1
|
Herrmann D, Meng S, Yang H, Mansky LM, Saad JS. The Assembly of HTLV-1-How Does It Differ from HIV-1? Viruses 2024; 16:1528. [PMID: 39459862 PMCID: PMC11512237 DOI: 10.3390/v16101528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2024] [Revised: 09/21/2024] [Accepted: 09/25/2024] [Indexed: 10/28/2024] Open
Abstract
Retroviral assembly is a highly coordinated step in the replication cycle. The process is initiated when the newly synthesized Gag and Gag-Pol polyproteins are directed to the inner leaflet of the plasma membrane (PM), where they facilitate the budding and release of immature viral particles. Extensive research over the years has provided crucial insights into the molecular determinants of this assembly step. It is established that Gag targeting and binding to the PM is mediated by interactions of the matrix (MA) domain and acidic phospholipids such as phosphatidylinositol 4,5-bisphosphate (PI(4,5)P2). This binding event, along with binding to viral RNA, initiates oligomerization of Gag on the PM, a process mediated by the capsid (CA) domain. Much of the previous studies have focused on human immunodeficiency virus type 1 (HIV-1). Although the general steps of retroviral replication are consistent across different retroviruses, comparative studies revealed notable differences in the structure and function of viral components. In this review, we present recent findings on the assembly mechanisms of Human T-cell leukemia virus type 1 and highlight key differences from HIV-1, focusing particularly on the molecular determinants of Gag-PM interactions and CA assembly.
Collapse
Affiliation(s)
- Dominik Herrmann
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, AL 35294, USA;
| | - Shuyu Meng
- Institute for Molecular Virology, University of Minnesota–Twin Cities, Minneapolis, MN 55455, USA; (S.M.); (H.Y.); (L.M.M.)
- Molecular Pharmacology and Therapeutics Graduate Program, University of Minnesota–Twin Cities, Minneapolis, MN 55455, USA
| | - Huixin Yang
- Institute for Molecular Virology, University of Minnesota–Twin Cities, Minneapolis, MN 55455, USA; (S.M.); (H.Y.); (L.M.M.)
| | - Louis M. Mansky
- Institute for Molecular Virology, University of Minnesota–Twin Cities, Minneapolis, MN 55455, USA; (S.M.); (H.Y.); (L.M.M.)
- Molecular Pharmacology and Therapeutics Graduate Program, University of Minnesota–Twin Cities, Minneapolis, MN 55455, USA
- Department of Diagnostic and Biological Sciences, University of Minnesota–Twin Cities, Minneapolis, MN 55455, USA
- Masonic Cancer Center, University of Minnesota–Twin Cities, Minneapolis, MN 55455, USA
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota–Twin Cities, Minneapolis, MN 55455, USA
| | - Jamil S. Saad
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, AL 35294, USA;
| |
Collapse
|
2
|
Kleinpeter A, Mallery DL, Renner N, Albecka A, Klarhof JO, Freed EO, James LC. HIV-1 adapts to lost IP6 coordination through second-site mutations that restore conical capsid assembly. Nat Commun 2024; 15:8017. [PMID: 39271696 PMCID: PMC11399258 DOI: 10.1038/s41467-024-51971-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Accepted: 08/20/2024] [Indexed: 09/15/2024] Open
Abstract
The HIV-1 capsid is composed of capsid (CA) protein hexamers and pentamers (capsomers) that contain a central pore hypothesised to regulate capsid assembly and facilitate nucleotide import early during post-infection. These pore functions are mediated by two positively charged rings created by CA Arg-18 (R18) and Lys-25 (K25). Here we describe the forced evolution of viruses containing mutations in R18 and K25. Whilst R18 mutants fail to replicate, K25A viruses acquire compensating mutations that restore nearly wild-type replication fitness. These compensating mutations, which rescue reverse transcription and infection without reintroducing lost pore charges, map to three adaptation hot-spots located within and between capsomers. The second-site suppressor mutations act by restoring the formation of pentamers lost upon K25 mutation, enabling closed conical capsid assembly both in vitro and inside virions. These results indicate that there is no intrinsic requirement for K25 in either nucleotide import or capsid assembly. We propose that whilst HIV-1 must maintain a precise hexamer:pentamer equilibrium for proper capsid assembly, compensatory mutations can tune this equilibrium to restore fitness lost by mutation of the central pore.
Collapse
Affiliation(s)
- Alex Kleinpeter
- Virus-Cell Interaction Section, HIV Dynamics and Replication Program, Center for Cancer Research, National Cancer Institute, Frederick, MD, 21702-1201, USA.
| | - Donna L Mallery
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge, CB2 0QH, UK
| | - Nadine Renner
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge, CB2 0QH, UK
| | - Anna Albecka
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge, CB2 0QH, UK
| | - J Ole Klarhof
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge, CB2 0QH, UK
| | - Eric O Freed
- Virus-Cell Interaction Section, HIV Dynamics and Replication Program, Center for Cancer Research, National Cancer Institute, Frederick, MD, 21702-1201, USA.
| | - Leo C James
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge, CB2 0QH, UK.
| |
Collapse
|
3
|
McGraw A, Hillmer G, Medehincu SM, Hikichi Y, Gagliardi S, Narayan K, Tibebe H, Marquez D, Mei Bose L, Keating A, Izumi C, Peese K, Joshi S, Krystal M, DeCicco-Skinner KL, Freed EO, Sardo L, Izumi T. Exploring HIV-1 Maturation: A New Frontier in Antiviral Development. Viruses 2024; 16:1423. [PMID: 39339899 PMCID: PMC11437483 DOI: 10.3390/v16091423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Revised: 09/01/2024] [Accepted: 09/03/2024] [Indexed: 09/30/2024] Open
Abstract
HIV-1 virion maturation is an essential step in the viral replication cycle to produce infectious virus particles. Gag and Gag-Pol polyproteins are assembled at the plasma membrane of the virus-producer cells and bud from it to the extracellular compartment. The newly released progeny virions are initially immature and noninfectious. However, once the Gag polyprotein is cleaved by the viral protease in progeny virions, the mature capsid proteins assemble to form the fullerene core. This core, harboring two copies of viral genomic RNA, transforms the virion morphology into infectious virus particles. This morphological transformation is referred to as maturation. Virion maturation influences the distribution of the Env glycoprotein on the virion surface and induces conformational changes necessary for the subsequent interaction with the CD4 receptor. Several host factors, including proteins like cyclophilin A, metabolites such as IP6, and lipid rafts containing sphingomyelins, have been demonstrated to have an influence on virion maturation. This review article delves into the processes of virus maturation and Env glycoprotein recruitment, with an emphasis on the role of host cell factors and environmental conditions. Additionally, we discuss microscopic technologies for assessing virion maturation and the development of current antivirals specifically targeting this critical step in viral replication, offering long-acting therapeutic options.
Collapse
Affiliation(s)
- Aidan McGraw
- Department Biology, College of Arts and Sciences, American University, Washington, DC 20016, USA; (A.M.); (G.H.); (S.M.M.); (S.G.); (K.N.); (H.T.); (D.M.); (L.M.B.); (A.K.); (C.I.); (K.L.D.-S.)
| | - Grace Hillmer
- Department Biology, College of Arts and Sciences, American University, Washington, DC 20016, USA; (A.M.); (G.H.); (S.M.M.); (S.G.); (K.N.); (H.T.); (D.M.); (L.M.B.); (A.K.); (C.I.); (K.L.D.-S.)
| | - Stefania M. Medehincu
- Department Biology, College of Arts and Sciences, American University, Washington, DC 20016, USA; (A.M.); (G.H.); (S.M.M.); (S.G.); (K.N.); (H.T.); (D.M.); (L.M.B.); (A.K.); (C.I.); (K.L.D.-S.)
| | - Yuta Hikichi
- Virus-Cell Interaction Section, HIV Dynamics and Replication Program, Center for Cancer Research, National Cancer Institute, Frederick, MS 21702, USA; (Y.H.); (E.O.F.)
| | - Sophia Gagliardi
- Department Biology, College of Arts and Sciences, American University, Washington, DC 20016, USA; (A.M.); (G.H.); (S.M.M.); (S.G.); (K.N.); (H.T.); (D.M.); (L.M.B.); (A.K.); (C.I.); (K.L.D.-S.)
| | - Kedhar Narayan
- Department Biology, College of Arts and Sciences, American University, Washington, DC 20016, USA; (A.M.); (G.H.); (S.M.M.); (S.G.); (K.N.); (H.T.); (D.M.); (L.M.B.); (A.K.); (C.I.); (K.L.D.-S.)
| | - Hasset Tibebe
- Department Biology, College of Arts and Sciences, American University, Washington, DC 20016, USA; (A.M.); (G.H.); (S.M.M.); (S.G.); (K.N.); (H.T.); (D.M.); (L.M.B.); (A.K.); (C.I.); (K.L.D.-S.)
| | - Dacia Marquez
- Department Biology, College of Arts and Sciences, American University, Washington, DC 20016, USA; (A.M.); (G.H.); (S.M.M.); (S.G.); (K.N.); (H.T.); (D.M.); (L.M.B.); (A.K.); (C.I.); (K.L.D.-S.)
| | - Lilia Mei Bose
- Department Biology, College of Arts and Sciences, American University, Washington, DC 20016, USA; (A.M.); (G.H.); (S.M.M.); (S.G.); (K.N.); (H.T.); (D.M.); (L.M.B.); (A.K.); (C.I.); (K.L.D.-S.)
| | - Adleigh Keating
- Department Biology, College of Arts and Sciences, American University, Washington, DC 20016, USA; (A.M.); (G.H.); (S.M.M.); (S.G.); (K.N.); (H.T.); (D.M.); (L.M.B.); (A.K.); (C.I.); (K.L.D.-S.)
| | - Coco Izumi
- Department Biology, College of Arts and Sciences, American University, Washington, DC 20016, USA; (A.M.); (G.H.); (S.M.M.); (S.G.); (K.N.); (H.T.); (D.M.); (L.M.B.); (A.K.); (C.I.); (K.L.D.-S.)
| | - Kevin Peese
- ViiV Healthcare, 36 E. Industrial Road, Branford, CT 06405, USA; (K.P.) (S.J.); (M.K.)
| | - Samit Joshi
- ViiV Healthcare, 36 E. Industrial Road, Branford, CT 06405, USA; (K.P.) (S.J.); (M.K.)
| | - Mark Krystal
- ViiV Healthcare, 36 E. Industrial Road, Branford, CT 06405, USA; (K.P.) (S.J.); (M.K.)
| | - Kathleen L. DeCicco-Skinner
- Department Biology, College of Arts and Sciences, American University, Washington, DC 20016, USA; (A.M.); (G.H.); (S.M.M.); (S.G.); (K.N.); (H.T.); (D.M.); (L.M.B.); (A.K.); (C.I.); (K.L.D.-S.)
| | - Eric O. Freed
- Virus-Cell Interaction Section, HIV Dynamics and Replication Program, Center for Cancer Research, National Cancer Institute, Frederick, MS 21702, USA; (Y.H.); (E.O.F.)
| | - Luca Sardo
- ViiV Healthcare, 36 E. Industrial Road, Branford, CT 06405, USA; (K.P.) (S.J.); (M.K.)
| | - Taisuke Izumi
- Department Biology, College of Arts and Sciences, American University, Washington, DC 20016, USA; (A.M.); (G.H.); (S.M.M.); (S.G.); (K.N.); (H.T.); (D.M.); (L.M.B.); (A.K.); (C.I.); (K.L.D.-S.)
- District of Columbia Center for AIDS Research, Washington, DC 20052, USA
| |
Collapse
|
4
|
Biswas B, Lai KK, Bracey H, Datta SAK, Harvin D, Sowd GA, Aiken C, Rein A. Essential functions of inositol hexakisphosphate (IP6) in murine leukemia virus replication. mBio 2024; 15:e0115824. [PMID: 38912776 PMCID: PMC11253606 DOI: 10.1128/mbio.01158-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Accepted: 05/14/2024] [Indexed: 06/25/2024] Open
Abstract
We have investigated the function of inositol hexakisphosphate (IP6) and inositol pentakisphosphate (IP5) in the replication of murine leukemia virus (MLV). While IP6 is known to be critical for the life cycle of HIV-1, its significance in MLV remains unexplored. We find that IP6 is indeed important for MLV replication. It significantly enhances endogenous reverse transcription (ERT) in MLV. Additionally, a pelleting-based assay reveals that IP6 can stabilize MLV cores, thereby facilitating ERT. We find that IP5 and IP6 are packaged in MLV particles. However, unlike HIV-1, MLV depends upon the presence of IP6 and IP5 in target cells for successful infection. This IP6/5 requirement for infection is reflected in impaired reverse transcription observed in IP6/5-deficient cell lines. In summary, our findings demonstrate the importance of capsid stabilization by IP6/5 in the replication of diverse retroviruses; we suggest possible reasons for the differences from HIV-1 that we observed in MLV.IMPORTANCEInositol hexakisphosphate (IP6) is crucial for the assembly and replication of HIV-1. IP6 is packaged in HIV-1 particles and stabilizes the viral core enabling it to synthesize viral DNA early in viral infection. While its importance for HIV-1 is well established, its significance for other retroviruses is unknown. Here we report the role of IP6 in the gammaretrovirus, murine leukemia virus (MLV). We found that like HIV-1, MLV packages IP6, and as in HIV-1, IP6 stabilizes the MLV core thus promoting reverse transcription. Interestingly, we discovered a key difference in the role of IP6 in MLV versus HIV-1: while HIV-1 is not dependent upon IP6 levels in target cells, MLV replication is significantly reduced in IP6-deficient cell lines. We suggest that this difference in IP6 requirements reflects key differences between HIV-1 and MLV replication.
Collapse
Affiliation(s)
- Banhi Biswas
- HIV Dynamics and Replication Program, National Cancer Institute-Frederick, Frederick, Maryland, USA
| | - Kin Kui Lai
- HIV Dynamics and Replication Program, National Cancer Institute-Frederick, Frederick, Maryland, USA
| | - Harrison Bracey
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Siddhartha A. K. Datta
- HIV Dynamics and Replication Program, National Cancer Institute-Frederick, Frederick, Maryland, USA
| | - Demetria Harvin
- HIV Dynamics and Replication Program, National Cancer Institute-Frederick, Frederick, Maryland, USA
| | - Gregory A. Sowd
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Christopher Aiken
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Alan Rein
- HIV Dynamics and Replication Program, National Cancer Institute-Frederick, Frederick, Maryland, USA
| |
Collapse
|
5
|
Biswas B, Lai KK, Bracey H, Datta SA, Harvin D, Sowd GA, Aiken C, Rein A. Essential functions of Inositol hexakisphosphate (IP6) in Murine Leukemia Virus replication. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.02.27.581940. [PMID: 38464197 PMCID: PMC10925174 DOI: 10.1101/2024.02.27.581940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/12/2024]
Abstract
We have investigated the function of inositol hexakisphosphate (IP6) and inositol pentakisphosphate (IP5) in the replication of murine leukemia virus (MLV). While IP6 is known to be critical for the life cycle of HIV-1, its significance in MLV remains unexplored. We find that IP6 is indeed important for MLV replication. It significantly enhances endogenous reverse transcription (ERT) in MLV. Additionally, a pelleting-based assay reveals that IP6 can stabilize MLV cores, thereby facilitating ERT. We find that IP5 and IP6 are packaged in MLV particles. However, unlike HIV-1, MLV depends upon the presence of IP6 and IP5 in target cells for successful infection. This IP6/5 requirement for infection is reflected in impaired reverse transcription observed in IP6/5-deficient cell lines. In summary, our findings demonstrate the importance of capsid stabilization by IP6/5 in the replication of diverse retroviruses; we suggest possible reasons for the differences from HIV-1 that we observed in MLV.
Collapse
Affiliation(s)
- Banhi Biswas
- HIV Dynamics and Replication Program, National Cancer Institute-Frederick, P.O. Box B, Frederick, MD 21702-1201, USA
| | - Kin Kui Lai
- HIV Dynamics and Replication Program, National Cancer Institute-Frederick, P.O. Box B, Frederick, MD 21702-1201, USA
| | - Harrison Bracey
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN 37232-3263, USA
| | - Siddhartha A.K. Datta
- HIV Dynamics and Replication Program, National Cancer Institute-Frederick, P.O. Box B, Frederick, MD 21702-1201, USA
| | - Demetria Harvin
- HIV Dynamics and Replication Program, National Cancer Institute-Frederick, P.O. Box B, Frederick, MD 21702-1201, USA
| | - Gregory A. Sowd
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN 37232-3263, USA
| | - Christopher Aiken
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN 37232-3263, USA
| | - Alan Rein
- HIV Dynamics and Replication Program, National Cancer Institute-Frederick, P.O. Box B, Frederick, MD 21702-1201, USA
| |
Collapse
|
6
|
Sumner C, Ono A. The "basics" of HIV-1 assembly. PLoS Pathog 2024; 20:e1011937. [PMID: 38300900 PMCID: PMC10833515 DOI: 10.1371/journal.ppat.1011937] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2024] Open
Affiliation(s)
- Christopher Sumner
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, Michigan, United States of America
| | - Akira Ono
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, Michigan, United States of America
| |
Collapse
|
7
|
Kleinpeter AB, Zhu Y, Mallery DL, Ablan SD, Chen L, Hardenbrook N, Saiardi A, James LC, Zhang P, Freed EO. The Effect of Inositol Hexakisphosphate on HIV-1 Particle Production and Infectivity can be Modulated by Mutations that Affect the Stability of the Immature Gag Lattice. J Mol Biol 2023; 435:168037. [PMID: 37330292 PMCID: PMC10544863 DOI: 10.1016/j.jmb.2023.168037] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Revised: 02/24/2023] [Accepted: 02/25/2023] [Indexed: 06/19/2023]
Abstract
The assembly of an HIV-1 particle begins with the construction of a spherical lattice composed of hexamer subunits of the Gag polyprotein. The cellular metabolite inositol hexakisphosphate (IP6) binds and stabilizes the immature Gag lattice via an interaction with the six-helix bundle (6HB), a crucial structural feature of Gag hexamers that modulates both virus assembly and infectivity. The 6HB must be stable enough to promote immature Gag lattice formation, but also flexible enough to be accessible to the viral protease, which cleaves the 6HB during particle maturation. 6HB cleavage liberates the capsid (CA) domain of Gag from the adjacent spacer peptide 1 (SP1) and IP6 from its binding site. This pool of IP6 molecules then promotes the assembly of CA into the mature conical capsid that is required for infection. Depletion of IP6 in virus-producer cells results in severe defects in assembly and infectivity of wild-type (WT) virions. Here we show that in an SP1 double mutant (M4L/T8I) with a hyperstable 6HB, IP6 can block virion infectivity by preventing CA-SP1 processing. Thus, depletion of IP6 in virus-producer cells markedly increases M4L/T8I CA-SP1 processing and infectivity. We also show that the introduction of the M4L/T8I mutations partially rescues the assembly and infectivity defects induced by IP6 depletion on WT virions, likely by increasing the affinity of the immature lattice for limiting IP6. These findings reinforce the importance of the 6HB in virus assembly, maturation, and infection and highlight the ability of IP6 to modulate 6HB stability.
Collapse
Affiliation(s)
- Alex B Kleinpeter
- Virus-Cell Interaction Section, HIV Dynamics and Replication Program, Center for Cancer Research, National Cancer Institute, Frederick, MD 21702-1201, USA. https://twitter.com/AlexKleinpeter
| | - Yanan Zhu
- Division of Structural Biology, Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford OX3 7BN, UK
| | - Donna L Mallery
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, UK
| | - Sherimay D Ablan
- Virus-Cell Interaction Section, HIV Dynamics and Replication Program, Center for Cancer Research, National Cancer Institute, Frederick, MD 21702-1201, USA
| | - Long Chen
- Division of Structural Biology, Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford OX3 7BN, UK
| | - Nathan Hardenbrook
- Division of Structural Biology, Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford OX3 7BN, UK
| | - Adolfo Saiardi
- Laboratory for Molecular Cell Biology, University College London, London, UK. https://twitter.com/SaiardiLab
| | - Leo C James
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, UK. https://twitter.com/JamesLab9
| | - Peijun Zhang
- Division of Structural Biology, Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford OX3 7BN, UK; Diamond Light Source, Harwell Science and Innovation Campus, Didcot OX11 0DE, UK; Chinese Academy of Medical Sciences Oxford Institute, University of Oxford, Oxford OX3 7BN, UK
| | - Eric O Freed
- Virus-Cell Interaction Section, HIV Dynamics and Replication Program, Center for Cancer Research, National Cancer Institute, Frederick, MD 21702-1201, USA.
| |
Collapse
|
8
|
Papa G, Albecka A, Mallery D, Vaysburd M, Renner N, James LC. IP6-stabilised HIV capsids evade cGAS/STING-mediated host immune sensing. EMBO Rep 2023; 24:e56275. [PMID: 36970882 PMCID: PMC10157305 DOI: 10.15252/embr.202256275] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 03/06/2023] [Accepted: 03/10/2023] [Indexed: 03/29/2023] Open
Abstract
HIV-1 uses inositol hexakisphosphate (IP6) to build a metastable capsid capable of delivering its genome into the host nucleus. Here, we show that viruses that are unable to package IP6 lack capsid protection and are detected by innate immunity, resulting in the activation of an antiviral state that inhibits infection. Disrupting IP6 enrichment results in defective capsids that trigger cytokine and chemokine responses during infection of both primary macrophages and T-cell lines. Restoring IP6 enrichment with a single mutation rescues the ability of HIV-1 to infect cells without being detected. Using a combination of capsid mutants and CRISPR-derived knockout cell lines for RNA and DNA sensors, we show that immune sensing is dependent upon the cGAS-STING axis and independent of capsid detection. Sensing requires the synthesis of viral DNA and is prevented by reverse transcriptase inhibitors or reverse transcriptase active-site mutation. These results demonstrate that IP6 is required to build capsids that can successfully transit the cell and avoid host innate immune sensing.
Collapse
Affiliation(s)
- Guido Papa
- MRC Laboratory of Molecular Biology, Protein & Nucleic Acid DivisionCambridgeUK
| | - Anna Albecka
- MRC Laboratory of Molecular Biology, Protein & Nucleic Acid DivisionCambridgeUK
| | - Donna Mallery
- MRC Laboratory of Molecular Biology, Protein & Nucleic Acid DivisionCambridgeUK
| | - Marina Vaysburd
- MRC Laboratory of Molecular Biology, Protein & Nucleic Acid DivisionCambridgeUK
| | - Nadine Renner
- MRC Laboratory of Molecular Biology, Protein & Nucleic Acid DivisionCambridgeUK
| | - Leo C James
- MRC Laboratory of Molecular Biology, Protein & Nucleic Acid DivisionCambridgeUK
| |
Collapse
|
9
|
Highland CM, Tan A, Ricaña CL, Briggs JAG, Dick RA. Structural insights into HIV-1 polyanion-dependent capsid lattice formation revealed by single particle cryo-EM. Proc Natl Acad Sci U S A 2023; 120:e2220545120. [PMID: 37094124 PMCID: PMC10160977 DOI: 10.1073/pnas.2220545120] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Accepted: 03/12/2023] [Indexed: 04/26/2023] Open
Abstract
The HIV-1 capsid houses the viral genome and interacts extensively with host cell proteins throughout the viral life cycle. It is composed of capsid protein (CA), which assembles into a conical fullerene lattice composed of roughly 200 CA hexamers and 12 CA pentamers. Previous structural analyses of individual CA hexamers and pentamers have provided valuable insight into capsid structure and function, but detailed structural information about these assemblies in the broader context of the capsid lattice is lacking. In this study, we combined cryoelectron tomography and single particle analysis (SPA) cryoelectron microscopy to determine structures of continuous regions of the capsid lattice containing both hexamers and pentamers. We also developed a method of liposome scaffold-based in vitro lattice assembly ("lattice templating") that enabled us to directly study the lattice under a wider range of conditions than has previously been possible. Using this approach, we identified a critical role for inositol hexakisphosphate in pentamer formation and determined the structure of the CA lattice bound to the capsid-targeting antiretroviral drug GS-6207 (lenacapavir). Our work reveals key structural details of the mature HIV-1 CA lattice and establishes the combination of lattice templating and SPA as a robust strategy for studying retroviral capsid structure and capsid interactions with host proteins and antiviral compounds.
Collapse
Affiliation(s)
- Carolyn M. Highland
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY14853
- Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, NY14853
| | - Aaron Tan
- Structural Studies Division, Medical Research Council Laboratory of Molecular Biology, CambridgeCB2 0QH, UK
| | - Clifton L. Ricaña
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY14853
| | - John A. G. Briggs
- Structural Studies Division, Medical Research Council Laboratory of Molecular Biology, CambridgeCB2 0QH, UK
- Department of Cell and Virus Structure, Max Planck Institute of Biochemistry, Munich82512, Germany
| | - Robert A. Dick
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY14853
| |
Collapse
|
10
|
Renner N, Kleinpeter A, Mallery DL, Albecka A, Rifat Faysal KM, Böcking T, Saiardi A, Freed EO, James LC. HIV-1 is dependent on its immature lattice to recruit IP6 for mature capsid assembly. Nat Struct Mol Biol 2023; 30:370-382. [PMID: 36624347 PMCID: PMC7614341 DOI: 10.1038/s41594-022-00887-4] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Accepted: 11/03/2022] [Indexed: 01/11/2023]
Abstract
HIV-1 Gag metamorphoses inside each virion, from an immature lattice that forms during viral production to a mature capsid that drives infection. Here we show that the immature lattice is required to concentrate the cellular metabolite inositol hexakisphosphate (IP6) into virions to catalyze mature capsid assembly. Disabling the ability of HIV-1 to enrich IP6 does not prevent immature lattice formation or production of the virus. However, without sufficient IP6 molecules inside each virion, HIV-1 can no longer build a stable capsid and fails to become infectious. IP6 cannot be replaced by other inositol phosphate (IP) molecules, as substitution with other IPs profoundly slows mature assembly kinetics and results in virions with gross morphological defects. Our results demonstrate that while HIV-1 can become independent of IP6 for immature assembly, it remains dependent upon the metabolite for mature capsid formation.
Collapse
Affiliation(s)
- Nadine Renner
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge, UK
| | - Alex Kleinpeter
- Virus-Cell Interaction Section, HIV Dynamics and Replication Program, Center for Cancer Research, National Cancer Institute, Frederick, MD, USA
| | - Donna L Mallery
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge, UK
| | - Anna Albecka
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge, UK
| | - K M Rifat Faysal
- EMBL Australia Node in Single Molecule Science and ARC Centre of Excellence in Advanced Molecular Imaging, School of Medical Sciences, UNSW Sydney, Sydney, New South Wales, Australia
| | - Till Böcking
- EMBL Australia Node in Single Molecule Science and ARC Centre of Excellence in Advanced Molecular Imaging, School of Medical Sciences, UNSW Sydney, Sydney, New South Wales, Australia
| | - Adolfo Saiardi
- MRC Laboratory for Molecular Cell Biology, University College London, London, UK
| | - Eric O Freed
- Virus-Cell Interaction Section, HIV Dynamics and Replication Program, Center for Cancer Research, National Cancer Institute, Frederick, MD, USA.
| | - Leo C James
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge, UK.
| |
Collapse
|
11
|
Regueiro-Ren A, Sit SY, Chen Y, Chen J, Swidorski JJ, Liu Z, Venables BL, Sin N, Hartz RA, Protack T, Lin Z, Zhang S, Li Z, Wu DR, Li P, Kempson J, Hou X, Gupta A, Rampulla R, Mathur A, Park H, Sarjeant A, Benitex Y, Rahematpura S, Parker D, Phillips T, Haskell R, Jenkins S, Santone KS, Cockett M, Hanumegowda U, Dicker I, Meanwell NA, Krystal M. The Discovery of GSK3640254, a Next-Generation Inhibitor of HIV-1 Maturation. J Med Chem 2022; 65:11927-11948. [PMID: 36044257 DOI: 10.1021/acs.jmedchem.2c00879] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
GSK3640254 is an HIV-1 maturation inhibitor (MI) that exhibits significantly improved antiviral activity toward a range of clinically relevant polymorphic variants with reduced sensitivity toward the second-generation MI GSK3532795 (BMS-955176). The key structural difference between GSK3640254 and its predecessor is the replacement of the para-substituted benzoic acid moiety attached at the C-3 position of the triterpenoid core with a cyclohex-3-ene-1-carboxylic acid substituted with a CH2F moiety at the carbon atom α- to the pharmacophoric carboxylic acid. This structural element provided a new vector with which to explore structure-activity relationships (SARs) and led to compounds with improved polymorphic coverage while preserving pharmacokinetic (PK) properties. The approach to the design of GSK3640254, the development of a synthetic route and its preclinical profile are discussed. GSK3640254 is currently in phase IIb clinical trials after demonstrating a dose-related reduction in HIV-1 viral load over 7-10 days of dosing to HIV-1-infected subjects.
Collapse
Affiliation(s)
- Alicia Regueiro-Ren
- Small Molecule Drug Discovery, Bristol Myers Squibb Research and Early Development, Princeton, New Jersey08543, United States
| | - Sing-Yuen Sit
- Department of Discovery Chemistry, Bristol Myers Squibb Research and Early Development, 5 Research Parkway, Wallingford, Connecticut06492, United States
| | - Yan Chen
- Department of Discovery Chemistry, Bristol Myers Squibb Research and Early Development, 5 Research Parkway, Wallingford, Connecticut06492, United States
| | - Jie Chen
- Department of Discovery Chemistry, Bristol Myers Squibb Research and Early Development, 5 Research Parkway, Wallingford, Connecticut06492, United States
| | - Jacob J Swidorski
- Department of Discovery Chemistry, Bristol Myers Squibb Research and Early Development, 5 Research Parkway, Wallingford, Connecticut06492, United States
| | - Zheng Liu
- Department of Discovery Chemistry, Bristol Myers Squibb Research and Early Development, 5 Research Parkway, Wallingford, Connecticut06492, United States
| | - Brian L Venables
- Department of Discovery Chemistry, Bristol Myers Squibb Research and Early Development, 5 Research Parkway, Wallingford, Connecticut06492, United States
| | - Ny Sin
- Department of Discovery Chemistry, Bristol Myers Squibb Research and Early Development, 5 Research Parkway, Wallingford, Connecticut06492, United States
| | - Richard A Hartz
- Department of Discovery Chemistry, Bristol Myers Squibb Research and Early Development, 5 Research Parkway, Wallingford, Connecticut06492, United States
| | - Tricia Protack
- Department of Virology, Bristol Myers Squibb Research and Early Development, 5 Research Parkway, Wallingford, Connecticut06492, United States
| | - Zeyu Lin
- Department of Virology, Bristol Myers Squibb Research and Early Development, 5 Research Parkway, Wallingford, Connecticut06492, United States
| | - Sharon Zhang
- Department of Virology, Bristol Myers Squibb Research and Early Development, 5 Research Parkway, Wallingford, Connecticut06492, United States
| | - Zhufang Li
- Department of Virology, Bristol Myers Squibb Research and Early Development, 5 Research Parkway, Wallingford, Connecticut06492, United States
| | - Dauh-Rurng Wu
- Department of Discovery Synthesis, Bristol Myers Squibb Research and Early Development, PO Box 4000, Princeton, New Jersey08543, United States
| | - Peng Li
- Department of Discovery Synthesis, Bristol Myers Squibb Research and Early Development, PO Box 4000, Princeton, New Jersey08543, United States
| | - James Kempson
- Department of Discovery Synthesis, Bristol Myers Squibb Research and Early Development, PO Box 4000, Princeton, New Jersey08543, United States
| | - Xiaoping Hou
- Department of Discovery Synthesis, Bristol Myers Squibb Research and Early Development, PO Box 4000, Princeton, New Jersey08543, United States
| | - Anuradha Gupta
- Department of Discovery Synthesis; Bristol Myers Squibb Research and Early Development, Bangalore 560099, India
| | - Richard Rampulla
- Department of Discovery Synthesis, Bristol Myers Squibb Research and Early Development, PO Box 4000, Princeton, New Jersey08543, United States
| | - Arvind Mathur
- Department of Discovery Synthesis, Bristol Myers Squibb Research and Early Development, PO Box 4000, Princeton, New Jersey08543, United States
| | - Hyunsoo Park
- Bristol Myers Squibb Chemical and Synthetic Development, New Brunswick, New Jersey08901, United States
| | - Amy Sarjeant
- Bristol Myers Squibb Chemical and Synthetic Development, New Brunswick, New Jersey08901, United States
| | - Yulia Benitex
- Department of Pharmaceutical Candidate Optimization, Bristol Myers Squibb Research and Early Development, 5 Research Parkway, Wallingford, Connecticut06492, United States
| | - Sandhya Rahematpura
- Department of Pharmaceutical Candidate Optimization, Bristol Myers Squibb Research and Early Development, 5 Research Parkway, Wallingford, Connecticut06492, United States
| | - Dawn Parker
- Department of Pharmaceutical Candidate Optimization, Bristol Myers Squibb Research and Early Development, 5 Research Parkway, Wallingford, Connecticut06492, United States
| | - Thomas Phillips
- Department of Pharmaceutical Candidate Optimization, Bristol Myers Squibb Research and Early Development, 5 Research Parkway, Wallingford, Connecticut06492, United States
| | - Roy Haskell
- Department of Pharmaceutical Candidate Optimization, Bristol Myers Squibb Research and Early Development, 5 Research Parkway, Wallingford, Connecticut06492, United States
| | - Susan Jenkins
- Department of Pharmaceutical Candidate Optimization, Bristol Myers Squibb Research and Early Development, 5 Research Parkway, Wallingford, Connecticut06492, United States
| | - Kenneth S Santone
- Department of Pharmaceutical Candidate Optimization, Bristol Myers Squibb Research and Early Development, 5 Research Parkway, Wallingford, Connecticut06492, United States
| | - Mark Cockett
- Department of Virology, Bristol Myers Squibb Research and Early Development, 5 Research Parkway, Wallingford, Connecticut06492, United States
| | - Umesh Hanumegowda
- Department of Pharmaceutical Candidate Optimization, Bristol Myers Squibb Research and Early Development, 5 Research Parkway, Wallingford, Connecticut06492, United States
| | - Ira Dicker
- Department of Virology, Bristol Myers Squibb Research and Early Development, 5 Research Parkway, Wallingford, Connecticut06492, United States
| | - Nicholas A Meanwell
- Small Molecule Drug Discovery, Bristol Myers Squibb Research and Early Development, Princeton, New Jersey08543, United States
| | - Mark Krystal
- Department of Virology, Bristol Myers Squibb Research and Early Development, 5 Research Parkway, Wallingford, Connecticut06492, United States
| |
Collapse
|
12
|
Ricaña CL, Dick RA. Inositol Phosphates and Retroviral Assembly: A Cellular Perspective. Viruses 2021; 13:v13122516. [PMID: 34960784 PMCID: PMC8703376 DOI: 10.3390/v13122516] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Revised: 12/09/2021] [Accepted: 12/11/2021] [Indexed: 12/13/2022] Open
Abstract
Understanding the molecular mechanisms of retroviral assembly has been a decades-long endeavor. With the recent discovery of inositol hexakisphosphate (IP6) acting as an assembly co-factor for human immunodeficiency virus (HIV), great strides have been made in retroviral research. In this review, the enzymatic pathways to synthesize and metabolize inositol phosphates (IPs) relevant to retroviral assembly are discussed. The functions of these enzymes and IPs are outlined in the context of the cellular biology important for retroviruses. Lastly, the recent advances in understanding the role of IPs in retroviral biology are surveyed.
Collapse
|
13
|
HIV-1 CA Inhibitors Are Antagonized by Inositol Phosphate Stabilization of the Viral Capsid in Cells. J Virol 2021; 95:e0144521. [PMID: 34613803 PMCID: PMC8610598 DOI: 10.1128/jvi.01445-21] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
The HIV-1 capsid, composed of the CA protein, is the target of the novel antiretroviral drug lenacapavir (LCV). CA inhibitors block host factor binding and alter capsid stability to prevent nuclear entry and reverse transcription (RTN), respectively. Capsid stability is mediated in vitro by binding to the host cell metabolite inositol hexakisphosphate (IP6). IP6 depletion in target cells has little effect on HIV-1 infection. We hypothesized that capsid-altering concentrations of CA inhibitors might reveal an effect of IP6 depletion on HIV-1 infection in target cells. To test this, we studied the effects of IP6 depletion on inhibition of infection by the CA inhibitors PF74 and LCV. At low doses of either compound that affect HIV-1 nuclear entry, no effect of IP6 depletion on antiviral activity was observed. Increased antiviral activity was observed in IP6-depleted cells at inhibitor concentrations that affect capsid stability, correlating with increased RTN inhibition. Assays of uncoating and endogenous RTN of purified cores in vitro provided additional support. Our results show that inositol phosphates stabilize the HIV-1 capsid in target cells, thereby dampening the antiviral effects of capsid-targeting antiviral compounds. We propose that targeting of the IP6-binding site in conjunction with CA inhibitors will lead to robust antiretroviral therapy (ART). IMPORTANCE HIV-1 infection and subsequent depletion of CD4+ T cells result in AIDS. Antiretroviral therapy treatment of infected individuals prevents progression to AIDS. The HIV-1 capsid has recently become an ART target. Capsid inhibitors block HIV-1 infection at multiple steps, offering advantages over current ART. The cellular metabolite inositol hexakisphosphate (IP6) binds the HIV-1 capsid, stabilizing it in vitro. However, the function of this interaction in target cells is unclear. Our results imply that IP6 stabilizes the incoming HIV-1 capsid in cells, thus limiting the antiviral efficiency of capsid-destabilizing antivirals. We present a model of capsid inhibitor function and propose that targeting of the IP6-binding site in conjunction with capsid inhibitors currently in development will lead to more robust ART.
Collapse
|
14
|
Kröber T, Bartsch SM, Fiedler D. Pharmacological tools to investigate inositol polyphosphate kinases - Enzymes of increasing therapeutic relevance. Adv Biol Regul 2021; 83:100836. [PMID: 34802993 DOI: 10.1016/j.jbior.2021.100836] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Revised: 10/27/2021] [Accepted: 10/28/2021] [Indexed: 01/01/2023]
Abstract
Inositol poly- and pyrophosphates (InsPs and PP-InsPs) are a group of central eukaryotic metabolites and signaling molecules. Due to the diverse cellular functions and widespread diseases InsPs and PP-InsPs are associated with, pharmacological targeting of the kinases involved in their biosynthesis has become a significant research interest in the last decade. In particular, the development of inhibitors for inositol hexakisphosphate kinases (IP6Ks) has leaped forward, while other inositol phosphate kinases have received scant attention. This review summarizes the efforts undertaken so far for discovering potent and selective inhibitors for this diverse group of small molecule kinases. The benefits of pharmacological inhibition are highlighted, given the multiple kinase-independent functions of inositol phosphate kinases. The distinct structural families of InsP and PP-InsP kinases are presented, and we discuss how compound availability for different inositol phosphate kinase families varies drastically. Lead compound discovery and optimization for the inositol kinases would benefit from detailed structural information on the ATP-binding sites of these kinases, as well as reliable biochemical and cellular read-outs to monitor inositol phosphate kinase activity in complex settings. Efforts to further tune well-established inhibitors, while simultaneously reviving tool compound development for the more neglected kinases from this family are indisputably worthwhile, considering the large potential therapeutic benefits.
Collapse
Affiliation(s)
- Tim Kröber
- Leibniz Forschungsinstitut für Molekulare Pharmakologie, Robert-Rössle-Straße 10, 13125, Berlin, Germany; Humboldt-Universität zu Berlin, Institut für Chemie, Brook-Taylor-Straße 2, 12489, Berlin, Germany.
| | - Simon M Bartsch
- Leibniz Forschungsinstitut für Molekulare Pharmakologie, Robert-Rössle-Straße 10, 13125, Berlin, Germany; Humboldt-Universität zu Berlin, Institut für Chemie, Brook-Taylor-Straße 2, 12489, Berlin, Germany.
| | - Dorothea Fiedler
- Leibniz Forschungsinstitut für Molekulare Pharmakologie, Robert-Rössle-Straße 10, 13125, Berlin, Germany; Humboldt-Universität zu Berlin, Institut für Chemie, Brook-Taylor-Straße 2, 12489, Berlin, Germany.
| |
Collapse
|
15
|
Saito A, Yamashita M. HIV-1 capsid variability: viral exploitation and evasion of capsid-binding molecules. Retrovirology 2021; 18:32. [PMID: 34702294 PMCID: PMC8549334 DOI: 10.1186/s12977-021-00577-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Accepted: 10/13/2021] [Indexed: 11/17/2022] Open
Abstract
The HIV-1 capsid, a conical shell encasing viral nucleoprotein complexes, is involved in multiple post-entry processes during viral replication. Many host factors can directly bind to the HIV-1 capsid protein (CA) and either promote or prevent HIV-1 infection. The viral capsid is currently being explored as a novel target for therapeutic interventions. In the past few decades, significant progress has been made in our understanding of the capsid–host interactions and mechanisms of action of capsid-targeting antivirals. At the same time, a large number of different viral capsids, which derive from many HIV-1 mutants, naturally occurring variants, or diverse lentiviruses, have been characterized for their interactions with capsid-binding molecules in great detail utilizing various experimental techniques. This review provides an overview of how sequence variation in CA influences phenotypic properties of HIV-1. We will focus on sequence differences that alter capsid–host interactions and give a brief account of drug resistant mutations in CA and their mutational effects on viral phenotypes. Increased knowledge of the sequence-function relationship of CA helps us deepen our understanding of the adaptive potential of the viral capsid.
Collapse
Affiliation(s)
- Akatsuki Saito
- Department of Veterinary Medicine, Faculty of Agriculture, University of Miyazaki, Miyazaki, Miyazaki, Japan.,Center for Animal Disease Control, University of Miyazaki, Miyazaki, Miyazaki, Japan
| | - Masahiro Yamashita
- Aaron Diamond AIDS Research Center, Columbia University Vagelos College of Physicians and Surgeons, New York, NY, USA.
| |
Collapse
|
16
|
A Structural Perspective of the Role of IP6 in Immature and Mature Retroviral Assembly. Viruses 2021; 13:v13091853. [PMID: 34578434 PMCID: PMC8473085 DOI: 10.3390/v13091853] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Revised: 09/10/2021] [Accepted: 09/12/2021] [Indexed: 11/17/2022] Open
Abstract
The small cellular molecule inositol hexakisphosphate (IP6) has been known for ~20 years to promote the in vitro assembly of HIV-1 into immature virus-like particles. However, the molecular details underlying this effect have been determined only recently, with the identification of the IP6 binding site in the immature Gag lattice. IP6 also promotes formation of the mature capsid protein (CA) lattice via a second IP6 binding site, and enhances core stability, creating a favorable environment for reverse transcription. IP6 also enhances assembly of other retroviruses, from both the Lentivirus and the Alpharetrovirus genera. These findings suggest that IP6 may have a conserved function throughout the family Retroviridae. Here, we discuss the different steps in the viral life cycle that are influenced by IP6, and describe in detail how IP6 interacts with the immature and mature lattices of different retroviruses.
Collapse
|
17
|
Poston D, Zang T, Bieniasz P. Derivation and characterization of an HIV-1 mutant that rescues IP 6 binding deficiency. Retrovirology 2021; 18:25. [PMID: 34454514 PMCID: PMC8403458 DOI: 10.1186/s12977-021-00571-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Accepted: 08/19/2021] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND A critical step in the HIV-1 replication cycle is the assembly of Gag proteins to form virions at the plasma membrane. Virion assembly and maturation are facilitated by the cellular polyanion inositol hexaphosphate (IP6), which is proposed to stabilize both the immature Gag lattice and the mature capsid lattice by binding to rings of primary amines at the center of Gag or capsid protein (CA) hexamers. The amino acids comprising these rings are critical for proper virion formation and their substitution results in assembly deficits or impaired infectiousness. To better understand the nature of the deficits that accompany IP6 binding deficiency, we passaged HIV-1 mutants that had substitutions in IP6 coordinating residues to select for compensatory mutations. RESULTS We found a mutation, a threonine to isoleucine substitution at position 371 (T371I) in Gag, that restored replication competence to an IP6-binding-deficient HIV-1 mutant. Notably, unlike wild-type HIV-1, the assembly and infectiousness of resulting virus was not impaired when IP6 biosynthetic enzymes were genetically ablated. Surprisingly, we also found that the maturation inhibitor Bevirimat (BVM) could restore the assembly and replication of an IP6-binding deficient mutant. Moreover, using BVM-dependent mutants we were able to image BVM-induced assembly of individual HIV-1 particles assembly in living cells. CONCLUSIONS Overall these results suggest that IP6-Gag and Gag-Gag contacts are finely tuned to generate a Gag lattice of optimal stability, and that under certain conditions BVM can rescue IP6 deficiency. Additionally, our work identifies an inducible virion assembly system that can be utilized to visualize HIV-1 assembly events using live cell microscopy.
Collapse
Affiliation(s)
- Daniel Poston
- Laboratory of Retrovirology, The Rockefeller University, New York, NY, USA
- Weill Cornell/Rockefeller/Sloan-Kettering Tri-Institutional MD-PhD Program, New York, NY, USA
| | - Trinity Zang
- Laboratory of Retrovirology, The Rockefeller University, New York, NY, USA
- Howard Hughes Medical Institute, New York, NY, USA
| | - Paul Bieniasz
- Laboratory of Retrovirology, The Rockefeller University, New York, NY, USA.
- Howard Hughes Medical Institute, New York, NY, USA.
| |
Collapse
|
18
|
Structure of the mature Rous sarcoma virus lattice reveals a role for IP6 in the formation of the capsid hexamer. Nat Commun 2021; 12:3226. [PMID: 34050170 PMCID: PMC8163826 DOI: 10.1038/s41467-021-23506-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Accepted: 05/03/2021] [Indexed: 02/08/2023] Open
Abstract
Inositol hexakisphosphate (IP6) is an assembly cofactor for HIV-1. We report here that IP6 is also used for assembly of Rous sarcoma virus (RSV), a retrovirus from a different genus. IP6 is ~100-fold more potent at promoting RSV mature capsid protein (CA) assembly than observed for HIV-1 and removal of IP6 in cells reduces infectivity by 100-fold. Here, visualized by cryo-electron tomography and subtomogram averaging, mature capsid-like particles show an IP6-like density in the CA hexamer, coordinated by rings of six lysines and six arginines. Phosphate and IP6 have opposing effects on CA in vitro assembly, inducing formation of T = 1 icosahedrons and tubes, respectively, implying that phosphate promotes pentamer and IP6 hexamer formation. Subtomogram averaging and classification optimized for analysis of pleomorphic retrovirus particles reveal that the heterogeneity of mature RSV CA polyhedrons results from an unexpected, intrinsic CA hexamer flexibility. In contrast, the CA pentamer forms rigid units organizing the local architecture. These different features of hexamers and pentamers determine the structural mechanism to form CA polyhedrons of variable shape in mature RSV particles.
Collapse
|
19
|
Inositol phosphates promote HIV-1 assembly and maturation to facilitate viral spread in human CD4+ T cells. PLoS Pathog 2021; 17:e1009190. [PMID: 33476323 PMCID: PMC7853515 DOI: 10.1371/journal.ppat.1009190] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 02/02/2021] [Accepted: 11/26/2020] [Indexed: 11/19/2022] Open
Abstract
Gag polymerization with viral RNA at the plasma membrane initiates HIV-1 assembly. Assembly processes are inefficient in vitro but are stimulated by inositol (1,3,4,5,6) pentakisphosphate (IP5) and inositol hexakisphosphate (IP6) metabolites. Previous studies have shown that depletion of these inositol phosphate species from HEK293T cells reduced HIV-1 particle production but did not alter the infectivity of the resulting progeny virions. Moreover, HIV-1 substitutions bearing Gag/CA mutations ablating IP6 binding are noninfectious with destabilized viral cores. In this study, we analyzed the effects of cellular depletion of IP5 and IP6 on HIV-1 replication in T cells in which we disrupted the genes encoding the kinases required for IP6 generation, IP5 2-kinase (IPPK) and Inositol Polyphosphate Multikinase (IPMK). Knockout (KO) of IPPK from CEM and MT-4 cells depleted cellular IP6 in both T cell lines, and IPMK disruption reduced the levels of both IP5 and IP6. In the KO lines, HIV-1 spread was delayed relative to parental wild-type (WT) cells and was rescued by complementation. Virus release was decreased in all IPPK or IPMK KO lines relative to WT cells. Infected IPMK KO cells exhibited elevated levels of intracellular Gag protein, indicative of impaired particle assembly. IPMK KO compromised virus production to a greater extent than IPPK KO suggesting that IP5 promotes HIV-1 particle assembly in IPPK KO cells. HIV-1 particles released from infected IPPK or IPMK KO cells were less infectious than those from WT cells. These viruses exhibited partially cleaved Gag proteins, decreased virion-associated p24, and higher frequencies of aberrant particles, indicative of a maturation defect. Our data demonstrate that IP6 enhances the quantity and quality of virions produced from T cells, thereby preventing defects in HIV-1 replication.
Collapse
|
20
|
Chen W, Jiang J, Gong L, Shu Z, Xiang D, Zhang X, Bi K, Diao H. Hepatitis B virus P protein initiates glycolytic bypass in HBV-related hepatocellular carcinoma via a FOXO3/miRNA-30b-5p/MINPP1 axis. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2021; 40:1. [PMID: 33390177 PMCID: PMC7779247 DOI: 10.1186/s13046-020-01803-8] [Citation(s) in RCA: 93] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Accepted: 12/07/2020] [Indexed: 12/11/2022]
Abstract
Background Hepatitis B virus (HBV) infection is a crucial risk factor for hepatocellular carcinoma (HCC). However, its underlying mechanism remains understudied. Methods Microarray analysis was conducted to compare the genes and miRNAs in liver tissue from HBV-positive and HBV-negative HCC patients. Biological functions of these biomarkers in HBV-related HCC were validated via in vitro and in vivo experiments. Furthermore, we investigated the effect of HBV on the proliferation and migration of tumor cells in HBV-positive HCC tissue. Bioinformatics analysis was then performed to validate the clinical value of the biomarkers in a large HCC cohort. Results We found that a gene, MINPP1 from the glycolytic bypass metabolic pathway, has an important biological function in the development of HBV-positive HCC. MINPP1 is down-regulated in HBV-positive HCC and could inhibit the proliferation and migration of the tumor cells. Meanwhile, miRNA-30b-5p was found to be a stimulator for the proliferation of tumor cell through glycolytic bypass in HBV-positive HCC. More importantly, miRNA-30b-5p could significantly downregulate MINPP1 expression. Metabolic experiments showed that the miRNA-30b-5p/MINPP1 axis is able to accelerate the conversion of glucose to lactate and 2,3-bisphosphoglycerate (2,3-BPG). In the HBV-negative HCC cells, miRNA-30b-5p/MINPP1 could not regulate the glycolytic bypass to promote the tumorigenesis. However, once HBV was introduced into these cells, miRNA-30b-5p/MINPP1 significantly enhanced the proliferation, migration of tumor cells, and promoted the glycolytic bypass. We further revealed that HBV infection promoted the expression of miRNA-30b-5p through the interaction of HBV protein P (HBp) with FOXO3. Bioinformatics analysis on a large cohort dataset showed that high expression of MINPP1 was associated with favorable survival of HBV-positive HCC patients, which could lead to a slower progress of this disease. Conclusion Our study found that the HBp/FOXO3/miRNA-30b-5p/MINPP1 axis contributes to the development of HBV-positive HCC cells through the glycolytic bypass. We also presented miRNA-30b-5p/MINPP1 as a novel biomarker for HBV-positive HCC early diagnosis and a potential pharmaceutical target for antitumor therapy. Supplementary Information The online version contains supplementary material available at 10.1186/s13046-020-01803-8.
Collapse
Affiliation(s)
- Wenbiao Chen
- State Key Laboratory for Diagnosis & Treatment of Infectious Diseases, National Clinical Research Center for Infectious Disease, Collaborative Innovation Center for Diagnosis & Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, 310003, China
| | - Jingjing Jiang
- State Key Laboratory for Diagnosis & Treatment of Infectious Diseases, National Clinical Research Center for Infectious Disease, Collaborative Innovation Center for Diagnosis & Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, 310003, China
| | - Lan Gong
- Microbiome Research Centre, St George and Sutherland Clinical School, University of New South Wales, Sydney, NSW, Australia
| | - Zheyue Shu
- Department of Surgery, First Affiliated Hospital, Division of Hepatobiliary & Pancreatic Surgery, Zhejiang University School of Medicine, Hangzhou, 310000, China.,Key Lab of Combined Multi-Organ Transplantation, Ministry of Public Health, Hangzhou, 310000, China
| | - Dairong Xiang
- State Key Laboratory for Diagnosis & Treatment of Infectious Diseases, National Clinical Research Center for Infectious Disease, Collaborative Innovation Center for Diagnosis & Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, 310003, China
| | - Xujun Zhang
- State Key Laboratory for Diagnosis & Treatment of Infectious Diseases, National Clinical Research Center for Infectious Disease, Collaborative Innovation Center for Diagnosis & Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, 310003, China
| | - Kefan Bi
- State Key Laboratory for Diagnosis & Treatment of Infectious Diseases, National Clinical Research Center for Infectious Disease, Collaborative Innovation Center for Diagnosis & Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, 310003, China
| | - Hongyan Diao
- State Key Laboratory for Diagnosis & Treatment of Infectious Diseases, National Clinical Research Center for Infectious Disease, Collaborative Innovation Center for Diagnosis & Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, 310003, China.
| |
Collapse
|
21
|
Maffucci T, Falasca M. Signalling Properties of Inositol Polyphosphates. Molecules 2020; 25:molecules25225281. [PMID: 33198256 PMCID: PMC7696153 DOI: 10.3390/molecules25225281] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Revised: 11/02/2020] [Accepted: 11/04/2020] [Indexed: 12/16/2022] Open
Abstract
Several studies have identified specific signalling functions for inositol polyphosphates (IPs) in different cell types and have led to the accumulation of new information regarding their cellular roles as well as new insights into their cellular production. These studies have revealed that interaction of IPs with several proteins is critical for stabilization of protein complexes and for modulation of enzymatic activity. This has not only revealed their importance in regulation of several cellular processes but it has also highlighted the possibility of new pharmacological interventions in multiple diseases, including cancer. In this review, we describe some of the intracellular roles of IPs and we discuss the pharmacological opportunities that modulation of IPs levels can provide.
Collapse
Affiliation(s)
- Tania Maffucci
- Centre for Cell Biology and Cutaneous Research, Blizard Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London E1 2AT, UK
- Correspondence: (T.M.); (M.F.); Tel.: +61-08-92669712 (M.F.)
| | - Marco Falasca
- School of Pharmacy and Biomedical Sciences, CHIRI, Curtin University, Perth 6102, Australia
- Correspondence: (T.M.); (M.F.); Tel.: +61-08-92669712 (M.F.)
| |
Collapse
|