1
|
Mashhouri S, Rahmati A, Azimi A, Fava RA, Ismail IH, Walker J, Elahi S. Targeting Dectin-1 and or VISTA enhances anti-tumor immunity in melanoma but not colorectal cancer model. Cell Oncol (Dordr) 2024; 47:1735-1756. [PMID: 38668817 PMCID: PMC11467025 DOI: 10.1007/s13402-024-00950-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/11/2024] [Indexed: 06/27/2024] Open
Abstract
PURPOSE Acquired resistance to immune checkpoint blockers (ICBs) is a major barrier in cancer treatment, emphasizing the need for innovative strategies. Dectin-1 (gene Clec7a) is a C-type lectin receptor best known for its ability to recognize β-glucan-rich structures in fungal cell walls. While Dectin-1 is expressed in myeloid cells and tumor cells, its significance in cancer remains the subject of controversy. METHODS Using Celc7a-/- mice and curdlan administration to stimulate Dectin-1 signaling, we explored its impact. VISTA KO mice were employed to assess VISTA's role, and bulk RNAseq analyzed curdlan effects on neutrophils. RESULTS Our findings reveal myeloid cells as primary Dectin-1 expressing cells in the tumor microenvironment (TME), displaying an activated phenotype. Strong Dectin-1 co-expression/co-localization with VISTA and PD-L1 in TME myeloid cells was observed. While Dectin-1 deletion lacked protective effects, curdlan stimulation significantly curtailed B16-F10 tumor progression. RNAseq and pathway analyses supported curdlan's role in triggering a cascade of events leading to increased production of pro-inflammatory mediators, potentially resulting in the recruitment and activation of immune cells. Moreover, we identified a heterogeneous subset of Dectin-1+ effector T cells in the TME. Similar to mice, human myeloid cells are the prominent cells expressing Dectin-1 in cancer patients. CONCLUSION Our study proposes Dectin-1 as a potential adjunctive target with ICBs, orchestrating a comprehensive engagement of innate and adaptive immune responses in melanoma. This innovative approach holds promise for overcoming acquired resistance to ICBs in cancer treatment, offering avenues for further exploration and development.
Collapse
Affiliation(s)
- Siavash Mashhouri
- Department of Dentistry, Division of Foundational Sciences, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Canada
| | - Amirhossein Rahmati
- Department of Dentistry, Division of Foundational Sciences, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Canada
| | - Ako Azimi
- Department of Dentistry, Division of Foundational Sciences, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Canada
| | - Roy A Fava
- Department of Veterans Affairs Medical Center, Research Service, White River Junction, VT, USA
- Department of Medicine, Geisel School of Medicine at Dartmouth, Dartmouth Hitchcock Medical Center, Lebanon, NH, USA
| | - Ismail Hassan Ismail
- Department of Oncology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Canada
- Biophysics Department, Faculty of Science, Cairo University, Giza, 12613, Egypt
| | - John Walker
- Department of Oncology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Canada
| | - Shokrollah Elahi
- Department of Dentistry, Division of Foundational Sciences, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Canada.
- Department of Oncology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Canada.
- Li Ka Shing Institute of Virology, University of Alberta, Edmonton, Canada.
| |
Collapse
|
2
|
Koleva P, He J, Dunsmore G, Bozorgmehr N, Lu J, Huynh M, Tollenaar S, Huang V, Walter J, Way SS, Elahi S. CD71 + erythroid cells promote intestinal symbiotic microbial communities in pregnancy and neonatal period. MICROBIOME 2024; 12:142. [PMID: 39080725 PMCID: PMC11290123 DOI: 10.1186/s40168-024-01859-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2023] [Accepted: 06/15/2024] [Indexed: 08/02/2024]
Abstract
BACKGROUND The establishment of microbial communities in neonatal mammals plays a pivotal role in shaping their immune responses to infections and other immune-related conditions. This process is influenced by a combination of endogenous and exogenous factors. Previously, we reported that depletion of CD71 + erythroid cells (CECs) results in an inflammatory response to microbial communities in newborn mice. RESULTS Here, we systemically tested this hypothesis and observed that the small intestinal lamina propria of neonatal mice had the highest frequency of CECs during the early days of life. This high abundance of CECs was attributed to erythropoiesis niches within the small intestinal tissues. Notably, the removal of CECs from the intestinal tissues by the anti-CD71 antibody disrupted immune homeostasis. This disruption was evident by alteration in the expression of antimicrobial peptides (AMPs), toll-like receptors (TLRs), inflammatory cytokines/chemokines, and resulting in microbial dysbiosis. Intriguingly, these alterations in microbial communities persisted when tested 5 weeks post-treatment, with a more notable effect observed in female mice. This illustrates a sex-dependent association between CECs and neonatal microbiome modulation. Moreover, we extended our studies on pregnant mice, observing that modulating CECs substantially alters the frequency and diversity of their microbial communities. Finally, we found a significantly lower proportion of CECs in the cord blood of pre-term human newborns, suggesting a potential role in dysregulated immune responses to microbial communities in the gut. CONCLUSIONS Our findings provide novel insights into pivotal role of CECs in immune homeostasis and swift adaptation of microbial communities in newborns. Despite the complexity of the cellular biology of the gut, our findings shed light on the previously unappreciated role of CECs in the dialogue between the microbiota and immune system. These findings have significant implications for human health. Video Abstract.
Collapse
Affiliation(s)
- Petya Koleva
- School of Dentistry, Division of Foundational Sciences, Faculty of Medicine and Dentistry, Edmonton, Canada
| | - Jia He
- School of Dentistry, Division of Foundational Sciences, Faculty of Medicine and Dentistry, Edmonton, Canada
| | - Garett Dunsmore
- School of Dentistry, Division of Foundational Sciences, Faculty of Medicine and Dentistry, Edmonton, Canada
| | - Najmeh Bozorgmehr
- School of Dentistry, Division of Foundational Sciences, Faculty of Medicine and Dentistry, Edmonton, Canada
| | - Julia Lu
- School of Dentistry, Division of Foundational Sciences, Faculty of Medicine and Dentistry, Edmonton, Canada
| | - Maia Huynh
- School of Dentistry, Division of Foundational Sciences, Faculty of Medicine and Dentistry, Edmonton, Canada
| | - Stephanie Tollenaar
- Department of Agricultural, Food & Nutritional Sciences, Edmonton, University of Alberta, Edmonton, Canada
| | - Vivian Huang
- Division of Gastroenterology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Canada
- Division of Gastroenterology, Mount Sinai Hospital, Toronto, Canada
| | - Jens Walter
- Department of Agricultural, Food & Nutritional Sciences, Edmonton, University of Alberta, Edmonton, Canada
- School of Microbiology and Department of Medicine, APC Microbiome Ireland, University College Cork, National University of Ireland, Cork, Ireland
| | - Sing Sing Way
- Centre for Inflammation and Tolerance, Cincinnati Childrens Hospital, College of Medicine, University of Cincinnati, Cincinnati, OH, USA
| | - Shokrollah Elahi
- School of Dentistry, Division of Foundational Sciences, Faculty of Medicine and Dentistry, Edmonton, Canada.
- Li Ka Shing Institute of Virology, University of Alberta, Edmonton, Canada.
- Glycomics Institute of Alberta, University of Alberta, Edmonton, Canada.
- Women and Children's Health Research Institute, University of Alberta, Edmonton, Canada.
- Alberta Transplant Institute, Edmonton, AB, Canada.
- 7020G Katz Group Centre for Pharmacology and Health Research, 11361-87Th Ave NW, Edmonton, AB, T6G2E1, Canada.
| |
Collapse
|
3
|
Saito S, Shahbaz S, Osman M, Redmond D, Bozorgmehr N, Rosychuk RJ, Lam G, Sligl W, Cohen Tervaert JW, Elahi S. Diverse immunological dysregulation, chronic inflammation, and impaired erythropoiesis in long COVID patients with chronic fatigue syndrome. J Autoimmun 2024; 147:103267. [PMID: 38797051 DOI: 10.1016/j.jaut.2024.103267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 05/16/2024] [Accepted: 05/22/2024] [Indexed: 05/29/2024]
Abstract
A substantial number of patients recovering from acute SARS-CoV-2 infection present serious lingering symptoms, often referred to as long COVID (LC). However, a subset of these patients exhibits the most debilitating symptoms characterized by ongoing myalgic encephalomyelitis or chronic fatigue syndrome (ME/CFS). We specifically identified and studied ME/CFS patients from two independent LC cohorts, at least 12 months post the onset of acute disease, and compared them to the recovered group (R). ME/CFS patients had relatively increased neutrophils and monocytes but reduced lymphocytes. Selective T cell exhaustion with reduced naïve but increased terminal effector T cells was observed in these patients. LC was associated with elevated levels of plasma pro-inflammatory cytokines, chemokines, Galectin-9 (Gal-9), and artemin (ARTN). A defined threshold of Gal-9 and ARTN concentrations had a strong association with LC. The expansion of immunosuppressive CD71+ erythroid cells (CECs) was noted. These cells may modulate the immune response and contribute to increased ARTN concentration, which correlated with pain and cognitive impairment. Serology revealed an elevation in a variety of autoantibodies in LC. Intriguingly, we found that the frequency of 2B4+CD160+ and TIM3+CD160+ CD8+ T cells completely separated LC patients from the R group. Our further analyses using a multiple regression model revealed that the elevated frequency/levels of CD4 terminal effector, ARTN, CEC, Gal-9, CD8 terminal effector, and MCP1 but lower frequency/levels of TGF-β and MAIT cells can distinguish LC from the R group. Our findings provide a new paradigm in the pathogenesis of ME/CFS to identify strategies for its prevention and treatment.
Collapse
Affiliation(s)
- Suguru Saito
- School of Dentistry, Division of Foundational Sciences, Faculty of Medicine & Dentistry, University of Alberta, Edmonton, T6G 2E1, AB, Canada
| | - Shima Shahbaz
- School of Dentistry, Division of Foundational Sciences, Faculty of Medicine & Dentistry, University of Alberta, Edmonton, T6G 2E1, AB, Canada
| | - Mohammed Osman
- Department of Medicine, Division of Rheumatology, Faculty of Medicine & Dentistry, University of Alberta, Edmonton, T6G 2E1, AB, Canada
| | - Desiree Redmond
- Department of Medicine, Division of Rheumatology, Faculty of Medicine & Dentistry, University of Alberta, Edmonton, T6G 2E1, AB, Canada
| | - Najmeh Bozorgmehr
- School of Dentistry, Division of Foundational Sciences, Faculty of Medicine & Dentistry, University of Alberta, Edmonton, T6G 2E1, AB, Canada
| | - Rhonda J Rosychuk
- Department of Pediatrics, Division of Infectious Disease, Faculty of Medicine & Dentistry, University of Alberta, Edmonton, T6G 2E1, AB, Canada
| | - Grace Lam
- Department of Medicine, Division of Pulmonary Medicine, Faculty of Medicine & Dentistry, University of Alberta, Edmonton, T6G 2E1, AB, Canada
| | - Wendy Sligl
- Department of Critical Care Medicine, Faculty of Medicine & Dentistry, University of Alberta, Edmonton, T6G 2E1, AB, Canada; Department of Medicine, Division of Infectious Diseases, Faculty of Medicine & Dentistry, University of Alberta, Edmonton, T6G 2E1, AB, Canada
| | - Jan Willem Cohen Tervaert
- Department of Medicine, Division of Rheumatology, Faculty of Medicine & Dentistry, University of Alberta, Edmonton, T6G 2E1, AB, Canada
| | - Shokrollah Elahi
- School of Dentistry, Division of Foundational Sciences, Faculty of Medicine & Dentistry, University of Alberta, Edmonton, T6G 2E1, AB, Canada; Department of Oncology, University of Alberta, Edmonton, T6G 2E1, AB, Canada; Faculty of Medicine & Dentistry, University of Alberta, Edmonton, T6G 2E1, AB, Canada; Li Ka Shing Institute of Virology, Faculty of Medicine & Dentistry, University of Alberta, Edmonton, T6G 2E1, AB, Canada.
| |
Collapse
|
4
|
Sánchez-Martínez A, Giraldo Hoyos S, Alzate-Ángel JC, Guzmán F, Roman T, Velilla PA, Acevedo-Sáenz L. CD8 +T-cell response to mutated HLA-B*35-restricted Gag HY9 and HA9 epitopes from HIV-1 variants from Medellin, Colombia. Heliyon 2024; 10:e33143. [PMID: 39027459 PMCID: PMC11254536 DOI: 10.1016/j.heliyon.2024.e33143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 06/13/2024] [Accepted: 06/14/2024] [Indexed: 07/20/2024] Open
Abstract
The HLA-B*35 alleles have been associated with a slow or rapid progression of HIV-1 infection. However, the mechanisms related to HIV-1 progression have yet to be entirely understood. Several reports indicate that the binding affinity between the HLA-I molecule and peptides could be associated with an increased CD8+ T-cell response. Novel HLA-B*35-restricted mutated variants have been described from HSNQVSQNY (HY9) and HPVHAGPIA (HA9) epitopes. Bioinformatic analysis has indicated that these mutated epitopes show low and high binding affinity towards HLA-B*35, respectively. However, the polyfunctionality of CD8+ T-cells stimulated with these mutated and wild-type epitopes has yet to be reported. The results suggest that the low-binding affinity H124 N/S125 N/N126S mutated peptide in the HY9 epitope induced a lower percentage of CD107a+CD8+ T-cells than the wild-type epitope. Instead, the high-binding affinity peptides I223V and I223A in the HA9 epitope induced a significantly higher frequency of polyfunctional CD8+ T-cells. Also, a higher proportion of CD8+ T-cells with two functions, with Granzyme B+ Perforin+ being the predominant profile, was observed after stimulation with mutated peptides associated with high binding affinity in the HA9 epitope. These results suggest that the high-affinity mutated peptides induced a more polyfunctional CD8+ T-cell response, which could be related to the control of viral replication.
Collapse
Affiliation(s)
- Alexandra Sánchez-Martínez
- Grupo Inmunovirología, Facultad de Medicina, Universidad de Antioquia, Udea, Calle 70 No 52-21, Medellín, Colombia
| | - Sofía Giraldo Hoyos
- Unidad de Investigación Clínica, Corporación para Investigaciones Biológicas, Medellín, Colombia
| | - Juan Carlos Alzate-Ángel
- Grupo Inmunovirología, Facultad de Medicina, Universidad de Antioquia, Udea, Calle 70 No 52-21, Medellín, Colombia
- Unidad de Micología Médica y Experimental, Corporación para Investigaciones Biológicas – Universidad de Santander (CIB-UDES), Colombia
| | - Fanny Guzmán
- Núcleo de Biotecnología Curauma, Pontificia Universidad Católica de Valparaíso, Valparaíso, Chile
| | - Tanya Roman
- Núcleo de Biotecnología Curauma, Pontificia Universidad Católica de Valparaíso, Valparaíso, Chile
| | - Paula A. Velilla
- Grupo Inmunovirología, Facultad de Medicina, Universidad de Antioquia, Udea, Calle 70 No 52-21, Medellín, Colombia
| | - Liliana Acevedo-Sáenz
- Grupo Cuidado Enfermería-CES, Facultad de Enfermería, Universidad CES, Medellín, Colombia
| |
Collapse
|
5
|
Saito S, Bozorgmehr N, Sligl W, Osman M, Elahi S. The Role of Coinhibitory Receptors in B Cell Dysregulation in SARS-CoV-2-Infected Individuals with Severe Disease. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2024; 212:1540-1552. [PMID: 38517295 DOI: 10.4049/jimmunol.2300783] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Accepted: 03/01/2024] [Indexed: 03/23/2024]
Abstract
Severe SARS-CoV-2 infection is associated with significant immune dysregulation involving different immune cell subsets. In this study, when analyzing critically ill COVID-19 patients versus those with mild disease, we observed a significant reduction in total and memory B cell subsets but an increase in naive B cells. Moreover, B cells from COVID-19 patients displayed impaired effector functions, evidenced by diminished proliferative capacity, reduced cytokine, and Ab production. This functional impairment was accompanied by an increased apoptotic potential upon stimulation in B cells from severely ill COVID-19 patients. Our further studies revealed the expansion of B cells expressing coinhibitory molecules (PD-1, PD-L1, TIM-1, VISTA, CTLA-4, and Gal-9) in intensive care unit (ICU)-admitted patients but not in those with mild disease. The coinhibitory receptor expression was linked to altered IgA and IgG expression and increased the apoptotic capacity of B cells. Also, we found a reduced frequency of CD24hiCD38hi regulatory B cells with impaired IL-10 production. Our mechanistic studies revealed that the upregulation of PD-L1 was linked to elevated plasma IL-6 levels in COVID-19 patients. This implies a connection between the cytokine storm and altered B cell phenotype and function. Finally, our metabolomic analysis showed a significant reduction in tryptophan but elevation of kynurenine in ICU-admitted COVID-19 patients. We found that kynurenine promotes PD-L1 expression in B cells, correlating with increased IL-6R expression and STAT1/STAT3 activation. Our observations provide novel insights into the complex interplay of B cell dysregulation, implicating coinhibitory receptors, IL-6, and kynurenine in impaired B cell effector functions, potentially contributing to the pathogenesis of COVID-19.
Collapse
Affiliation(s)
- Suguru Saito
- School of Dentistry, Division of Foundational Sciences, University of Alberta, Edmonton, AB, Canada
| | - Najmeh Bozorgmehr
- School of Dentistry, Division of Foundational Sciences, University of Alberta, Edmonton, AB, Canada
| | - Wendy Sligl
- Department of Critical Care Medicine, University of Alberta, Edmonton, AB, Canada
- Department of Medicine, Division of Infectious Diseases, University of Alberta, Edmonton, AB, Canada
| | - Mohammed Osman
- Department of Medicine, Division of Rheumatology, University of Alberta, Edmonton, AB, Canada
| | - Shokrollah Elahi
- School of Dentistry, Division of Foundational Sciences, University of Alberta, Edmonton, AB, Canada
- Department of Oncology, University of Alberta, Edmonton, AB, Canada
- Li Ka Shing Institute of Virology, University of Alberta, Edmonton, AB, Canada
- Women and Children Health Research Institute, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada
| |
Collapse
|
6
|
Lobos CA, Chatzileontiadou DSM, Sok B, Almedia C, Halim H, D'Orsogna L, Gras S. Molecular insights into the HLA-B35 molecules' classification associated with HIV control. Immunol Cell Biol 2024; 102:34-45. [PMID: 37811811 PMCID: PMC10952751 DOI: 10.1111/imcb.12698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 07/04/2023] [Accepted: 09/19/2023] [Indexed: 10/10/2023]
Abstract
Human leukocyte antigen (HLA) class I molecules have been shown to influence the immune response to HIV infection and acquired immunodeficiency syndrome progression. Polymorphisms within the HLA-B35 molecules divide the family into two groups, namely, Px and PY. The Px group is associated with deleterious effects and accelerated disease progression in HIV+ patients, whereas the PY group is not. The classification is based on the preferential binding of a tyrosine at the C-terminal part of the peptide in the PY group, and a nontyrosine residue in the Px group. However, there is a lack of knowledge on the molecular differences between the two groups. Here, we have investigated three HLA-B35 molecules, namely, HLA-B*35:01 (PY), HLA-B*35:03 (Px) and HLA-B*35:05 (unclassified). We selected an HIV-derived peptide, NY9, and demonstrated that it can trigger a polyfunctional CD8+ T-cell response in HLA-B*35:01+ /HIV+ patients. We determined that in the complex with the NY9 peptide, the PY molecule was more stable than the Px molecule. We solved the crystal structures of the three HLA molecules in complex with the NY9 peptide, and structural similarities with HLA-B*35:01 would classify the HLA-B*35:05 within the PY group. Interestingly, we found that HLA-B*35:05 can also bind a small molecule in its cleft, suggesting that small drugs could bind as well.
Collapse
Affiliation(s)
- Christian A Lobos
- Department of Biochemistry and Chemistry, La Trobe Institute for Molecular ScienceLa Trobe UniversityBundooraVICAustralia
- Department of Biochemistry and Molecular BiologyMonash UniversityClaytonVICAustralia
| | - Demetra SM Chatzileontiadou
- Department of Biochemistry and Chemistry, La Trobe Institute for Molecular ScienceLa Trobe UniversityBundooraVICAustralia
- Department of Biochemistry and Molecular BiologyMonash UniversityClaytonVICAustralia
| | - Bonin Sok
- Department of Biochemistry and Chemistry, La Trobe Institute for Molecular ScienceLa Trobe UniversityBundooraVICAustralia
| | - Coral‐Ann Almedia
- Department of Clinical Immunology and PathWestFiona Stanley HospitalPerthWAAustralia
- School of MedicineUniversity of Western AustraliaPerthWAAustralia
| | - Hanim Halim
- Department of Biochemistry and Molecular BiologyMonash UniversityClaytonVICAustralia
| | - Lloyd D'Orsogna
- Department of Clinical Immunology and PathWestFiona Stanley HospitalPerthWAAustralia
- School of MedicineUniversity of Western AustraliaPerthWAAustralia
| | - Stephanie Gras
- Department of Biochemistry and Chemistry, La Trobe Institute for Molecular ScienceLa Trobe UniversityBundooraVICAustralia
- Department of Biochemistry and Molecular BiologyMonash UniversityClaytonVICAustralia
| |
Collapse
|
7
|
Torki E, Gharezade A, Doroudchi M, Sheikhi S, Mansury D, Sullman MJM, Fouladseresht H. The kinetics of inhibitory immune checkpoints during and post-COVID-19: the knowns and unknowns. Clin Exp Med 2023; 23:3299-3319. [PMID: 37697158 DOI: 10.1007/s10238-023-01188-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Accepted: 08/31/2023] [Indexed: 09/13/2023]
Abstract
The immune system is tightly regulated to prevent immune reactions to self-antigens and to avoid excessive immune responses during and after challenges from non-self-antigens. Inhibitory immune checkpoints (IICPs), as the major regulators of immune system responses, are extremely important for maintaining the homeostasis of cells and tissues. However, the high and sustained co-expression of IICPs in chronic infections, under persistent antigenic stimulations, results in reduced immune cell functioning and more severe and prolonged disease complications. Furthermore, IICPs-mediated interactions can be hijacked by pathogens in order to evade immune induction or effector mechanisms. Therefore, IICPs can be potential targets for the prognosis and treatment of chronic infectious diseases. This is especially the case with regards to the most challenging infectious disease of recent times, coronavirus disease-2019 (COVID-19), whose long-term complications can persist long after recovery. This article reviews the current knowledge about the kinetics and functioning of the IICPs during and post-COVID-19.
Collapse
Affiliation(s)
- Ensiye Torki
- Department of Immunology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Arezou Gharezade
- Department of Immunology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Mehrnoosh Doroudchi
- Department of Immunology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Shima Sheikhi
- Department of Immunology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Davood Mansury
- Department of Microbiology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Mark J M Sullman
- Department of Life and Health Sciences, University of Nicosia, Nicosia, Cyprus
- Department of Social Sciences, University of Nicosia, Nicosia, Cyprus
| | - Hamed Fouladseresht
- Department of Immunology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran.
| |
Collapse
|
8
|
Shahbaz S, Bozorgmehr N, Lu J, Osman M, Sligl W, Tyrrell DL, Elahi S. Analysis of SARS-CoV-2 isolates, namely the Wuhan strain, Delta variant, and Omicron variant, identifies differential immune profiles. Microbiol Spectr 2023; 11:e0125623. [PMID: 37676005 PMCID: PMC10581158 DOI: 10.1128/spectrum.01256-23] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Accepted: 07/13/2023] [Indexed: 09/08/2023] Open
Abstract
There is an urgent need to better understand the impact of different severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants on immune response and disease dynamics to facilitate better intervention strategies. Here, we show that SARS-CoV-2 variants differentially affect host immune responses. The magnitude and quantity of cytokines and chemokines were comparable in those infected with the Wuhan strain and the Delta variant. However, individuals infected with the Omicron variant had significantly lower levels of these mediators. We also found an elevation of plasma galectins (Gal-3, Gal-8, and Gal-9) in infected individuals, in particular, in those with the original strain. Soluble galectins exert a proinflammatory role in COVID-19 pathogenesis. This was illustrated by their correlation with the plasma levels of sCD14, sCD163, enhanced TNF-α/IL-6 secretion, and increased SARS-CoV-2 infectivity in vitro. Moreover, we observed enhanced CD4+ and CD8+ T cell activation in Wuhan strain-infected individuals. Surprisingly, there was a more pronounced T cell activation in those infected with the Omicron in comparison to the Delta variant. In line with T cell activation status, we observed a more pronounced expansion of T cells expressing different co-inhibitory receptors in patients infected with the Wuhan strain, followed by the Omicron and Delta variants. Individuals infected with the Wuhan strain or the Omicron variant had a similar pattern of plasma soluble immune checkpoints. Our results imply that a milder innate immune response might be beneficial and protective in those infected with the Omicron variant. Our results provide a novel insight into the differential impact of SARS-CoV-2 variants on host immunity. IMPORTANCE There is a need to better understand how different SARS-CoV-2 variants influence the immune system and disease dynamics to facilitate the development of better vaccines and therapies. We compared immune responses in 140 SARS-CoV-2-infected individuals with the Wuhan strain, the Delta variant, or the Omicron variant. All these patients were admitted to the intensive care unit and were SARS-CoV-2 vaccination naïve. We found that SARS-CoV-2 variants differentially affect the host immune response. This was done by measuring soluble biomarkers in their plasma and examining different immune cells. Overall, we found that the magnitude of cytokine storm in individuals infected with the Wuhan strain or the Delta variant was greater than in those infected with the Omicron variant. In light of enhanced cytokine release syndrome in individuals infected with the Wuhan strain or the Delta variant, we believe that a milder innate immune response might be beneficial and protective in those infected with the Omicron variant.
Collapse
Affiliation(s)
- Shima Shahbaz
- Division of Foundational Sciences, School of Dentistry, University of Alberta, Edmonton, Alberta, Canada
| | - Najmeh Bozorgmehr
- Division of Foundational Sciences, School of Dentistry, University of Alberta, Edmonton, Alberta, Canada
| | - Julia Lu
- Division of Foundational Sciences, School of Dentistry, University of Alberta, Edmonton, Alberta, Canada
| | - Mohammed Osman
- Division of Rheumatology, Department of Medicine, University of Alberta, Edmonton, Alberta, Canada
| | - Wendy Sligl
- Department of Critical Care Medicine, University of Alberta, Edmonton, Alberta, Canada
- Division of Infectious Diseases, Department of Medicine, University of Alberta, Edmonton, Alberta, Canada
| | - D. Lorne Tyrrell
- Department of Medical Microbiology and Immunology, University of Alberta, Edmonton, Alberta, Canada
- Li Ka Shing Institute of Virology, University of Alberta, Edmonton, Alberta, Canada
| | - Shokrollah Elahi
- Division of Foundational Sciences, School of Dentistry, University of Alberta, Edmonton, Alberta, Canada
- Li Ka Shing Institute of Virology, University of Alberta, Edmonton, Alberta, Canada
- Women and Children Health Research Institute (WCHRI), University of Alberta, Edmonton, Alberta, Canada
- Glycomics Institute of Alberta, University of Alberta, Edmonton, Alberta, Canada
- Alberta Transplant Institute, University of Alberta, Edmonton, Alberta, Canada
| |
Collapse
|
9
|
Hieber C, Grabbe S, Bros M. Counteracting Immunosenescence-Which Therapeutic Strategies Are Promising? Biomolecules 2023; 13:1085. [PMID: 37509121 PMCID: PMC10377144 DOI: 10.3390/biom13071085] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 07/03/2023] [Accepted: 07/05/2023] [Indexed: 07/30/2023] Open
Abstract
Aging attenuates the overall responsiveness of the immune system to eradicate pathogens. The increased production of pro-inflammatory cytokines by innate immune cells under basal conditions, termed inflammaging, contributes to impaired innate immune responsiveness towards pathogen-mediated stimulation and limits antigen-presenting activity. Adaptive immune responses are attenuated as well due to lowered numbers of naïve lymphocytes and their impaired responsiveness towards antigen-specific stimulation. Additionally, the numbers of immunoregulatory cell types, comprising regulatory T cells and myeloid-derived suppressor cells, that inhibit the activity of innate and adaptive immune cells are elevated. This review aims to summarize our knowledge on the cellular and molecular causes of immunosenescence while also taking into account senescence effects that constitute immune evasion mechanisms in the case of chronic viral infections and cancer. For tumor therapy numerous nanoformulated drugs have been developed to overcome poor solubility of compounds and to enable cell-directed delivery in order to restore immune functions, e.g., by addressing dysregulated signaling pathways. Further, nanovaccines which efficiently address antigen-presenting cells to mount sustained anti-tumor immune responses have been clinically evaluated. Further, senolytics that selectively deplete senescent cells are being tested in a number of clinical trials. Here we discuss the potential use of such drugs to improve anti-aging therapy.
Collapse
Affiliation(s)
- Christoph Hieber
- Department of Dermatology, University Medical Center of the Johannes Gutenberg-University Mainz, Langenbeckstraße 1, 55131 Mainz, Germany
- Institute of Molecular Biology (IMB), Ackermannweg 4, 55128 Mainz, Germany
| | - Stephan Grabbe
- Department of Dermatology, University Medical Center of the Johannes Gutenberg-University Mainz, Langenbeckstraße 1, 55131 Mainz, Germany
- Institute of Molecular Biology (IMB), Ackermannweg 4, 55128 Mainz, Germany
| | - Matthias Bros
- Department of Dermatology, University Medical Center of the Johannes Gutenberg-University Mainz, Langenbeckstraße 1, 55131 Mainz, Germany
| |
Collapse
|
10
|
Li S, Hao L, Zhang J, Deng J, Hu X. Focus on T cell exhaustion: new advances in traditional Chinese medicine in infection and cancer. Chin Med 2023; 18:76. [PMID: 37355637 DOI: 10.1186/s13020-023-00785-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Accepted: 06/16/2023] [Indexed: 06/26/2023] Open
Abstract
In chronic infections and cancers, T lymphocytes (T cells) are exposed to persistent antigen or inflammatory signals. The condition is often associated with a decline in T-cell function: a state called "exhaustion". T cell exhaustion is a state of T cell dysfunction characterized by increased expression of a series of inhibitory receptors (IRs), decreased effector function, and decreased cytokine secretion, accompanied by transcriptional and epigenetic changes and metabolic defects. The rise of immunotherapy, particularly the use of immune checkpoint inhibitors (ICIs), has dramatically changed the clinical treatment paradigm for patients. However, its low response rate, single target and high immunotoxicity limit its clinical application. The multiple immunomodulatory potential of traditional Chinese medicine (TCM) provides a new direction for improving the treatment of T cell exhaustion. Here, we review recent advances that have provided a clearer molecular understanding of T cell exhaustion, revealing the characteristics and causes of T cell exhaustion in persistent infections and cancers. In addition, this paper summarizes recent advances in improving T cell exhaustion in infectious diseases and cancer with the aim of providing a comprehensive and valuable source of information on TCM as an experimental study and their role in collaboration with ICIs therapy.
Collapse
Affiliation(s)
- Shenghao Li
- Hospital of Chengdu University of Traditional Chinese Medicine, No. 39 Shi-Er-Qiao Road, Chengdu, 610072, Sichuan Province, People's Republic of China
- Chengdu University of Traditional Chinese Medicine, No. 37 Shi-Er-Qiao Road, Chengdu, 610075, Sichuan Province, People's Republic of China
| | - Liyuan Hao
- Hospital of Chengdu University of Traditional Chinese Medicine, No. 39 Shi-Er-Qiao Road, Chengdu, 610072, Sichuan Province, People's Republic of China
- Chengdu University of Traditional Chinese Medicine, No. 37 Shi-Er-Qiao Road, Chengdu, 610075, Sichuan Province, People's Republic of China
| | - Junli Zhang
- Hospital of Chengdu University of Traditional Chinese Medicine, No. 39 Shi-Er-Qiao Road, Chengdu, 610072, Sichuan Province, People's Republic of China
- Chengdu University of Traditional Chinese Medicine, No. 37 Shi-Er-Qiao Road, Chengdu, 610075, Sichuan Province, People's Republic of China
| | - Jiali Deng
- Hospital of Chengdu University of Traditional Chinese Medicine, No. 39 Shi-Er-Qiao Road, Chengdu, 610072, Sichuan Province, People's Republic of China
- Chengdu University of Traditional Chinese Medicine, No. 37 Shi-Er-Qiao Road, Chengdu, 610075, Sichuan Province, People's Republic of China
| | - Xiaoyu Hu
- Hospital of Chengdu University of Traditional Chinese Medicine, No. 39 Shi-Er-Qiao Road, Chengdu, 610072, Sichuan Province, People's Republic of China.
| |
Collapse
|
11
|
Bozorgmehr N, Okoye I, Mashhouri S, Lu J, Koleva P, Walker J, Elahi S. CD71 + erythroid cells suppress T-cell effector functions and predict immunotherapy outcomes in patients with virus-associated solid tumors. J Immunother Cancer 2023; 11:jitc-2022-006595. [PMID: 37236637 DOI: 10.1136/jitc-2022-006595] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/05/2023] [Indexed: 05/28/2023] Open
Abstract
BACKGROUND Immune checkpoint inhibitors (ICIs) have revolutionized the treatment of cancer. However, only a portion of patients respond to such treatments. Therefore, it remains a prevailing clinical need to identify factors associated with acquired resistance or lack of response to ICIs. We hypothesized that the immunosuppressive CD71+ erythroid cells (CECs) within the tumor and/or distant 'out-of-field' may impair antitumor response. METHODS We studied 38 patients with cancer through a phase II clinical trial investigating the effects of oral valproate combined with avelumab (anti-programmed death-ligand 1 (PD-L1)) in virus-associated solid tumors (VASTs). We quantified the frequency/functionality of CECs in blood and biopsies of patients. Also, we established an animal model of melanoma (B16-F10) to investigate the possible effects of erythropoietin (EPO) treatment on anti-PD-L1 therapy. RESULTS We found a substantial expansion of CECs in the blood of patients with VAST compared with healthy controls. We noted that the frequency of CECs in circulation was significantly higher at the baseline and throughout the study in non-responders versus responders to PD-L1 therapy. Moreover, we observed that CECs in a dose-dependent manner suppress effector functions of autologous T cells in vitro. The subpopulation of CD45+CECs appears to have a more robust immunosuppressive property compared with their CD45- counterparts. This was illustrated by a stronger expression of reactive oxygen species, PD-L1/PD-L2, and V-domain Ig suppressor of T-cell activation in this subpopulation. Lastly, we found a higher frequency of CECs in the blood circulation at the later cancer stage and their abundance was associated with anemia, and a poor response to immunotherapy. Finally, we report the expansion of CECs in the spleen and tumor microenvironment of mice with melanoma. We found that although CECs in tumor-bearing mice secret artemin, this was not the case for VAST-derived CECs in humans. Notably, our results imply that EPO, a frequently used drug for anemia treatment in patients with cancer, may promote the generation of CECs and subsequently abrogates the therapeutic effects of ICIs (eg, anti-PD-L1). CONCLUSIONS Our results demonstrate that anemia by the expansion of CECs may enhance cancer progression. Notably, measuring the frequency of CECs may serve as a valuable biomarker to predict immunotherapy outcomes.
Collapse
Affiliation(s)
- Najmeh Bozorgmehr
- Department of Dentistry, Faculty of Medicine & Dentistry, University of Alberta, Edmonton, Alberta, Canada
| | - Isobel Okoye
- Department of Dentistry, Faculty of Medicine & Dentistry, University of Alberta, Edmonton, Alberta, Canada
| | - Siavash Mashhouri
- Department of Dentistry, Faculty of Medicine & Dentistry, University of Alberta, Edmonton, Alberta, Canada
| | - Julia Lu
- Department of Dentistry, Faculty of Medicine & Dentistry, University of Alberta, Edmonton, Alberta, Canada
| | - Petya Koleva
- Department of Dentistry, Faculty of Medicine & Dentistry, University of Alberta, Edmonton, Alberta, Canada
| | - John Walker
- Department of Oncology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada
| | - Shokrollah Elahi
- Department of Dentistry, Faculty of Medicine & Dentistry, University of Alberta, Edmonton, Alberta, Canada
- Department of Oncology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada
- Li Ka Shing Institute of Virology, University of Alberta, Edmonton, Alberta, Canada
| |
Collapse
|
12
|
Rahmati A, Bigam S, Elahi S. Galectin-9 promotes natural killer cells activity via interaction with CD44. Front Immunol 2023; 14:1131379. [PMID: 37006235 PMCID: PMC10060867 DOI: 10.3389/fimmu.2023.1131379] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2022] [Accepted: 03/06/2023] [Indexed: 03/18/2023] Open
Abstract
Natural killer (NK) cells are a potent innate source of cytokines and cytoplasmic granules. Their effector functions are tightly synchronized by the balance between the stimulatory and inhibitory receptors. Here, we quantified the proportion of NK cells and the surface presence of Galectin-9 (Gal-9) from the bone marrow, blood, liver, spleen, and lungs of adult and neonatal mice. We also examined the effector functions of Gal-9+NK cells compared with their Gal-9- counterparts. Our results revealed that Gal-9+NK cells are more abundant in tissues, in particular, in the liver than in the blood and bone marrow. We found Gal-9 presence was associated with enhanced cytotoxic effector molecules granzyme B (GzmB) and perforin expression. Likewise, Gal-9 expressing NK cells displayed greater IFN-γ and TNF-α expression than their negative counterparts under hemostatic circumstances. Notably, the expansion of Gal-9+NK cells in the spleen of mice infected with E. coli implies that Gal-9+NK cells may provide a protective role against infection. Similarly, we found the expansion of Gal-9+NK cells in the spleen and tumor tissues of melanoma B16-F10 mice. Mechanistically, our results revealed the interaction of Gal-9 with CD44 as noted by their co-expression/co-localization. Subsequently, this interaction resulted in enhanced expression of Phospho-LCK, ERK, Akt, MAPK, and mTOR in NK cells. Moreover, we found Gal-9+NK cells exhibited an activated phenotype as evidenced by increased CD69, CD25, and Sca-1 but reduced KLRG1 expression. Likewise, we found Gal-9 preferentially interacts with CD44high in human NK cells. Despite this interaction, we noted a dichotomy in terms of effector functions in NK cells from COVID-19 patients. We observed that the presence of Gal-9 on NK cells resulted in a greater IFN-γ expression without any changes in cytolytic molecule expression in these patients. These observations suggest differences in Gal-9+NK cell effector functions between mice and humans that should be considered in different physiological and pathological conditions. Therefore, our results highlight the important role of Gal-9 via CD44 in NK cell activation, which suggests Gal-9 is a potential new avenue for the development of therapeutic approaches to modulate NK cell effector functions.
Collapse
Affiliation(s)
- Amirhossein Rahmati
- School of Dentistry, Division of Foundational Sciences, University of Alberta, Edmonton, AB, Canada
| | - Steven Bigam
- School of Dentistry, Division of Foundational Sciences, University of Alberta, Edmonton, AB, Canada
| | - Shokrollah Elahi
- School of Dentistry, Division of Foundational Sciences, University of Alberta, Edmonton, AB, Canada
- Department of Oncology, University of Alberta, Edmonton, AB, Canada
- Li Ka Shing Institute of Virology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada
- *Correspondence: Shokrollah Elahi,
| |
Collapse
|
13
|
Bozorgmehr N, Hnatiuk M, Peters AC, Elahi S. Depletion of polyfunctional CD26 highCD8 + T cells repertoire in chronic lymphocytic leukemia. Exp Hematol Oncol 2023; 12:13. [PMID: 36707896 PMCID: PMC9881277 DOI: 10.1186/s40164-023-00375-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Accepted: 01/17/2023] [Indexed: 01/29/2023] Open
Abstract
BACKGROUND CD8+ T cells play an essential role against tumors but the role of human CD8+CD26+ T cell subset against tumors, in particular, haematological cancers such as chronic lymphocytic leukemia (CLL) remains unknown. Although CD4+CD26high T cells are considered for adoptive cancer immunotherapy, the role of CD8+CD26+ T cells is ill-defined. Therefore, further studies are required to better determine the role of CD8+CD26+ T cells in solid tumors and haematological cancers. METHODS We studied 55 CLL and 44 age-sex-matched healthy controls (HCs). The expression of CD26 on different T cell subsets (e.g. naïve, memory, effector, and etc.) was analyzed. Also, functional properties of CD8+CD26+ and CD8+CD26- T cells were evaluated. Finally, the plasma cytokine/chemokine and Galectin-9 (Gal-9) levels were examined. RESULTS CD26 expression identifies three CD8+ T cell subsets with distinct immunological properties. While CD26negCD8+ T cells are mainly transitional, effector memory and effectors, CD26lowCD8+ T cells are mainly naïve, stem cell, and central memory but CD26high T cells are differentiated to transitional and effector memory. CD26+CD8+ T cells are significantly reduced in CLL patients versus HCs. CD26high cells are enriched with Mucosal Associated Invariant T (MAIT) cells co-expressing CD161TVα7.2 and IL-18Rα. Also, CD26high cells have a rich chemokine receptor profile (e.g. CCR5 and CCR6), profound cytokine (TNF-α, IFN-γ, and IL-2), and cytolytic molecules (Granzyme B, K, and perforin) expression upon stimulation. CD26high and CD26low T cells exhibit significantly lower frequencies of CD160, 2B4, TIGIT, ICOS, CD39, and PD-1 but higher levels of CD27, CD28, and CD73 versus CD26neg cells. To understand the mechanism linked to CD26high depletion, we found that malignant B cells by shedding Galectin-9 (Gal-9) contribute to the elevation of plasma Gal-9 in CLL patients. In turn, Gal-9 and the inflammatory milieu (IL-18, IL-12, and IL-15) in CLL patients contribute to increased apoptosis of CD26high T cells. CONCLUSIONS Our results demonstrate that CD26+ T cells possess a natural polyfunctionality to traffic and exhibit effector functions and resist exhaustion. Therefore, they can be proposed for adoptive cancer immunotherapy. Finally, neutralizing and/or inhibiting Gal-9 may preserve CD26highCD8+ T cells in CLL.
Collapse
Affiliation(s)
- Najmeh Bozorgmehr
- grid.17089.370000 0001 2190 316XSchool of Dentistry, Division of Foundational Sciences, University of Alberta, Edmonton, AB T6G 2E1 Canada
| | - Mark Hnatiuk
- grid.17089.370000 0001 2190 316XDepatment of Medicine Division of Hematology, University of Alberta, Edmonton, AB T6G 2E1 Canada
| | - Anthea C. Peters
- grid.17089.370000 0001 2190 316XDepartment of Oncology, Division of Medical Oncology, University of Alberta, Edmonton, AB T6G 2E1 Canada
| | - Shokrollah Elahi
- grid.17089.370000 0001 2190 316XSchool of Dentistry, Division of Foundational Sciences, University of Alberta, Edmonton, AB T6G 2E1 Canada ,grid.17089.370000 0001 2190 316XDepartment of Oncology, Division of Medical Oncology, University of Alberta, Edmonton, AB T6G 2E1 Canada ,grid.17089.370000 0001 2190 316XLi Ka Shing Institute of Virology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB T6G 2E1 Canada
| |
Collapse
|
14
|
Chan YT, Cheong HC, Tang TF, Rajasuriar R, Cheng KK, Looi CY, Wong WF, Kamarulzaman A. Immune Checkpoint Molecules and Glucose Metabolism in HIV-Induced T Cell Exhaustion. Biomedicines 2022; 10:0. [PMID: 36359329 PMCID: PMC9687279 DOI: 10.3390/biomedicines10112809] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 10/24/2022] [Accepted: 11/02/2022] [Indexed: 11/07/2023] Open
Abstract
The progressive decline of CD8+ cytotoxic T cells in human immunodeficiency virus (HIV)-infected patients due to infection-triggered cell exhaustion and cell death is significantly correlated with disease severity and progression into the life-threatening acquired immunodeficiency syndrome (AIDS) stage. T cell exhaustion is a condition of cell dysfunction despite antigen engagement, characterized by augmented surface expression of immune checkpoint molecules such as programmed cell death protein 1 (PD-1), which suppress T cell receptor (TCR) signaling and negatively impact the proliferative and effector activities of T cells. T cell function is tightly modulated by cellular glucose metabolism, which produces adequate energy to support a robust reaction when battling pathogen infection. The transition of the T cells from an active to an exhausted state following pathogen persistence involves a drastic change in metabolic activity. This review highlights the interplay between immune checkpoint molecules and glucose metabolism that contributes to T cell exhaustion in the context of chronic HIV infection, which could deliver an insight into the rational design of a novel therapeutic strategy.
Collapse
Affiliation(s)
- Yee Teng Chan
- Department of Medical Microbiology, Faculty of Medicine, University of Malaya, Kuala Lumpur 50603, Malaysia; (Y.T.C.); (H.C.C.); (T.F.T.)
| | - Heng Choon Cheong
- Department of Medical Microbiology, Faculty of Medicine, University of Malaya, Kuala Lumpur 50603, Malaysia; (Y.T.C.); (H.C.C.); (T.F.T.)
| | - Ting Fang Tang
- Department of Medical Microbiology, Faculty of Medicine, University of Malaya, Kuala Lumpur 50603, Malaysia; (Y.T.C.); (H.C.C.); (T.F.T.)
| | - Reena Rajasuriar
- Department of Medicine, Faculty of Medicine, University of Malaya, Kuala Lumpur 50603, Malaysia; (R.R.); (A.K.)
- Centre of Excellence for Research in AIDS (CERiA), University of Malaya, Kuala Lumpur 50603, Malaysia
| | - Kian-Kai Cheng
- Innovation Centre in Agritechnology (ICA), Universiti Teknologi Malaysia, Pagoh 84600, Malaysia;
| | - Chung Yeng Looi
- School of Bioscience, Taylor’s University, Subang Jaya 47500, Malaysia;
| | - Won Fen Wong
- Department of Medical Microbiology, Faculty of Medicine, University of Malaya, Kuala Lumpur 50603, Malaysia; (Y.T.C.); (H.C.C.); (T.F.T.)
| | - Adeeba Kamarulzaman
- Department of Medicine, Faculty of Medicine, University of Malaya, Kuala Lumpur 50603, Malaysia; (R.R.); (A.K.)
- Centre of Excellence for Research in AIDS (CERiA), University of Malaya, Kuala Lumpur 50603, Malaysia
| |
Collapse
|
15
|
Shahbaz S, Oyegbami O, Saito S, Osman M, Sligl W, Elahi S. Differential effects of age, sex and dexamethasone therapy on ACE2/TMPRSS2 expression and susceptibility to SARS-CoV-2 infection. Front Immunol 2022; 13:1021928. [PMID: 36405732 PMCID: PMC9671168 DOI: 10.3389/fimmu.2022.1021928] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Accepted: 10/21/2022] [Indexed: 08/30/2023] Open
Abstract
ACE2 and TMPRSS2 are crucial for SARS-CoV-2 entry into the cell. Although ACE2 facilitates viral entry, its loss leads to promoting the devastating clinical symptoms of COVID-19 disease. Thus, enhanced ACE2/TMPRSS2 expression is likely to increase predisposition of target cells to SARS-CoV-2 infection. However, little evidence existed about the biological kinetics of these two enzymes and whether dexamethasone treatment modulates their expression. Here, we show that the expression of ACE2 at the protein and mRNA levels was significantly higher in the lung and heart tissues of neonatal compared to adult mice. However, the expression of TMPRSS2 was developmentally regulated. Our results may introduce a novel concept for the reduced susceptibility of the young to SARS-CoV-2 infection. Moreover, ACE2 expression but not TMPRSS2 was upregulated in adult female lungs compared to their male counterparts. Interestingly, the ACE2 and TMPRSS2 expressions were upregulated by dexamethasone treatment in the lung and heart tissues in both neonatal and adult mice. Furthermore, our findings provide a novel mechanism for the observed differential therapeutic effects of dexamethasone in COVID-19 patients. As such, dexamethasone exhibits different therapeutic effects depending on the disease stage. This was supported by increased ACE2/TMPRSS2 expression and subsequently enhanced infection of normal human bronchial epithelial cells (NHBE) and Vero E6 cells with SARS-CoV-2 once pre-treated with dexamethasone. Therefore, our results suggest that individuals who take dexamethasone for other clinical conditions may become more prone to SARS-CoV-2 infection.
Collapse
Affiliation(s)
- Shima Shahbaz
- Department of Dentistry, Division of Foundational Sciences, Edmonton, AB, Canada
| | - Olaide Oyegbami
- Department of Dentistry, Division of Foundational Sciences, Edmonton, AB, Canada
| | - Suguru Saito
- Department of Dentistry, Division of Foundational Sciences, Edmonton, AB, Canada
| | - Mohammed Osman
- Department of Medicine, Division of Rheumatology, University of Alberta, Edmonton, AB, Canada
| | - Wendy Sligl
- Department of Critical Care Medicine, University of Alberta, Edmonton, AB, Canada
- Department of Medicine, Division of Infectious Diseases, University of Alberta, Edmonton, AB, Canada
| | - Shokrollah Elahi
- Department of Dentistry, Division of Foundational Sciences, Edmonton, AB, Canada
- Department of Medical Microbiology and Immunology, Li Ka Shing Institute of Virology, Edmonton, AB, Canada
- Women and Children Health Research Institute, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada
| |
Collapse
|
16
|
Pereira LMS, França EDS, Costa IB, Jorge EVO, Mattos PJDSM, Freire ABC, Ramos FLDP, Monteiro TAF, Macedo O, Sousa RCM, Dos Santos EJM, Freitas FB, Costa IB, Vallinoto ACR. HLA-B*13, B*35 and B*39 Alleles Are Closely Associated With the Lack of Response to ART in HIV Infection: A Cohort Study in a Population of Northern Brazil. Front Immunol 2022; 13:829126. [PMID: 35371095 PMCID: PMC8966405 DOI: 10.3389/fimmu.2022.829126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2021] [Accepted: 02/23/2022] [Indexed: 11/13/2022] Open
Abstract
Introduction Immune reconstitution failure after HIV treatment is a multifactorial phenomenon that may also be associated with a single polymorphism of human leukocyte antigen (HLA); however, few reports include patients from the Brazilian Amazon. Our objective was to evaluate the association of the immunogenic profile of the “classical” HLA-I and HLA-II loci with treatment nonresponse in a regional cohort monitored over 24 months since HIV diagnosis. Materials and Methods Treatment-free participants from reference centers in the state of Pará, Brazil, were enrolled. Infection screening was performed using enzyme immunoassays (Murex AG/AB Combination DiaSorin, UK) and confirmed by immunoblots (Bio-Manguinhos, FIOCRUZ). Plasma viral load was quantified by real-time PCR (ABBOTT, Chicago, Illinois, USA). CD4+/CD8+ T lymphocyte quantification was performed by immunophenotyping and flow cytometry (BD Biosciences, San Jose, CA, USA). Infection was monitored via test and logistics platforms (SISCEL and SICLOM). Therapeutic response failure was inferred based on CD4+ T lymphocyte quantification after 1 year of therapy. Loci A, B and DRB1 were genotyped using PCR-SSO (One Lambda Inc., Canoga Park, CA, USA). Statistical tests were applied using GENEPOP, GraphPad Prism 8.4.3 and BioEstat 5.3. Results Of the 270 patients monitored, 134 responded to treatment (CD4+ ≥ 500 cells/µL), and 136 did not respond to treatment (CD4+ < 500 cells/µL). The allele frequencies of the loci were similar to heterogeneous populations. The allelic profile of locus B was statistically associated with treatment nonresponse, and the B*13, B*35 and B*39 alleles had the greatest probabilistic influence. The B*13 allele had the highest risk of treatment nonresponse, and carriers of the allele had a detectable viral load and a CD4+ T lymphocyte count less than 400 cells/µL with up to 2 years of therapy. The B*13 allele was associated with a switch in treatment regimens, preferably to efavirenz (EFZ)-based regimens, and among those who switched regimens, half had a history of coinfection with tuberculosis. Conclusions The allelic variants of the B locus are more associated with non-response to therapy in people living with HIV (PLHIV) from a heterogeneous population in the Brazilian Amazon.
Collapse
Affiliation(s)
| | | | - Iran Barros Costa
- Epstein-Barr Virus Laboratory, Virology Unit, Evandro Chagas Institute, Ananindeua, Brazil
| | | | | | | | | | | | - Olinda Macedo
- Retrovirus Laboratory, Virology Unit, Evandro Chagas Institute, Ananindeua, Brazil
| | - Rita Catarina Medeiros Sousa
- Epstein-Barr Virus Laboratory, Virology Unit, Evandro Chagas Institute, Ananindeua, Brazil.,School of Medicine, Federal University of Pará, Belém, Brazil
| | - Eduardo José Melo Dos Santos
- Laboratory of Human and Medical Genetics, Institute of Biological Sciences, Federal University of Pará, Belém, Brazil.,Graduate Program in Biology of Infectious and Parasitic Agents, Institute of Biological Sciences, Federal University of Pará, Belém, Brazil
| | | | - Igor Brasil Costa
- Epstein-Barr Virus Laboratory, Virology Unit, Evandro Chagas Institute, Ananindeua, Brazil.,Graduate Program in Biology of Infectious and Parasitic Agents, Institute of Biological Sciences, Federal University of Pará, Belém, Brazil
| | - Antonio Carlos Rosário Vallinoto
- Virology Laboratory, Institute of Biological Sciences, Federal University of Pará, Belém, Brazil.,Graduate Program in Biology of Infectious and Parasitic Agents, Institute of Biological Sciences, Federal University of Pará, Belém, Brazil
| |
Collapse
|
17
|
Shahbaz S, Okoye I, Blevins G, Elahi S. Elevated ATP via enhanced miRNA-30b, 30c, and 30e downregulates the expression of CD73 in CD8+ T cells of HIV-infected individuals. PLoS Pathog 2022; 18:e1010378. [PMID: 35325005 PMCID: PMC8947394 DOI: 10.1371/journal.ppat.1010378] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Accepted: 02/17/2022] [Indexed: 12/24/2022] Open
Abstract
CD8+ T cells play a crucial role against chronic viral infections, however, their effector functions are influenced by the expression of co-stimulatory/inhibitory receptors. For example, CD73 works with CD39 to convert highly inflammatory ATP to adenosine. However, its expression on T cells in the context of viral infections has not been well defined. Here, we analyzed the expression of CD73 on human T cells in a cohort of 102 HIV-infected individuals including those on antiretroviral therapy (ART), ART-naïve, and long-term non-progressors who were not on ART. We found that the frequency of CD73+ T cells was markedly lower among T cell subsets (e.g. naïve, effector or memory) in the peripheral blood of all HIV-infected individuals. Notably, CD73 was decreased at the cell surface, intracellular and gene levels. Functionally, CD8+CD73+ T cells exhibited decreased cytokine expression (TNF-α, IFN-γ and IL-2) upon global or antigen-specific stimulation and impaired expression of cytolytic molecules at the gene and protein levels. In contrast, CD8+CD73+ T cells expressed elevated levels of homing receptors such as CCR7, α4β7 integrin, which suggests a migratory advantage for these cells as observed in vitro. We also observed significant migration of CD73+CD8+ T cells into the cerebrospinal fluids of multiple sclerosis (MS) patients at the time of disease relapse. Moreover, we found that elevated levels of ATP in the plasma of HIV-infected individuals upregulates the expression of miRNA30b-e in T cells in vitro. In turn, inhibition of miRNAs (30b, 30c and 30e) resulted in significant upregulation of CD73 mRNA in CD8+ T cells. Therefore, we provide a novel mechanism for the downregulation of CD73 via ATP-induced upregulation of miRNA30b, 30c and 30e in HIV infection. Finally, these observations imply that ATP-mediated downregulation of CD73 mainly occurs via its receptor, P2X1/P2RX1. Our results may in part explain why HIV-infected individuals have reduced risk of developing MS considering the role of CD73 for efficient T cell entry into the central nervous system. CD8+ T cells (killer T cells) play an important role against chronic viral infections, however, their functional properties get compromised during the course of HIV infection. CD73, is one of molecules that influences T cell functions, however, its role in the context of viral infections has not been well defined. Here, we analyzed the expression of CD73 on T cells in a cohort of 102 HIV-infected individuals including those on antiretroviral therapy (ART), ART-naïve, and long-term non-progressors who were not on ART. We found that the frequency of T cells expressing this molecule was markedly lower among different T cell subsets obtained from the blood of HIV-infected individuals. Notably, CD73 was decreased at the intracellular protein and gene levels. Furthermore, we found that T cells expressing this molecule (CD73) had impaired functional properties. In contrast, we observed that T cells expressing CD73 had elevated levels of homing receptors, which suggests a migratory advantage for these cells. This was also supported by increased CD73+ T cells in the cerebrospinal fluids of multiple sclerosis patients when they experienced disease replace. Moreover, we found that the elevated level of ATP in the plasma of HIV-infected individuals is responsible for the upregulation of miRNA30b, 30c and 30e, resulting in reduced expression of CD73.
Collapse
Affiliation(s)
- Shima Shahbaz
- School of Dentistry, Division of Foundational Sciences, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Canada
| | - Isobel Okoye
- School of Dentistry, Division of Foundational Sciences, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Canada
| | - Gregg Blevins
- Department of Medicine, Division of Neurology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Canada
| | - Shokrollah Elahi
- School of Dentistry, Division of Foundational Sciences, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Canada
- Department of Oncology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Canada
- Li Ka Shing Institute of Virology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Canada
- * E-mail:
| |
Collapse
|
18
|
Gubser C, Chiu C, Lewin SR, Rasmussen TA. Immune checkpoint blockade in HIV. EBioMedicine 2022; 76:103840. [PMID: 35123267 PMCID: PMC8882999 DOI: 10.1016/j.ebiom.2022.103840] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Revised: 12/23/2021] [Accepted: 01/11/2022] [Indexed: 12/17/2022] Open
Abstract
Antiretroviral therapy (ART) has dramatically improved life expectancy for people with HIV (PWH) and helps to restore immune function but is not curative and must be taken lifelong. Achieving long term control of HIV in the absence of ART will likely require potent T cell function, but chronic HIV infection is associated with immune exhaustion that persists even on ART. This is driven by elevated expression of immune checkpoints that provide negative signalling to T cells. In individuals with cancer, immune checkpoint blockade augments tumour-directed T-cell responses resulting in significant clinical cures. There is therefore high interest if ICB can contribute to HIV cure or remission by reversing HIV-latency and/or drive recovery of HIV-specific T-cells. We here review recent evidence on the role of immune checkpoints in persistent HIV infection and discuss the potential for employing immune checkpoint blockade as a therapeutic approach to target HIV persistence on ART.
Collapse
Affiliation(s)
- Celine Gubser
- Department of Infectious Diseases, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity, 792 Elizabeth Street, Melbourne, Victoria 3000, Australia
| | - Chris Chiu
- Department of Infectious Diseases, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity, 792 Elizabeth Street, Melbourne, Victoria 3000, Australia
| | - Sharon R Lewin
- Department of Infectious Diseases, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity, 792 Elizabeth Street, Melbourne, Victoria 3000, Australia; Victorian Infectious Diseases Service, Royal Melbourne Hospital at the Peter Doherty Institute for Infection and Immunity, Melbourne, Australia; Department of Infectious Diseases, Alfred Hospital and Monash University, Melbourne, Australia.
| | - Thomas A Rasmussen
- Department of Infectious Diseases, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity, 792 Elizabeth Street, Melbourne, Victoria 3000, Australia; Department of Infectious Diseases, Aarhus University Hospital, Aarhus, Denmark
| |
Collapse
|
19
|
Makuku R, Seyedmirzaei H, Tantuoyir MM, Rodríguez-Román E, Albahash A, Mohamed K, Moyo E, Ahmed AO, Razi S, Rezaei N. Exploring the application of immunotherapy against HIV infection in the setting of malignancy: A detailed review article. Int Immunopharmacol 2022; 105:108580. [PMID: 35121225 DOI: 10.1016/j.intimp.2022.108580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Revised: 01/17/2022] [Accepted: 01/24/2022] [Indexed: 11/27/2022]
Abstract
According to the Joint United Nations Programme on HIV/AIDS (UNAIDS), as of 2019, approximately 42.2 million people have died from acquired immunodeficiency syndrome (AIDS)-related illnesses since the start of the epidemic. Antiretroviral therapy (ART) has significantly reduced mortality, morbidity, and incidence of the human immunodeficiency virus (HIV)/AIDS-defining cancers, taming once-dreaded disease into a benign chronic infection. Although the treatment has prolonged the patients' survival, general HIV prevalence has increased and this increase has dovetailed with an increasing incidence of Non-AIDS-defining cancers (NADCs) among people living with HIV (PLWH). This is happening when new promising approaches in both oncology and HIV infection are being developed. This review focuses on recent progress witnessed in immunotherapy approaches against HIV-related, Non-AIDS-defining cancers (NADCs), and HIV infection.
Collapse
Affiliation(s)
- Rangarirai Makuku
- School of Medicine, Tehran University of Medical Sciences, Tehran, Iran; Cancer Immunology Project (CIP), Universal Scientific Education and Research Network (USERN), Tehran, Iran; Universal Scientific Education and Research Network (USERN), Harare, Zimbabwe
| | - Homa Seyedmirzaei
- School of Medicine, Tehran University of Medical Sciences, Tehran, Iran; Cancer Immunology Project (CIP), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Marcarious M Tantuoyir
- School of Medicine, Tehran University of Medical Sciences, Tehran, Iran; Network of Immunity in Infection, Malignancy, and Autoimmunity (NIIMA), Universal Scientific Education and Research Network (USERN), Accra, Ghana; Biomedical Engineering Unit, University of Ghana Medical Center (UGMC), Accra, Ghana
| | - Eduardo Rodríguez-Román
- Center for Microbiology and Cell Biology, Instituto Venezolano de Investigaciones Científicas, Caracas 1020A, Venezuela; Universal Scientific Education and Research Network (USERN), Caracas, Venezuela
| | - Assil Albahash
- School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Kawthar Mohamed
- School of Medicine, Tehran University of Medical Sciences, Tehran, Iran; Cancer Immunology Project (CIP), Universal Scientific Education and Research Network (USERN), Tehran, Iran; Universal Scientific Education and Research Network (USERN), Manama, Bahrain
| | - Ernest Moyo
- Universal Scientific Education and Research Network (USERN), Harare, Zimbabwe; Department of Mathematics and Statistics, Midlands State University, Zimbabwe
| | | | - Sepideh Razi
- Cancer Immunology Project (CIP), Universal Scientific Education and Research Network (USERN), Tehran, Iran; School of Medicine, Iran University of Medical Sciences, Tehran, Iran; Research Center for Immunodeficiencies, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Nima Rezaei
- Research Center for Immunodeficiencies, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran; Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran; Cancer Immunology Project (CIP), Universal Scientific Education and Research Network (USERN), Stockholm, Sweden.
| |
Collapse
|
20
|
N’takpé JB, Gabillard D, Moh R, Gardiennet E, Toni TD, Kouame GM, Badje A, Emieme A, Karcher S, Le Carrou J, Ménan H, Danel C, Eholie SP, Rouzioux C, Anglaret X, Lambotte O. Elite and viremic HIV-1 controllers in West Africa. AIDS 2022; 36:29-38. [PMID: 34524145 PMCID: PMC8654265 DOI: 10.1097/qad.0000000000003072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 07/03/2021] [Accepted: 07/15/2021] [Indexed: 11/29/2022]
Abstract
BACKGROUND Data on HIV-1 controllers in Africa are scarce. We report the proportion of HIV-1 controllers in a group of adults prospectively monitored with frequent viral load measurements as part of a clinical trial in West Africa. METHODS For the Temprano trial, antiretroviral therapy (ART)-naive HIV-1 infected adults with no criteria for starting ART were randomized to start ART immediately or defer ART until the WHO starting criteria were met. Plasma viral load was measured every 6 months. The trial follow-up was 30 months. We considered all Temprano participants randomized to defer ART. Patients with all semestrial viral <2000 copies/ml and still off ART at month 30 were defined as HIV-1 controllers. Controllers with all viral loads <50 copies/ml were defined as elite controllers, the rest as viremic controllers. RESULTS Of the 1023 HIV-1-infected adults randomized in the Temprano deferred-ART group, 18 (1.8%) met the criteria for classification as HIV controllers, of whom seven (0.7%) were elite controllers and 11 (1.1%) viremic controllers. The HIV-1 controllers had low peripheral blood mononuclear cell HIV-1 DNA and low inflammatory marker levels. They maintained high CD4+ cell count and percentages and had a low morbidity rate. DISCUSSION HIV controllers exist in Africa at a proportion close to that reported elsewhere. They represent a small fraction of all HIV-1-infected patients but raise important questions. Further studies should assess whether starting ART might represent more risk than benefit for some controllers, and where it does, how to identify these patients before they start ART.
Collapse
Affiliation(s)
- Jean Baptiste N’takpé
- Inserm 1219, University of Bordeaux, IRD, Bordeaux, France
- PACCI/ANRS Research Center
- Département de Dermatologie et Maladies Infectieuses, Université Felix Houphouët Boigny, Abidjan, Côte d’Ivoire
| | - Delphine Gabillard
- Inserm 1219, University of Bordeaux, IRD, Bordeaux, France
- PACCI/ANRS Research Center
| | - Raoul Moh
- Inserm 1219, University of Bordeaux, IRD, Bordeaux, France
- PACCI/ANRS Research Center
- Département de Dermatologie et Maladies Infectieuses, Université Felix Houphouët Boigny, Abidjan, Côte d’Ivoire
| | - Elise Gardiennet
- AP-HP, CHU Necker Enfants Malades, Université Paris Descartes, Paris, France
| | - Thomas-d’Aquin Toni
- Inserm 1219, University of Bordeaux, IRD, Bordeaux, France
- PACCI/ANRS Research Center
- CeDReS, CHU de Treichville, Abidjan, Côte d’Ivoire
| | - Gérard M. Kouame
- Inserm 1219, University of Bordeaux, IRD, Bordeaux, France
- PACCI/ANRS Research Center
- Département de Dermatologie et Maladies Infectieuses, Université Felix Houphouët Boigny, Abidjan, Côte d’Ivoire
| | - Anani Badje
- Inserm 1219, University of Bordeaux, IRD, Bordeaux, France
- PACCI/ANRS Research Center
- Département de Dermatologie et Maladies Infectieuses, Université Felix Houphouët Boigny, Abidjan, Côte d’Ivoire
| | - Arlette Emieme
- Inserm 1219, University of Bordeaux, IRD, Bordeaux, France
- PACCI/ANRS Research Center
- CeDReS, CHU de Treichville, Abidjan, Côte d’Ivoire
| | - Sophie Karcher
- Inserm 1219, University of Bordeaux, IRD, Bordeaux, France
- PACCI/ANRS Research Center
| | - Jérome Le Carrou
- Inserm 1219, University of Bordeaux, IRD, Bordeaux, France
- PACCI/ANRS Research Center
| | - Hervé Ménan
- Inserm 1219, University of Bordeaux, IRD, Bordeaux, France
- PACCI/ANRS Research Center
- CeDReS, CHU de Treichville, Abidjan, Côte d’Ivoire
| | - Christine Danel
- Inserm 1219, University of Bordeaux, IRD, Bordeaux, France
- PACCI/ANRS Research Center
| | - Serge P. Eholie
- Inserm 1219, University of Bordeaux, IRD, Bordeaux, France
- PACCI/ANRS Research Center
- Département de Dermatologie et Maladies Infectieuses, Université Felix Houphouët Boigny, Abidjan, Côte d’Ivoire
| | - Christine Rouzioux
- PACCI/ANRS Research Center
- Faculté de Médecine, Université Paris Descartes, Paris
| | - Xavier Anglaret
- Inserm 1219, University of Bordeaux, IRD, Bordeaux, France
- PACCI/ANRS Research Center
| | - Olivier Lambotte
- AP-HP Paris Saclay, Hôpital Bicêtre, Clinical Immunology Department
- Université Paris-Saclay, Inserm, CEA, Center for Immunology of Viral, Auto-immune, Hematological and Bacterial diseases (IDMIT/IMVA-HB), Le Kremlin Bicêtre, France
| |
Collapse
|
21
|
Perez Rosero E, Heron S, Jovel J, O'Neil CR, Turvey SL, Parashar P, Elahi S. Differential Signature of the Microbiome and Neutrophils in the Oral Cavity of HIV-Infected Individuals. Front Immunol 2021; 12:780910. [PMID: 34858437 PMCID: PMC8630784 DOI: 10.3389/fimmu.2021.780910] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Accepted: 10/22/2021] [Indexed: 12/12/2022] Open
Abstract
HIV infection is associated with a wide range of changes in microbial communities and immune cell components of the oral cavity. The purpose of this study was to evaluate the oral microbiome in relationship to oral neutrophils in HIV-infected compared to healthy individuals. We evaluated oral washes and saliva samples from HIV-infected individuals (n=52) and healthy controls (n=43). Using 16S-rRNA gene sequencing, we found differential β-diversity using Principal Coordinate Analysis (PCoA) with Bray-Curtis distances. The α-diversity analysis by Faith’s, Shannon, and observed OTUs indexes indicated that the saliva samples from HIV-infected individuals harbored significantly richer bacterial communities compared to the saliva samples from healthy individuals. Notably, we observed that five species of Spirochaeta including Spirochaetaceae, Spirochaeta, Treponema, Treponema amylovorum, and Treponema azotonutricum were significantly abundant. In contrast, Helicobacter species were significantly reduced in the saliva of HIV-infected individuals. Moreover, we found a significant reduction in the frequency of oral neutrophils in the oral cavity of HIV-infected individuals, which was positively related to their CD4+ T cell count. In particular, we noted a significant decline in CD44 expressing neutrophils and the intensity of CD44 expression on oral neutrophils of HIV-infected individuals. This observation was supported by the elevation of soluble CD44 in the saliva of HIV-infected individuals. Overall, the core oral microbiome was distinguishable between HIV-infected individuals on antiretroviral therapy compared to the HIV-negative group. The observed reduction in oral neutrophils might likely be related to the low surface expression of CD44, resulting in a higher bacterial diversity and richness in HIV-infected individuals.
Collapse
Affiliation(s)
| | - Samantha Heron
- Department of Dentistry, University of Alberta, Edmonton, AB, Canada
| | - Juan Jovel
- Department of Dentistry, University of Alberta, Edmonton, AB, Canada
| | - Conar R O'Neil
- Department of Medicine, Division of Infectious Disease, University of Alberta, Edmonton, AB, Canada
| | - Shannon Lee Turvey
- Department of Medicine, Division of Infectious Disease, University of Alberta, Edmonton, AB, Canada
| | - Pallavi Parashar
- Department of Dentistry, University of Alberta, Edmonton, AB, Canada
| | - Shokrollah Elahi
- Department of Dentistry, University of Alberta, Edmonton, AB, Canada.,Department of Medical Microbiology and Immunology, University of Alberta, Edmonton, AB, Canada.,Department of Oncology, University of Alberta, Edmonton, AB, Canada.,Li Ka Shing Institute of Virology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada
| |
Collapse
|
22
|
Collaboration of a Detrimental HLA-B*35:01 Allele with HLA-A*24:02 in Coevolution of HIV-1 with T Cells Leading to Poorer Clinical Outcomes. J Virol 2021; 95:e0125921. [PMID: 34523962 PMCID: PMC8577379 DOI: 10.1128/jvi.01259-21] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Although mutant-specific T cells are elicited in some individuals infected with HIV-1 mutant viruses, the detailed characteristics of these T cells remain unknown. A recent study showed that the accumulation of strains expressing Nef135F, which were selected by HLA-A*24:02-restricted T cells, was associated with poor outcomes in individuals with the detrimental HLA-B*35:01 allele and that HLA-B*35:01-restricted NefYF9 (Nef135-143)-specific T cells failed to recognize target cells infected with Nef135F mutant viruses. Here, we investigated HLA-B*35:01-restricted T cells specific for the NefFF9 epitope incorporating the Nef135F mutation. Longitudinal T-cell receptor (TCR) clonotype analysis demonstrated that 3 types of HLA-B*35:01-restricted T cells (wild-type [WT] specific, mutant specific, and cross-reactive) with different T cell repertoires were elicited during the clinical course. HLA-B*35:01+ individuals possessing wild-type-specific T cells had a significantly lower plasma viral load (pVL) than those with mutant-specific and/or cross-reactive T cells, even though the latter T cells effectively recognized the mutant virus-infected cells. These results suggest that mutant-specific and cross-reactive T cells could only partially suppress HIV-1 replication in vivo. An ex vivo analysis of the T cells showed higher expression of PD-1 on cross-reactive T cells and lower expression of CD160/2B4 on the mutant-specific T cells than other T cells, implying that these inhibitory and stimulatory molecules are key to the reduced function of these T cells. In the present study, we demonstrate that mutant-specific and cross-reactive T cells do not contribute to the suppression of HIV-1 replication in HIV-1-infected individuals, even though they have the capacity to recognize mutant virus-infected cells. Thus, the collaboration of HLA-A*24:02 with the detrimental allele HLA-B*35:01 resulted in the coevolution of HIV-1 alongside virus-specific T cells, leading to poorer clinical outcomes. IMPORTANCE HIV-1 escape mutations are selected under pressure from HIV-1-specific CD8+ T cells. Accumulation of these mutations in circulating viruses impairs the control of HIV-1 by HIV-1-specific T cells. Although it is known that HIV-1-specific T cells recognizing mutant virus were elicited in some individuals infected with a mutant virus, the role of these T cells remains unclear. Accumulation of phenylalanine at HIV-1 Nef135 (Nef135F), which is selected by HLA-A*24:02-restricted T cells, led to poor clinical outcome in individuals carrying the detrimental HLA-B*35:01 allele. In the present study, we found that HLA-B*35:01-restricted mutant-specific and cross-reactive T cells were elicited in HLA-B*35:01+ individuals infected with the Nef135F mutant virus. These T cells could not effectively suppress HIV-1 replication in vivo even though they could recognize mutant virus-infected cells in vitro. Mutant-specific and cross-reactive T cells expressed lower levels of stimulatory molecules and higher levels of inhibitory molecules, respectively, suggesting a potential mechanism whereby these T cells fail to suppress HIV-1 replication in HIV-1-infected individuals.
Collapse
|
23
|
Dunsmore G, Rosero EP, Shahbaz S, Santer DM, Jovel J, Lacy P, Houston S, Elahi S. Neutrophils promote T-cell activation through the regulated release of CD44-bound Galectin-9 from the cell surface during HIV infection. PLoS Biol 2021; 19:e3001387. [PMID: 34411088 PMCID: PMC8407585 DOI: 10.1371/journal.pbio.3001387] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Revised: 08/31/2021] [Accepted: 08/04/2021] [Indexed: 12/14/2022] Open
Abstract
The interaction of neutrophils with T cells has been the subject of debate and controversies. Previous studies have suggested that neutrophils may suppress or activate T cells. Despite these studies, the interaction between neutrophils and T cells has remained a largely unexplored field. Here, based on our RNA sequencing (RNA-seq) analysis, we found that neutrophils have differential transcriptional and functional profiling depending on the CD4 T-cell count of the HIV-infected individual. In particular, we identified that neutrophils in healthy individuals express surface Galectin-9 (Gal-9), which is down-regulated upon activation, and is consistently down-regulated in HIV-infected individuals. However, down-regulation of Gal-9 was associated with CD4 T-cell count of patients. Unstimulated neutrophils express high levels of surface Gal-9 that is bound to CD44, and, upon stimulation, neutrophils depalmitoylate CD44 and induce its movement out of the lipid raft. This process causes the release of Gal-9 from the surface of neutrophils. In addition, we found that neutrophil-derived exogenous Gal-9 binds to cell surface CD44 on T cells, which promotes LCK activation and subsequently enhances T-cell activation. Furthermore, this process was regulated by glycolysis and can be inhibited by interleukin (IL)-10. Together, our data reveal a novel mechanism of Gal-9 shedding from the surface of neutrophils. This could explain elevated plasma Gal-9 levels in HIV-infected individuals as an underlying mechanism of the well-characterized chronic immune activation in HIV infection. This study provides a novel role for the Gal-9 shedding from neutrophils. We anticipate that our results will spark renewed investigation into the role of neutrophils in T-cell activation in other acute and chronic conditions, as well as improved strategies for modulating Gal-9 shedding. This study shows that HIV-infected individuals have different neutrophil profiles depending on their CD4 T cell count. In particular, neutrophils express high levels of surface Gal-9 but this is shed upon stimulation; this exogenous Gal-9 binds to CD44 on T cells, which promotes LCK activation and subsequently enhances T cell activation.
Collapse
Affiliation(s)
- Garett Dunsmore
- Department of Medical Microbiology and Immunology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Canada
| | - Eliana Perez Rosero
- School of Dentistry, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Canada
| | - Shima Shahbaz
- School of Dentistry, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Canada
| | - Deanna M. Santer
- Department of Medical Microbiology and Immunology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Canada
- Li Ka Shing Institute of Virology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Canada
| | - Juan Jovel
- School of Dentistry, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Canada
| | - Paige Lacy
- Department of Medicine, Division of Pulmonary Medicine, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Canada
| | - Stan Houston
- Department of Medicine, Division of Infectious Disease, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Canada
| | - Shokrollah Elahi
- Department of Medical Microbiology and Immunology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Canada
- School of Dentistry, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Canada
- Li Ka Shing Institute of Virology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Canada
- Department of Oncology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Canada
- * E-mail:
| |
Collapse
|
24
|
Shahbaz S, Xu L, Sligl W, Osman M, Bozorgmehr N, Mashhouri S, Redmond D, Perez Rosero E, Walker J, Elahi S. The Quality of SARS-CoV-2-Specific T Cell Functions Differs in Patients with Mild/Moderate versus Severe Disease, and T Cells Expressing Coinhibitory Receptors Are Highly Activated. THE JOURNAL OF IMMUNOLOGY 2021; 207:1099-1111. [PMID: 34312258 DOI: 10.4049/jimmunol.2100446] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Accepted: 06/17/2021] [Indexed: 01/08/2023]
Abstract
Understanding the function of SARS-CoV-2 Ag-specific T cells is crucial for the monitoring of antiviral immunity and vaccine design. Currently, both impaired and robust T cell immunity is described in COVID-19 patients. In this study, we explored and compared the effector functions of SARS-CoV-2-reactive T cells expressing coinhibitory receptors and examine the immunogenicity of SARS-CoV-2 S, M, and N peptide pools in regard to specific effector T cell responses, Th1/Th2/Th17, in COVID-19 patients. Analyzing a cohort of 108 COVID-19 patients with mild, moderate, and severe disease, we observed that coinhibitory receptors (e.g., PD-1, CTLA-4, TIM-3, VISTA, CD39, CD160, 2B4, TIGIT, Gal-9, and NKG2A) were upregulated on both CD4+ and CD8+ T cells. Importantly, the expression of coinhibitory receptors on T cells recognizing SARS-CoV-2 peptide pools (M/N/S) was associated with increased frequencies of cytokine-producing T cells. Thus, our data refute the concept of pathological T cell exhaustion in COVID-19 patients. Despite interindividual variations in the T cell response to viral peptide pools, a Th2 phenotype was associated with asymptomatic and milder disease, whereas a robust Th17 was associated with severe disease, which may potentiate the hyperinflammatory response in patients admitted to the Intensive Care Unit. Our data demonstrate that T cells may either play a protective or detrimental role in COVID-19 patients. This finding could have important implications for immune correlates of protection, diagnostic, and prophylaxis with respect to COVID-19 management.
Collapse
Affiliation(s)
- Shima Shahbaz
- School of Dentistry, Division of Foundational Sciences, University of Alberta, Edmonton, Alberta, Canada
| | - Lai Xu
- School of Dentistry, Division of Foundational Sciences, University of Alberta, Edmonton, Alberta, Canada
| | - Wendy Sligl
- Department of Medicine, University of Alberta, Edmonton, Alberta, Canada.,Department of Critical Care Medicine, University of Alberta, Edmonton, Alberta, Canada.,Division of Infectious Diseases, University of Alberta, Edmonton, Alberta, Canada
| | - Mohammed Osman
- Department of Medicine, University of Alberta, Edmonton, Alberta, Canada
| | - Najmeh Bozorgmehr
- School of Dentistry, Division of Foundational Sciences, University of Alberta, Edmonton, Alberta, Canada
| | - Siavash Mashhouri
- School of Dentistry, Division of Foundational Sciences, University of Alberta, Edmonton, Alberta, Canada
| | - Desiree Redmond
- Department of Medicine, University of Alberta, Edmonton, Alberta, Canada
| | - Eliana Perez Rosero
- School of Dentistry, Division of Foundational Sciences, University of Alberta, Edmonton, Alberta, Canada
| | - John Walker
- Department of Oncology, University of Alberta, Edmonton, Alberta, Canada
| | - Shokrollah Elahi
- School of Dentistry, Division of Foundational Sciences, University of Alberta, Edmonton, Alberta, Canada; .,Department of Oncology, University of Alberta, Edmonton, Alberta, Canada.,Department of Medical Microbiology and Immunology, University of Alberta, Edmonton, Alberta, Canada; and.,Li Ka Shing Institute of Virology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada
| |
Collapse
|
25
|
Mashhouri S, Koleva P, Huynh M, Okoye I, Shahbaz S, Elahi S. Sex Matters: Physiological Abundance of Immuno-Regulatory CD71+ Erythroid Cells Impair Immunity in Females. Front Immunol 2021; 12:705197. [PMID: 34367164 PMCID: PMC8334724 DOI: 10.3389/fimmu.2021.705197] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Accepted: 07/05/2021] [Indexed: 11/13/2022] Open
Abstract
Mature erythrocytes are the major metabolic regulators by transporting oxygen throughout the body. However, their precursors and progenitors defined as CD71+ Erythroid Cells (CECs) exhibit a wide range of immunomodulatory properties. Here, we uncover pronounced sexual dimorphism in CECs. We found female but not male mice, both BALB/c and C57BL/6, and human females were enriched with CECs. CECs, mainly their progenitors defined as CD45+CECs expressed higher levels of reactive oxygen species (ROS), PDL-1, VISTA, Arginase II and Arginase I compared to their CD45- counterparts. Consequently, CECs by the depletion of L-arginine suppress T cell activation and proliferation. Expansion of CECs in anemic mice and also post-menstrual cycle in women can result in L-arginine depletion in different microenvironments in vivo (e.g. spleen) resulting in T cell suppression. As proof of concept, we found that anemic female mice and mice adoptively transferred with CECs from anemic mice became more susceptible to Bordetella pertussis infection. These observations highlight the role of sex and anemia-mediated immune suppression in females. Notably, enriched CD45+CECs may explain their higher immunosuppressive properties in female BALB/c mice. Finally, we observed significantly more splenic central macrophages in female mice, which can explain greater extramedullary erythropoiesis and subsequently abundance of CECs in the periphery. Thus, sex-specific differences frequency in the frequency of CECs might be imprinted by differential erythropoiesis niches and hormone-dependent manner.
Collapse
Affiliation(s)
- Siavash Mashhouri
- School of Dentistry, Division of Foundational Sciences, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada
| | - Petya Koleva
- School of Dentistry, Division of Foundational Sciences, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada
| | - Mai Huynh
- School of Dentistry, Division of Foundational Sciences, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada
| | - Isobel Okoye
- School of Dentistry, Division of Foundational Sciences, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada
| | - Shima Shahbaz
- School of Dentistry, Division of Foundational Sciences, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada
| | - Shokrollah Elahi
- School of Dentistry, Division of Foundational Sciences, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada
- Department of Oncology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada
- Department of Medical Microbiology and Immunology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada
- Li Ka Shing Institute of Virology, University of Alberta, Edmonton, AB, Canada
| |
Collapse
|
26
|
Tabana Y, Moon TC, Siraki A, Elahi S, Barakat K. Reversing T-cell exhaustion in immunotherapy: a review on current approaches and limitations. Expert Opin Ther Targets 2021; 25:347-363. [PMID: 34056985 DOI: 10.1080/14728222.2021.1937123] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Introduction:T cell functions are altered during chronic viral infections and tumor development. This is mainly manifested by significant changes in T cells' epigenetic and metabolic landscapes, pushing them into an 'exhausted' state. Reversing this T cell exhaustion has been emerging as a 'game-changing' therapeutic approach against cancer and chronic viral infection.Areas covered:This review discusses the cellular pathways related to T cell exhaustion, and the clinical development and possible cellular targets that can be exploited therapeutically to reverse this exhaustion. We searched various databases (e.g. Google Scholar, PubMed, Elsevier, and other scientific database sites) using the keywords T cell exhaustion, T cell activation, co-inhibitory receptors, and reversing T cell exhaustion.Expert opinion:The discovery of the immune checkpoints pathways represents a significant milestone toward understanding and reversing T cell exhaustion. Antibodies that target these pathways have already demonstrated promising activities in reversing T cell exhaustion. Nevertheless, there are still many associated limitations. In this context, next-generation alternatives are on the horizon. This includes the use of small molecules to block the immune checkpoints' receptors, combining them with other treatments, and identifying novel, safer and more effective immunotherapeutic targets.
Collapse
Affiliation(s)
- Yasser Tabana
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, AB, Canada
| | - Tae Chul Moon
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, AB, Canada
| | - Arno Siraki
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, AB, Canada
| | - Shokrollah Elahi
- School of Dentistry, University of Alberta, Edmonton, AB, Canada.,Department of Oncology, University of Alberta, Edmonton, AB, Canada.,Department of Medical Microbiology and Immunology, University of Alberta, Edmonton, AB, Canada
| | - Khaled Barakat
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, AB, Canada
| |
Collapse
|
27
|
Shahbaz S, Jovel J, Elahi S. Differential transcriptional and functional properties of regulatory T cells in HIV-infected individuals on antiretroviral therapy and long-term non-progressors. Clin Transl Immunology 2021; 10:e1289. [PMID: 34094548 PMCID: PMC8155695 DOI: 10.1002/cti2.1289] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Revised: 04/09/2021] [Accepted: 04/29/2021] [Indexed: 12/11/2022] Open
Abstract
OBJECTIVES Regulatory T cells (Tregs) are widely recognised as a subset of CD4+CD25+FOXP3+ T cells that have a key role in maintaining immune homeostasis. The impact of HIV-1 infection on immunological properties and effector functions of Tregs has remained the topic of debate and controversy. In the present study, we investigated transcriptional profile and functional properties of Tregs in HIV-1-infected individuals either receiving antiretroviral therapy (ART, n = 50) or long-term non-progressors (LTNPs, n = 24) compared to healthy controls (HCs, n = 38). METHODS RNA sequencing (RNAseq), flow cytometry-based immunophenotyping and functional assays were performed to study Tregs in different HIV cohorts. RESULTS Our RNAseq analysis revealed that Tregs exhibit different transcriptional profiles in HIV-infected individuals. While Tregs from patients on ART upregulate pathways associated with a more suppressive (activated) phenotype, Tregs in LTNPs exhibit upregulation of pathways associated with impaired suppressive properties. These observations may explain a higher propensity for autoimmune diseases in LTNPs. Also, we found substantial upregulation of HLA-F mRNA and HLA-F protein in Tregs from HIV-infected subjects compared to healthy individuals. These observations highlight a potential role for this non-classical HLA in Tregs in the context of HIV infection, which should be investigated further in other chronic viral infections and cancer. CONCLUSION Our study has provided a novel insight into Tregs at the transcriptional and functional levels in different HIV-infected groups.
Collapse
Affiliation(s)
- Shima Shahbaz
- School of DentistryFaculty of Medicine and DentistryUniversity of AlbertaEdmontonABCanada
| | - Juan Jovel
- School of DentistryFaculty of Medicine and DentistryUniversity of AlbertaEdmontonABCanada
| | - Shokrollah Elahi
- School of DentistryFaculty of Medicine and DentistryUniversity of AlbertaEdmontonABCanada
- Department of Medical Microbiology and ImmunologyFaculty of Medicine and DentistryUniversity of AlbertaEdmontonABCanada
- Department of OncologyFaculty of Medicine and DentistryUniversity of AlbertaEdmontonABCanada
- Li Ka Shing Institute of VirologyFaculty of Medicine and DentistryUniversity of AlbertaEdmontonABCanada
| |
Collapse
|
28
|
Shahbaz S, Xu L, Osman M, Sligl W, Shields J, Joyce M, Tyrrell DL, Oyegbami O, Elahi S. Erythroid precursors and progenitors suppress adaptive immunity and get invaded by SARS-CoV-2. Stem Cell Reports 2021; 16:1165-1181. [PMID: 33979601 PMCID: PMC8111797 DOI: 10.1016/j.stemcr.2021.04.001] [Citation(s) in RCA: 58] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Revised: 04/06/2021] [Accepted: 04/07/2021] [Indexed: 01/08/2023] Open
Abstract
SARS-CoV-2 infection is associated with lower blood oxygen levels, even in patients without hypoxia requiring hospitalization. This discordance illustrates the need for a more unifying explanation as to whether SARS-CoV-2 directly or indirectly affects erythropoiesis. Here, we show significantly enriched CD71+ erythroid precursors/progenitors in the blood circulation of COVID-19 patients. We found that these cells have distinctive immunosuppressive properties. In agreement, we observed a strong negative correlation between the frequency of these cells with T and B cell proportions in COVID-19 patients. The expansion of these CD71+ erythroid precursors/progenitors was negatively correlated with the hemoglobin levels. A subpopulation of abundant erythroid cells, CD45+ CD71+ cells, co-express ACE2, TMPRSS2, CD147, and CD26, and these can be infected with SARS-CoV-2. In turn, pre-treatment of erythroid cells with dexamethasone significantly diminished ACE2/TMPRSS2 expression and subsequently reduced their infectivity with SARS-CoV-2. This provides a novel insight into the impact of SARS-CoV-2 on erythropoiesis and hypoxia seen in COVID-19 patients.
Collapse
Affiliation(s)
- Shima Shahbaz
- School of Dentistry, Division of Foundational Sciences, University of Alberta, Edmonton, T6G2E1, AB, Canada
| | - Lai Xu
- School of Dentistry, Division of Foundational Sciences, University of Alberta, Edmonton, T6G2E1, AB, Canada
| | - Mohammed Osman
- Department of Medicine, University of Alberta, Edmonton, T6G2E1, AB, Canada
| | - Wendy Sligl
- Department of Medicine, University of Alberta, Edmonton, T6G2E1, AB, Canada; Department of Critical Care Medicine, University of Alberta, Edmonton, T6G2E1, AB, Canada; Division of Infectious Diseases, University of Alberta, Edmonton, T6G2E1, AB, Canada
| | - Justin Shields
- Department of Medical Microbiology and Immunology, University of Alberta, Edmonton, T6G2E1, AB, Canada; Li Ka Shing Institute of Virology, University of Alberta, Edmonton, T6G2E1, AB, Canada
| | - Michael Joyce
- Department of Medical Microbiology and Immunology, University of Alberta, Edmonton, T6G2E1, AB, Canada; Li Ka Shing Institute of Virology, University of Alberta, Edmonton, T6G2E1, AB, Canada
| | - D Lorne Tyrrell
- Department of Medical Microbiology and Immunology, University of Alberta, Edmonton, T6G2E1, AB, Canada; Li Ka Shing Institute of Virology, University of Alberta, Edmonton, T6G2E1, AB, Canada
| | - Olaide Oyegbami
- School of Dentistry, Division of Foundational Sciences, University of Alberta, Edmonton, T6G2E1, AB, Canada
| | - Shokrollah Elahi
- School of Dentistry, Division of Foundational Sciences, University of Alberta, Edmonton, T6G2E1, AB, Canada; Department of Medical Microbiology and Immunology, University of Alberta, Edmonton, T6G2E1, AB, Canada; Li Ka Shing Institute of Virology, University of Alberta, Edmonton, T6G2E1, AB, Canada; Department of Medical Oncology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, T6G2E1, AB, Canada.
| |
Collapse
|
29
|
Galectin-9, a Player in Cytokine Release Syndrome and a Surrogate Diagnostic Biomarker in SARS-CoV-2 Infection. mBio 2021; 12:mBio.00384-21. [PMID: 33947753 PMCID: PMC8262904 DOI: 10.1128/mbio.00384-21] [Citation(s) in RCA: 48] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
The outbreak of SARS-CoV-2 infection has enormously impacted our lives. Clinical evidence has implicated the emergence of cytokine release syndrome as the prominent cause of mortality in COVID-19 patients. In this study, we observed massive elevation of plasma Galectin-9 (Gal-9) in COVID-19 patients compared to healthy controls (HCs). By using the receiver operating characteristic (ROC) curve, we found that a baseline of 2,042 pg/ml plasma Gal-9 can differentiate SARS-CoV-2-infected from noninfected individuals with high specificity/sensitivity (95%). Analysis of 30 cytokines and chemokines detected a positive correlation of the plasma Gal-9 with C-reactive protein (CRP) and proinflammatory cytokines/chemokines such as interleukin-6 (IL-6), tumor necrosis factor alpha (TNF-α), IP-10, MIP-1α, and MCP-1 but an inverse correlation with transforming growth factor β (TGF-β) in COVID-19 patients. In agreement, we found enhanced production of IL-6 and TNF-α by monocytes and NK cells of COVID-19 patients once treated with the recombinant human Gal-9 in vitro. Also, we observed that although the cell-membrane expression of Gal-9 on monocytes does not change in COVID-19 patients, those with higher Gal-9 expression exhibit an activated phenotype. Furthermore, we noted significant downregulation of surface Gal-9 in neutrophils from COVID-19 patients compared to HCs. Our further investigations indicated that immune activation following SARS-CoV-2 infection results in Gal-9 shedding from neutrophils. The strong correlation of Gal-9 with proinflammatory mediators suggests that inhibition of Gal-9 may severe as a therapeutic approach in COVID-19 infection. Besides, the plasma Gal-9 measurement may be used as a surrogate diagnostic biomarker in COVID-19 patients.
Collapse
|
30
|
Okoye I, Xu L, Motamedi M, Parashar P, Walker JW, Elahi S. Galectin-9 expression defines exhausted T cells and impaired cytotoxic NK cells in patients with virus-associated solid tumors. J Immunother Cancer 2020; 8:e001849. [PMID: 33310773 PMCID: PMC7735134 DOI: 10.1136/jitc-2020-001849] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/22/2020] [Indexed: 12/25/2022] Open
Abstract
BACKGROUND We have previously reported that the upregulation of galectin-9 (Gal-9) on CD4+ and CD8+ T cells in HIV patients was associated with impaired T cell effector functions. Gal-9 is a ligand for T cell immunoglobulin and mucin domain-3, and its expression on T cells in cancer has not been investigated. Therefore, we aimed to investigate the expression level and effects of Gal-9 on T cell functions in patients with virus-associated solid tumors (VASTs). METHODS 40 patients with VASTs through a non-randomized and biomarker-driven phase II LATENT trial were investigated. Peripheral blood mononuclear cells and tumor biopsies were obtained and subjected to immunophenotyping. In this trial, the effects of oral valproate and avelumab (anti-PD-L1) was investigated in regards to the expression of Gal-9 on T cells. RESULTS We report the upregulation of Gal-9 expression by peripheral and tumor-infiltrating CD4+ and CD8+ T lymphocytes in patients with VASTs. Our results indicate that Gal-9 expression is associated with dysfunctional T cell effector functions in the periphery and tumor microenvironment (TME). Coexpression of Gal-9 with PD-1 or T cell immunoglobulin and ITIM domain (TIGIT) exhibited a synergistic inhibitory effect and enhanced an exhausted T cell phenotype. Besides, responding patients to treatment had lower Gal-9 mRNA expression in the TME. Translocation of Gal-9 from the cytosol to the cell membrane of T cells following stimulation suggests persistent T cell receptor (TCR) stimulation as a potential contributing factor in Gal-9 upregulation in patients with VASTs. Moreover, partial colocalization of Gal-9 with CD3 on T cells likely impacts the initiation of signal transduction via TCR as shown by the upregulation of ZAP70 in Gal-9+ T cells. Also, we found an expansion of Gal-9+ but not TIGIT+ NK cells in patients with VASTs; however, dichotomous to TIGIT+ NK cells, Gal-9+ NK cells exhibited impaired cytotoxic molecules but higher Interferon gamma (IFN-γ) expression. CONCLUSION Our data indicate that higher Gal-9-expressing CD8+ T cells were associated with poor prognosis following immunotherapy with anti-Programmed death-ligand 1 (PD-L1) (avelumab) in our patients' cohort. Therefore, for the very first time to our knowledge, we report Gal-9 as a novel marker of T cell exhaustion and the potential target of immunotherapy in patients with VASTs.
Collapse
Affiliation(s)
- Isobel Okoye
- School of Dentistry, Faculty of Medicine and Dentistrty, University of Alberta, Edmonton, AB, Canada
| | - Lai Xu
- School of Dentistry, Faculty of Medicine and Dentistrty, University of Alberta, Edmonton, AB, Canada
| | - Melika Motamedi
- Medical Microbiology and Immunology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada
| | - Pallavi Parashar
- School of Dentistry, Faculty of Medicine and Dentistrty, University of Alberta, Edmonton, AB, Canada
| | - John W Walker
- Medical Oncology, Cross Cancer Institute, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada
| | - Shokrollah Elahi
- School of Dentistry, Faculty of Medicine and Dentistrty, University of Alberta, Edmonton, AB, Canada
- Medical Microbiology and Immunology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada
- Medical Oncology, Cross Cancer Institute, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada
- Li Ka Shing Institute of Virology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada
| |
Collapse
|