1
|
Zhang Y, Cai T, Wan H. Mobile Resistance Elements: Symbionts That Modify Insect Host Resistance. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2025; 73:3842-3853. [PMID: 39920901 DOI: 10.1021/acs.jafc.4c10828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/10/2025]
Abstract
Mounting evidence indicates that symbionts play a beneficial role through secondary metabolic compounds and various chemical processes in host adaptation to adversity, particularly in herbivorous insects whose survival is severely threatened by insecticides or secondary metabolite stress. Despite extensive research on insect symbionts, the spread of these beneficial symbionts and the correlation with host phenotypes limit our ability to predict and manage the adaptive capabilities of insect populations in changing environments. In this review, we propose the concept of "Mobile Resistance Elements (MRE)" to describe the dynamic and adaptable nature of resistance-related symbionts that can be transmitted between insect hosts. These elements encompass both the symbionts themselves and the associated traits they confer to their hosts, such as enhanced resilience to environmental stressors, toxins, and pathogens. The mobility of these resistance traits, facilitated through various transmission modes─including vertical and horizontal pathways─allows susceptible insect populations to acquire beneficial symbionts and their associated resistance phenotypes. By weaving together the threads of how symbionts shape host adaptability and survival strategies, this concept underscores the potential for symbionts to act as agents of rapid adaptation, enabling pest populations to thrive in changing environments and presenting both challenges and opportunities for pest management strategies.
Collapse
Affiliation(s)
- Yunhua Zhang
- Key Laboratory of Coastal Environment and Resources Research of Zhejiang Province, School of Engineering, Westlake University, 310030 Hangzhou, Zhejiang Province, China
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China
- Hubei Hongshan Laboratory, Wuhan 430070, China
- Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Tingwei Cai
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China
- Hubei Hongshan Laboratory, Wuhan 430070, China
- Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Hu Wan
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China
- Hubei Hongshan Laboratory, Wuhan 430070, China
- Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| |
Collapse
|
2
|
Du J, Zheng P, Gao W, Liang Q, Leng L, Shi L. All roads lead to Rome: the plasticity of gut microbiome drives the extensive adaptation of the Yarkand toad-headed agama ( Phrynocephalus axillaris) to different altitudes. Front Microbiol 2025; 15:1501684. [PMID: 39845039 PMCID: PMC11751238 DOI: 10.3389/fmicb.2024.1501684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Accepted: 12/24/2024] [Indexed: 01/24/2025] Open
Abstract
The gut microbiome was involved in a variety of physiological processes and played a key role in host environmental adaptation. However, the mechanisms of their response to altitudinal environmental changes remain unclear. In this study, we used 16S rRNA sequencing and LC-MS metabolomics to investigate the changes in the gut microbiome and metabolism of the Yarkand toad-headed agama (Phrynocephalus axillaris) at different altitudes (-80 m to 2000 m). The results demonstrated that Firmicutes, Bacteroidetes, and Proteobacteria were the dominant phylum, Lachnospiraceae and Oscillospiraceae were the most abundant family, and the low-altitude populations had higher richness than high-altitude populations; Akkermansiaceae appeared to be enriched in high-altitude populations and the relative abundance tended to increase with altitude. The gut microbiome of three populations of P. axillaris at different altitudes was clustered into two different enterotypes, low-altitude populations and high-altitude populations shared an enterotype dominated by Akkermansia, Kineothrix, Phocaeicola; intermediate-altitude populations had an enterotype dominated by Mesorhizobium, Bradyrhizobium. Metabolites involved in amino acid and lipid metabolism differed significantly at different altitudes. The above results suggest that gut microbiome plasticity drives the extensive adaptation of P. axillaris to multi-stress caused by different altitudes. With global warming, recognizing the adaptive capacity of wide-ranging species to altitude can help plan future conservation strategies.
Collapse
Affiliation(s)
| | | | | | | | | | - Lei Shi
- Xinjiang Key Laboratory for Ecological Adaptation and Evolution of Extreme Environment Biology, College of Life Sciences, Xinjiang Agricultural University, Ürümqi, China
| |
Collapse
|
3
|
Chabanol E, Gendrin M. Insects and microbes: best friends from the nursery. CURRENT OPINION IN INSECT SCIENCE 2024; 66:101270. [PMID: 39293738 DOI: 10.1016/j.cois.2024.101270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 09/03/2024] [Accepted: 09/11/2024] [Indexed: 09/20/2024]
Abstract
Insects host microbes and interact with them throughout their life cycle. This microbiota is an important, if not essential, partner participating in many aspects of insect physiology. Recent omics studies have contributed to considerable advances in the current understanding of the molecular implications of microbiota during insect development. In this review, we present an overview of the current knowledge about the mechanisms underlying interactions between developing insects and their microbial companions. The microbiota is implicated in nutrition, both via compensating for metabolic pathways lacking in the host and via regulating host metabolism. Furthermore, the microbiota plays a protective role, enhancing the insect's tolerance to, or resistance against, various environmental stresses.
Collapse
Affiliation(s)
- Estelle Chabanol
- Microbiota of Insect Vectors Group, Institut Pasteur de la Guyane, GF-97300 Cayenne, French Guiana
| | - Mathilde Gendrin
- Microbiota of Insect Vectors Group, Institut Pasteur de la Guyane, GF-97300 Cayenne, French Guiana.
| |
Collapse
|
4
|
Cui JQ, He ZQ, Chen K, Ntakirutimana S, Liu ZH, Bai H, Li BZ, Yuan YJ. Lignin-derived compounds assisted with Kocuria marina H-2 and Pseudomonas putida B6-2 co-culture enhanced naphthalene biodegradation. BIORESOURCE TECHNOLOGY 2024; 413:131512. [PMID: 39307473 DOI: 10.1016/j.biortech.2024.131512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 09/10/2024] [Accepted: 09/19/2024] [Indexed: 09/27/2024]
Abstract
The implementation of environmentally friendly and sustainable remediation strategies positively impacts solid waste management. In this study, the Kocuria marina H-2 and Pseudomonas putida B6-2 co-culture system demonstrated enhanced naphthalene biodegradation efficiency compared to single-strain cultures. Under optimal conditions of 35 °C, 200 rpm/min, and a 1:1 ratio of the co-culture system, the naphthalene biodegradation potential was further increased. Notably, the addition of both ethylenediamine-pretreated lignin and p-hydroxybenzoic acid significantly elevated naphthalene degradation rates to 68.5 %. In addition, the oil-liquid surface tension decreased, while cell surface hydrophobicity and colony-forming units increased with the addition of lignin-derived compounds. The modification of naphthalene bioavailability by ethylenediamine-pretreated lignin would accelerate the uptake and transport of hydrocarbons via ABC transporters and flagellar assembly. Importantly, genes related to bacterial chemotaxis and fatty acid biosynthesis were upregulated during the co-metabolism of naphthalene and p-hydroxybenzoic acid, further enhancing naphthalene bioconversion.
Collapse
Affiliation(s)
- Jia-Qi Cui
- Frontiers Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China; Frontiers Research Institute for Synthetic Biology, Tianjin University, China
| | - Zhi-Qiang He
- Frontiers Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China; Frontiers Research Institute for Synthetic Biology, Tianjin University, China
| | - Kai Chen
- Frontiers Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China; Frontiers Research Institute for Synthetic Biology, Tianjin University, China
| | - Samuel Ntakirutimana
- Frontiers Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China; Frontiers Research Institute for Synthetic Biology, Tianjin University, China
| | - Zhi-Hua Liu
- Frontiers Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China; Frontiers Research Institute for Synthetic Biology, Tianjin University, China
| | - He Bai
- Tianjin Huakan Environmental Protection Technol Co., Ltd, Tianjin 300170, China.
| | - Bing-Zhi Li
- Frontiers Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China; Frontiers Research Institute for Synthetic Biology, Tianjin University, China.
| | - Ying-Jin Yuan
- Frontiers Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China; Frontiers Research Institute for Synthetic Biology, Tianjin University, China
| |
Collapse
|
5
|
Visser B, Scheifler M. Insect Lipid Metabolism in the Presence of Symbiotic and Pathogenic Viruses and Bacteria. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024. [PMID: 39548000 DOI: 10.1007/5584_2024_833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2024]
Abstract
Insects, like most animals, have intimate interactions with microorganisms that can influence the insect host's lipid metabolism. In this chapter, we describe what is known so far about the role prokaryotic microorganisms play in insect lipid metabolism. We start exploring microbe-insect lipid interactions focusing on endosymbionts, and more specifically the gut microbiota that has been predominantly studied in Drosophila melanogaster. We then move on to an overview of the work done on the common and well-studied endosymbiont Wolbachia pipientis, also in interaction with other microbes. Taking a slightly different angle, we then look at the effect of human pathogens, including dengue and other viruses, on the lipids of mosquito vectors. We extend the work on human pathogens and include interactions with the endosymbiont Wolbachia that was identified as a natural tool to reduce the spread of mosquito-borne diseases. Research on lipid metabolism of plant disease vectors is up and coming and we end this chapter by highlighting current knowledge in that field.
Collapse
Affiliation(s)
- Bertanne Visser
- Evolution and Ecophysiology Group, Department of Functional and Evolutionary Entomology, University of Liège - Gembloux Agro-Bio Tech, Gembloux, Belgium
| | - Mathilde Scheifler
- Evolution and Ecophysiology Group, Department of Functional and Evolutionary Entomology, University of Liège - Gembloux Agro-Bio Tech, Gembloux, Belgium.
- Institut de Biologie de l'École Normale Supérieure (IBENS), École Normale Supérieure, CNRS, INSERM, Université PSL, Paris, France.
| |
Collapse
|
6
|
Shi F, Xing Y, Niu Y, Cheng L, Xu Y, Li X, Ren L, Zong S, Tao J. Unveiling winter survival strategies: physiological and metabolic responses to cold stress of Monochamus saltuarius larvae during overwintering. PEST MANAGEMENT SCIENCE 2024; 80:5656-5671. [PMID: 38979967 DOI: 10.1002/ps.8282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 05/18/2024] [Accepted: 06/20/2024] [Indexed: 07/10/2024]
Abstract
BACKGROUND Monochamus saltuarius is a destructive trunk-borer of pine forest and an effective dispersal vector for pinewood nematode (PWN), a causative agent of pine wilt disease (PWD), which leads to major ecological disasters. Cold winter temperatures determine insect survival and distribution. However, little is known about the cold tolerance and potential physiological mechanisms of M. saltuarius. RESULTS We demonstrated that dead Pinus koraiensis trunks do not provide larvae with insulation. The M. saltuarius larvae are freeze-tolerant species. Unlike most other freeze-tolerant insects, they can actively freeze extracellular fluid at higher subzero temperatures by increasing their supercooling points. The main energy sources for larvae overwintering are glycogen and the mid-late switch to lipid. The water balance showed a decrease in free and an increase in bound water of small magnitude. Cold stress promoted lipid peroxidation, thus activating the antioxidant system to prevent cold-induced oxidative damage. We found eight main pathways linked to cold stress and 39 important metabolites, ten of which are cryoprotectants, including maltose, UDP-glucose, d-fructose 6P, galactinol, dulcitol, inositol, sorbitol, l-methionine, sarcosine, and d-proline. The M. saltuarius larvae engage in a dual respiration process involving both anaerobic and aerobic pathways when their bodily fluids freeze. Cysteine and methionine metabolism, as well as alanine, aspartate, and glutamate metabolism, are the most important pathways linked to antioxidation and energy production. CONCLUSIONS The implications of our findings may help strengthen and supplement the management strategies for monitoring, quarantine, and control of this pest, thereby contributing to controlling the further spread of PWD. © 2024 Society of Chemical Industry.
Collapse
Affiliation(s)
- Fengming Shi
- State Key Laboratory to Efficient Production of Forest Resources, Beijing Forestry University, Beijing, China
| | - Yu Xing
- State Key Laboratory to Efficient Production of Forest Resources, Beijing Forestry University, Beijing, China
| | - Yiming Niu
- State Key Laboratory to Efficient Production of Forest Resources, Beijing Forestry University, Beijing, China
| | - Ling Cheng
- State Key Laboratory to Efficient Production of Forest Resources, Beijing Forestry University, Beijing, China
| | - Yabei Xu
- State Key Laboratory to Efficient Production of Forest Resources, Beijing Forestry University, Beijing, China
| | - Xinyu Li
- State Key Laboratory to Efficient Production of Forest Resources, Beijing Forestry University, Beijing, China
| | - Lili Ren
- State Key Laboratory to Efficient Production of Forest Resources, Beijing Forestry University, Beijing, China
| | - Shixiang Zong
- State Key Laboratory to Efficient Production of Forest Resources, Beijing Forestry University, Beijing, China
| | - Jing Tao
- Beijing Key Laboratory for Forest Pest Control, Beijing Forestry University, Beijing, China
| |
Collapse
|
7
|
Wang Y, Wang L, Li D, Chen Z, Luo Y, Zhou J, Luo B, Yan R, Liu H, Wang L. Advancements in the Impact of Insect Gut Microbiota on Host Feeding Behaviors. Genes (Basel) 2024; 15:1320. [PMID: 39457444 PMCID: PMC11507998 DOI: 10.3390/genes15101320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 10/06/2024] [Accepted: 10/12/2024] [Indexed: 10/28/2024] Open
Abstract
With the application and development of high-throughput sequencing technology, the structure and function of insect gut microbiota have been analysed, which lays a foundation for further exploring the intricate relationships between gut microbiota and host feeding behaviour. The microbial community in the insect gut, as an important ecological factor, affects the host's food selection and nutritional metabolic processes through various mechanisms, which play a key role in population dynamics and ecosystems. The implications of these interactions are profound, affecting agricultural practices, biodiversity, and the broader environment, such as pollination and pest control. In-depth exploration of the molecular mechanism of the interaction between gut microbiota and hosts contributes to the grasp of insect biology and evolution and offers novel avenues for manipulating insect behaviour for practical applications in agriculture and environmental management. This paper focuses on the possible mechanisms of insect gut microbiota regulating host feeding behaviour. It inspires further research on the interaction between gut microbiota and insects affecting host behaviour.
Collapse
Affiliation(s)
- Yikang Wang
- Department of Parasitology, Zunyi Medical University, Zunyi 563000, China; (Y.W.); (L.W.); (D.L.); (Z.C.); (Y.L.); (J.Z.); (B.L.); (R.Y.)
| | - Liang Wang
- Department of Parasitology, Zunyi Medical University, Zunyi 563000, China; (Y.W.); (L.W.); (D.L.); (Z.C.); (Y.L.); (J.Z.); (B.L.); (R.Y.)
| | - Di Li
- Department of Parasitology, Zunyi Medical University, Zunyi 563000, China; (Y.W.); (L.W.); (D.L.); (Z.C.); (Y.L.); (J.Z.); (B.L.); (R.Y.)
| | - Zhenfu Chen
- Department of Parasitology, Zunyi Medical University, Zunyi 563000, China; (Y.W.); (L.W.); (D.L.); (Z.C.); (Y.L.); (J.Z.); (B.L.); (R.Y.)
| | - Yang Luo
- Department of Parasitology, Zunyi Medical University, Zunyi 563000, China; (Y.W.); (L.W.); (D.L.); (Z.C.); (Y.L.); (J.Z.); (B.L.); (R.Y.)
| | - Juan Zhou
- Department of Parasitology, Zunyi Medical University, Zunyi 563000, China; (Y.W.); (L.W.); (D.L.); (Z.C.); (Y.L.); (J.Z.); (B.L.); (R.Y.)
| | - Bo Luo
- Department of Parasitology, Zunyi Medical University, Zunyi 563000, China; (Y.W.); (L.W.); (D.L.); (Z.C.); (Y.L.); (J.Z.); (B.L.); (R.Y.)
| | - Rong Yan
- Department of Parasitology, Zunyi Medical University, Zunyi 563000, China; (Y.W.); (L.W.); (D.L.); (Z.C.); (Y.L.); (J.Z.); (B.L.); (R.Y.)
| | - Hui Liu
- Department of Parasitology, Zunyi Medical University, Zunyi 563000, China; (Y.W.); (L.W.); (D.L.); (Z.C.); (Y.L.); (J.Z.); (B.L.); (R.Y.)
| | - Lingjun Wang
- Department of Parasitology, Zunyi Medical University, Zunyi 563000, China; (Y.W.); (L.W.); (D.L.); (Z.C.); (Y.L.); (J.Z.); (B.L.); (R.Y.)
- NHC Key Laboratory of Parasite and Vector Biology, National Institute of Parasitic Diseases, Chinese Center for Diseases Control and Prevention, Shanghai 200025, China
| |
Collapse
|
8
|
Shang LH, Cai XY, Li XJ, Wang YZ, Wang JD, Hou YM. Role of Gut Bacteria in Enhancing Host Adaptation of Tuta absoluta to Different Host Plants. INSECTS 2024; 15:795. [PMID: 39452371 PMCID: PMC11508330 DOI: 10.3390/insects15100795] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Revised: 10/06/2024] [Accepted: 10/11/2024] [Indexed: 10/26/2024]
Abstract
The insect gut bacteria play important roles in insect development and growth, such as immune defense, nutrient metabolism, regulating insect adaptations for plants, etc. The Tuta absoluta (Meyrick) is a destructive invasive pest that mainly feeds on solanaceae plants. However, the relationship between gut microflora and host adaption of T. absoluta remains to be known. In this study, we first compared the survival adaptability of T. absoluta feeding with two host plants (tomatoes and potatoes). The T. absoluta completed the generation cycle by feeding on the leaves of both plants. However, the larvae feeding on tomato leaves have shorter larvae durations, longer adult durations, and a greater number of egg production per female. After Single Molecular Real-Time (SMRT) sequencing, according to the LDA Effect Size (LEfSe) analysis, the gut bacterial biomarker of T. absoluta fed on tomato was Enterobacter cloacae and the gut bacterial biomarker of T. absoluta fed on potatoes was Staphylococcus gallinarum and Enterococcus gallinarum. Furthermore, a total of 6 and 7 culturable bacteria were isolated from the guts of tomato- and potato-treated T. absoluta, respectively. However, the isolated strains included bacterial biomarkers E. cloacae and S. gallinarum but not E. gallinarum. In addition, different stains bacterial biomarkers on T. absoluta feeding selection were also studied. E. cloacae enhanced the host preference of the SLTA (T. absoluta of tomato strain) for tomato but had no impact on STTA (T. absoluta of potato strain). S. gallinarum improved the host preference of STTA to a potato but did not affect SLTA. The results showed that the gut bacteria of T. absoluta were affected by exposure to different host plants, and the bacterial biomarkers played an important role in host adaptability. This study not only deepens our understanding of gut bacteria-mediated insect-plant interactions but also provides theoretical support for the development of environmentally friendly and effective agricultural pest control methods.
Collapse
Affiliation(s)
- Luo-Hua Shang
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Ministerial and Provincial Joint Innovation Centre for Safety Production of Cross-Strait Crops, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (L.-H.S.); (X.-Y.C.); (X.-J.L.); (Y.-Z.W.)
| | - Xiang-Yun Cai
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Ministerial and Provincial Joint Innovation Centre for Safety Production of Cross-Strait Crops, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (L.-H.S.); (X.-Y.C.); (X.-J.L.); (Y.-Z.W.)
| | - Xiu-Jie Li
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Ministerial and Provincial Joint Innovation Centre for Safety Production of Cross-Strait Crops, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (L.-H.S.); (X.-Y.C.); (X.-J.L.); (Y.-Z.W.)
| | - Yu-Zhou Wang
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Ministerial and Provincial Joint Innovation Centre for Safety Production of Cross-Strait Crops, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (L.-H.S.); (X.-Y.C.); (X.-J.L.); (Y.-Z.W.)
| | - Jin-Da Wang
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Ministerial and Provincial Joint Innovation Centre for Safety Production of Cross-Strait Crops, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (L.-H.S.); (X.-Y.C.); (X.-J.L.); (Y.-Z.W.)
- National Engineering Research Center of Sugarcane, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - You-Ming Hou
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Ministerial and Provincial Joint Innovation Centre for Safety Production of Cross-Strait Crops, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (L.-H.S.); (X.-Y.C.); (X.-J.L.); (Y.-Z.W.)
| |
Collapse
|
9
|
Han S, Akhtar MR, Xia X. Functions and regulations of insect gut bacteria. PEST MANAGEMENT SCIENCE 2024; 80:4828-4840. [PMID: 38884497 DOI: 10.1002/ps.8261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 06/03/2024] [Accepted: 06/05/2024] [Indexed: 06/18/2024]
Abstract
The insect gut is a complicated ecosystem that inhabits a large number of symbiotic bacteria. As an important organ of the host insect, the symbiotic bacteria of the insect gut play very important roles in regulating physiological and metabolic processes. Recently, much progress has been made in the study of symbiotic bacteria in insect guts with the development of high-throughput sequencing technology and molecular biology. This review summarizes the primary functions of symbiotic bacteria in insect guts, such as enhancing insecticide resistance, facilitating food digestion, promoting detoxification, and regulating mating behavior and egg hatching. It also addresses some possible pathways of gut bacteria symbiont regulation governed by external habitats, physiological conditions and immunity of the host insect. This review provides solid foundations for further studies on novel theories, new technologies and practical applications of symbiotic bacteria in insect guts. © 2024 Society of Chemical Industry.
Collapse
Affiliation(s)
- Shuncai Han
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Institute of Applied Ecology, Fujian Agriculture and Forestry University, Fuzhou, China
- Key Laboratory of Integrated Pest Management for Fujian-Taiwan Crops, Ministry of Agriculture and Rural Affairs of the People's Republic of China, Fujian Agriculture and Forestry University, Fuzhou, China
- Joint International Research Laboratory of Ecological Pest Control, Ministry of Education, Fuzhou, China
- Youxi-Yangzhong Vegetable Pest Prevention and Control, Fujian Observation and Research Station, Fuzhou, China
| | - Muhammad Rehan Akhtar
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Institute of Applied Ecology, Fujian Agriculture and Forestry University, Fuzhou, China
- Key Laboratory of Integrated Pest Management for Fujian-Taiwan Crops, Ministry of Agriculture and Rural Affairs of the People's Republic of China, Fujian Agriculture and Forestry University, Fuzhou, China
- Joint International Research Laboratory of Ecological Pest Control, Ministry of Education, Fuzhou, China
- Youxi-Yangzhong Vegetable Pest Prevention and Control, Fujian Observation and Research Station, Fuzhou, China
| | - Xiaofeng Xia
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Institute of Applied Ecology, Fujian Agriculture and Forestry University, Fuzhou, China
- Key Laboratory of Integrated Pest Management for Fujian-Taiwan Crops, Ministry of Agriculture and Rural Affairs of the People's Republic of China, Fujian Agriculture and Forestry University, Fuzhou, China
- Joint International Research Laboratory of Ecological Pest Control, Ministry of Education, Fuzhou, China
- Youxi-Yangzhong Vegetable Pest Prevention and Control, Fujian Observation and Research Station, Fuzhou, China
| |
Collapse
|
10
|
Chen LJ, Li ZZ, Liu W, Lyu B. Impact of high temperature and drought stress on the microbial community in wolf spiders. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 283:116801. [PMID: 39083866 DOI: 10.1016/j.ecoenv.2024.116801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Revised: 05/11/2024] [Accepted: 07/24/2024] [Indexed: 08/02/2024]
Abstract
High temperatures and drought present significant abiotic challenges that can limit the survival of many arthropods, including wolf spiders, which are ectothermic and play a crucial role in controlling pest populations. However, the impact of these stress factors on the microbiota of spiders remains poorly understood. In this study, we utilized 16 S rRNA gene sequencing to explore the diversity and composition of bacterial communities within Pardosa pseudoannulata under conditions of high temperature and drought stress. We found that Firmicutes, Bacteroidetes, and Proteobacteria were the predominant bacterial phyla present. Analyses of alpha diversity indicated an increase in bacterial diversity under combined stress conditions, as reflected by various diversity indices such as Ace, Chao1, Shannon, and Simpson. Furthermore, co-occurrence network analysis highlighted intricate interactions among the microbial taxa (e.g., Enterobacter, Chitinophaga, and Eubacterium), revealing the adaptive complexity of the spider's microbiome to environmental stress. Functional prediction analysis suggested that combined stress conditions might enhance key metabolic pathways, particularly those related to oxidative phosphorylation and amino acid metabolism. Using Random Forest analysis, we determined that changes in three heat shock proteins were largely attributed to variations in bacterial communities, with Firmicutes being notably influential. Collectively, this in-depth analysis offers novel insights into the responses of microbial communities within spider microbiomes to combined abiotic stresses, providing valuable information for understanding extreme climate impacts and informing ecological management strategies.
Collapse
Affiliation(s)
- Li-Jun Chen
- College of Agriculture and Forestry Ecology, Shaoyang University, Shaoyang 422000, China.
| | - Zhe-Zhi Li
- College of Agriculture and Forestry Ecology, Shaoyang University, Shaoyang 422000, China
| | - Wei Liu
- College of Urban and Environment Sciences, Hunan University of Technology, Zhuzhou 412007, China
| | - Bo Lyu
- Division of Plant Science and Technology, University of Missouri, Columbia, MO 65211, USA.
| |
Collapse
|
11
|
Wang WG, Li SL, Liu B, Tang N, Zhang C, Jiang XF, Tao LM, Xu WP, Zhang Y. Natural pyrethrins induce cytotoxicity in SH-SY5Y cells and neurotoxicity in zebrafish embryos (Danio rerio). ENVIRONMENTAL RESEARCH 2024; 257:119267. [PMID: 38815718 DOI: 10.1016/j.envres.2024.119267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 05/21/2024] [Accepted: 05/27/2024] [Indexed: 06/01/2024]
Abstract
Natural pyrethrins are widely used in agriculture because of their good insecticidal activity. Meanwhile, natural pyrethrins play an important role in the safety evaluation of pyrethroids as precursors for structural development of pyrethroid insecticides. However, there are fewer studies evaluating the neurological safety of natural pyrethrins on non-target organisms. In this study, we used SH-SY5Y cells and zebrafish embryos to explore the neurotoxicity of natural pyrethrins. Natural pyrethrins were able to induce SH-SY5Y cells damage, as evidenced by decreased viability, cycle block, apoptosis and DNA damage. The apoptotic pathway may be related to the involvement of mitochondria and the results showed that natural pyrethrins induced a rise in Capase-3 viability, Ca2+ overload, a decrease in adenosine triphosphate (ATP) and a collapse of mitochondrial membrane potential in SH-SY5Y cells. Natural pyrethrins may mediate DNA damage in SH-SY5Y cells through oxidative stress. The results showed that natural pyrethrins induced an increase in reactive oxygen species (ROS) levels, superoxide dismutase (SOD) activity, malondialdehyde (MDA) content and catalase (CAT) activity, and induced a decrease in glutathione peroxidase (GPx) activity in SH-SY5Y cells. In vivo, natural pyrethrins induced developmental malformations in zebrafish embryos, which were mainly characterized by pericardial edema and yolk sac edema. Meanwhile, the results showed that natural pyrethrins induced damage to the Huc-GFP axis and disturbed lipid metabolism in the head of zebrafish embryos. Further results showed elevated ROS levels and apoptosis in the head of zebrafish embryos, which corroborated with the results of the cell model. Finally, the results of mRNA expression assay of neurodevelopment-related genes indicated that natural pyrethrins exposure interfered with their expression and led to neurodevelopmental damage in zebrafish embryos. Our study may raise concerns about the neurological safety of natural pyrethrins on non-target organisms.
Collapse
Affiliation(s)
- Wei-Guo Wang
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai, 200237, China
| | - Shou-Lin Li
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai, 200237, China
| | - Bin Liu
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai, 200237, China; Qingpu District Agro-Technology Extension Service Center, Shanghai, 201799, China
| | - Ning Tang
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai, 200237, China
| | - Cheng Zhang
- Department of Pathology, UT Southwestern Medical Center, Dallas, TX, 75390, United States
| | - Xu-Feng Jiang
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai, 200237, China
| | - Li-Ming Tao
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai, 200237, China
| | - Wen-Ping Xu
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai, 200237, China
| | - Yang Zhang
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai, 200237, China.
| |
Collapse
|
12
|
Wang X, Huangfu N, Chen L, Zhang K, Li D, Gao X, Li B, Wang L, Zhu X, Ji J, Luo J, Cui J. Effects of developmental stages, sex difference, and diet types of the host marmalade hoverfly ( Episyrphus balteatus) on symbiotic bacteria. Front Microbiol 2024; 15:1433909. [PMID: 39296285 PMCID: PMC11408942 DOI: 10.3389/fmicb.2024.1433909] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Accepted: 08/07/2024] [Indexed: 09/21/2024] Open
Abstract
Introduction Symbiotic bacteria play key roles in a variety of important life processes of insects such as development, reproduction and environmental adaptation, and the elucidation of symbiont population structure and dynamics is crucial for revealing the underlying regulatory mechanisms. The marmalade hoverfly (Episyrphus balteatus) is not only a remarkable aphid predator, but also a worldwide pollinator second to honeybees. However, its symbiont composition and dynamics remain unclear. Methods Herein, we investigate the symbiotic bacterial dynamics in marmalade hoverfly throughout whole life cycle, across two sexes, and in its prey Megoura crassicauda by 16S rRNA sequencing. Results In general, the dominant phyla were Proteobacteria and Firmicutes, and the dominant genera were Serratia and Wolbachia. Serratia mainly existed in the larval stage of hoverfly with the highest relative abundance of 86.24% in the 1st instar larvae. Wolbachia was found in adults and eggs with the highest relative abundance of 62.80% in eggs. Significant difference in species diversity was observed between the adults feeding on pollen and larvae feeding on M. crassicauda, in which the dominant symbiotic bacteria were Asaia and Serratia, respectively. However, between two sexes, the symbionts exhibited high similarity in species composition. In addition, our results suggested that E. balteatus obtainded Serratia mainly through horizontal transmission by feeding on prey aphids, whereas it acquired Wolbachia mainly through intergeneration vertical transmission. Taken together, our study revealed the effects of development stages, diet types and genders of E. balteatus on symbionts, and explored transmission modes of dominant bacteria Serratia and Wolbachia. Discussion Our findings lay a foundation for further studying the roles of symbiotic bacteria in E. balteatus life cycle, which will benefit for revealing the co-adaptation mechanisms of insects and symbiotic bacteria.
Collapse
Affiliation(s)
- Xiaoyun Wang
- State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, China
- Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Ningbo Huangfu
- State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, China
- Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Lulu Chen
- Xinjiang Tianyu Agricultural Science Modern Agricultural Industrialization Development Co., Ltd., Xinjiang, China
| | - Kaixin Zhang
- State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, China
- Western Agricultural Research Center, Chinese Academy of Agricultural Sciences, Changji, China
| | - Dongyang Li
- State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, China
- Western Agricultural Research Center, Chinese Academy of Agricultural Sciences, Changji, China
| | - Xueke Gao
- State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, China
| | - Bingbing Li
- Key Laboratory of Plant Stress Biology, College of Life Sciences, Henan University, Kaifeng, Henan, China
| | - Li Wang
- State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, China
- Western Agricultural Research Center, Chinese Academy of Agricultural Sciences, Changji, China
| | - Xiangzhen Zhu
- State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, China
- Western Agricultural Research Center, Chinese Academy of Agricultural Sciences, Changji, China
| | - Jichao Ji
- State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, China
- Western Agricultural Research Center, Chinese Academy of Agricultural Sciences, Changji, China
- Zhengzhou Research Base, National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, School of Agricultural Sciences, Zhengzhou University, Zhengzhou, China
| | - Junyu Luo
- State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, China
- Western Agricultural Research Center, Chinese Academy of Agricultural Sciences, Changji, China
- Zhengzhou Research Base, National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, School of Agricultural Sciences, Zhengzhou University, Zhengzhou, China
| | - Jinjie Cui
- State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, China
- Western Agricultural Research Center, Chinese Academy of Agricultural Sciences, Changji, China
- Zhengzhou Research Base, National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, School of Agricultural Sciences, Zhengzhou University, Zhengzhou, China
| |
Collapse
|
13
|
Flores JA, Antonio JM, Suntornsaratoon P, Meadows V, Bandyopadhyay S, Han J, Singh R, Balasubramanian I, Upadhyay R, Liu Y, Bonder EM, Kiela P, Su X, Ferraris R, Gao N. The arginine and nitric oxide metabolic pathway regulate the gut colonization and expansion of Ruminococcous gnavus. J Biol Chem 2024; 300:107614. [PMID: 39089585 PMCID: PMC11387683 DOI: 10.1016/j.jbc.2024.107614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 07/08/2024] [Accepted: 07/11/2024] [Indexed: 08/04/2024] Open
Abstract
Ruminococcus gnavus is a mucolytic commensal bacterium whose increased gut colonization has been associated with chronic inflammatory and metabolic diseases in humans. Whether R. gnavus metabolites can modulate host intestinal physiology remains largely understudied. We performed untargeted metabolomic and bulk RNA-seq analyses using R. gnavus monocolonization in germ-free mice. Based on transcriptome-metabolome correlations, we tested the impact of specific arginine metabolites on intestinal epithelial production of nitric oxide (NO) and examined the effect of NO on the growth of various strains of R. gnavus in vitro and in nitric oxide synthase 2 (Nos2)-deficient mice. R. gnavus produces specific arginine, tryptophan, and tyrosine metabolites, some of which are regulated by the environmental richness of sialic acid and mucin. R. gnavus colonization promotes expression of amino acid transporters and enzymes involved in metabolic flux of arginine and associated metabolites into NO. R. gnavus induced elevated levels of NOS2, while Nos2 ablation resulted in R. gnavus expansion in vivo. The growth of various R. gnavus strains can be inhibited by NO. Specific R. gnavus metabolites modulate intestinal epithelial cell NOS2 abundance and reduce epithelial barrier function at higher concentrations. Intestinal colonization and interaction with R. gnavus are partially regulated by an arginine-NO metabolic pathway, whereby a balanced control by the gut epithelium may restrain R. gnavus growth in healthy individuals. Disruption in this arginine metabolic regulation will contribute to the expansion and blooming of R. gnavus.
Collapse
Affiliation(s)
- Juan A Flores
- Department of Biological Sciences, Rutgers University, Newark, New Jersey, USA
| | - Jayson M Antonio
- Department of Pharmacology, Physiology and Neurosciences, New Jersey Medical School, Rutgers University, Newark, New Jersey, USA
| | - Panan Suntornsaratoon
- Department of Pharmacology, Physiology and Neurosciences, New Jersey Medical School, Rutgers University, Newark, New Jersey, USA
| | - Vik Meadows
- Department of Biological Sciences, Rutgers University, Newark, New Jersey, USA; Department of Pharmacology, Physiology and Neurosciences, New Jersey Medical School, Rutgers University, Newark, New Jersey, USA
| | | | - Jiangmeng Han
- Department of Biological Sciences, Rutgers University, Newark, New Jersey, USA; Department of Pharmacology, Physiology and Neurosciences, New Jersey Medical School, Rutgers University, Newark, New Jersey, USA
| | - Rajbir Singh
- Department of Biological Sciences, Rutgers University, Newark, New Jersey, USA
| | | | - Ravij Upadhyay
- Department of Pharmacology, Physiology and Neurosciences, New Jersey Medical School, Rutgers University, Newark, New Jersey, USA
| | - Yue Liu
- Department of Biological Sciences, Rutgers University, Newark, New Jersey, USA
| | - Edward M Bonder
- Department of Biological Sciences, Rutgers University, Newark, New Jersey, USA
| | - Pawel Kiela
- Daniel Cracchiolo Institute for Pediatric Autoimmune Disease Research, Steele Children's Research Center, Department of Pediatrics, University of Arizona, Tucson, Arizona, USA
| | - Xiaoyang Su
- Department of Medicine, Robert Wood Johnson Medical School, Rutgers University, New Brunswick, New Jersey, USA
| | - Ronaldo Ferraris
- Department of Pharmacology, Physiology and Neurosciences, New Jersey Medical School, Rutgers University, Newark, New Jersey, USA.
| | - Nan Gao
- Department of Biological Sciences, Rutgers University, Newark, New Jersey, USA; Department of Pharmacology, Physiology and Neurosciences, New Jersey Medical School, Rutgers University, Newark, New Jersey, USA.
| |
Collapse
|
14
|
Li Z, Li Y, Liang Y, Qi Y, Lu Y, Ma J. Population Dynamics of Bactrocera dorsalis (Diptera: Tephritidae) in Four Counties of Yunnan, China, by Electronic Monitoring System. INSECTS 2024; 15:621. [PMID: 39194825 DOI: 10.3390/insects15080621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 08/01/2024] [Accepted: 08/14/2024] [Indexed: 08/29/2024]
Abstract
Bactrocera dorsalis (Hendel) (Diptera: Tephritidae) is a global economic pest that poses a serious threat to the fruit industry. In the southwest of China, Yunnan Province sustains a severe infestation of B. dorsalis. An automated monitoring system designed for B. dorsalis was employed in this study to elucidate the annual population dynamics of B. dorsalis in four counties: Yuanjiang, Huaping, Guangnan, and Ludian in Yunnan. The system utilizes sex parapheromone and image recognition technology. The data uploaded by the device are used to analyze the annual population dynamics of B. dorsalis in different regions. The results showed that the populations of adult B. dorsalis in all four counties peaked twice annually, with Yuanjiang experiencing the earliest peak periods, followed by Huaping, Guangnan, and Ludian. Adult B. dorsalis occurred in Yuanjiang throughout the year, and Yuanjiang had the highest number of B. dorsalis monitored. In Huaping, adult B. dorsalis occurred in March-December and was highly active, with a high population density in 2019. Bactrocera dorsalis did not occur in December in Guangnan but only in May-October in Ludian. Bactrocera dorsalis abundance was correlated with temperature in all four areas. The outcomes of this experiment provide a practical foundation for developing control strategies targeting B. dorsalis in various orchards across each county.
Collapse
Affiliation(s)
- Ziyuan Li
- College of Plant Protection, South China Agricultural University, Guangzhou 510642, China
| | - Yan Li
- Yunnan Plant Protection and Quarantine Station, Kunming 650034, China
| | - Yuling Liang
- College of Plant Protection, South China Agricultural University, Guangzhou 510642, China
| | - Yixiang Qi
- College of Plant Protection, South China Agricultural University, Guangzhou 510642, China
| | - Yongyue Lu
- College of Plant Protection, South China Agricultural University, Guangzhou 510642, China
| | - Jiao Ma
- Honghe Academy of Agricultural Sciences, Honghe 651400, China
| |
Collapse
|
15
|
Juefeng Z, Fang L, Haiying Z, Liwei L, Jianming C. Integrated microbiome and metabolomic analysis of Spodoptera litura under Metarhizium flavoviride qc1401 stress. Int Microbiol 2024:10.1007/s10123-024-00574-y. [PMID: 39145832 DOI: 10.1007/s10123-024-00574-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 05/07/2024] [Accepted: 08/01/2024] [Indexed: 08/16/2024]
Abstract
Metarhizium spp. have emerged as an alternative to chemical pesticides for protecting crops from insect pest. Here, we investigated midgut microbial community and metabolites of Spodoptera litura at three different timepoints after infection with Metarhizium flavoviride. The innate immune system of S. litura was activated with levels of polyphenol oxidase, carboxylesterase, multifunctional oxidase, and glutathione S-transferase activity significantly increasing. Exposure to the fungal pathogen also altered bacterial abundance and diversity in host's midgut, and these changes varied depending on the time elapsed since exposure. We identified more operational taxonomic units in the treated samples as compared to the control samples at all tested time points. A total of 372 metabolites were identified, and 88, 149, and 142 differentially accumulated metabolites (DAMs) were identified between the treatment and control groups at 3 timepoints after treatment, respectively. Based on the changes of DAMs in response to M. flavoviride infection at different timepoints and significantly enriched KEGG pathways, we speculated that "tyrosine metabolism," "galactose metabolism," "ATP-binding cassette transporters," "neuroactive ligand-receptor interaction," "purine metabolism," "arginine and proline metabolism," "beta-alanine metabolism," "lysosome," and "carbon metabolism" may participate in the metabolic-level defense response. An integrated pathway-level analysis of the 16S-rDNA and metabolomic data illustrated the connections and interdependencies between the metabolic responses of S. litura and the midgut microorganisms to M. flavoviride infection. This work emphasizes the value of integrated analyses of insect-pathogen interactions, provides a framework for future studies of critical microorganisms and metabolic determinants of these interactions, establishes a theoretical basis for the sustainable use of M. flavoviride.
Collapse
Affiliation(s)
- Zhang Juefeng
- Institute of Plant Protection and Microbiology, Zhejiang Academy of Agricultural Sciences, Hangzhou, Zhejiang, China.
| | - Li Fang
- Institute of Plant Protection and Microbiology, Zhejiang Academy of Agricultural Sciences, Hangzhou, Zhejiang, China
| | - Zhong Haiying
- Institute of Plant Protection and Microbiology, Zhejiang Academy of Agricultural Sciences, Hangzhou, Zhejiang, China
| | - Liu Liwei
- Zhejiang Natural Museum, Hangzhou, Zhejiang, China
| | - Chen Jianming
- Institute of Plant Protection and Microbiology, Zhejiang Academy of Agricultural Sciences, Hangzhou, Zhejiang, China
| |
Collapse
|
16
|
Aagaard A, Bechsgaard J, Sørensen JG, Sandfeld T, Settepani V, Bird TL, Lund MB, Malmos KG, Falck-Rasmussen K, Darolti I, Nielsen KL, Johannsen M, Vosegaard T, Tregenza T, Verhoeven KJF, Mank JE, Schramm A, Bilde T. Molecular Mechanisms of Temperature Tolerance Plasticity in an Arthropod. Genome Biol Evol 2024; 16:evae165. [PMID: 39058286 DOI: 10.1093/gbe/evae165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Accepted: 07/11/2024] [Indexed: 07/28/2024] Open
Abstract
How species thrive in a wide range of environments is a major focus of evolutionary biology. For many species, limited genetic diversity or gene flow among habitats means that phenotypic plasticity must play an important role in their capacity to tolerate environmental heterogeneity and to colonize new habitats. However, we have a limited understanding of the molecular components that govern plasticity in ecologically relevant phenotypes. We examined this hypothesis in a spider species (Stegodyphus dumicola) with extremely low species-wide genetic diversity that nevertheless occupies a broad range of thermal environments. We determined phenotypic responses to temperature stress in individuals from four climatic zones using common garden acclimation experiments to disentangle phenotypic plasticity from genetic adaptations. Simultaneously, we created data sets on multiple molecular modalities: the genome, the transcriptome, the methylome, the metabolome, and the bacterial microbiome to determine associations with phenotypic responses. Analyses of phenotypic and molecular associations reveal that acclimation responses in the transcriptome and metabolome correlate with patterns of phenotypic plasticity in temperature tolerance. Surprisingly, genes whose expression seemed to be involved in plasticity in temperature tolerance were generally highly methylated contradicting the idea that DNA methylation stabilizes gene expression. This suggests that the function of DNA methylation in invertebrates varies not only among species but also among genes. The bacterial microbiome was stable across the acclimation period; combined with our previous demonstrations that the microbiome is temporally stable in wild populations, this is convincing evidence that the microbiome does not facilitate plasticity in temperature tolerance. Our results suggest that population-specific variation in temperature tolerance among acclimation temperatures appears to result from the evolution of plasticity in mainly gene expression.
Collapse
Affiliation(s)
- Anne Aagaard
- Section for Genetics, Ecology and Evolution, Centre for EcoGenetics, Department of Biology, Aarhus University, Aarhus C, Denmark
| | - Jesper Bechsgaard
- Section for Genetics, Ecology and Evolution, Centre for EcoGenetics, Department of Biology, Aarhus University, Aarhus C, Denmark
| | - Jesper Givskov Sørensen
- Section for Genetics, Ecology and Evolution, Centre for EcoGenetics, Department of Biology, Aarhus University, Aarhus C, Denmark
| | - Tobias Sandfeld
- Section for Microbiology, Department of Biology, Aarhus University, Aarhus C, Denmark
| | - Virginia Settepani
- Section for Genetics, Ecology and Evolution, Centre for EcoGenetics, Department of Biology, Aarhus University, Aarhus C, Denmark
| | - Tharina L Bird
- General Entomology, DITSONG: National Museum of Natural History, Pretoria, South Africa
- Department of Zoology and Entomology, University of Pretoria, Pretoria, South Africa
- Department of Arachnology and Myriapodology, National Museum of Namibia, Windhoek, Namibia
| | - Marie Braad Lund
- Section for Microbiology, Department of Biology, Aarhus University, Aarhus C, Denmark
| | - Kirsten Gade Malmos
- Interdisciplinary Nanoscience Center (iNANO), Aarhus University, Aarhus C, Denmark
| | - Kasper Falck-Rasmussen
- Section for Genetics, Ecology and Evolution, Centre for EcoGenetics, Department of Biology, Aarhus University, Aarhus C, Denmark
| | - Iulia Darolti
- Department of Zoology and Biodiversity Research Centre, University of British Columbia, Vancouver, British Columbia, Canada
- Department of Ecology and Evolution, University of Lausanne, Lausanne, Switzerland
| | | | - Mogens Johannsen
- Department of Forensic Medicine, Aarhus University, Aarhus N, Denmark
| | - Thomas Vosegaard
- Interdisciplinary Nanoscience Center (iNANO), Aarhus University, Aarhus C, Denmark
- Department of Chemistry, Aarhus University, Aarhus C, Denmark
| | - Tom Tregenza
- Centre for Ecology and Conservation, University of Exeter, Penryn Campus, Penryn TR109FE, UK
| | - Koen J F Verhoeven
- Terrestrial Ecology Department, Netherlands Institute of Ecology (NIOO-KNAW), Wageningen 6708 PB, The Netherlands
| | - Judith E Mank
- Department of Zoology and Biodiversity Research Centre, University of British Columbia, Vancouver, British Columbia, Canada
| | - Andreas Schramm
- Section for Microbiology, Department of Biology, Aarhus University, Aarhus C, Denmark
| | - Trine Bilde
- Section for Genetics, Ecology and Evolution, Centre for EcoGenetics, Department of Biology, Aarhus University, Aarhus C, Denmark
- Centre for Ecology and Conservation, University of Exeter, Penryn Campus, Penryn TR109FE, UK
| |
Collapse
|
17
|
Shan HW, Xia XJ, Feng YL, Wu W, Li HJ, Sun ZT, Li JM, Chen JP. The plant-sucking insect selects assembly of the gut microbiota from environment to enhance host reproduction. NPJ Biofilms Microbiomes 2024; 10:64. [PMID: 39080326 PMCID: PMC11289440 DOI: 10.1038/s41522-024-00539-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Accepted: 07/22/2024] [Indexed: 08/02/2024] Open
Abstract
Plant-sucking insects have intricate associations with a diverse array of microorganisms to facilitate their adaptation to specific ecological niches. The midgut of phytophagous true bugs is generally structured into four distinct compartments to accommodate their microbiota. Nevertheless, there is limited understanding regarding the origins of these gut microbiomes, the mechanisms behind microbial community assembly, and the interactions between gut microbiomes and their insect hosts. In this study, we conducted a comprehensive survey of microbial communities within the midgut compartments of a bean bug Riptortus pedestris, soybean plant, and bulk soil across 12 distinct geographical fields in China, utilizing high-throughput sequencing of the 16 S rRNA gene. Our findings illuminated that gut microbiota of the plant-sucking insects predominantly originated from the surrounding soil environment, and plants also play a subordinate role in mediating microbial acquisition for the insects. Furthermore, our investigation suggested that the composition of the insect gut microbiome was probably shaped by host selection and/or microbe-microbe interactions at the gut compartment level, with marginal influence from soil and geographical factors. Additionally, we had unveiled a noteworthy dynamic in the acquisition of core bacterial taxa, particularly Burkholderia, which were initially sourced from the environment and subsequently enriched within the insect midgut compartments. This bacterial enrichment played a significant role in enhancing insect host reproduction. These findings contribute to our evolving understanding of microbiomes within the insect-plant-soil ecosystem, shedding additional light on the intricate interactions between insects and their microbiomes that underpin the ecological significance of microbial partnerships in host adaptation.
Collapse
Affiliation(s)
- Hong-Wei Shan
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Biotechnology in Plant Protection of MARA and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo, 315211, China.
| | - Xie-Jiang Xia
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Biotechnology in Plant Protection of MARA and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo, 315211, China
| | - Yi-Lu Feng
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Biotechnology in Plant Protection of MARA and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo, 315211, China
| | - Wei Wu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Biotechnology in Plant Protection of MARA and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo, 315211, China
| | - Hong-Jie Li
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Biotechnology in Plant Protection of MARA and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo, 315211, China
| | - Zong-Tao Sun
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Biotechnology in Plant Protection of MARA and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo, 315211, China
| | - Jun-Min Li
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Biotechnology in Plant Protection of MARA and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo, 315211, China
| | - Jian-Ping Chen
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Biotechnology in Plant Protection of MARA and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo, 315211, China.
| |
Collapse
|
18
|
Zhu Y, Han R, Zhang T, Yang J, Teng Z, Fan Y, Sun P, Lu Y, Ren Y, Wan F, Zhou H. The Food Source and Gut Bacteria Show Effects on the Invasion of Alien Pests-A Case of Bactrocera dorsalis (Hendel) (Diptera: Tephritidae). INSECTS 2024; 15:530. [PMID: 39057264 PMCID: PMC11277068 DOI: 10.3390/insects15070530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2024] [Revised: 07/11/2024] [Accepted: 07/11/2024] [Indexed: 07/28/2024]
Abstract
How alien pests invade new areas has always been a hot topic in invasion biology. The spread of the Bactrocera dorsalis from southern to northern China involved changes in food sources. In this paper, in controlled conditions, we take Bactrocera dorsalis as an example to study how plant host transformation affects gut bacteria by feeding it its favorite host oranges in the south, its favorite host peaches and apples in the north, and feeding it cucumbers as a non-favorite host plant, thereby further affecting their fitness during invasion. The result showed that, after three generations of feeding on cucumbers, Bactrocera dorsalis took longer to develop as a larva while its longevity and fecundity decreased and pre-adult mortality increased. Feeding it cucumbers significantly reduced the overall diversity of gut microbiota of Bactrocera dorsalis. The relative abundance of Enterobacter necessary for survival decreased, while the Empedobacter and Enterococcus increased, resulting in decreased carbohydrate transport and metabolism and increased lipid transport and metabolism. Feeding Bactrocera dorsalis Empedobacter brevis and Enterococcus faecalis resulted in a 26% increase in pre-adult mortality and a 2-3 d increase in adult preoviposition period (APOP). Additionally, Enterococcus faecalis decreased the longevity of female and male adults by 17 and 12 d, respectively, and decreased fecundity by 11%. We inferred that the shifted plant hosts played an important role in posing serious harm to Bactrocera dorsalis invading from the south to the north. Therefore, after an invasion of Bactrocera dorsalis into northern China, it is difficult to colonize cucumbers for a long time, but there is still a risk of short-term harm. The findings of this study have established that the interactions between an insect's food source and gut bacteria may have an important effect on insect invasions.
Collapse
Affiliation(s)
- Yanfei Zhu
- Shandong Engineering Research Center for Environment-Friendly Agricultural Pest Management, Shandong Province Centre for Bio-Invasions and Eco-Security, China-Australia Cooperative Research Center for Crop Health and Biological Invasions, College of Plant Health and Medicine, Qingdao Agricultural University, Qingdao 266109, China; (Y.Z.); (R.H.); (T.Z.); (J.Y.); (Z.T.); (Y.F.); (F.W.)
| | - Rui Han
- Shandong Engineering Research Center for Environment-Friendly Agricultural Pest Management, Shandong Province Centre for Bio-Invasions and Eco-Security, China-Australia Cooperative Research Center for Crop Health and Biological Invasions, College of Plant Health and Medicine, Qingdao Agricultural University, Qingdao 266109, China; (Y.Z.); (R.H.); (T.Z.); (J.Y.); (Z.T.); (Y.F.); (F.W.)
| | - Tong Zhang
- Shandong Engineering Research Center for Environment-Friendly Agricultural Pest Management, Shandong Province Centre for Bio-Invasions and Eco-Security, China-Australia Cooperative Research Center for Crop Health and Biological Invasions, College of Plant Health and Medicine, Qingdao Agricultural University, Qingdao 266109, China; (Y.Z.); (R.H.); (T.Z.); (J.Y.); (Z.T.); (Y.F.); (F.W.)
| | - Jiawen Yang
- Shandong Engineering Research Center for Environment-Friendly Agricultural Pest Management, Shandong Province Centre for Bio-Invasions and Eco-Security, China-Australia Cooperative Research Center for Crop Health and Biological Invasions, College of Plant Health and Medicine, Qingdao Agricultural University, Qingdao 266109, China; (Y.Z.); (R.H.); (T.Z.); (J.Y.); (Z.T.); (Y.F.); (F.W.)
| | - Ziwen Teng
- Shandong Engineering Research Center for Environment-Friendly Agricultural Pest Management, Shandong Province Centre for Bio-Invasions and Eco-Security, China-Australia Cooperative Research Center for Crop Health and Biological Invasions, College of Plant Health and Medicine, Qingdao Agricultural University, Qingdao 266109, China; (Y.Z.); (R.H.); (T.Z.); (J.Y.); (Z.T.); (Y.F.); (F.W.)
| | - Yinjun Fan
- Shandong Engineering Research Center for Environment-Friendly Agricultural Pest Management, Shandong Province Centre for Bio-Invasions and Eco-Security, China-Australia Cooperative Research Center for Crop Health and Biological Invasions, College of Plant Health and Medicine, Qingdao Agricultural University, Qingdao 266109, China; (Y.Z.); (R.H.); (T.Z.); (J.Y.); (Z.T.); (Y.F.); (F.W.)
| | - Pengdong Sun
- Special Food Research Institute, Qingdao Agricultural University, Qingdao 266109, China;
| | - Yongyue Lu
- Department of Entomology, South China Agricultural University, Guangzhou 510642, China;
| | - Yonglin Ren
- College of Environmental and Life Sciences, Murdoch University, Murdoch, WA 6150, Australia;
| | - Fanghao Wan
- Shandong Engineering Research Center for Environment-Friendly Agricultural Pest Management, Shandong Province Centre for Bio-Invasions and Eco-Security, China-Australia Cooperative Research Center for Crop Health and Biological Invasions, College of Plant Health and Medicine, Qingdao Agricultural University, Qingdao 266109, China; (Y.Z.); (R.H.); (T.Z.); (J.Y.); (Z.T.); (Y.F.); (F.W.)
- Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 510642, China
| | - Hongxu Zhou
- Shandong Engineering Research Center for Environment-Friendly Agricultural Pest Management, Shandong Province Centre for Bio-Invasions and Eco-Security, China-Australia Cooperative Research Center for Crop Health and Biological Invasions, College of Plant Health and Medicine, Qingdao Agricultural University, Qingdao 266109, China; (Y.Z.); (R.H.); (T.Z.); (J.Y.); (Z.T.); (Y.F.); (F.W.)
| |
Collapse
|
19
|
Li N, Yuan Q, Qi Y, Wu P, Cui S, Zheng G. The Potential Implications of Sex-Specific Differences in the Intestinal Bacteria of the Overwintering Wolf Spider Pardosa astrigera (Araneae: Lycosidae). INSECTS 2024; 15:490. [PMID: 39057223 PMCID: PMC11276740 DOI: 10.3390/insects15070490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 06/21/2024] [Accepted: 06/27/2024] [Indexed: 07/28/2024]
Abstract
Gut microbiota can promote the resistance of host arthropods to low-temperature stress. Female Pardosa astrigera have a lower anti-freeze compound level and weaker resistance to cold temperatures than the males in winter, which implies that their intestinal bacteria may be different during overwintering. This study primarily compared the intestinal bacterial communities between the two sexes of P. astrigera in a temperate region using 16S rRNA gene sequencing. Our findings indicated that the Chao1 and Shannon indices of intestinal bacteria in females were significantly higher than those in males, while the Simpson index in females was significantly lower than that in males. The male intestinal bacterial community was characterized by Proteobacteria and Actinobacteriota at the phylum level and by Pseudomonas and Rhodococcus at the genus level, with total relative abundances of 89.58% and 85.22%, respectively, which were also significantly higher than those in females, whose total relative abundances were 47.49% and 43.68%, respectively. In contrast, the total relative abundances of Bacteroidota and Firmicutes were significantly lower in males (4.26% and 4.75%, respectively) than in females (26.25% and 22.31%, respectively). Noteworthy divergences in bacterial communities were also found through an LEfSe analysis between females and males. Additionally, the results of the PICRUSt2 analysis showed that six out of eleven level-2 pathways related to key metabolic functions were significantly (or marginally significantly) higher in females than males, and five other level-2 pathways were significantly (or marginally significantly) lower in females than males. Our results imply that significant gender differences exist in intestinal bacterial communities of overwintering P. astrigera. We suggest that Pseudomonas versuta (belonging to Proteobacteria) and Rhodococcus erythropolis (belonging to Actinobacteriota) may have the potential to play key roles in overwintering P. astrigera.
Collapse
Affiliation(s)
- Ningkun Li
- College of Life Science, Shenyang Normal University, Shenyang 110034, China
| | - Quan Yuan
- College of Life Science, Shenyang Normal University, Shenyang 110034, China
| | - Yaru Qi
- College of Life Science, Shenyang Normal University, Shenyang 110034, China
| | - Pengfeng Wu
- College of Life Science, Shenyang Normal University, Shenyang 110034, China
| | - Shuyan Cui
- College of Life Science, Shenyang Normal University, Shenyang 110034, China
| | - Guo Zheng
- College of Life Science, Shenyang Normal University, Shenyang 110034, China
- Liaoning Key Laboratory for Biological Evolution and Agricultural Ecology, Shenyang 110034, China
| |
Collapse
|
20
|
Li D, Wang L, Wang L, Gou Y, Luo B, Yan R, Liu H. The species and abundance of gut bacteria both positively impact Phortica okadai behavior. Parasit Vectors 2024; 17:217. [PMID: 38734668 PMCID: PMC11088764 DOI: 10.1186/s13071-024-06297-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Accepted: 04/22/2024] [Indexed: 05/13/2024] Open
Abstract
BACKGROUND Gut bacteria, which serve as essential modulators, exert a significant impact on insect physiology and behavior and have substantial application potential in pest management. The dynamics of gut bacteria and their impact on Phortica okadai behavior remain unclear. METHODS In this study, the dynamics of gut bacteria at different developmental stages in P. okadai were analyzed using 16S ribosomal RNA (rRNA) gene sequencing, and the species and abundance of gut bacteria that affect host behavior were examined via behavioral experiments. RESULTS A total of 19 phyla, 29 classes, 74 orders, 101 species, and 169 genera were identified. The results of the behavioral experiments indicated that the species Lactiplantibacillus argentoratensis, Acetobacter tropicalis, Leuconostoc citreum, and Levilactobacillus brevis effectively influenced the feeding preference of P. okadai, and the single-bacterium-seeded P. okadai exhibited feeding preferences distinct from those of the germ-free (GF) and wild-type P. okadai. CONCLUSIONS The species and relative abundance of gut bacteria together positively impact P. okadai behavior. Lactiplantibacillus argentoratensis, as the most attractive bacteria to P. okadai, presents opportunities for novel pest control strategies targeting this vector and agricultural pest.
Collapse
Affiliation(s)
- Di Li
- Department of Parasitology, Zunyi Medical University, Zunyi, 563000, China
| | - Lingjun Wang
- Department of Parasitology, Zunyi Medical University, Zunyi, 563000, China
- NHC Key Laboratory of Parasite and Vector Biology, National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention, Shanghai, 200025, China
| | - Liang Wang
- Department of Parasitology, Zunyi Medical University, Zunyi, 563000, China
| | - Yanting Gou
- Department of Parasitology, Zunyi Medical University, Zunyi, 563000, China
| | - Bo Luo
- Department of Parasitology, Zunyi Medical University, Zunyi, 563000, China
| | - Rong Yan
- Department of Parasitology, Zunyi Medical University, Zunyi, 563000, China
| | - Hui Liu
- Department of Parasitology, Zunyi Medical University, Zunyi, 563000, China.
| |
Collapse
|
21
|
Ma C, Huang Z, Feng X, Memon FU, Cui Y, Duan X, Zhu J, Tettamanti G, Hu W, Tian L. Selective breeding of cold-tolerant black soldier fly (Hermetia illucens) larvae: Gut microbial shifts and transcriptional patterns. WASTE MANAGEMENT (NEW YORK, N.Y.) 2024; 177:252-265. [PMID: 38354633 DOI: 10.1016/j.wasman.2024.02.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 12/29/2023] [Accepted: 02/05/2024] [Indexed: 02/16/2024]
Abstract
The larvae of black soldier fly (BSFL) convert organic waste into insect proteins used as feedstuff for livestock and aquaculture. BSFL production performance is considerably reduced during winter season. Herein, the intraspecific diversity of ten commercial BSF colonies collected in China was evaluated. The Bioforte colony was subjected to selective breeding at 12 °C and 16 °C to develop cold-tolerant BSF with improved production performance. After breeding for nine generations, the weight of larvae, survival rate, and the dry matter conversion rate significantly increased. Subsequently, intestinal microbiota in the cold-tolerant strain showed that bacteria belonging to Morganella, Dysgonomonas, Salmonella, Pseudochrobactrum, and Klebsiella genera were highly represented in the 12 °C bred, while those of Acinetobacter, Pseudochrobactrum, Enterococcus, Comamonas, and Leucobacter genera were significantly represented in the 16 °C bred group. Metagenomic revealed that several animal probiotics of the Enterococcus and Vagococcus genera were greatly enriched in the gut of larvae bred at 16 °C. Moreover, bacterial metabolic pathways including carbohydrate, lipid, amino acids, and cofactors and vitamins, were significantly increased, while organismal systems and human diseases was decreased in the 16 °C bred group. Transcriptomic analysis revealed that the upregulated differentially expressed genes in the 16 °C bred groups mainly participated in Autophagy-animal, AMPK signaling pathway, mTOR signaling pathway, Wnt signaling pathway, FoxO signaling pathway, Hippo signaling pathway at day 34 under 16 °C conditions, suggesting their significant role in the survival of BSFL. Taken together, these results shed lights on the role of intestinal microflora and gene pathways in the adaptation of BSF larvae to cold stress.
Collapse
Affiliation(s)
- Chong Ma
- Guangdong Provincial Key Lab of Agro-animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou 510642, China; Bioforte Biotechnology (Shenzhen) Co., Ltd., Shenzhen 518118, China
| | - Zhijun Huang
- Guangdong Provincial Key Lab of Agro-animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou 510642, China; Bioforte Biotechnology (Shenzhen) Co., Ltd., Shenzhen 518118, China
| | - Xingbao Feng
- Guangdong Provincial Key Lab of Agro-animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou 510642, China; Bioforte Biotechnology (Shenzhen) Co., Ltd., Shenzhen 518118, China
| | - Fareed Uddin Memon
- Guangdong Provincial Key Lab of Agro-animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou 510642, China; Bioforte Biotechnology (Shenzhen) Co., Ltd., Shenzhen 518118, China
| | - Ying Cui
- Guangdong Provincial Key Lab of Agro-animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou 510642, China; Bioforte Biotechnology (Shenzhen) Co., Ltd., Shenzhen 518118, China
| | - Xinyu Duan
- Guangdong Provincial Key Lab of Agro-animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou 510642, China; Bioforte Biotechnology (Shenzhen) Co., Ltd., Shenzhen 518118, China
| | - Jianfeng Zhu
- Guangdong Provincial Key Lab of Agro-animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou 510642, China; Bioforte Biotechnology (Shenzhen) Co., Ltd., Shenzhen 518118, China
| | - Gianluca Tettamanti
- Department of Biotechnology and Life Sciences, University of Insubria, Varese 21100, Italy; Interuniversity Center for Studies on Bioinspired Agro-environmental Technology (BAT Center), University of Napoli Federico II, 80055 Portici, Italy
| | - Wenfeng Hu
- Guangdong Provincial Key Lab of Agro-animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou 510642, China; Bioforte Biotechnology (Shenzhen) Co., Ltd., Shenzhen 518118, China; Laboratory of Applied Microbiology, College of Food Science, South China Agricultural University, Guangdong 510642, China
| | - Ling Tian
- Guangdong Provincial Key Lab of Agro-animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou 510642, China; Bioforte Biotechnology (Shenzhen) Co., Ltd., Shenzhen 518118, China.
| |
Collapse
|
22
|
Sha Y, Liu X, He Y, Zhao S, Hu J, Wang J, Li W, Shao P, Wang F, Chen X, Yang W, Xie Z. Multi-omics revealed rumen microbiota metabolism and host immune regulation in Tibetan sheep of different ages. Front Microbiol 2024; 15:1339889. [PMID: 38414776 PMCID: PMC10896911 DOI: 10.3389/fmicb.2024.1339889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Accepted: 01/17/2024] [Indexed: 02/29/2024] Open
Abstract
The rumen microbiota and metabolites play an important role in energy metabolism and immune regulation of the host. However, the regulatory mechanism of rumen microbiota and metabolite interactions with host on Tibetan sheep's plateau adaptability is still unclear. We analyzed the ruminal microbiome and metabolome, host transcriptome and serum metabolome characteristics of Tibetan sheep at different ages. Biomarkers Butyrivibrio, Lachnospiraceae_XPB1014_group, Prevotella, and Rikenellaceae_RC9_gut_group were found in 4 months, 1.5 years, 3.5 years, and 6 years Tibetan sheep, respectively. The rumen microbial metabolites were mainly enriched in galactose metabolism, unsaturated fatty acid biosynthesis and fatty acid degradation pathways, and had significant correlation with microbiota. These metabolites further interact with mRNA, and are co-enriched in arginine and proline metabolism, metabolism of xenobiotics by cytochrome P450, propanoate metabolism, starch and sucrose metabolism, gap junction pathway. Meanwhile, serum metabolites also have a similar function, such as chemical carcinogenesis - reactive oxygen species, limonene and pinene degradation, and cutin, suberine and wax biosynthesis, thus participating in the regulation of the body's immune and energy-related metabolic processes. This study systematically revealed that rumen microbiota, metabolites, mRNA and serum metabolites of Tibetan sheep were involved in the regulation of fermentation metabolic function and immune level of Tibetan sheep at different ages, which provided a new perspective for plateau adaptability research of Tibetan sheep at different ages.
Collapse
Affiliation(s)
- Yuzhu Sha
- College of Animal Science and Technology/Gansu Key Laboratory of Herbivorous Animal Biotechnology, Gansu Agricultural University, Lanzhou, China
| | - Xiu Liu
- College of Animal Science and Technology/Gansu Key Laboratory of Herbivorous Animal Biotechnology, Gansu Agricultural University, Lanzhou, China
| | - Yanyu He
- School of Fundamental Sciences, Massey University, Palmerston North, New Zealand
| | - Shengguo Zhao
- College of Animal Science and Technology/Gansu Key Laboratory of Herbivorous Animal Biotechnology, Gansu Agricultural University, Lanzhou, China
| | - Jiang Hu
- College of Animal Science and Technology/Gansu Key Laboratory of Herbivorous Animal Biotechnology, Gansu Agricultural University, Lanzhou, China
| | - Jiqing Wang
- College of Animal Science and Technology/Gansu Key Laboratory of Herbivorous Animal Biotechnology, Gansu Agricultural University, Lanzhou, China
| | - Wenhao Li
- Academy of Animal Science and Veterinary Medicine, Qinghai University, Xining, China
| | - Pengyang Shao
- College of Animal Science and Technology/Gansu Key Laboratory of Herbivorous Animal Biotechnology, Gansu Agricultural University, Lanzhou, China
| | - Fanxiong Wang
- College of Animal Science and Technology/Gansu Key Laboratory of Herbivorous Animal Biotechnology, Gansu Agricultural University, Lanzhou, China
| | - Xiaowei Chen
- College of Animal Science and Technology/Gansu Key Laboratory of Herbivorous Animal Biotechnology, Gansu Agricultural University, Lanzhou, China
| | - Wenxin Yang
- College of Animal Science and Technology/Gansu Key Laboratory of Herbivorous Animal Biotechnology, Gansu Agricultural University, Lanzhou, China
| | - Zhuanhui Xie
- College of Animal Science and Technology/Gansu Key Laboratory of Herbivorous Animal Biotechnology, Gansu Agricultural University, Lanzhou, China
| |
Collapse
|
23
|
Wang Y, Zhao Y, Zhang J, Li Z. Heat Shock Protein Genes Affect the Rapid Cold Hardening Ability of Two Invasive Tephritids. INSECTS 2024; 15:90. [PMID: 38392510 PMCID: PMC10889258 DOI: 10.3390/insects15020090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/25/2023] [Revised: 01/24/2024] [Accepted: 01/25/2024] [Indexed: 02/24/2024]
Abstract
Bactrocera dorsalis and Bactrocera correcta are two invasive species that can cause major economic damage to orchards and the fruit import and export industries. Their distribution is advancing northward due to climate change, which is threatening greater impacts on fruit production. This study tested the rapid cold-hardening ability of the two species and identified the temperature associated with the highest survival rate. Transcriptome data and survival data from the two Bactrocera species' larvae were obtained after rapid cold-hardening experiments. Based on the sequencing of transcripts, four Hsp genes were found to be affected: Hsp68 and Hsp70, which play more important roles in the rapid cold hardening of B. dorsalis, and Hsp23 and Hsp70, which play more important roles in the rapid cold hardening of B. correcta. This study explored the adaptability of the two species to cold, demonstrated the expression and function of four Hsps in response to rapid cold hardening, and explained the occurrence and expansion of these two species of tephritids, offering information for further studies.
Collapse
Affiliation(s)
- Yuning Wang
- Department of Plant Biosecurity, College of Plant Protection, China Agricultural University, Beijing 100193, China
- Key Laboratory of Surveillance and Management for Plant Quarantine Pests, Ministry of Agriculture and Rural Affairs, Beijing 100193, China
| | - Yan Zhao
- Department of Plant Biosecurity, College of Plant Protection, China Agricultural University, Beijing 100193, China
- Key Laboratory of Surveillance and Management for Plant Quarantine Pests, Ministry of Agriculture and Rural Affairs, Beijing 100193, China
| | - Junzheng Zhang
- Department of Plant Biosecurity, College of Plant Protection, China Agricultural University, Beijing 100193, China
| | - Zhihong Li
- Department of Plant Biosecurity, College of Plant Protection, China Agricultural University, Beijing 100193, China
- Key Laboratory of Surveillance and Management for Plant Quarantine Pests, Ministry of Agriculture and Rural Affairs, Beijing 100193, China
| |
Collapse
|
24
|
Zhao Z, Carey JR, Li Z. The Global Epidemic of Bactrocera Pests: Mixed-Species Invasions and Risk Assessment. ANNUAL REVIEW OF ENTOMOLOGY 2024; 69:219-237. [PMID: 37708416 DOI: 10.1146/annurev-ento-012723-102658] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/16/2023]
Abstract
Throughout the past century, the global spread of Bactrocera pests has continued to pose a significant threat to the commercial fruit and vegetable industry, resulting in substantial costs associated with both control measures and quarantine restrictions. The increasing volume of transcontinental trade has contributed to an escalating rate of Bactrocera pest introductions to new regions. To address the worldwide threat posed by this group of pests, we first provide an overview of Bactrocera. We then describe the global epidemic, including border interceptions, species diagnosis, population genetics, geographical expansion, and invasion tracing of Bactrocera pests. We further consider the literature concerning the invasion co-occurrences, life-history flexibility, risk assessment, bridgehead effects, and ongoing implications of invasion recurrences, as well as a case study of Bactrocera invasions of California. Finally, we call for global collaboration to effectively monitor, prevent, and control the ongoing spread of Bactrocera pests and to share experience and knowledge to combat it.
Collapse
Affiliation(s)
- Zihua Zhao
- Department of Plant Biosecurity, College of Plant Protection, China Agricultural University, Beijing, China, ,
- MARA Key Laboratory of Surveillance and Management for Plant Quarantine Pests, China Agricultural University, Beijing, China
| | - James R Carey
- Department of Entomology and Nematology, University of California, Davis, California, USA,
| | - Zhihong Li
- Department of Plant Biosecurity, College of Plant Protection, China Agricultural University, Beijing, China, ,
- MARA Key Laboratory of Surveillance and Management for Plant Quarantine Pests, China Agricultural University, Beijing, China
| |
Collapse
|
25
|
Liu Y, Zhang X, Yao Y, Huang X, Li C, Deng P, Jiang G, Dai Q. The effect of epigallocatechin gallate on laying performance, egg quality, immune status, antioxidant capacity, and hepatic metabolome of laying ducks reared in high temperature condition. Vet Q 2023; 43:1-11. [PMID: 37921498 PMCID: PMC11003483 DOI: 10.1080/01652176.2023.2280041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Accepted: 11/01/2023] [Indexed: 11/04/2023] Open
Abstract
Epigallocatechin gallate (EGCG) is a main component in green tea extract, which possesses multiple bioactivities. The present research studied the effects of EGCG on the laying performance, egg quality, immune status, antioxidant capacity, and hepatic metabolome of Linwu laying ducks reared under high temperature. A total of 180 42-w-old healthy Linwu laying ducks were allocated into control or EGCG-treated groups. Each treatment had 6 replicates with 15 ducks in each replicate. Diets for the two groups were basal diets supplemented with 0 or 300 mg/kg EGCG, respectively. All ducks were raised in the high temperature condition (35 ± 2 °C for 6 h from 10:00 to 16:00, and 28 ± 2 °C for the other 18 h from 16:00 to 10:00 the next day) for 21 days. Results showed that EGCG increased the egg production rate (p = 0.014) and enhanced the immunocompetence by improving serum levels of immunoglobulin A (p = 0.008) and immunoglobulin G (p = 0.006). EGCG also fortified the antioxidant capacity by activating superoxide dismutase (p = 0.012), catalase (p = 0.009), and glutathione peroxidase (p = 0.021), and increasing the level of heat-shock protein 70 (p = 0.003) in laying ducks' liver. At the same time, hepatic metabolomics result suggested that EGCG increased the concentration of several key metabolites, such as spermidine (p = 0.031), tetramethylenediamine (p = 0.009), hyoscyamine (p = 0.026), β-nicotinamide adenine dinucleotide phosphate (p = 0.038), and pantothenic acid (p = 0.010), which were involved in the metabolic pathways of glutathione metabolism, arginine and proline metabolism, β-alanine metabolism, and tropane, piperidine, and pyridine alkaloid biosynthesis. In conclusion, 300 mg/kg dietary EGCG showed protection effects on the laying ducks reared in high temperature by improving the immune and antioxidant capacities, which contributed to the increase of laying performance of ducks. The potential mechanism could be that EGCG modulate the synthesis of key metabolites and associated metabolic pathways.
Collapse
Affiliation(s)
- Yang Liu
- Hunan Institute of Animal Husbandry and Veterinary Medicine, Changsha, China
| | - Xu Zhang
- Hunan Institute of Animal Husbandry and Veterinary Medicine, Changsha, China
| | - Yaling Yao
- Huaihua Animal Husbandry and Aquatic Transaction Center, Huaihua, China
| | - Xuan Huang
- Hunan Institute of Animal Husbandry and Veterinary Medicine, Changsha, China
| | - Chuang Li
- Hunan Institute of Animal Husbandry and Veterinary Medicine, Changsha, China
| | - Ping Deng
- Hunan Institute of Animal Husbandry and Veterinary Medicine, Changsha, China
| | - Guitao Jiang
- Hunan Institute of Animal Husbandry and Veterinary Medicine, Changsha, China
| | - Qiuzhong Dai
- Hunan Institute of Animal Husbandry and Veterinary Medicine, Changsha, China
| |
Collapse
|
26
|
Ben-Yosef M, Altman Y, Nemni-Lavi E, Papadopoulos N, Nestel D. Larval nutritional-stress and tolerance to extreme temperatures in the peach fruit fly, Bactrocera zonata (Diptera: Tephritidae). Fly (Austin) 2023; 17:2157161. [PMID: 36576164 PMCID: PMC9809946 DOI: 10.1080/19336934.2022.2157161] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Within the factors affecting insect tolerance to extreme environmental conditions, insect nutrition, particularly of immature stages, has received insufficient attention. In the present study, we address this gap by investigating the effects of larval nutrition on heat and cold tolerance of adult Bactrocera zonata - an invasive, polyphagous fruit fly pest. We manipulated the nutritional content in the larval diet by varying the amount of added yeast (2-10% by weight), while maintaining a constant sucrose content. Adults derived from the different larval diets were tested for their tolerance to extreme heat and cold stress. Restricting the amount of yeast reduced the efficacy of the larval diet (i.e. number of pupae produced per g of diet) as well as pupal and adult fresh weight, both being significantly lower for yeast-poor diets. Additionally, yeast restriction during the larval stage (2% yeast diet) significantly reduced the amount of protein but not lipid reserves of newly emerged males and females. Adults maintained after emergence on granulated sugar and water for 10 days were significantly more tolerant to extreme heat (i.e. knock-down time at 42 oC) when reared as larvae on yeast-rich diets (8% and 10% yeast) compared to counterparts developing on a diet containing 2% yeast. Nevertheless, the composition of the larval diet did not significantly affect adult survival following acute cold stress (exposure to -3°C for 2 hrs.). These results are corroborated by previous findings on Drosophilid flies. Possible mechanisms leading to nutrition-based heat-tolerance in flies are discussed.
Collapse
Affiliation(s)
- M. Ben-Yosef
- Department of Entomology, Institute of Plant Protection, Agricultural Research Organization, Rishon Letzion, Israel
| | - Y. Altman
- Department of Entomology, Institute of Plant Protection, Agricultural Research Organization, Rishon Letzion, Israel
| | - E. Nemni-Lavi
- Department of Entomology, Institute of Plant Protection, Agricultural Research Organization, Rishon Letzion, Israel
| | - N.T. Papadopoulos
- Laboratory of Entomology and Agricultural Zoology, Department of Agriculture Crop Production and Rural Environment, University of Thessaly, Volos, Greece
| | - D Nestel
- Department of Entomology, Institute of Plant Protection, Agricultural Research Organization, Rishon Letzion, Israel,CONTACT D Nestel Department of Entomology, Institute of Plant Protection, ARO, the Volcani Center, Rishon Letzion, Israel
| |
Collapse
|
27
|
Liu W, Cong B, Lin J, Liu S, Deng A, Zhao L. Taxonomic identification and temperature stress tolerance mechanisms of Aequorivita marisscotiae sp. nov. Commun Biol 2023; 6:1186. [PMID: 37990058 PMCID: PMC10663628 DOI: 10.1038/s42003-023-05559-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Accepted: 11/08/2023] [Indexed: 11/23/2023] Open
Abstract
The deep sea harbours microorganisms with unique life characteristics and activities due to adaptation to particular environmental conditions, but the limited sample collection and pure culture techniques available constrain the study of deep-sea microorganisms. In this study, strain Ant34-E75 was isolated from Antarctic deep-sea sediment samples and showed the highest 16 S rRNA gene sequence similarity (97.18%) with the strain Aequorivita viscosa 8-1bT. Strain Ant34-E75 is psychrotrophic and can effectively increase the cold tolerance of Chlamydomonas reinhardtii (a model organism). Subsequent transcriptome analysis revealed multiple mechanisms involved in the Ant34-E75 response to temperature stress, and weighted gene co-expression network analysis (WGCNA) showed that the peptidoglycan synthesis pathway was the key component. Overall, this study provides insights into the characteristics of a deep-sea microorganism and elucidates mechanisms of temperature adaptation at the molecular level.
Collapse
Affiliation(s)
- Wenqi Liu
- First Institute of Oceanography, Ministry of Natural Resources, Qingdao, 266061, China
| | - Bailin Cong
- First Institute of Oceanography, Ministry of Natural Resources, Qingdao, 266061, China.
| | - Jing Lin
- First Institute of Oceanography, Ministry of Natural Resources, Qingdao, 266061, China
| | - Shenghao Liu
- First Institute of Oceanography, Ministry of Natural Resources, Qingdao, 266061, China
| | - Aifang Deng
- First Institute of Oceanography, Ministry of Natural Resources, Qingdao, 266061, China
| | - Linlin Zhao
- First Institute of Oceanography, Ministry of Natural Resources, Qingdao, 266061, China
| |
Collapse
|
28
|
Chen X, Wang Z, Su J, Li H, Xiong J, Fu K, Wang Z, Yuan X, Shi Z, Miao X, Yang M, Yang Y, Shi Z. Altitude-dependent metabolite biomarkers reveal the mechanism of plateau pika adaptation to high altitudes. Integr Zool 2023; 18:1041-1055. [PMID: 36880690 DOI: 10.1111/1749-4877.12710] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/08/2023]
Abstract
The harsh environment in the Tibetan plateau, the highest place in the world, poses thermoregulatory challenges and hypoxic stress to animals. The impacts of plateau environment on animal physiology and reproduction include external factors such as strong ultraviolet radiation and low temperature, and internal factors such as animal metabolites and gut microbiota. However, it remains unclear how plateau pika adapt to high altitudes through the combination of serum metabolites and gut microbiota. To this end, we captured 24 wild plateau pikas at the altitudes of 3400, 3600, or 3800 m a.s.l. in a Tibetan alpine grassland. Using the machine learning algorithms (random forest), we identified five biomarkers of serum metabolites indicative of the altitudes, that is, dihydrotestosterone, homo-l-arginine, alpha-ketoglutaric-acid, serotonin, and threonine, which were related to body weight, reproduction, and energy metabolism of pika. Those metabolic biomarkers were positively correlated with Lachnospiraceae_ Agathobacter, Ruminococcaceae, or Prevotellaceae_Prevotella, suggesting the close relationship between metabolites and gut microbiota. By identifying the metabolic biomarkers and gut microbiota analysis, we reveal the mechanisms of adaptation to high altitudes in plateau pika.
Collapse
Affiliation(s)
- Xi Chen
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, Center for Grassland Microbiome, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, China
| | - Zaiwei Wang
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, Center for Grassland Microbiome, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, China
| | - Junhu Su
- College of Grassland Science, Key Laboratory of Grassland Ecosystem (Ministry of Education), Gansu Agricultural University, Lanzhou, China
| | - Huan Li
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, Center for Grassland Microbiome, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, China
| | - Jinbo Xiong
- School of Marine Sciences, Ningbo University, Ningbo, China
| | - Keyi Fu
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, Center for Grassland Microbiome, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, China
| | - Zilong Wang
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, Center for Grassland Microbiome, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, China
| | - Xuefeng Yuan
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, Center for Grassland Microbiome, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, China
| | - Ziyue Shi
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, Center for Grassland Microbiome, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, China
| | - Xiumei Miao
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, Center for Grassland Microbiome, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, China
| | - Mei Yang
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, Center for Grassland Microbiome, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, China
| | - Yunfeng Yang
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, Center for Grassland Microbiome, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, China
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, China
| | - Zunji Shi
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, Center for Grassland Microbiome, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, China
| |
Collapse
|
29
|
Ben-Yosef M, Altman Y, Nemni-Lavi E, Papadopoulos NT, Nestel D. Effect of thermal acclimation on the tolerance of the peach fruit fly (Bactrocera zonata: Tephritidae) to heat and cold stress. J Therm Biol 2023; 117:103677. [PMID: 37643512 DOI: 10.1016/j.jtherbio.2023.103677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2023] [Revised: 07/31/2023] [Accepted: 07/31/2023] [Indexed: 08/31/2023]
Abstract
Understanding the thermal biology of insects is of increasing importance for predicting their geographic distribution, particularly in light of current and future global temperature increases. Within the limits set by genetic makeup, thermal tolerance is affected by the physiological conditioning of individuals (e.g., through acclimation). Considering this phenotypic plasticity may add to accurately estimating changes to the distribution of insects under a changing climate. We studied the effect of thermal acclimation on cold and heat tolerance of the peach fruit fly (Bactrocera zonata) - an invasive, polyphagous pest that is currently expanding through Africa and the Middle East. Females and males were acclimated at 20, 25 and 30 °C for up to 19 days following adult emergence. The critical thermal minimum (CTmin) and maximum (CTmax) were subsequently recorded as well adult survival following acute exposure to chilling (0 or -3 °C for 2 h). Additionally, we determined the survival of pupae subjected for 2 h to temperatures ranging from -12 °C to 5 °C. We demonstrate that acclimation at 30 °C resulted in significantly higher CTmax and CTmin values (higher heat resistance and lower cold resistance, respectively). Additionally, adult recovery following exposure to -3 °C was significantly reduced following acclimation at 30 °C, and this effect was significantly higher for females. Pupal mortality increased with the decrease in temperature, reaching LT50 and LT95 values following exposure to -0.32 °C and -6.88 °C, respectively. Finally, we found that the survival of pupae subjected to 0 and 2 °C steadily increased with pupal age. Our findings substantiate a physiological foundation for understanding the current geographic range of B. zonata. We assume that acclimation at 30 °C affected the thermal tolerance of the flies partly through modulating feeding and metabolism. Tolerance to chilling during the pupal stage probably changed according to temperature-sensitive processes occurring during metamorphosis, rendering younger pupae more sensitive to chilling.
Collapse
Affiliation(s)
- Michael Ben-Yosef
- Department of Entomology, Institute of Plant Protection, Agricultural Research Organization, Rishon Letzion, 7528809, Israel.
| | - Yam Altman
- Department of Entomology, Institute of Plant Protection, Agricultural Research Organization, Rishon Letzion, 7528809, Israel
| | - Esther Nemni-Lavi
- Department of Entomology, Institute of Plant Protection, Agricultural Research Organization, Rishon Letzion, 7528809, Israel
| | - Nikos T Papadopoulos
- Laboratory of Entomology and Agricultural Zoology, Department of Agriculture Crop Production and Rural Environment, University of Thessaly, Volos, Greece
| | - David Nestel
- Department of Entomology, Institute of Plant Protection, Agricultural Research Organization, Rishon Letzion, 7528809, Israel
| |
Collapse
|
30
|
Bi S, Wang X, Tang Y, Lei K, Guo J, Yang N, Wan F, Lü Z, Liu W. Bacterial Communities of the Internal Reproductive and Digestive Tracts of Virgin and Mated Tuta absoluta. INSECTS 2023; 14:779. [PMID: 37887791 PMCID: PMC10606990 DOI: 10.3390/insects14100779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 09/14/2023] [Accepted: 09/18/2023] [Indexed: 10/28/2023]
Abstract
Microorganisms can affect host reproduction, defense, and immunity through sexual or opportunistic transmission; however, there are few studies on insect reproductive organs and intestinal bacterial communities and their effects on mating. Tuta absoluta is a worldwide quarantine pest that seriously threatens the production of Solanaceae crops, and the microbial community within tomato leafminers remains unclear. In this study, 16s rRNA sequencing was used to analyze bacterial communities related to the reproductive organs and intestinal tracts of tomato leafminers (the sample accession numbers are from CNS0856533 to CNS0856577). Different bacterial communities were found in the reproductive organs and intestinal tracts of females and males. Community ecological analysis revealed three potential signs of bacterial sexual transmission: (1) Mating increased the similarity between male and female sex organs and intestinal communities. (2) The bacteria carried by mated individuals were found in unmated individuals of the opposite sex but not in unmated individuals of the same sex. (3) The bacteria carried by unmated individuals were lost after mating. In addition, the abundances of bacterial communities carried by eggs were significantly higher than those of adult worms. Our results confirm that mating leads to the transfer of bacterial communities in the reproductive organs and gut of tomato leafminers, and suggest that this community strongly influences the reproductive process.
Collapse
Affiliation(s)
- Siyan Bi
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Xiaodi Wang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Yanhong Tang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Kexin Lei
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Jianyang Guo
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Nianwan Yang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
- Institute of Western Agriculture, Chinese Academy of Agricultural Sciences, Changji 831100, China
| | - Fanghao Wan
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Zhichuang Lü
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Wanxue Liu
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| |
Collapse
|
31
|
Zhao Z, Bai J, Liu C, Wang Y, Wang S, Zhao F, Gu Q. Metabolomics analysis of amino acid and fatty acids in colorectal cancer patients based on tandem mass spectrometry. J Clin Biochem Nutr 2023; 73:161-171. [PMID: 37700848 PMCID: PMC10493213 DOI: 10.3164/jcbn.22-110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Accepted: 03/18/2023] [Indexed: 09/14/2023] Open
Abstract
Metabolic differences between colorectal cancer (CRC) and NI (NI) play an important role in early diagnoses and in-time treatments. We investigated the metabolic alterations between CRC patients and NI, and identified some potential biomarkers, and these biomarkers might be used as indicators for diagnosis of CRC. In this study, there were 79 NI, 50 CRC I patients, 52 CRC II patients, 56 CRC III patients, and 52 CRC IV patients. MS-MS was used to measure the metabolic alterations. Univariate and multivariate data analysis and metabolic pathway analysis were applied to analyze metabolic data and determine differential metabolites. These indicators revealed that amino acid and fatty acids could separate these groups. Several metabolites indicated an excellent variables capability in the separation of CRC patients and NI. Ornithine, arginine, octadecanoyl carnitine, palmitoyl carnitine, adipoyl carnitine, and butyryl carnitine/propanoyl carnitine were selected to distinguish the CRC patients and NI. And methionine and propanoyl carnitine, were directly linked to different stages of CRC. Receiver operating characteristics curves and variables importance in projection both represented an excellent performance of these metabolites. In conclusion, we assessed the difference between CRC patients and NI, which supports guidelines for an early diagnosis and effective treatment.
Collapse
Affiliation(s)
- Zhuo Zhao
- Intensive Care Unit, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, 121001, China
| | - Jing Bai
- School of Pharmaceutical Sciences, Liaoning University, Shenyang, 110036, China
| | - Chang Liu
- College of Chemistry, Liaoning University, Shenyang, 110036, China
| | - Yansong Wang
- Intensive Care Unit, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, 121001, China
| | | | | | - Qiufang Gu
- School of Nursing, Jinzhou Medical University, Jinzhou, 121001, China
| |
Collapse
|
32
|
Wang H, Guo J, Chen X, He H. The Metabolomics Changes in Luria-Bertani Broth Medium under Different Sterilization Methods and Their Effects on Bacillus Growth. Metabolites 2023; 13:958. [PMID: 37623901 PMCID: PMC10456909 DOI: 10.3390/metabo13080958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 08/15/2023] [Accepted: 08/17/2023] [Indexed: 08/26/2023] Open
Abstract
Luria-Bertani broth (LB) culture medium is a commonly used bacterial culture medium in the laboratory. The nutrient composition, concentration, and culture conditions of LB medium can influence the growth of microbial strains. The purpose of this article is to demonstrate the impact of LB liquid culture medium on microbial growth under different sterilization conditions. In this study, LB medium with four different treatments was used, as follows: A, LB medium without treatments; B, LB medium with filtration; C, LB medium with autoclaving; and D, LB medium with autoclaving and cultured for 12 h. Subsequently, the protein levels and antioxidant capacity of the medium with different treatments were measured, and the effects of the different LB medium treatments on the growth of microorganisms and metabolites were determined via 16s rRNA gene sequencing and metabolomics analysis, respectively. Firmicutes and Lactobacillus were the dominant microorganisms, which were enriched in fermentation and chemoheterotrophy. The protein levels and antioxidant capacity of the LB medium with different treatments were different, and with the increasing concentration of medium, the protein levels were gradually increased, while the antioxidant capacity was decreased firstly and then increased. The growth trend of Bacillus subtilis, Bacillus paralicheniformis, Micrococcus luteus, and Alternaria alternata in the medium with different treatments was similar. Additionally, 220 and 114 differential metabolites were found between B and C medium, and between C and D medium, which were significantly enriched in the "Hedgehog signaling pathway", "biosynthesis of plant secondary metabolites", "ABC transporters", "arginine and proline metabolism", and "linoleic acid metabolism". LB medium may be a good energy source for Lactobacillus growth with unsterilized medium, and LB medium filtered with a 0.22 μm filter membrane may be used for bacterial culture better than culture medium after high-pressure sterilization. LB medium still has the ability for antioxidation and to keep bacteria growth whether or not autoclaved, indicating that there are some substances that can resist a high temperature and pressure and still maintain their functions.
Collapse
Affiliation(s)
- Haifeng Wang
- School of Environmental Engineering, Yellow River Conservancy Technical Institute, Kaifeng Key Laboratory of Food Composition and Quality Assessment, Kaifeng 475004, China
| | - Juan Guo
- School of Environmental Engineering, Yellow River Conservancy Technical Institute, Kaifeng Key Laboratory of Food Composition and Quality Assessment, Kaifeng 475004, China
| | - Xing Chen
- School of Environmental Engineering, Yellow River Conservancy Technical Institute, Kaifeng Key Laboratory of Food Composition and Quality Assessment, Kaifeng 475004, China
| | - Hongxuan He
- National Research Center for Wildlife-Borne Diseases, Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| |
Collapse
|
33
|
Yuan J, Wen T, Yang S, Zhang C, Zhao M, Niu G, Xie P, Liu X, Zhao X, Shen Q, Bezemer TM. Growth substrates alter aboveground plant microbial and metabolic properties thereby influencing insect herbivore performance. SCIENCE CHINA. LIFE SCIENCES 2023; 66:1728-1741. [PMID: 36932313 DOI: 10.1007/s11427-022-2279-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Accepted: 01/19/2023] [Indexed: 03/19/2023]
Abstract
The gut microbiome of plant-eaters is affected by the food they eat, but it is currently unclear how the plant metabolome and microbiome are influenced by the substrate the plant grows in and how this subsequently impacts the feeding behavior and gut microbiomes of insect herbivores. Here, we use Plutella xylostella caterpillars and show that the larvae prefer leaves of cabbage plants growing in a vermiculite substrate to those from plants growing in conventional soil systems. From a plant metabolomics analysis, we identified 20 plant metabolites that were related to caterpillar feeding performance. In a bioassay, the effects of these plant metabolites on insects' feeding were tested. Nitrate and compounds enriched with leaves of soilless cultivation promoted the feeding of insects, while compounds enriched with leaves of plants growing in natural soil decreased feeding. Several microbial groups (e.g., Sporolactobacillus, Haliangium) detected inside the plant correlated with caterpillar feeding performance and other microbial groups, such as Ramlibacter and Methylophilus, correlated with the gut microbiome. Our results highlight the role of growth substrates on the food metabolome and microbiome and on the feeding performance and the gut microbiome of plant feeders. It illustrates how belowground factors can influence the aboveground properties of plant-animal systems, which has important implications for plant growth and pest control.
Collapse
Affiliation(s)
- Jun Yuan
- The Key Laboratory of Plant Immunity, Jiangsu Provincial Key Lab for Organic Solid Waste Utilization, Jiangsu Collaborative Innovation Center for Solid Organic Wastes, Educational Ministry Engineering Center of Resource-saving fertilizers, Nanjing Agricultural University, Nanjing, 210095, China
| | - Tao Wen
- The Key Laboratory of Plant Immunity, Jiangsu Provincial Key Lab for Organic Solid Waste Utilization, Jiangsu Collaborative Innovation Center for Solid Organic Wastes, Educational Ministry Engineering Center of Resource-saving fertilizers, Nanjing Agricultural University, Nanjing, 210095, China
| | - Shengdie Yang
- The Key Laboratory of Plant Immunity, Jiangsu Provincial Key Lab for Organic Solid Waste Utilization, Jiangsu Collaborative Innovation Center for Solid Organic Wastes, Educational Ministry Engineering Center of Resource-saving fertilizers, Nanjing Agricultural University, Nanjing, 210095, China
| | - Chao Zhang
- The Key Laboratory of Plant Immunity, Jiangsu Provincial Key Lab for Organic Solid Waste Utilization, Jiangsu Collaborative Innovation Center for Solid Organic Wastes, Educational Ministry Engineering Center of Resource-saving fertilizers, Nanjing Agricultural University, Nanjing, 210095, China
| | - Mengli Zhao
- The Key Laboratory of Plant Immunity, Jiangsu Provincial Key Lab for Organic Solid Waste Utilization, Jiangsu Collaborative Innovation Center for Solid Organic Wastes, Educational Ministry Engineering Center of Resource-saving fertilizers, Nanjing Agricultural University, Nanjing, 210095, China
| | - Guoqing Niu
- The Key Laboratory of Plant Immunity, Jiangsu Provincial Key Lab for Organic Solid Waste Utilization, Jiangsu Collaborative Innovation Center for Solid Organic Wastes, Educational Ministry Engineering Center of Resource-saving fertilizers, Nanjing Agricultural University, Nanjing, 210095, China
| | - Penghao Xie
- The Key Laboratory of Plant Immunity, Jiangsu Provincial Key Lab for Organic Solid Waste Utilization, Jiangsu Collaborative Innovation Center for Solid Organic Wastes, Educational Ministry Engineering Center of Resource-saving fertilizers, Nanjing Agricultural University, Nanjing, 210095, China
| | - Xiaoyu Liu
- The Key Laboratory of Plant Immunity, Jiangsu Provincial Key Lab for Organic Solid Waste Utilization, Jiangsu Collaborative Innovation Center for Solid Organic Wastes, Educational Ministry Engineering Center of Resource-saving fertilizers, Nanjing Agricultural University, Nanjing, 210095, China
| | - Xinyuan Zhao
- The Key Laboratory of Plant Immunity, Jiangsu Provincial Key Lab for Organic Solid Waste Utilization, Jiangsu Collaborative Innovation Center for Solid Organic Wastes, Educational Ministry Engineering Center of Resource-saving fertilizers, Nanjing Agricultural University, Nanjing, 210095, China
| | - Qirong Shen
- The Key Laboratory of Plant Immunity, Jiangsu Provincial Key Lab for Organic Solid Waste Utilization, Jiangsu Collaborative Innovation Center for Solid Organic Wastes, Educational Ministry Engineering Center of Resource-saving fertilizers, Nanjing Agricultural University, Nanjing, 210095, China.
| | - T Martijn Bezemer
- Institute of Biology, Above-Belowground Interactions group, Leiden University, P.O. Box 9505, 2300 RA, Leiden, The Netherlands
- Department of Terrestrial Ecology, Netherlands Institute of Ecology, P.O. Box 50, 6700 AB, Wageningen, The Netherlands
| |
Collapse
|
34
|
Xie Z, Xu L, Zhao J, Li N, Qin D, Xiao C, Lu Y, Guo Z. Rapid cold hardening and cold acclimation promote cold tolerance of oriental fruit fly, Bactrocera dorsalis (Hendel) by physiological substances transformation and cryoprotectants accumulation. BULLETIN OF ENTOMOLOGICAL RESEARCH 2023; 113:574-586. [PMID: 37501573 DOI: 10.1017/s0007485323000251] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/29/2023]
Abstract
Insect response to cold stress is often associated with adaptive strategies and chemical variation. However, low-temperature domestication to promote the cold tolerance potential of Bactrocera dorsalis and transformation of main internal substances are not clear. Here, we use a series of low-temperature exposure experiments, supercooling point (SCP) measurement, physiological substances and cryoprotectants detection to reveal that pre-cooling with milder low temperatures (5 and 10°C) for several hours (rapid cold hardening) and days (cold acclimation) can dramatically improve the survival rate of adults and pupae under an extremely low temperature (-6.5°C). Besides, the effect of rapid cold hardening for adults could be maintained even 4 h later with 25°C exposures, and SCP was significantly declined after cold acclimation. Furthermore, content of water, fat, protein, glycogen, sorbitol, glycerol and trehalose in bodies were measured. Results showed that water content was reduced and increased content of proteins, glycogen, glycerol and trehalose after two cold domestications. Our findings suggest that rapid cold hardening and cold acclimation could enhance cold tolerance of B. dorsalis by increasing proteins, glycerol, trehalose and decreasing water content. Conclusively, identifying a physiological variation will be useful for predicting the occurrence and migration trend of B. dorsalis populations.
Collapse
Affiliation(s)
- Zifei Xie
- College of Plant Protection, Yunnan Agricultural University/State Key Laboratory of Yunnan Biological Resources Protection and Utilization, Kunming 650201, China
| | - Luchen Xu
- College of Plant Protection, Yunnan Agricultural University/State Key Laboratory of Yunnan Biological Resources Protection and Utilization, Kunming 650201, China
| | - Jie Zhao
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China
| | - Na Li
- College of Plant Protection, Yunnan Agricultural University/State Key Laboratory of Yunnan Biological Resources Protection and Utilization, Kunming 650201, China
| | - Deqiang Qin
- College of Plant Protection, Yunnan Agricultural University/State Key Laboratory of Yunnan Biological Resources Protection and Utilization, Kunming 650201, China
| | - Chun Xiao
- College of Plant Protection, Yunnan Agricultural University/State Key Laboratory of Yunnan Biological Resources Protection and Utilization, Kunming 650201, China
| | - Yongyue Lu
- College of Plant Protection, South China Agricultural University, Guangzhou 510640, China
| | - Zijun Guo
- College of Plant Protection, Yunnan Agricultural University/State Key Laboratory of Yunnan Biological Resources Protection and Utilization, Kunming 650201, China
| |
Collapse
|
35
|
Hayward SA, Colinet H. Metabolomics as a tool to elucidate biochemical cold adaptation in insects. CURRENT OPINION IN INSECT SCIENCE 2023; 58:101061. [PMID: 37244636 DOI: 10.1016/j.cois.2023.101061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 05/22/2023] [Accepted: 05/23/2023] [Indexed: 05/29/2023]
Abstract
Metabolomics is an incredibly valuable tool in helping understand insect responses to cold. It not only characterizes how low temperature disrupts metabolic homeostasis, but also how it triggers fundamental adaptive responses, for example, homeoviscous adaptation and cryoprotectant accumulation. This review outlines the advantages and disadvantages of different metabolomic technologies (nuclear magnetic resonance- versus mass spectrometry-based) and screening approaches (targeted versus untargeted). We emphasize the importance of time-series and tissue-specific data, as well as the challenges of disentangling insect versus microbiome responses. In addition, we set out the need to move beyond simple correlations between metabolite abundance and tolerance phenotypes by undertaking functional assessments, for example, using dietary supplementation or injections. We highlight studies at the vanguard of employing these approaches, and where key knowledge gaps remain.
Collapse
Affiliation(s)
- Scott Al Hayward
- School of Biosciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK
| | - Hervé Colinet
- University of Rennes, CNRS, ECOBIO [(Ecosystèmes, biodiversité, évolution)] - UMR 6553, Rennes, France.
| |
Collapse
|
36
|
Iordache AM, Nechita C, Podea P, Șuvar NS, Mesaroṣ C, Voica C, Bleiziffer R, Culea M. Comparative Amino Acid Profile and Antioxidant Activity in Sixteen Plant Extracts from Transylvania, Romania. PLANTS (BASEL, SWITZERLAND) 2023; 12:plants12112183. [PMID: 37299164 DOI: 10.3390/plants12112183] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 05/19/2023] [Accepted: 05/25/2023] [Indexed: 06/12/2023]
Abstract
In addition to the naturopathic medicines based on the antiseptic, anti-inflammatory, anticancer, or antioxidant properties of plant extracts that have been capitalized upon through the pharmaceutical industry, the increasing interest of the food industry in this area requires potent new materials capable of supporting this market. This study aimed to evaluate the in vitro amino acid contents and antioxidant activities of ethanolic extracts from sixteen plants. Our results show high accumulated amino acid contents, mainly of proline, glutamic, and aspartic acid. The most consistent values of essential amino acids were isolated from T. officinale, U. dioica, C. majus, A. annua, and M. spicata. The results of the 2,2-diphenyl-1-pycrylhydrazyl (DPPH) radical scavenging assay indicate that R. officinalis was the most potent antioxidant, followed by four other extracts (in decreasing order): T. serpyllum, C. monogyna, S. officinalis, and M. koenigii. The network and principal component analyses found four natural groupings between samples based on DPPH free radical scavenging activity content. Each plant extracts' antioxidant action was discussed based on similar results found in the literature, and a lower capacity was observed for most species. An overall ranking of the analyzed plant species can be accomplished due to the range of experimental methods. The literature review revealed that these natural antioxidants represent the best side-effect-free alternatives to synthetic additives, especially in the food processing industry.
Collapse
Affiliation(s)
- Andreea Maria Iordache
- National Research and Development Institute for Cryogenics and Isotopic Technologies, 4 Uzinei Str., 240050 Râmnicu Vâlcea, Romania
| | - Constantin Nechita
- National Research and Development Institute for Forestry "Marin Dracea" Calea Bucovinei, 73 Bis, 725100 Campulung Moldovenesc, Romania
| | - Paula Podea
- Chemistry Department, Faculty of Chemistry and Chemical Engineering, Babeș-Bolyai University, Arany Janos 11, 400028 Cluj-Napoca, Romania
| | - Niculina Sonia Șuvar
- National Institute for Research and Development in Mine Safety and Protection to Explosion, 32-34 General Vasile Milea Str., 332047 Petroșani, Romania
| | - Cornelia Mesaroṣ
- Department of Biophysics, Faculty of Pharmacy, George Emil Palade University of Medicine, Pharmacy, Science and Technology of Târgu Mureș, 38 Gh. Marinescu Str., 540139 Târgu Mureş, Romania
| | - Cezara Voica
- National Institute for Research and Development of Isotopic and Molecular Technologies, 67-103 Donat Str., 400293 Cluj-Napoca, Romania
| | - Ramona Bleiziffer
- Biomolecular Physics Department, Faculty of Physics, Babeș-Bolyai University, Kogălniceanu 1, 400084 Cluj-Napoca, Romania
| | - Monica Culea
- Biomolecular Physics Department, Faculty of Physics, Babeș-Bolyai University, Kogălniceanu 1, 400084 Cluj-Napoca, Romania
| |
Collapse
|
37
|
Li Y, Chang L, Xu K, Zhang S, Gao F, Fan Y. Research Progresses on the Function and Detection Methods of Insect Gut Microbes. Microorganisms 2023; 11:1208. [PMID: 37317182 DOI: 10.3390/microorganisms11051208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 03/20/2023] [Accepted: 04/27/2023] [Indexed: 06/16/2023] Open
Abstract
The insect gut is home to an extensive array of microbes that play a crucial role in the digestion and absorption of nutrients, as well as in the protection against pathogenic microorganisms. The variety of these gut microbes is impacted by factors such as age, diet, pesticides, antibiotics, sex, and caste. Increasing evidence indicates that disturbances in the gut microbiota can lead to compromised insect health, and that its diversity has a far-reaching impact on the host's health. In recent years, the use of molecular biology techniques to conduct rapid, qualitative, and quantitative research on the host intestinal microbial diversity has become a major focus, thanks to the advancement of metagenomics and bioinformatics technologies. This paper reviews the main functions, influencing factors, and detection methods of insect gut microbes, in order to provide a reference and theoretical basis for better research utilization of gut microbes and management of harmful insects.
Collapse
Affiliation(s)
- Yazi Li
- Tangshan Key Laboratory of Agricultural Pathogenic Fungi and Toxins, Department of Life Science, Tangshan Normal University, Tangshan 063000, China
| | - Liyun Chang
- Tangshan Key Laboratory of Agricultural Pathogenic Fungi and Toxins, Department of Life Science, Tangshan Normal University, Tangshan 063000, China
| | - Ke Xu
- Tangshan Key Laboratory of Agricultural Pathogenic Fungi and Toxins, Department of Life Science, Tangshan Normal University, Tangshan 063000, China
| | - Shuhong Zhang
- Tangshan Key Laboratory of Agricultural Pathogenic Fungi and Toxins, Department of Life Science, Tangshan Normal University, Tangshan 063000, China
| | - Fengju Gao
- Tangshan Key Laboratory of Agricultural Pathogenic Fungi and Toxins, Department of Life Science, Tangshan Normal University, Tangshan 063000, China
| | - Yongshan Fan
- Tangshan Key Laboratory of Agricultural Pathogenic Fungi and Toxins, Department of Life Science, Tangshan Normal University, Tangshan 063000, China
| |
Collapse
|
38
|
Xie J, Cai Z, Zheng W, Zhang H. Integrated analysis of miRNA and mRNA expression profiles in response to gut microbiota depletion in the abdomens of female Bactrocera dorsalis. INSECT SCIENCE 2023; 30:443-458. [PMID: 35751912 DOI: 10.1111/1744-7917.13091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 04/25/2022] [Accepted: 05/30/2022] [Indexed: 06/15/2023]
Abstract
Insect gut microbiota has been reported to participate in regulating host multiple biological processes including metabolism and reproduction. However, the corresponding molecular mechanisms remain largely unknown. Recent studies suggest that microRNAs (miRNAs) are involved in complex interactions between the gut microbiota and the host. Here, we used next-generation sequencing technology to characterize miRNA and mRNA expression profiles and construct the miRNA-gene regulatory network in response to gut microbiota depletion in the abdomens of female Bactrocera dorsalis. A total of 3016 differentially expressed genes (DEGs) and 18 differentially expressed miRNAs (DEMs) were identified. Based on the integrated analysis of miRNA and mRNA sequencing data, 229 negatively correlated miRNA-gene pairs were identified from the miRNA-mRNA network. Gene ontology enrichment analysis indicated that DEMs could target several genes involved in the metabolic process, oxidation-reduction process, oogenesis, and insulin signaling pathway. Finally, real-time quantitative polymerase chain reaction further verified the accuracy of RNA sequencing results. In conclusion, our study provides the profiles of miRNA and mRNA expressions under antibiotics treatment and provides an insight into the roles of miRNAs and their target genes in the interaction between the gut microbiota and its host.
Collapse
Affiliation(s)
- Junfei Xie
- Key Laboratory of Horticultural Plant Biology (MOE), Hubei Hongshan Laboratory, China-Australia Joint Research Centre for Horticultural and Urban Pests, Institute of Urban and Horticultural Entomology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Zhaohui Cai
- Key Laboratory of Horticultural Plant Biology (MOE), Hubei Hongshan Laboratory, China-Australia Joint Research Centre for Horticultural and Urban Pests, Institute of Urban and Horticultural Entomology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Wenping Zheng
- Key Laboratory of Horticultural Plant Biology (MOE), Hubei Hongshan Laboratory, China-Australia Joint Research Centre for Horticultural and Urban Pests, Institute of Urban and Horticultural Entomology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Hongyu Zhang
- Key Laboratory of Horticultural Plant Biology (MOE), Hubei Hongshan Laboratory, China-Australia Joint Research Centre for Horticultural and Urban Pests, Institute of Urban and Horticultural Entomology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| |
Collapse
|
39
|
Gu J, Zhang P, Yao Z, Li X, Zhang H. BdNub Is Essential for Maintaining gut Immunity and Microbiome Homeostasis in Bactrocera dorsalis. INSECTS 2023; 14:178. [PMID: 36835747 PMCID: PMC9964267 DOI: 10.3390/insects14020178] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 02/07/2023] [Accepted: 02/08/2023] [Indexed: 06/18/2023]
Abstract
Insects face immune challenges posed by invading and indigenous bacteria. They rely on the immune system to clear these microorganisms. However, the immune response can be harmful to the host. Therefore, fine-tuning the immune response to maintain tissue homeostasis is of great importance to the survival of insects. The Nub gene of the OCT/POU family regulates the intestinal IMD pathway. However, the role of the Nub gene in regulating host microbiota remains unstudied. Here, a combination of bioinformatic tools, RNA interference, and qPCR methods were adopted to study BdNub gene function in Bactrocera dorsalis gut immune system. It's found that BdNubX1, BdNubX2, and antimicrobial peptides (AMPs), including Diptcin (Dpt), Cecropin (Cec), AttcinA (Att A), AttcinB (Att B) and AttcinC (Att C) are significantly up-regulated in Tephritidae fruit fly Bactrocera dorsalis after gut infection. Silencing BdNubX1 leads to down-regulated AMPs expression, while BdNubX2 RNAi leads to increased expression of AMPs. These results indicate that BdNubX1 is a positive regulatory gene of the IMD pathway, while BdNubX2 negatively regulates IMD pathway activity. Further studies also revealed that BdNubX1 and BdNubX2 are associated with gut microbiota composition, possibly through regulation of IMD pathway activity. Our results prove that the Nub gene is evolutionarily conserved and participates in maintaining gut microbiota homeostasis.
Collapse
|
40
|
Lv WX, Cheng P, Lei JJ, Peng H, Zang CH, Lou ZW, Liu HM, Guo XX, Wang HY, Wang HF, Zhang CX, Liu LJ, Gong MQ. Interactions between the gut micro-community and transcriptome of Culex pipiens pallens under low-temperature stress. Parasit Vectors 2023; 16:12. [PMID: 36635706 PMCID: PMC9837946 DOI: 10.1186/s13071-022-05643-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Accepted: 12/28/2022] [Indexed: 01/14/2023] Open
Abstract
BACKGROUND Culex pipiens pallens (Diptera: Culicidae) can survive at low temperature for long periods. Understanding the effects of low-temperature stress on the gut microflora and gene expression levels in Cx. pipiens pallens, as well as their correlation, will contribute to the study of the overwintering mechanism of Cx. pipiens pallens. METHODS The gut bacteria were removed by antibiotic treatment, and the survival of Cx. pipiens pallens under low-temperature stress was observed and compared with the control group. Then, full-length 16S rRNA sequencing and the Illumina HiSeq X Ten sequencing platform were used to evaluate the gut microflora and gene expression levels in Cx. pipiens pallens under low-temperature stress. RESULTS Under the low-temperature stress of 7 °C, the median survival time of Cx. pipiens pallens in the antibiotic treatment group was significantly shortened by approximately 70% compared to that in the control group. The species diversity index (Shannon, Simpson, Ace, Chao1) of Cx. pipiens pallens decreased under low-temperature stress (7 °C). Non-metric multidimensional scaling (NMDS) analysis divided all the gut samples into two groups: control group and treatment group. Pseudomonas was the dominant taxon identified in the control group, followed by Elizabethkingia and Dyadobacter; in the treatment group, Pseudomonas was the dominant taxon, followed by Aeromonas and Comamonas. Of the 2417 differentially expressed genes (DEGs), 1316 were upregulated, and 1101 were downregulated. Functional GO terms were enriched in 23 biological processes, 20 cellular components and 21 molecular functions. KEGG annotation results showed that most of these genes were related to energy metabolism-related pathways. The results of Pearson's correlation analysis showed a significant correlation between the gut microcommunity at the genus level and several DEGs. CONCLUSIONS These results suggest that the mechanism of adaptation of Cx. pipiens pallens to low-temperature stress may be the result of interactions between the gut bacterial community and transcriptome.
Collapse
Affiliation(s)
- Wen-Xiang Lv
- grid.410638.80000 0000 8910 6733Department of Medical Entomology, Shandong Institute of Parasitic Diseases, Shandong First Medical University & Shandong Academy of Medical Sciences, Jining, 272033 Shandong People’s Republic of China
| | - Peng Cheng
- grid.410638.80000 0000 8910 6733Department of Medical Entomology, Shandong Institute of Parasitic Diseases, Shandong First Medical University & Shandong Academy of Medical Sciences, Jining, 272033 Shandong People’s Republic of China
| | - Jing-Jing Lei
- grid.410638.80000 0000 8910 6733Department of Medical Entomology, Shandong Institute of Parasitic Diseases, Shandong First Medical University & Shandong Academy of Medical Sciences, Jining, 272033 Shandong People’s Republic of China
| | - Hui Peng
- grid.410638.80000 0000 8910 6733Department of Medical Entomology, Shandong Institute of Parasitic Diseases, Shandong First Medical University & Shandong Academy of Medical Sciences, Jining, 272033 Shandong People’s Republic of China
| | - Chuan-Hui Zang
- grid.410638.80000 0000 8910 6733Department of Medical Entomology, Shandong Institute of Parasitic Diseases, Shandong First Medical University & Shandong Academy of Medical Sciences, Jining, 272033 Shandong People’s Republic of China
| | - Zi-Wei Lou
- grid.410638.80000 0000 8910 6733Department of Medical Entomology, Shandong Institute of Parasitic Diseases, Shandong First Medical University & Shandong Academy of Medical Sciences, Jining, 272033 Shandong People’s Republic of China
| | - Hong-Mei Liu
- grid.410638.80000 0000 8910 6733Department of Medical Entomology, Shandong Institute of Parasitic Diseases, Shandong First Medical University & Shandong Academy of Medical Sciences, Jining, 272033 Shandong People’s Republic of China
| | - Xiu-Xia Guo
- grid.410638.80000 0000 8910 6733Department of Medical Entomology, Shandong Institute of Parasitic Diseases, Shandong First Medical University & Shandong Academy of Medical Sciences, Jining, 272033 Shandong People’s Republic of China
| | - Hai-Yang Wang
- grid.410638.80000 0000 8910 6733Department of Medical Entomology, Shandong Institute of Parasitic Diseases, Shandong First Medical University & Shandong Academy of Medical Sciences, Jining, 272033 Shandong People’s Republic of China
| | - Hai-Fang Wang
- grid.410638.80000 0000 8910 6733Department of Medical Entomology, Shandong Institute of Parasitic Diseases, Shandong First Medical University & Shandong Academy of Medical Sciences, Jining, 272033 Shandong People’s Republic of China
| | - Chong-Xing Zhang
- grid.410638.80000 0000 8910 6733Department of Medical Entomology, Shandong Institute of Parasitic Diseases, Shandong First Medical University & Shandong Academy of Medical Sciences, Jining, 272033 Shandong People’s Republic of China
| | - Li-Juan Liu
- grid.410638.80000 0000 8910 6733Department of Medical Entomology, Shandong Institute of Parasitic Diseases, Shandong First Medical University & Shandong Academy of Medical Sciences, Jining, 272033 Shandong People’s Republic of China
| | - Mao-Qing Gong
- grid.410638.80000 0000 8910 6733Department of Medical Entomology, Shandong Institute of Parasitic Diseases, Shandong First Medical University & Shandong Academy of Medical Sciences, Jining, 272033 Shandong People’s Republic of China
| |
Collapse
|
41
|
Chen Y, Zhang Y, Yang L, Chen W, Jiang Z, Xiao Z, Xie X, Zhong G, Yi X. Group housing enhances mating and increases the sensitization of chemical cues in Bactrocera dorsalis. PEST MANAGEMENT SCIENCE 2023; 79:391-401. [PMID: 36177942 DOI: 10.1002/ps.7208] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Revised: 09/22/2022] [Accepted: 09/30/2022] [Indexed: 06/16/2023]
Abstract
BACKGROUND Changes in population density have profound impacts on mating behaviors in group-living animals. The plasticity of mating behavior enables insects to respond to social signals and adjust mating frequency in accordance with rival competition and reproductive opportunity. RESULTS In this study, we found that low levels of cis-vaccenyl acetate (cVA), a Drosophila pheromone, increased mating rates of Bactrocera dorsalis, but high concentrations of cVA inhibited mating, indicating a functional role of cVA in regulating mating behaviors in insect species other than Drosophila. Moreover, we demonstrated that group housing conditions had positive effects for B. dorsalis on their mating rates, responses toward cVA and cVA-mediated mating behaviors, which are dependent on the activity of c-AMP reponse element binding protein (CREB) binding protein (CBP). CONCLUSIONS Our data suggest that CBP-mediated plasticity in mating behavior and chemical recognition enables insects to adapt to different housing conditions and highlight the potential of cVA as an efficient agent in regulating mating behaviors in insect species other than Drosophila. © 2022 Society of Chemical Industry.
Collapse
Affiliation(s)
- Yaoyao Chen
- Key Laboratory of Natural Pesticide and Chemical Biology, Ministry of Education, South China Agricultural University, Guangzhou, China
| | - Yuhua Zhang
- Key Laboratory of Natural Pesticide and Chemical Biology, Ministry of Education, South China Agricultural University, Guangzhou, China
| | - Liying Yang
- Key Laboratory of Natural Pesticide and Chemical Biology, Ministry of Education, South China Agricultural University, Guangzhou, China
| | - Wenlong Chen
- Key Laboratory of Natural Pesticide and Chemical Biology, Ministry of Education, South China Agricultural University, Guangzhou, China
| | - Zhiyan Jiang
- Key Laboratory of Natural Pesticide and Chemical Biology, Ministry of Education, South China Agricultural University, Guangzhou, China
| | - Ziwei Xiao
- Key Laboratory of Natural Pesticide and Chemical Biology, Ministry of Education, South China Agricultural University, Guangzhou, China
| | - Xin Xie
- School of Life Sciences, Shaoxing University, Zhejiang, China
| | - Guohua Zhong
- Key Laboratory of Natural Pesticide and Chemical Biology, Ministry of Education, South China Agricultural University, Guangzhou, China
| | - Xin Yi
- Key Laboratory of Natural Pesticide and Chemical Biology, Ministry of Education, South China Agricultural University, Guangzhou, China
| |
Collapse
|
42
|
Zhu Y, Yang R, Wang X, Wen T, Gong M, Shen Y, Xu J, Zhao D, Du Y. Gut microbiota composition in the sympatric and diet-sharing Drosophila simulans and Dicranocephalus wallichii bowringi shaped largely by community assembly processes rather than regional species pool. IMETA 2022; 1:e57. [PMID: 38867909 PMCID: PMC10989964 DOI: 10.1002/imt2.57] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Revised: 09/01/2022] [Accepted: 09/14/2022] [Indexed: 06/14/2024]
Abstract
Clarifying the mechanisms underlying microbial community assembly from regional microbial pools is a central issue of microbial ecology, but remains largely unexplored. Here, we investigated the gut bacterial and fungal microbiome assembly processes and potential sources in Drosophila simulans and Dicranocephalus wallichii bowringi, two wild, sympatric insect species that share a common diet of waxberry. While some convergence was observed, the diversity, composition, and network structure of the gut microbiota significantly differed between these two host species. Null model analyses revealed that stochastic processes (e.g., drift, dispersal limitation) play a principal role in determining gut microbiota from both hosts. However, the strength of each ecological process varied with the host species. Furthermore, the source-tracking analysis showed that only a minority of gut microbiota within D. simulans and D. wallichii bowringi are drawn from a regional microbial pool from waxberries, leaves, or soil. Results from function prediction implied that host species-specific gut microbiota might arise partly through host functional requirement and specific selection across host-microbiota coevolution. In conclusion, our findings uncover the importance of community assembly processes over regional microbial pools in shaping sympatric insect gut microbiome structure and function.
Collapse
Affiliation(s)
- Yu‐Xi Zhu
- Department of Entomology, College of Plant ProtectionYangzhou UniversityYangzhouChina
| | - Run Yang
- Department of Entomology, College of Plant ProtectionYangzhou UniversityYangzhouChina
| | - Xin‐Yu Wang
- Department of Entomology, College of Plant ProtectionYangzhou UniversityYangzhouChina
| | - Tao Wen
- The Key Laboratory of Plant Immunity, Jiangsu Provincial Key Lab for Organic Solid Waste Utilization, Jiangsu Collaborative Innovation Center for Solid Organic Wastes, Educational Ministry Engineering Center of Resource‐saving fertilizersNanjing Agricultural UniversityNanjingChina
| | - Ming‐Hui Gong
- Bureau of Agriculture and Rural Affairs of Binhu District of WuxiWuxiChina
| | - Yuan Shen
- Bureau of Agriculture and Rural Affairs of Binhu District of WuxiWuxiChina
| | - Jue‐Ye Xu
- Bureau of Agriculture and Rural Affairs of Binhu District of WuxiWuxiChina
| | - Dian‐Shu Zhao
- Entomology and Nematology DepartmentUniversity of FloridaGainesvilleFloridaUSA
| | - Yu‐Zhou Du
- Department of Entomology, College of Plant ProtectionYangzhou UniversityYangzhouChina
| |
Collapse
|
43
|
Kowallik V, Das A, Mikheyev AS. Experimental inheritance of antibiotic acquired dysbiosis affects host phenotypes across generations. Front Microbiol 2022; 13:1030771. [PMID: 36532456 PMCID: PMC9751584 DOI: 10.3389/fmicb.2022.1030771] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Accepted: 10/24/2022] [Indexed: 04/12/2024] Open
Abstract
Microbiomes can enhance the health, fitness and even evolutionary potential of their hosts. Many organisms propagate favorable microbiomes fully or partially via vertical transmission. In the long term, such co-propagation can lead to the evolution of specialized microbiomes and functional interdependencies with the host. However, microbiomes are vulnerable to environmental stressors, particularly anthropogenic disturbance such as antibiotics, resulting in dysbiosis. In cases where microbiome transmission occurs, a disrupted microbiome may then become a contagious pathology causing harm to the host across generations. We tested this hypothesis using the specialized socially transmitted gut microbiome of honey bees as a model system. By experimentally passaging tetracycline-treated microbiomes across worker 'generations' we found that an environmentally acquired dysbiotic phenotype is heritable. As expected, the antibiotic treatment disrupted the microbiome, eliminating several common and functionally important taxa and strains. When transmitted, the dysbiotic microbiome harmed the host in subsequent generations. Particularly, naïve bees receiving antibiotic-altered microbiomes died at higher rates when challenged with further antibiotic stress. Bees with inherited dysbiotic microbiomes showed alterations in gene expression linked to metabolism and immunity, among other pathways, suggesting effects on host physiology. These results indicate that there is a possibility that sublethal exposure to chemical stressors, such as antibiotics, may cause long-lasting changes to functional host-microbiome relationships, possibly weakening the host's progeny in the face of future ecological challenges. Future studies under natural conditions would be important to examine the extent to which negative microbiome-mediated phenotypes could indeed be heritable and what role this may play in the ongoing loss of biodiversity.
Collapse
Affiliation(s)
- Vienna Kowallik
- Okinawa Institute of Science and Technology, Tancha Onna-son, Okinawa, Japan
| | - Ashutosh Das
- Australian National University, Canberra, ACT, Australia
- Chattogram Veterinary and Animal Sciences University, Khulshi, Chattogram, Bangladesh
| | - Alexander S. Mikheyev
- Okinawa Institute of Science and Technology, Tancha Onna-son, Okinawa, Japan
- Australian National University, Canberra, ACT, Australia
| |
Collapse
|
44
|
Jing TX, Yuan CY, Meng LW, Hou QL, Liu XQ, Dou W, Yuan GR, Wang JJ. CYP4G100 contributes to desiccation resistance by mediating cuticular hydrocarbon synthesis in Bactrocera dorsalis. INSECT MOLECULAR BIOLOGY 2022; 31:772-781. [PMID: 35860987 DOI: 10.1111/imb.12803] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2022] [Accepted: 07/15/2022] [Indexed: 06/15/2023]
Abstract
The oriental fruit fly Bactrocera dorsalis (Hendel) is expanding its distribution to higher latitudes. Our goal in this study was to understand how B. dorsalis adapts to higher latitude environments that are more arid than tropical regions. Cuticular hydrocarbons (CHCs) on the surface of the epicuticle in insects act as a hydrophobic barrier against water loss. The essential decarbonylation reaction in CHC synthesis is catalysed by CYP4G, a cytochrome P450 subfamily protein. Hence, in B. dorsalis it is necessary to clarify the function of the CYP4G gene and its role in desiccation resistance. CYP4G100 was identified in the B. dorsalis genome. The complete open reading frame (ORF) encodes a CYP4 family protein (552 amino acid residues) that has the CYP4G-specific insertion. This CYP4G gene was highly expressed in adults, especially in the oenocyte-rich peripheral fat body. The gene can be induced by desiccation treatment, suggesting its role in CHC synthesis and waterproofing. Silencing of CYP4G100 resulted in a decrease of CHC levels and the accumulation of triglycerides. It also increased water loss and resulted in higher desiccation susceptibility. CYP4G100 is involved in hydrocarbon synthesis and contributes to cuticle waterproofing to help B. dorsalis resist desiccation in arid environments.
Collapse
Affiliation(s)
- Tian-Xing Jing
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing, China
- College of Horticulture and Plant Protection, Yangzhou University, Yangzhou, China
| | - Chen-Yang Yuan
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing, China
| | - Li-Wei Meng
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing, China
| | - Qiu-Li Hou
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing, China
- College of Horticulture and Plant Protection, Yangzhou University, Yangzhou, China
| | - Xiao-Qiang Liu
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing, China
| | - Wei Dou
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing, China
| | - Guo-Rui Yuan
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing, China
| | - Jin-Jun Wang
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing, China
| |
Collapse
|
45
|
Vujanovic S, Vujanovic J, Vujanovic V. Microbiome-Driven Proline Biogenesis in Plants under Stress: Perspectives for Balanced Diet to Minimize Depression Disorders in Humans. Microorganisms 2022; 10:2264. [PMID: 36422335 PMCID: PMC9693749 DOI: 10.3390/microorganisms10112264] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 11/08/2022] [Accepted: 11/10/2022] [Indexed: 09/10/2024] Open
Abstract
According to the World Health Organization (WHO), depression is a leading cause of disability worldwide and a major contributor to the overall global burden of mental disorders. An increasing number of studies have revealed that among 20 different amino acids, high proline consumption is a dietary factor with the strongest impact on depression in humans and animals, including insects. Recent studies acknowledged that gut microbiota play a key role in proline-related pathophysiology of depression. In addition, the multi-omics approach has alleged that a high level of metabolite proline is directly linked to depression severity, while variations in levels of circulating proline are dependent on microbiome composition. The gut-brain axis proline analysis is a gut microbiome model of studying depression, highlighting the critical importance of diet, but nothing is known about the role of the plant microbiome-food axis in determining proline concentration in the diet and thus about preventing excessive proline intake through food consumption. In this paper, we discuss the protocooperative potential of a holistic study approach combining the microbiota-gut-brain axis with the microbiota-plant-food-diet axis, as both are involved in proline biogenesis and metabolism and thus on in its effect on mood and cognitive function. In preharvest agriculture, the main scientific focus must be directed towards plant symbiotic endophytes, as scavengers of abiotic stresses in plants and modulators of high proline concentration in crops/legumes/vegetables under climate change. It is also implied that postharvest agriculture-including industrial food processing-may be critical in designing a proline-balanced diet, especially if corroborated with microbiome-based preharvest agriculture, within a circular agrifood system. The microbiome is suggested as a target for selecting beneficial plant endophytes in aiming for a balanced dietary proline content, as it is involved in the physiology and energy metabolism of eukaryotic plant/human/animal/insect hosts, i.e., in core aspects of this amino acid network, while opening new venues for an efficient treatment of depression that can be adapted to vast groups of consumers and patients. In that regard, the use of artificial intelligence (AI) and molecular biomarkers combined with rapid and non-destructive imaging technologies were also discussed in the scope of enhancing integrative science outcomes, agricultural efficiencies, and diagnostic medical precisions.
Collapse
Affiliation(s)
- Silva Vujanovic
- Hospital Pharmacy, CISSS des Laurentides, Université de Montréal, Montréal, QC J8H 4C7, Canada
| | - Josko Vujanovic
- Medical Imaging, CISSS des Laurentides, Lachute, QC J8H 4C7, Canada
| | - Vladimir Vujanovic
- Food and Bioproduct Sciences, University of Saskatchewan, Saskatoon, SK S7N 5A8, Canada
| |
Collapse
|
46
|
Gorrochategui-Ortega J, Muñoz-Colmenero M, Kovačić M, Filipi J, Puškadija Z, Kezić N, Parejo M, Büchler R, Estonba A, Zarraonaindia I. A short exposure to a semi-natural habitat alleviates the honey bee hive microbial imbalance caused by agricultural stress. Sci Rep 2022; 12:18832. [PMID: 36336704 PMCID: PMC9637708 DOI: 10.1038/s41598-022-23287-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Accepted: 10/28/2022] [Indexed: 11/08/2022] Open
Abstract
Honeybee health and the species' gut microbiota are interconnected. Also noteworthy are the multiple niches present within hives, each with distinct microbiotas and all coexisting, which we termed "apibiome". External stressors (e.g. anthropization) can compromise microbial balance and bee resilience. We hypothesised that (1) the bacterial communities of hives located in areas with different degrees of anthropization differ in composition, and (2) due to interactions between the multiple microbiomes within the apibiome, changes in the community of a niche would impact the bacteria present in other hive sections. We characterised the bacterial consortia of different niches (bee gut, bee bread, hive entrance and internal hive air) of 43 hives from 3 different environments (agricultural, semi-natural and natural) through 16S rRNA amplicon sequencing. Agricultural samples presented lower community evenness, depletion of beneficial bacteria, and increased recruitment of stress related pathways (predicted via PICRUSt2). The taxonomic and functional composition of gut and hive entrance followed an environmental gradient. Arsenophonus emerged as a possible indicator of anthropization, gradually decreasing in abundance from agriculture to the natural environment in multiple niches. Importantly, after 16 days of exposure to a semi-natural landscape hives showed intermediate profiles, suggesting alleviation of microbial dysbiosis through reduction of anthropization.
Collapse
Affiliation(s)
- June Gorrochategui-Ortega
- grid.11480.3c0000000121671098Department of Genetics, Physical Anthropology and Animal Physiology, University of the Basque Country (UPV/EHU), Barrio Sarriena s/n, 48940 Leioa, Spain
| | - Marta Muñoz-Colmenero
- grid.11480.3c0000000121671098Department of Genetics, Physical Anthropology and Animal Physiology, University of the Basque Country (UPV/EHU), Barrio Sarriena s/n, 48940 Leioa, Spain ,grid.419099.c0000 0001 1945 7711Instituto de Investigaciones Marinas (CSIC)/Institute of Marine Research, Eduardo Cabello 6, 36208 Vigo, Pontevedra Spain
| | - Marin Kovačić
- grid.412680.90000 0001 1015 399XFaculty of Agrobiotechnical Sciences Osijek, Josip Juraj Strossmayer University of Osijek, V.Preloga 1, 31000 Osijek, Croatia
| | - Janja Filipi
- grid.424739.f0000 0001 2159 1688Department of Ecology, Agronomy and Aquaculture, University of Zadar, Trg Kneza Višeslava 9, 23000 Zadar, Croatia
| | - Zlatko Puškadija
- grid.412680.90000 0001 1015 399XFaculty of Agrobiotechnical Sciences Osijek, Josip Juraj Strossmayer University of Osijek, V.Preloga 1, 31000 Osijek, Croatia
| | - Nikola Kezić
- grid.4808.40000 0001 0657 4636Department of Fisheries, Apiculture and Special Zoology, Faculty of Agriculture, University of Zagreb, Svetošimunska Cesta 25, 10000 Zagreb, Croatia
| | - Melanie Parejo
- grid.11480.3c0000000121671098Department of Genetics, Physical Anthropology and Animal Physiology, University of the Basque Country (UPV/EHU), Barrio Sarriena s/n, 48940 Leioa, Spain
| | - Ralph Büchler
- grid.506460.10000 0004 4679 6788Landesbetrieb Landwirtschaft Hessen (LLH), Bieneninstitut, Erlenstraße 9, 35274 Kirchhain, Germany
| | - Andone Estonba
- grid.11480.3c0000000121671098Department of Genetics, Physical Anthropology and Animal Physiology, University of the Basque Country (UPV/EHU), Barrio Sarriena s/n, 48940 Leioa, Spain
| | - Iratxe Zarraonaindia
- grid.11480.3c0000000121671098Department of Genetics, Physical Anthropology and Animal Physiology, University of the Basque Country (UPV/EHU), Barrio Sarriena s/n, 48940 Leioa, Spain ,grid.424810.b0000 0004 0467 2314IKERBASQUE, Basque Foundation for Science, Bilbao, Spain
| |
Collapse
|
47
|
Aagaard A, Liu S, Tregenza T, Braad Lund M, Schramm A, Verhoeven KJF, Bechsgaard J, Bilde T. Adapting to climate with limited genetic diversity: Nucleotide, DNA methylation and microbiome variation among populations of the social spider Stegodyphus dumicola. Mol Ecol 2022; 31:5765-5783. [PMID: 36112081 PMCID: PMC9827990 DOI: 10.1111/mec.16696] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 09/01/2022] [Accepted: 09/06/2022] [Indexed: 02/06/2023]
Abstract
Understanding the role of genetic and nongenetic variants in modulating phenotypes is central to our knowledge of adaptive responses to local conditions and environmental change, particularly in species with such low population genetic diversity that it is likely to limit their evolutionary potential. A first step towards uncovering the molecular mechanisms underlying population-specific responses to the environment is to carry out environmental association studies. We associated climatic variation with genetic, epigenetic and microbiome variation in populations of a social spider with extremely low standing genetic diversity. We identified genetic variants that are associated strongly with environmental variation, particularly with average temperature, a pattern consistent with local adaptation. Variation in DNA methylation in many genes was strongly correlated with a wide set of climate parameters, thereby revealing a different pattern of associations than that of genetic variants, which show strong correlations to a more restricted range of climate parameters. DNA methylation levels were largely independent of cis-genetic variation and of overall genetic population structure, suggesting that DNA methylation can work as an independent mechanism. Microbiome composition also correlated with environmental variation, but most strong associations were with precipitation-related climatic factors. Our results suggest a role for both genetic and nongenetic mechanisms in shaping phenotypic responses to local environments.
Collapse
Affiliation(s)
- Anne Aagaard
- Section for Genetics, Ecology & Evolution, Department of BiologyAarhus UniversityAarhus CDenmark
| | - Shenglin Liu
- Section for Genetics, Ecology & Evolution, Department of BiologyAarhus UniversityAarhus CDenmark
| | - Tom Tregenza
- Centre for Ecology & Conservation, School of BiosciencesUniversity of ExeterPenryn CampusUK
| | - Marie Braad Lund
- Section for Microbiology, Department of BiologyAarhus UniversityAarhus CDenmark
| | - Andreas Schramm
- Section for Microbiology, Department of BiologyAarhus UniversityAarhus CDenmark
| | - Koen J. F. Verhoeven
- Terrestrial Ecology DepartmentNetherlands Institute of Ecology (NIOO‐KNAW)WageningenThe Netherlands
| | - Jesper Bechsgaard
- Section for Genetics, Ecology & Evolution, Department of BiologyAarhus UniversityAarhus CDenmark
| | - Trine Bilde
- Section for Genetics, Ecology & Evolution, Department of BiologyAarhus UniversityAarhus CDenmark
| |
Collapse
|
48
|
Yao Z, Cai Z, Ma Q, Bai S, Wang Y, Zhang P, Guo Q, Gu J, Lemaitre B, Zhang H. Compartmentalized PGRP expression along the dipteran Bactrocera dorsalis gut forms a zone of protection for symbiotic bacteria. Cell Rep 2022; 41:111523. [DOI: 10.1016/j.celrep.2022.111523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 05/18/2022] [Accepted: 09/27/2022] [Indexed: 11/24/2022] Open
|
49
|
Li X, Yao Y, Wang Y, Hua L, Wu M, Chen F, Deng ZY, Luo T. Effect of Hesperidin Supplementation on Liver Metabolomics and Gut Microbiota in a High-Fat Diet-Induced NAFLD Mice Model. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:11224-11235. [PMID: 36048007 DOI: 10.1021/acs.jafc.2c02334] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
The present study investigated the mechanism underlying the impact of hesperidin (HES) on nonalcoholic fatty liver (NAFLD). C57BL/6J male mice were administered a low-fat diet, high-fat diet (HFD), or HFD plus 0.2% (wt/wt) HES (HFD + HES) diet. After 16 weeks of intervention, the mice in the HFD+HES group showed a lower final body weight and liver weight and improved serum lipid profiles when compared with the HFD group. Alleviation of liver dysfunction induced by HFD was observed in HES-fed mice, and the expression of genes involved in lipid metabolism was also altered. Moreover, HES changed the composition of the intestinal microbiota and enriched specific genera such as Bacteroidota. Liver metabolomics analysis indicated that HES enhanced the abundance of metabolites in arginine-related as well as mitochondrial oxidation-related pathways, and these metabolites were predicted to be positively correlated with the gut genera enriched by HES. Together, these results indicate that HFD-fed mice supplemented with HES showed a markedly regulated hepatic metabolism concurrent with shifts in specific gut bacteria.
Collapse
Affiliation(s)
- Xiaoping Li
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, Jiangxi 330047, China
| | - Yexuan Yao
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, Jiangxi 330047, China
| | - Yu Wang
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, Jiangxi 330047, China
| | - Lun Hua
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, Sichuan 611134, China
| | - Min Wu
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, Jiangxi 330047, China
| | - Fang Chen
- Jiangxi Provincial Key Laboratory of Preventive Medicine, School of Public Health, Nanchang University, Nanchang, Jiangxi 330006, China
| | - Ze-Yuan Deng
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, Jiangxi 330047, China
| | | |
Collapse
|
50
|
Zhang S, Huang J, Wang Q, You M, Xia X. Changes in the Host Gut Microbiota during Parasitization by Parasitic Wasp Cotesia vestalis. INSECTS 2022; 13:760. [PMID: 36135461 PMCID: PMC9506224 DOI: 10.3390/insects13090760] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 08/19/2022] [Accepted: 08/22/2022] [Indexed: 06/16/2023]
Abstract
Parasites attack the host insects and possibly impact the host-gut microbiota, which leads to provision of a suitable host environment for parasites' development. However, little is known about whether and how the parasitic wasp Cotesia vestalis alters the gut microbiota of the host Plutella xylostella. In this study, 16S rDNA microbial profiling, combined with a traditional isolation and culture method, were used to assess changes in the bacterial microbiome of parasitized and non-parasitized hosts at different developmental stages of C. vestalis larvae. Parasitization affected both the diversity and structure of the host-gut microbiota, with a significant reduction in richness on the sixth day post parasitization (6 DPP) and significant differences in bacterial structure between parasitized and non-parasitized hosts on the third day. The bacterial abundance of host-gut microbiota changed significantly as the parasitization progressed, resulting in alteration of potential functional contribution. Notably, the relative abundance of the predominant family Enterobacteriaceae was significantly decreased on the third day post-parasitization. In addition, the results of traditional isolation and culture of bacteria indicated differences in the bacterial composition between the three DPP and CK3 groups, as with 16S microbial profiling. These findings shed light on the interaction between a parasitic wasp and gut bacteria in the host insect during parasitization.
Collapse
Affiliation(s)
- Shuaiqi Zhang
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Institute of Applied Ecology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Ministerial and Provincial Joint Innovation Centre for Safety Production of Cross-Strait Crops, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Joint International Research Laboratory of Ecological Pest Control, Ministry of Education, Fuzhou 350002, China
| | - Jieling Huang
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Institute of Applied Ecology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Ministerial and Provincial Joint Innovation Centre for Safety Production of Cross-Strait Crops, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Joint International Research Laboratory of Ecological Pest Control, Ministry of Education, Fuzhou 350002, China
| | - Qiuping Wang
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Institute of Applied Ecology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Ministerial and Provincial Joint Innovation Centre for Safety Production of Cross-Strait Crops, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Joint International Research Laboratory of Ecological Pest Control, Ministry of Education, Fuzhou 350002, China
| | - Minsheng You
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Institute of Applied Ecology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Ministerial and Provincial Joint Innovation Centre for Safety Production of Cross-Strait Crops, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Joint International Research Laboratory of Ecological Pest Control, Ministry of Education, Fuzhou 350002, China
| | - Xiaofeng Xia
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Institute of Applied Ecology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Ministerial and Provincial Joint Innovation Centre for Safety Production of Cross-Strait Crops, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Joint International Research Laboratory of Ecological Pest Control, Ministry of Education, Fuzhou 350002, China
| |
Collapse
|