bacteria that belong to the natural microbiota of humans and animals. Certain streptococcal species are known as opportunistic pathogens with the potential to cause severe invasive disease. Antigen I/II (AgI/II) family proteins are sortase anchored cell surface adhesins that are nearly ubiquitous across streptococci and contribute to many streptococcal diseases, including dental caries, respiratory tract infections, and meningitis. They appear to be multifunctional adhesins with affinities to various host substrata, acting to mediate attachment to host surfaces and stimulate immune responses from the colonized host. Here we will review the literature including recent work that has demonstrated the multifaceted nature of AgI/II family proteins, focusing on their overlapping and distinct functions and their important contribution to streptococcal colonization and disease.
Collapse
Affiliation(s)
- Haider S. Manzer
- Department of Immunology and Microbiology, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| | - Angela H. Nobbs
- Bristol Dental School, University of Bristol, Bristol, United Kingdom
| | - Kelly S. Doran
- Department of Immunology and Microbiology, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| |
Collapse
|
37
|
Pechstein J, Schulze-Luehrmann J, Bisle S, Cantet F, Beare PA, Ölke M, Bonazzi M, Berens C, Lührmann A. The Coxiella burnetii T4SS Effector AnkF Is Important for Intracellular Replication. Front Cell Infect Microbiol 2020; 10:559915. [PMID: 33282747 PMCID: PMC7691251 DOI: 10.3389/fcimb.2020.559915] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Accepted: 10/19/2020] [Indexed: 12/20/2022] Open
Abstract
Coxiella burnetii is an obligate intracellular pathogen and the causative agent of the zoonotic disease Q fever. Following uptake by alveolar macrophages, the pathogen replicates in an acidic phagolysosomal vacuole, the C. burnetii-containing vacuole (CCV). Effector proteins translocated into the host cell by the type IV secretion system (T4SS) are important for the establishment of the CCV. Here we focus on the effector protein AnkF and its role in establishing the CCV. The C. burnetii AnkF knock out mutant invades host cells as efficiently as wild-type C. burnetii, but this mutant is hampered in its ability to replicate intracellularly, indicating that AnkF might be involved in the development of a replicative CCV. To unravel the underlying reason(s), we searched for AnkF interactors in host cells and identified vimentin through a yeast two-hybrid approach. While AnkF does not alter vimentin expression at the mRNA or protein levels, the presence of AnkF results in structural reorganization and vesicular co-localization with recombinant vimentin. Ectopically expressed AnkF partially accumulates around the established CCV and endogenous vimentin is recruited to the CCV in a time-dependent manner, suggesting that AnkF might attract vimentin to the CCV. However, knocking-down endogenous vimentin does not affect intracellular replication of C. burnetii. Other cytoskeletal components are recruited to the CCV and might compensate for the lack of vimentin. Taken together, AnkF is essential for the establishment of the replicative CCV, however, its mode of action is still elusive.
Collapse
Affiliation(s)
- Julian Pechstein
- Mikrobiologisches Institut-Klinische Mikrobiologie, Immunologie und Hygiene, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Jan Schulze-Luehrmann
- Mikrobiologisches Institut-Klinische Mikrobiologie, Immunologie und Hygiene, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Stephanie Bisle
- Mikrobiologisches Institut-Klinische Mikrobiologie, Immunologie und Hygiene, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Franck Cantet
- Institut de Recherche en Infectiologie de Montpellier (IRIM), Centre National de la Recherche Scientifique (CNRS), Université de Montpellier, Montpellier, France
| | - Paul A Beare
- Coxiella Pathogenesis Section, Laboratory of Bacteriology, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT, United States
| | - Martha Ölke
- Mikrobiologisches Institut-Klinische Mikrobiologie, Immunologie und Hygiene, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Matteo Bonazzi
- Institut de Recherche en Infectiologie de Montpellier (IRIM), Centre National de la Recherche Scientifique (CNRS), Université de Montpellier, Montpellier, France
| | - Christian Berens
- Friedrich-Loeffler-Institut, Institut für Molekulare Pathogenese, Jena, Germany
| | - Anja Lührmann
- Mikrobiologisches Institut-Klinische Mikrobiologie, Immunologie und Hygiene, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| |
Collapse
|
38
|
Identification of Zinc-Dependent Mechanisms Used by Group B Streptococcus To Overcome Calprotectin-Mediated Stress. mBio 2020; 11:mBio.02302-20. [PMID: 33173000 PMCID: PMC7667036 DOI: 10.1128/mbio.02302-20] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Group B Streptococcus (GBS) asymptomatically colonizes the female reproductive tract but is a common causative agent of meningitis. GBS meningitis is characterized by extensive infiltration of neutrophils carrying high concentrations of calprotectin, a metal chelator. To persist within inflammatory sites and cause invasive disease, GBS must circumvent host starvation attempts. Here, we identified global requirements for GBS survival during calprotectin challenge, including known and putative systems involved in metal ion transport. We characterized the role of zinc import in tolerating calprotectin stress in vitro and in a mouse model of infection. We observed that a global zinc uptake mutant was less virulent than the parental GBS strain and found calprotectin knockout mice to be equally susceptible to infection by wild-type (WT) and mutant strains. These findings suggest that calprotectin production at the site of infection results in a zinc-limited environment and reveals the importance of GBS metal homeostasis to invasive disease. Nutritional immunity is an elegant host mechanism used to starve invading pathogens of necessary nutrient metals. Calprotectin, a metal-binding protein, is produced abundantly by neutrophils and is found in high concentrations within inflammatory sites during infection. Group B Streptococcus (GBS) colonizes the gastrointestinal and female reproductive tracts and is commonly associated with severe invasive infections in newborns such as pneumonia, sepsis, and meningitis. Although GBS infections induce robust neutrophil recruitment and inflammation, the dynamics of GBS and calprotectin interactions remain unknown. Here, we demonstrate that disease and colonizing isolate strains exhibit susceptibility to metal starvation by calprotectin. We constructed a mariner transposon (Krmit) mutant library in GBS and identified 258 genes that contribute to surviving calprotectin stress. Nearly 20% of all underrepresented mutants following treatment with calprotectin are predicted metal transporters, including known zinc systems. As calprotectin binds zinc with picomolar affinity, we investigated the contribution of GBS zinc uptake to overcoming calprotectin-imposed starvation. Quantitative reverse transcriptase PCR (qRT-PCR) revealed a significant upregulation of genes encoding zinc-binding proteins, adcA, adcAII, and lmb, following calprotectin exposure, while growth in calprotectin revealed a significant defect for a global zinc acquisition mutant (ΔadcAΔadcAIIΔlmb) compared to growth of the GBS wild-type (WT) strain. Furthermore, mice challenged with the ΔadcAΔadcAIIΔlmb mutant exhibited decreased mortality and significantly reduced bacterial burden in the brain compared to mice infected with WT GBS; this difference was abrogated in calprotectin knockout mice. Collectively, these data suggest that GBS zinc transport machinery is important for combatting zinc chelation by calprotectin and establishing invasive disease.
Collapse
|
39
|
Patteson AE, Vahabikashi A, Goldman RD, Janmey PA. Mechanical and Non-Mechanical Functions of Filamentous and Non-Filamentous Vimentin. Bioessays 2020; 42:e2000078. [PMID: 32893352 PMCID: PMC8349470 DOI: 10.1002/bies.202000078] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Revised: 08/04/2020] [Indexed: 12/20/2022]
Abstract
Intermediate filaments (IFs) formed by vimentin are less understood than their cytoskeletal partners, microtubules and F-actin, but the unique physical properties of IFs, especially their resistance to large deformations, initially suggest a mechanical function. Indeed, vimentin IFs help regulate cell mechanics and contractility, and in crowded 3D environments they protect the nucleus during cell migration. Recently, a multitude of studies, often using genetic or proteomic screenings show that vimentin has many non-mechanical functions within and outside of cells. These include signaling roles in wound healing, lipogenesis, sterol processing, and various functions related to extracellular and cell surface vimentin. Extracellular vimentin is implicated in marking circulating tumor cells, promoting neural repair, and mediating the invasion of host cells by viruses, including SARS-CoV, or bacteria such as Listeria and Streptococcus. These findings underscore the fundamental role of vimentin in not only cell mechanics but also a range of physiological functions. Also see the video abstract here https://youtu.be/YPfoddqvz-g.
Collapse
Affiliation(s)
- Alison E Patteson
- Physics Department, Syracuse University, Syracuse, NY 13244
- BioInspired Institute, Syracuse University, Syracuse, NY 13244
| | - Amir Vahabikashi
- Department of Cell and Molecular Biology, Feinberg School of Medicine, Northwestern University, Chicago IL 60611
| | - Robert D Goldman
- Department of Cell and Molecular Biology, Feinberg School of Medicine, Northwestern University, Chicago IL 60611
| | - Paul A. Janmey
- Institute for Medicine and Engineering, Department of Physiology, University of Pennsylvania, Philadelphia, PA 19104
| |
Collapse
|
40
|
Ramos I, Stamatakis K, Oeste CL, Pérez-Sala D. Vimentin as a Multifaceted Player and Potential Therapeutic Target in Viral Infections. Int J Mol Sci 2020; 21:E4675. [PMID: 32630064 PMCID: PMC7370124 DOI: 10.3390/ijms21134675] [Citation(s) in RCA: 109] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2020] [Revised: 06/28/2020] [Accepted: 06/29/2020] [Indexed: 12/17/2022] Open
Abstract
Vimentin is an intermediate filament protein that plays key roles in integration of cytoskeletal functions, and therefore in basic cellular processes such as cell division and migration. Consequently, vimentin has complex implications in pathophysiology. Vimentin is required for a proper immune response, but it can also act as an autoantigen in autoimmune diseases or as a damage signal. Although vimentin is a predominantly cytoplasmic protein, it can also appear at extracellular locations, either in a secreted form or at the surface of numerous cell types, often in relation to cell activation, inflammation, injury or senescence. Cell surface targeting of vimentin appears to associate with the occurrence of certain posttranslational modifications, such as phosphorylation and/or oxidative damage. At the cell surface, vimentin can act as a receptor for bacterial and viral pathogens. Indeed, vimentin has been shown to play important roles in virus attachment and entry of severe acute respiratory syndrome-related coronavirus (SARS-CoV), dengue and encephalitis viruses, among others. Moreover, the presence of vimentin in specific virus-targeted cells and its induction by proinflammatory cytokines and tissue damage contribute to its implication in viral infection. Here, we recapitulate some of the pathophysiological implications of vimentin, including the involvement of cell surface vimentin in interaction with pathogens, with a special focus on its role as a cellular receptor or co-receptor for viruses. In addition, we provide a perspective on approaches to target vimentin, including antibodies or chemical agents that could modulate these interactions to potentially interfere with viral pathogenesis, which could be useful when multi-target antiviral strategies are needed.
Collapse
Affiliation(s)
- Irene Ramos
- Department of Neurology and Center for Advanced Research on Diagnostic Assays, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA;
| | - Konstantinos Stamatakis
- Centro de Biología Molecular Severo Ochoa, UAM-CSIC. Nicolás Cabrera, 1, Campus de la Universidad Autónoma de Madrid, 28049 Madrid, Spain; (K.S.); (C.L.O.)
| | - Clara L. Oeste
- Centro de Biología Molecular Severo Ochoa, UAM-CSIC. Nicolás Cabrera, 1, Campus de la Universidad Autónoma de Madrid, 28049 Madrid, Spain; (K.S.); (C.L.O.)
| | - Dolores Pérez-Sala
- Department of Structural and Chemical Biology, Centro de Investigaciones Biológicas Margarita Salas, CSIC, Ramiro de Maeztu, 9, 28040 Madrid, Spain
| |
Collapse
|
41
|
Dissecting Streptococcus pyogenes interaction with human. Arch Microbiol 2020; 202:2023-2032. [PMID: 32504132 DOI: 10.1007/s00203-020-01932-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Revised: 03/26/2020] [Accepted: 05/29/2020] [Indexed: 10/24/2022]
Abstract
Streptococcus pyogenes is a species of Gram-positive bacteria. It is also known as Group A Streptococcus (GAS) that causes pathogenesis to humans only. The GAS infection has several manifestations including invasive illness. Current research has linked the molecular modes of GAS virulence with substantial sequencing determinations for the isolation of genomes. These advances help to comprehend the molecular evolution resulting in the pandemic strains. Thus, it is indispensable to reconsider the philosophy that involves GAS pathogenesis. The recent investigations involve studying GAS in the nasopharynx and its capability to cause infection or asymptomatically reside in the host. These advances have been discussed in this article with an emphasis on the natural history of GAS and the evolutionary change in the pandemic strains. In addition, this review describes the unique functions for major pathogenicity determinants to comprehend their physiological effects.
Collapse
|
42
|
Niu Z, Chen YH, Zhang K. Polymorphonuclear Leukocyte Transendothelial Migration Proceeds at Blood-Brain Barrier in Neonatal Meningitis. Front Microbiol 2020; 11:969. [PMID: 32528436 PMCID: PMC7264371 DOI: 10.3389/fmicb.2020.00969] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2020] [Accepted: 04/22/2020] [Indexed: 11/29/2022] Open
Abstract
Neonatal bacterial meningitis remains a life-threatening and causative sequelae disease in newborns, despite the effective usage of antibiotics and improved critical medical care. Polymorphonuclear leukocyte (PMN) transendothelial migration across the blood-brain barrier, one of the three hallmarks of bacterial meningitis, now is considered as a “double-edge sword”. When participating in host immune system defending against virulent pathogens, it results in tissue inflammation and following severe damage of central nervous system at the same time, which contributes to a disastrous consequence. Recently, several researches have focused on this multi-step process and the mechanism of how the virulent factors of different pathogens influence PMN migration. The great progression they made has enlightened a new research hotspot and a novel therapeutic strategy. This mini review outlines the determinants and progression of PMN transmigration in neonatal meningitis caused by different predominant pathogens.
Collapse
Affiliation(s)
- Zhuo Niu
- Department of Developmental Cell Biology, Key Laboratory of Cell Biology, Ministry of Public Health, Key Laboratory of Medical Cell Biology, Ministry of Education, China Medical University, Shenyang, China.,Department of Surgical Oncology and General Surgery, Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, Ministry of Education, The First Affiliated Hospital of China Medical University, Shenyang, China
| | - Yu-Hua Chen
- Department of Developmental Cell Biology, Key Laboratory of Cell Biology, Ministry of Public Health, Key Laboratory of Medical Cell Biology, Ministry of Education, China Medical University, Shenyang, China
| | - Ke Zhang
- Department of Developmental Cell Biology, Key Laboratory of Cell Biology, Ministry of Public Health, Key Laboratory of Medical Cell Biology, Ministry of Education, China Medical University, Shenyang, China
| |
Collapse
|
43
|
Ma G, Jiang Y, Liang M, Li J, Wang J, Mao X, Veeramootoo JS, Xia T, Liu X, Wang S. Dynamic monitoring of CD45-/CD31+/DAPI+ circulating endothelial cells aneuploid for chromosome 8 during neoadjuvant chemotherapy in locally advanced breast cancer. Ther Adv Med Oncol 2020; 12:1758835920918470. [PMID: 32489429 PMCID: PMC7238307 DOI: 10.1177/1758835920918470] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2019] [Accepted: 03/19/2020] [Indexed: 12/15/2022] Open
Abstract
Background: Neoadjuvant chemotherapy (NCT) is the standard treatment for patients with
locally advanced breast cancer (LABC). The aim of this study was to verify
this relationship, and to estimate the clinical value of aneuploid
circulating endothelial cells (CECs) in LABC patients with different NCT
responses. Methods: Breast cancer patients received an EC4-T4 NCT regimen. Peripheral blood
mononuclear cells were obtained before NCT, and after the first and last NCT
courses. A novel subtraction enrichment and immunostaining fluorescence
in situ hybridization (SE-iFISH) strategy was applied
for detection of circulating rare cells (CRCs). CECs (CD45–/CD31+/DAPI+) and
circulating tumor cells (CTCs) with different cytogenetic abnormalities
related to chromosome 8 aneuploidy were analyzed in LABC patients subjected
to NCT. Results: A total of 41 patients were enrolled. Firstly, CD31+/EpCAM+ aneuploid
endothelial-epithelial fusion cells were observed in LABC patients. Further,
aneuploid CECs in the peripheral blood showed a biphasic response during
NCT, as they initially increased and then decreased, whereas a strong
positive correlation was observed between aneuploid CECs and CTC
numbers. Conclusion: We determined that aneuploid CEC dynamics vary in patients with different
response to chemotherapy. Elucidating the potential cross-talk between CTCs
and aneuploid CECs may help characterize the process associated with the
development of chemotherapy resistance and metastasis.
Collapse
Affiliation(s)
- Ge Ma
- Department of Breast Surgery, The First Affiliated Hospital with Nanjing Medical University, Nanjing, China
| | - Yi Jiang
- The First Clinical Medical College of Nanjing Medical University, Nanjing, China
| | - Mengdi Liang
- Department of Breast Surgery, The First Affiliated Hospital with Nanjing Medical University, Nanjing, China
| | - JiaYing Li
- Department of Breast Surgery, The First Affiliated Hospital with Nanjing Medical University, Nanjing, China
| | - Jingyi Wang
- Department of Breast Surgery, The First Affiliated Hospital with Nanjing Medical University, Nanjing, China
| | - Xinrui Mao
- Department of Breast Surgery, The First Affiliated Hospital with Nanjing Medical University, Nanjing, China
| | | | - Tiansong Xia
- Department of Breast Surgery, The First Affiliated Hospital with Nanjing Medical University, 300 Guangzhou Road, Nanjing, 210029, China
| | - Xiaoan Liu
- Department of Breast Surgery, The First Affiliated Hospital with Nanjing Medical University, 300 Guangzhou Road, Nanjing, 210029, China
| | - Shui Wang
- Department of Breast Surgery, The First Affiliated Hospital with Nanjing Medical University, 300 Guangzhou Road, Nanjing, 210029, China
| |
Collapse
|
44
|
Genome-Wide Screens Identify Group A Streptococcus Surface Proteins Promoting Female Genital Tract Colonization and Virulence. THE AMERICAN JOURNAL OF PATHOLOGY 2020; 190:862-873. [PMID: 32200972 DOI: 10.1016/j.ajpath.2019.12.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Revised: 12/04/2019] [Accepted: 12/17/2019] [Indexed: 02/07/2023]
Abstract
Group A streptococcus (GAS) is a major pathogen that impacts health and economic affairs worldwide. Although the oropharynx is the primary site of infection, GAS can colonize the female genital tract and cause severe diseases, such as puerperal sepsis, neonatal infections, and necrotizing myometritis. Our understanding of how GAS genes contribute to interaction with the primate female genital tract is limited by the lack of relevant animal models. Using two genome-wide transposon mutagenesis screens, we identified 69 GAS genes required for colonization of the primate vaginal mucosa in vivo and 96 genes required for infection of the uterine wall ex vivo. We discovered a common set of 39 genes important for GAS fitness in both environments. They include genes encoding transporters, surface proteins, transcriptional regulators, and metabolic pathways. Notably, the genes that encode the surface-exclusion protein (SpyAD) and the immunogenic secreted protein 2 (Isp2) were found to be crucial for GAS fitness in the female primate genital tract. Targeted gene deletion confirmed that isogenic mutant strains ΔspyAD and Δisp2 are significantly impaired in ability to colonize the primate genital tract and cause uterine wall pathologic findings. Our studies identified novel GAS genes that contribute to female reproductive tract interaction that warrant translational research investigation.
Collapse
|
45
|
Meningitic Escherichia coli Induction of ANGPTL4 in Brain Microvascular Endothelial Cells Contributes to Blood-Brain Barrier Disruption via ARHGAP5/RhoA/MYL5 Signaling Cascade. Pathogens 2019; 8:pathogens8040254. [PMID: 31766605 PMCID: PMC6963727 DOI: 10.3390/pathogens8040254] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Revised: 11/19/2019] [Accepted: 11/20/2019] [Indexed: 12/18/2022] Open
Abstract
Bacterial meningitis is currently recognized as one of the most important life-threatening infections of the central nervous system (CNS) with high morbidity and mortality, despite the advancements in antimicrobial treatment. The disruption of blood–brain barrier (BBB) induced by meningitis bacteria is crucial for the development of bacterial meningitis. However, the complete mechanisms involving in the BBB disruption remain to be elucidated. Here, we found meningitic Escherichia coli induction of angiopoietin-like 4 (ANGPTL4) in brain microvascular endothelial cells (BMECs) contributes to BBB disruption via ARHGAP5/RhoA/MYL5 signaling cascade, by the demonstration that ANGPTL4 was significantly upregulated in meningitis E. coli infection of BMECs as well as mice, and treatment of the recombinant ANGPTL4 protein led to an increased permeability of the BBB in vitro and in vivo. Moreover, we found that ANGPTL4 did not affect the expression of tight junction proteins involved in BBB disruption, but it increased the expression of MYL5, which was found to have a negative role on the regulation of barrier function during meningitic E. coli infection, through the activation of RhoA signaling pathway. To our knowledge, this is the first report demonstrating the disruption of BBB induced by ANGPTL4 through the ARHGAP5/RhoA/MYL5 pathway, which largely supports the involvement of ANGPTL4 during meningitic E. coli invasion and further expands the theoretical basis for the mechanism of bacterial meningitis.
Collapse
|
46
|
Le Guennec L, Coureuil M, Nassif X, Bourdoulous S. Strategies used by bacterial pathogens to cross the blood-brain barrier. Cell Microbiol 2019; 22:e13132. [PMID: 31658405 DOI: 10.1111/cmi.13132] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2019] [Revised: 10/11/2019] [Accepted: 10/13/2019] [Indexed: 12/15/2022]
Abstract
The skull, spine, meninges, and cellular barriers at the blood-brain and the blood-cerebrospinal fluid interfaces well protect the brain and meningeal spaces against microbial invasion. However, once in the bloodstream, a range of pathogenic bacteria is able to reach the brain and cause meningitis. Despite advances in antibacterial therapy, bacterial meningitis remains one of the most important infectious diseases worldwide. The most common causative bacteria in children and adults are Streptococcus pneumoniae and Neisseria meningitidis associated with high morbidity and mortality, while among neonates, most cases of bacterial meningitis are due to group B Streptococcus and Escherichia coli. Here we summarise our current knowledge on the strategies used by these bacterial pathogens to survive in the bloodstream, to colonise the brain vasculature and to cross the blood-brain barrier.
Collapse
Affiliation(s)
- Loic Le Guennec
- Inserm (Institut National de la Sante et de la Recherche Medicale), U1016, Institut Cochin, Paris, France.,CNRS (Centre National de la recherche Scientifique), UMR8104, Paris, France.,Université Paris Descartes, Sorbonne Paris Cité, Paris, France
| | - Mathieu Coureuil
- Inserm (Institut National de la Sante et de la Recherche Medicale), unité U1151, Institut-Necker-Enfants-Malades, Paris, France.,CNRS (Centre National de la recherche Scientifique), UMR 8253, Paris, France.,Université Paris Descartes, Sorbonne Paris Cité, Faculté de médecine, Paris, France
| | - Xavier Nassif
- Inserm (Institut National de la Sante et de la Recherche Medicale), unité U1151, Institut-Necker-Enfants-Malades, Paris, France.,CNRS (Centre National de la recherche Scientifique), UMR 8253, Paris, France.,Université Paris Descartes, Sorbonne Paris Cité, Faculté de médecine, Paris, France.,Assistance Publique - Hôpitaux de Paris, Hôpital Necker Enfants Malades, Paris, France
| | - Sandrine Bourdoulous
- Inserm (Institut National de la Sante et de la Recherche Medicale), U1016, Institut Cochin, Paris, France.,CNRS (Centre National de la recherche Scientifique), UMR8104, Paris, France.,Université Paris Descartes, Sorbonne Paris Cité, Paris, France
| |
Collapse
|
47
|
Virulence Factors of Meningitis-Causing Bacteria: Enabling Brain Entry across the Blood-Brain Barrier. Int J Mol Sci 2019; 20:ijms20215393. [PMID: 31671896 PMCID: PMC6862235 DOI: 10.3390/ijms20215393] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Revised: 10/24/2019] [Accepted: 10/25/2019] [Indexed: 12/16/2022] Open
Abstract
Infections of the central nervous system (CNS) are still a major cause of morbidity and mortality worldwide. Traversal of the barriers protecting the brain by pathogens is a prerequisite for the development of meningitis. Bacteria have developed a variety of different strategies to cross these barriers and reach the CNS. To this end, they use a variety of different virulence factors that enable them to attach to and traverse these barriers. These virulence factors mediate adhesion to and invasion into host cells, intracellular survival, induction of host cell signaling and inflammatory response, and affect barrier function. While some of these mechanisms differ, others are shared by multiple pathogens. Further understanding of these processes, with special emphasis on the difference between the blood-brain barrier and the blood-cerebrospinal fluid barrier, as well as virulence factors used by the pathogens, is still needed.
Collapse
|
48
|
Spencer BL, Deng L, Patras KA, Burcham ZM, Sanches GF, Nagao PE, Doran KS. Cas9 Contributes to Group B Streptococcal Colonization and Disease. Front Microbiol 2019; 10:1930. [PMID: 31497003 PMCID: PMC6712506 DOI: 10.3389/fmicb.2019.01930] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2019] [Accepted: 08/05/2019] [Indexed: 12/20/2022] Open
Abstract
Group B Streptococcus (GBS) is a major opportunistic pathogen in certain adult populations, including pregnant women, and remains a leading etiologic agent of newborn disease. During pregnancy, GBS asymptomatically colonizes the vaginal tract of 20-30% of healthy women, but can be transmitted to the neonate in utero or during birth resulting in neonatal pneumonia, sepsis, meningitis, and subsequently 10-15% mortality regardless of antibiotic treatment. While various GBS virulence factors have been implicated in vaginal colonization and invasive disease, the regulation of many of these factors remains unclear. Recently, CRISPR-associated protein-9 (Cas9), an endonuclease known for its role in CRISPR/Cas immunity, has also been observed to modulate virulence in a number of bacterial pathogens. However, the role of Cas9 in GBS colonization and disease pathogenesis has not been well-studied. We performed allelic replacement of cas9 in GBS human clinical isolates of the hypervirulent sequence-type 17 strain lineage to generate isogenic Δcas9 mutants. Compared to parental strains, Δcas9 mutants were attenuated in murine models of hematogenous meningitis and vaginal colonization and exhibited significantly decreased invasion of human brain endothelium and adherence to vaginal epithelium. To determine if Cas9 alters transcription in GBS, we performed RNA-Seq analysis and found that 353 genes (>17% of the GBS genome) were differentially expressed between the parental WT and Δcas9 mutant strain. Significantly dysregulated genes included those encoding predicted virulence factors, metabolic factors, two-component systems (TCS), and factors important for cell wall formation. These findings were confirmed by qRT-PCR and suggest that Cas9 may regulate a significant portion of the GBS genome. We studied one of the TCS regulators, CiaR, that was significantly downregulated in the Δcas9 mutant strain. RNA-Seq analysis of the WT and ΔciaR strains demonstrated that almost all CiaR-regulated genes were also significantly regulated by Cas9, suggesting that Cas9 may modulate GBS gene expression through other regulators. Further we show that CiaR contributes to GBS vaginal colonization and persistence. Altogether, these data highlight the potential complexity and importance of the non-canonical function of Cas9 in GBS colonization and disease.
Collapse
Affiliation(s)
- Brady L. Spencer
- Department of Immunology & Microbiology, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| | - Liwen Deng
- Department of Immunology & Microbiology, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
- Department of Biology, San Diego State University, San Diego, CA, United States
| | - Kathryn A. Patras
- Department of Biology, San Diego State University, San Diego, CA, United States
| | - Zachary M. Burcham
- Department of Animal Sciences, Colorado State University, Fort Collins, CO, United States
| | - Glenda F. Sanches
- Department of Immunology & Microbiology, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
- Roberto Alcântara Gomes Biology Institute, Rio de Janeiro State University, Rio de Janeiro, Brazil
| | - Prescilla E. Nagao
- Roberto Alcântara Gomes Biology Institute, Rio de Janeiro State University, Rio de Janeiro, Brazil
| | - Kelly S. Doran
- Department of Immunology & Microbiology, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
- Department of Biology, San Diego State University, San Diego, CA, United States
| |
Collapse
|
49
|
Beninati C, Famà A, Teti G. How BspC from Streptococcus agalactiae Interacts with Host Vimentin during Meningitis. Trends Microbiol 2019; 27:727-728. [PMID: 31324435 DOI: 10.1016/j.tim.2019.07.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Accepted: 07/02/2019] [Indexed: 10/26/2022]
Abstract
Streptococcus agalactiae meningitis is a frequent neonatal disease associated with high mortality and permanent neurological damage. Deng et al. (PLoS Pathog., 2019) now show that interactions between the bacterial protein BspC and host cell vimentin participate in the process of invasion of the meninges by this bacterial pathogen.
Collapse
Affiliation(s)
- Concetta Beninati
- Metchnikoff Laboratory, Department of Pathology, University of Messina, 98124 Messina, Italy
| | - Agata Famà
- Charybdis Vaccines S.r.l., 98124 Messina, Italy
| | | |
Collapse
|