1
|
Guo J, Huang R, Mei Y, Lu S, Gong J, Wang L, Ding L, Wu H, Pan D, Liu W. Application of stress granule core element G3BP1 in various diseases: A review. Int J Biol Macromol 2024; 282:137254. [PMID: 39515684 DOI: 10.1016/j.ijbiomac.2024.137254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 10/15/2024] [Accepted: 11/02/2024] [Indexed: 11/16/2024]
Abstract
Ras-GTPase-activating protein-binding protein 1 (G3BP1) is a core component and crucial regulatory switch in stress granules (SGs). When the concentration of free RNA within cells increases, it can trigger RNA-dependent liquid-liquid phase separation (LLPS) with G3BP1 as the core, thereby forming SGs that affect cell survival or death. In addition, G3BP1 interacts with various host proteins to regulate the expression of SGs. As a multifunctional binding protein, G3BP1 has diverse biological functions, influencing cell proliferation, differentiation, apoptosis, and RNA metabolism and serving as a crucial regulator in signaling pathways such as Rac1-PAK1, TSC-mTORC1, NF-κB, and STAT3. Therefore, it plays a significant role in the regulation of neurodegenerative diseases, myocardial hypertrophy, and congenital immunity, and is involved in the proliferation, invasion, and metastasis of cancer cells. G3BP1 is an important antiviral factor that interacts with viral proteins, and regulates SG assembly to exert antiviral effects. This article focuses on the recent discoveries and progress of G3BP1 in biology, including its structure and function, regulation of SG formation and dissolution, and its relationships with non-neoplastic diseases, tumors, and viruses.
Collapse
Affiliation(s)
- Jieyu Guo
- School of Basic Medical Sciences, Hubei Key Laboratory of Diabetes and Angiopathy, Xianning Medical College, Hubei University of Science and Technology, Xianning 437000, Hubei, China; School of Pharmacy, Xianning Medical College, Hubei University of Science and Technology, Xianning 437000, Hubei, China
| | - Rongyi Huang
- School of Basic Medical Sciences, Hubei Key Laboratory of Diabetes and Angiopathy, Xianning Medical College, Hubei University of Science and Technology, Xianning 437000, Hubei, China
| | - Yan Mei
- School of Basic Medical Sciences, Hubei Key Laboratory of Diabetes and Angiopathy, Xianning Medical College, Hubei University of Science and Technology, Xianning 437000, Hubei, China
| | - Siao Lu
- School of Basic Medical Sciences, Hubei Key Laboratory of Diabetes and Angiopathy, Xianning Medical College, Hubei University of Science and Technology, Xianning 437000, Hubei, China; School of Pharmacy, Xianning Medical College, Hubei University of Science and Technology, Xianning 437000, Hubei, China
| | - Jun Gong
- School of Pharmacy, Xianning Medical College, Hubei University of Science and Technology, Xianning 437000, Hubei, China
| | - Long Wang
- School of Basic Medical Sciences, Hubei Key Laboratory of Diabetes and Angiopathy, Xianning Medical College, Hubei University of Science and Technology, Xianning 437000, Hubei, China
| | - Liqiong Ding
- School of Pharmacy, Xianning Medical College, Hubei University of Science and Technology, Xianning 437000, Hubei, China
| | - Hongnian Wu
- School of Basic Medical Sciences, Hubei Key Laboratory of Diabetes and Angiopathy, Xianning Medical College, Hubei University of Science and Technology, Xianning 437000, Hubei, China
| | - Dan Pan
- School of Basic Medical Sciences, Hubei Key Laboratory of Diabetes and Angiopathy, Xianning Medical College, Hubei University of Science and Technology, Xianning 437000, Hubei, China
| | - Wu Liu
- School of Basic Medical Sciences, Hubei Key Laboratory of Diabetes and Angiopathy, Xianning Medical College, Hubei University of Science and Technology, Xianning 437000, Hubei, China.
| |
Collapse
|
2
|
Bley H, Krisp C, Schöbel A, Hehner J, Schneider L, Becker M, Stegmann C, Heidenfels E, Nguyen-Dinh V, Schlüter H, Gerold G, Herker E. Proximity labeling of host factor ANXA3 in HCV infection reveals a novel LARP1 function in viral entry. J Biol Chem 2024; 300:107286. [PMID: 38636657 PMCID: PMC11101947 DOI: 10.1016/j.jbc.2024.107286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 04/04/2024] [Accepted: 04/05/2024] [Indexed: 04/20/2024] Open
Abstract
Hepatitis C virus (HCV) infection is tightly connected to the lipid metabolism with lipid droplets (LDs) serving as assembly sites for progeny virions. A previous LD proteome analysis identified annexin A3 (ANXA3) as an important HCV host factor that is enriched at LDs in infected cells and required for HCV morphogenesis. To further characterize ANXA3 function in HCV, we performed proximity labeling using ANXA3-BioID2 as bait in HCV-infected cells. Two of the top proteins identified proximal to ANXA3 during HCV infection were the La-related protein 1 (LARP1) and the ADP ribosylation factor-like protein 8B (ARL8B), both of which have been previously described to act in HCV particle production. In follow-up experiments, ARL8B functioned as a pro-viral HCV host factor without localizing to LDs and thus likely independent of ANXA3. In contrast, LARP1 interacts with HCV core protein in an RNA-dependent manner and is translocated to LDs by core protein. Knockdown of LARP1 decreased HCV spreading without altering HCV RNA replication or viral titers. Unexpectedly, entry of HCV particles and E1/E2-pseudotyped lentiviral particles was reduced by LARP1 depletion, whereas particle production was not altered. Using a recombinant vesicular stomatitis virus (VSV)ΔG entry assay, we showed that LARP1 depletion also decreased entry of VSV with VSV, MERS, and CHIKV glycoproteins. Therefore, our data expand the role of LARP1 as an HCV host factor that is most prominently involved in the early steps of infection, likely contributing to endocytosis of viral particles through the pleiotropic effect LARP1 has on the cellular translatome.
Collapse
Affiliation(s)
- Hanna Bley
- Institute of Virology, Philipps-University Marburg, Marburg, Germany
| | - Christoph Krisp
- Section Mass Spectrometry and Proteomics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Anja Schöbel
- Institute of Virology, Philipps-University Marburg, Marburg, Germany
| | - Julia Hehner
- Institute of Virology, Philipps-University Marburg, Marburg, Germany
| | - Laura Schneider
- Institute of Virology, Philipps-University Marburg, Marburg, Germany
| | - Miriam Becker
- Institute for Biochemistry & Research Center for Emerging Infections and Zoonoses (RIZ), University of Veterinary Medicine Hanover, Hanover, Germany
| | - Cora Stegmann
- Institute for Biochemistry & Research Center for Emerging Infections and Zoonoses (RIZ), University of Veterinary Medicine Hanover, Hanover, Germany
| | - Elisa Heidenfels
- Institute of Virology, Philipps-University Marburg, Marburg, Germany
| | - Van Nguyen-Dinh
- Institute of Virology, Philipps-University Marburg, Marburg, Germany
| | - Hartmut Schlüter
- Section Mass Spectrometry and Proteomics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Gisa Gerold
- Institute for Biochemistry & Research Center for Emerging Infections and Zoonoses (RIZ), University of Veterinary Medicine Hanover, Hanover, Germany; Department of Clinical Microbiology, Virology, Umeå University, Umeå, Sweden; Wallenberg Centre for Molecular Medicine (WCMM), Umeå University, Umeå, Sweden
| | - Eva Herker
- Institute of Virology, Philipps-University Marburg, Marburg, Germany.
| |
Collapse
|
3
|
Moon S, Namkoong S. Ribonucleoprotein Granules: Between Stress and Transposable Elements. Biomolecules 2023; 13:1027. [PMID: 37509063 PMCID: PMC10377603 DOI: 10.3390/biom13071027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 06/19/2023] [Accepted: 06/21/2023] [Indexed: 07/30/2023] Open
Abstract
Transposable elements (TEs) are DNA sequences that can transpose and replicate within the genome, leading to genetic changes that affect various aspects of host biology. Evolutionarily, hosts have also developed molecular mechanisms to suppress TEs at the transcriptional and post-transcriptional levels. Recent studies suggest that stress-induced formation of ribonucleoprotein (RNP) granules, including stress granule (SG) and processing body (P-body), can play a role in the sequestration of TEs to prevent transposition, suggesting an additional layer of the regulatory mechanism for TEs. RNP granules have been shown to contain factors involved in RNA regulation, including mRNA decay enzymes, RNA-binding proteins, and noncoding RNAs, which could potentially contribute to the regulation of TEs. Therefore, understanding the interplay between TEs and RNP granules is crucial for elucidating the mechanisms for maintaining genomic stability and controlling gene expression. In this review, we provide a brief overview of the current knowledge regarding the interplay between TEs and RNP granules, proposing RNP granules as a novel layer of the regulatory mechanism for TEs during stress.
Collapse
Affiliation(s)
- Sungjin Moon
- Department of Biological Sciences, Kangwon National University, Chuncheon 24341, Republic of Korea
| | - Sim Namkoong
- Department of Biochemistry, Kangwon National University, Chuncheon 24341, Republic of Korea
| |
Collapse
|
4
|
Zhang M, Sun W, You X, Xu D, Wang L, Yang J, Li E, He S. LINE-1 repression in Epstein-Barr virus-associated gastric cancer through viral-host genome interaction. Nucleic Acids Res 2023; 51:4867-4880. [PMID: 36942479 PMCID: PMC10250212 DOI: 10.1093/nar/gkad203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 03/07/2023] [Accepted: 03/12/2023] [Indexed: 03/23/2023] Open
Abstract
Long INterspersed Element 1 (LINE-1 or L1) acts as a major remodeling force in genome regulation and evolution. Accumulating evidence shows that virus infection impacts L1 expression, potentially impacting host antiviral response and diseases. The underlying regulation mechanism is unclear. Epstein-Barr virus (EBV), a double-stranded DNA virus linked to B-cell and epithelial malignancies, is known to have viral-host genome interaction, resulting in transcriptional rewiring in EBV-associated gastric cancer (EBVaGC). By analyzing publicly available datasets from the Gene Expression Omnibus (GEO), we found that EBVaGC has L1 transcriptional repression compared with EBV-negative gastric cancer (EBVnGC). More specifically, retrotransposition-associated young and full-length L1s (FL-L1s) were among the most repressed L1s. Epigenetic alterations, especially increased H3K9me3, were observed on FL-L1s. H3K9me3 deposition was potentially attributed to increased TASOR expression, a key component of the human silencing hub (HUSH) complex for H3K9 trimethylation. The 4C- and HiC-seq data indicated that the viral DNA interacted in the proximity of the TASOR enhancer, strengthening the loop formation between the TASOR enhancer and its promoter. These results indicated that EBV infection is associated with increased H3K9me3 deposition, leading to L1 repression. This study uncovers a regulation mechanism of L1 expression by chromatin topology remodeling associated with viral-host genome interaction in EBVaGC.
Collapse
Affiliation(s)
- Mengyu Zhang
- State Key Laboratory of Pharmaceutical Biotechnology, Medical School, Nanjing University, Nanjing 210093, China
- Jiangsu Key Laboratory of Molecular Medicine, Medical School, Nanjing University, Nanjing 210093, China
- Yancheng Medical Research Center, Medical School, Nanjing University, Yancheng 224000, China
| | - Weikang Sun
- State Key Laboratory of Pharmaceutical Biotechnology, Medical School, Nanjing University, Nanjing 210093, China
- Jiangsu Key Laboratory of Molecular Medicine, Medical School, Nanjing University, Nanjing 210093, China
| | - Xiaoxin You
- State Key Laboratory of Pharmaceutical Biotechnology, Medical School, Nanjing University, Nanjing 210093, China
- Jiangsu Key Laboratory of Molecular Medicine, Medical School, Nanjing University, Nanjing 210093, China
| | - Dongge Xu
- State Key Laboratory of Pharmaceutical Biotechnology, Medical School, Nanjing University, Nanjing 210093, China
- Jiangsu Key Laboratory of Molecular Medicine, Medical School, Nanjing University, Nanjing 210093, China
| | - Lingling Wang
- State Key Laboratory of Pharmaceutical Biotechnology, Medical School, Nanjing University, Nanjing 210093, China
- Jiangsu Key Laboratory of Molecular Medicine, Medical School, Nanjing University, Nanjing 210093, China
| | - Jingping Yang
- State Key Laboratory of Pharmaceutical Biotechnology, Medical School, Nanjing University, Nanjing 210093, China
- Jiangsu Key Laboratory of Molecular Medicine, Medical School, Nanjing University, Nanjing 210093, China
| | - Erguang Li
- State Key Laboratory of Pharmaceutical Biotechnology, Medical School, Nanjing University, Nanjing 210093, China
- Jiangsu Key Laboratory of Molecular Medicine, Medical School, Nanjing University, Nanjing 210093, China
- Institute of Medical Virology, Nanjing Drum Tower Hospital, Medical School, Nanjing University, Nanjing 210093, China
- Shenzhen Research Institute of Nanjing University, Shenzhen 518000, China
| | - Susu He
- State Key Laboratory of Pharmaceutical Biotechnology, Medical School, Nanjing University, Nanjing 210093, China
- Jiangsu Key Laboratory of Molecular Medicine, Medical School, Nanjing University, Nanjing 210093, China
- Yancheng Medical Research Center, Medical School, Nanjing University, Yancheng 224000, China
| |
Collapse
|
5
|
Zhang L, Bisht P, Flamier A, Barrasa MI, Friesen M, Richards A, Hughes SH, Jaenisch R. LINE1-Mediated Reverse Transcription and Genomic Integration of SARS-CoV-2 mRNA Detected in Virus-Infected but Not in Viral mRNA-Transfected Cells. Viruses 2023; 15:629. [PMID: 36992338 PMCID: PMC10057545 DOI: 10.3390/v15030629] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 02/22/2023] [Accepted: 02/23/2023] [Indexed: 03/03/2023] Open
Abstract
SARS-CoV-2 sequences can be reverse-transcribed and integrated into the genomes of virus-infected cells by a LINE1-mediated retrotransposition mechanism. Whole-genome sequencing (WGS) methods detected retrotransposed SARS-CoV-2 subgenomic sequences in virus-infected cells overexpressing LINE1, while an enrichment method (TagMap) identified retrotranspositions in cells that did not overexpress LINE1. LINE1 overexpression increased retrotranspositions about 1000-fold as compared to non-overexpressing cells. Nanopore WGS can directly recover retrotransposed viral and flanking host sequences, but its sensitivity depends on the depth of sequencing (a typical 20-fold sequencing depth would only examine 10 diploid cell equivalents). In contrast, TagMap enriches the host-virus junctions and can interrogate up to 20,000 cells and is able to detect rare viral retrotranspositions in LINE1 non-overexpressing cells. Although Nanopore WGS is 10-20-fold more sensitive per tested cell, TagMap can interrogate 1000-2000-fold more cells and, therefore, can identify infrequent retrotranspositions. When comparing SARS-CoV-2 infection and viral nucleocapsid mRNA transfection by TagMap, retrotransposed SARS-CoV-2 sequences were only detected in infected but not in transfected cells. Retrotransposition in virus-infected cells, in contrast to transfected cells, may be facilitated because virus infection, in contrast to viral RNA transfection, results in significantly higher viral RNA levels and stimulates LINE1 expression by causing cellular stress.
Collapse
Affiliation(s)
- Liguo Zhang
- Whitehead Institute for Biomedical Research, Cambridge, MA 02142, USA
| | - Punam Bisht
- Whitehead Institute for Biomedical Research, Cambridge, MA 02142, USA
| | - Anthony Flamier
- Whitehead Institute for Biomedical Research, Cambridge, MA 02142, USA
| | | | - Max Friesen
- Whitehead Institute for Biomedical Research, Cambridge, MA 02142, USA
| | - Alexsia Richards
- Whitehead Institute for Biomedical Research, Cambridge, MA 02142, USA
| | - Stephen H. Hughes
- HIV Dynamics and Replication Program, Center for Cancer Research, National Cancer Institute, Frederick, MD 21702, USA
| | - Rudolf Jaenisch
- Whitehead Institute for Biomedical Research, Cambridge, MA 02142, USA
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02142, USA
| |
Collapse
|
6
|
Zhang L, Bisht P, Flamier A, Barrasa MI, Richards A, Hughes SH, Jaenisch R. LINE1-mediated reverse transcription and genomic integration of SARS-CoV-2 mRNA detected in virus-infected but not in viral mRNA-transfected cells. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.02.10.527906. [PMID: 37293025 PMCID: PMC10245962 DOI: 10.1101/2023.02.10.527906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
SARS-CoV-2 sequences can be reverse-transcribed and integrated into the genomes of virus-infected cells by a LINE1-mediated retrotransposition mechanism. Whole genome sequencing (WGS) methods detected retrotransposed SARS-CoV-2 subgenomic sequences in virus-infected cells overexpressing LINE1, while an enrichment method (TagMap) identified retrotranspositions in cells that did not overexpress LINE1. LINE1 overexpression increased retrotranspositions about 1,000-fold as compared to non-overexpressing cells. Nanopore WGS can directly recover retrotransposed viral and flanking host sequences but its sensitivity depends on the depth of sequencing (a typical 20-fold sequencing depth would only examine 10 diploid cell equivalents). In contrast, TagMap enriches for the host-virus junctions and can interrogate up to 20,000 cells and is able to detect rare viral retrotranspositions in LINE1 non-overexpressing cells. Although Nanopore WGS is 10 - 20-fold more sensitive per tested cell, TagMap can interrogate 1,000 - 2,000-fold more cells and therefore can identify infrequent retrotranspositions. When comparing SARS-CoV-2 infection and viral nucleocapsid mRNA transfection by TagMap, retrotransposed SARS-CoV-2 sequences were only detected in infected but not in transfected cells. Retrotransposition in virus-infected in contrast to transfected cells may be facilitated because virus infection in contrast to viral RNA transfection results in significantly higher viral RNA levels and stimulates LINE1-expression which causes cellular stress.
Collapse
|
7
|
Warkocki Z. An update on post-transcriptional regulation of retrotransposons. FEBS Lett 2023; 597:380-406. [PMID: 36460901 DOI: 10.1002/1873-3468.14551] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2022] [Revised: 11/09/2022] [Accepted: 11/18/2022] [Indexed: 12/04/2022]
Abstract
Retrotransposons, including LINE-1, Alu, SVA, and endogenous retroviruses, are one of the major constituents of human genomic repetitive sequences. Through the process of retrotransposition, some of them occasionally insert into new genomic locations by a copy-paste mechanism involving RNA intermediates. Irrespective of de novo genomic insertions, retrotransposon expression can lead to DNA double-strand breaks and stimulate cellular innate immunity through endogenous patterns. As a result, retrotransposons are tightly regulated by multi-layered regulatory processes to prevent the dangerous effects of their expression. In recent years, significant progress was made in revealing how retrotransposon biology intertwines with general post-transcriptional RNA metabolism. Here, I summarize current knowledge on the involvement of post-transcriptional factors in the biology of retrotransposons, focusing on LINE-1. I emphasize general RNA metabolisms such as methylation of adenine (m6 A), RNA 3'-end polyadenylation and uridylation, RNA decay and translation regulation. I discuss the effects of retrotransposon RNP sequestration in cytoplasmic bodies and autophagy. Finally, I summarize how innate immunity restricts retrotransposons and how retrotransposons make use of cellular enzymes, including the DNA repair machinery, to complete their replication cycles.
Collapse
Affiliation(s)
- Zbigniew Warkocki
- Department of RNA Metabolism, Institute of Bioorganic Chemistry, Polish Academy of Sciences, Poznan, Poland
| |
Collapse
|
8
|
Hepatitis B virus polymerase restricts LINE-1 mobility. Gene 2022; 850:146943. [PMID: 36198378 DOI: 10.1016/j.gene.2022.146943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 09/06/2022] [Accepted: 09/28/2022] [Indexed: 11/21/2022]
Abstract
Long interspersed element-1 (LINE-1, L1) transposable element (TE) composes about 17% of the human genome. However, genetic and biochemical interactions between L1 and hepatitis B virus (HBV) remain poorly understood. In this study, I found that HBV restricts L1 retrotransposition in a reverse transcriptase (RT)-independent manner. Notably, HBV polymerase (Pol) strongly inhibited L1 retrotransposition. Indeed, the ribonuclease H (RNase H) domain was essential for inhibition of L1 retrotransposition. The L1 ORF1p RNA-binding protein predominantly localized into cytoplasmic RNA granule termed P-body. However, HBV Pol hijacked L1 ORF1p from P-body through an interaction with L1 ORF1p, when both proteins were co-expressed. Furthermore, HBV Pol repressed the L1 5' untranslated region (UTR). Altogether, HBV seems to restrict L1 mobility at multiple steps. Thus, these results suggest a novel function or activity of HBV Pol in regulation of L1 retrotransposition.
Collapse
|
9
|
Li Y, Yang J, Shen S, Wang W, Liu N, Guo H, Wei W. SARS-CoV-2-encoded inhibitors of human LINE-1 retrotransposition. J Med Virol 2022; 95:e28135. [PMID: 36085352 PMCID: PMC9538743 DOI: 10.1002/jmv.28135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 09/07/2022] [Accepted: 09/07/2022] [Indexed: 01/11/2023]
Abstract
The ongoing pandemic of severe acute respiratory coronavirus 2 (SARS-CoV-2) is causing a devastating impact on public health worldwide. However, details concerning the profound impact of SARS-CoV-2 on host cells remain elusive. Here, we investigated the effects of SARS-CoV-2-encoded viral proteins on the intracellular activity of long interspersed element 1 (L1) retrotransposons using well-established reporter systems. Several nonstructural or accessory proteins (Nsps) of SARS-CoV-2 (i.e., Nsp1, Nsp3, Nsp5, and Nsp14) significantly suppress human L1 mobility, and these viral L1 inhibitors generate a complex network that modulates L1 transposition. Specifically, Nsp1 and Nsp14 inhibit the intracellular accumulation of L1 open reading frame proteins (ORF1p), whereas Nsp3, Nsp5, and Nsp14 repress the reverse transcriptase activity of L1 ORF2p. Given recent findings concerning the roles of L1 in antiviral immune activation and host genome instability, the anti-L1 activities mediated by SARS-CoV-2-encoded inhibitors suggest that SARS-CoV-2 employs different strategies to optimize the host genetic environment.
Collapse
Affiliation(s)
- Yan Li
- Institute of Virology and AIDS Research, First HospitalJilin UniversityChangchunJilinChina
| | - Jiaxin Yang
- Institute of Virology and AIDS Research, First HospitalJilin UniversityChangchunJilinChina
| | - Siyu Shen
- Institute of Virology and AIDS Research, First HospitalJilin UniversityChangchunJilinChina
| | - Wei Wang
- Institute of Virology and AIDS Research, First HospitalJilin UniversityChangchunJilinChina
| | - Nian Liu
- School of Life SciencesTsinghua UniversityBeijingChina
| | - Haoran Guo
- Institute of Virology and AIDS Research, First HospitalJilin UniversityChangchunJilinChina,Key Laboratory of Organ Regeneration and Transplantation of Ministry of Education, Institute of Translational Medicine, First HospitalJilin UniversityChangchunJilinChina
| | - Wei Wei
- Institute of Virology and AIDS Research, First HospitalJilin UniversityChangchunJilinChina,Key Laboratory of Organ Regeneration and Transplantation of Ministry of Education, Institute of Translational Medicine, First HospitalJilin UniversityChangchunJilinChina
| |
Collapse
|
10
|
Chiang VSC, DeRosa H, Park JH, Hunter RG. The Role of Transposable Elements in Sexual Development. Front Behav Neurosci 2022; 16:923732. [PMID: 35874645 PMCID: PMC9301316 DOI: 10.3389/fnbeh.2022.923732] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Accepted: 06/20/2022] [Indexed: 11/19/2022] Open
Abstract
Up to 50% of most mammalian genomes are made up of transposable elements (TEs) that have the potential to mobilize around the genome. Despite this prevalence, research on TEs is only beginning to gain traction within the field of neuroscience. While TEs have long been regarded as "junk" or parasitic DNA, it has become evident that they are adaptive DNA and RNA regulatory elements. In addition to their vital role in normal development, TEs can also interact with steroid receptors, which are key elements to sexual development. In this review, we provide an overview of the involvement of TEs in processes related to sexual development- from TE activity in the germline to TE accumulation in sex chromosomes. Moreover, we highlight sex differences in TE activity and their regulation of genes related to sexual development. Finally, we speculate on the epigenetic mechanisms that may govern TEs' role in sexual development. In this context, we emphasize the need to further the understanding of sexual development through the lens of TEs including in a variety of organs at different developmental stages, their molecular networks, and evolution.
Collapse
Affiliation(s)
| | | | | | - Richard G. Hunter
- College of Liberal Arts, Department of Psychology, Developmental and Brain Sciences Program, University of Massachusetts Boston, Boston, MA, United States
| |
Collapse
|
11
|
Li Y, Shen S, Guo H, Zhang Z, Zhang L, Yang Q, Gao Y, Niu J, Wei W. Enterovirus Infection Restricts Long Interspersed Element 1 Retrotransposition. Front Microbiol 2021; 12:706241. [PMID: 34733242 PMCID: PMC8559978 DOI: 10.3389/fmicb.2021.706241] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Accepted: 09/22/2021] [Indexed: 11/28/2022] Open
Abstract
Long interspersed element 1 (LINE-1 or L1) is the only active autonomous retrotransposon in the human genome that can serve as an endogenous upstream activator of cytoplasmic nucleic acid sensing pathways to elicit an antiviral immune response. In this study, we investigated the influence of enteroviral infection on L1 mobility. The results showed that infection with different enteroviruses, both EV-D68 and EV-A71, blocked L1 transposition. We screened diverse viral accessory proteins for L1 activity and identified EV-D68 2A, 3A, 3C, and EV-A71 ORF2p proteins as viral L1 inhibitors. EV-D68 2A suppressed L1 mobility by expression suppression of L1 proteins. Viral proteins 3A and 3C restricted ORF2p-mediated L1 reverse transcription in isolated L1 ribonucleoproteins. The newly identified enteroviral protein ORF2p inhibited the expression of L1 ORF1p. Altogether, our findings shed light on the strict modulation of L1 retrotransposons during enterovirus replication.
Collapse
Affiliation(s)
- Yan Li
- Institute of Virology and AIDS Research, First Hospital, Jilin University, Changchun, China
| | - Siyu Shen
- Institute of Virology and AIDS Research, First Hospital, Jilin University, Changchun, China
| | - Haoran Guo
- Institute of Virology and AIDS Research, First Hospital, Jilin University, Changchun, China.,Key Laboratory of Organ Regeneration and Transplantation of Ministry of Education, Institute of Translational Medicine, First Hospital, Jilin University, Changchun, China
| | - Zhe Zhang
- Institute of Virology and AIDS Research, First Hospital, Jilin University, Changchun, China
| | - Lili Zhang
- Institute of Virology and AIDS Research, First Hospital, Jilin University, Changchun, China
| | - Qingran Yang
- Institute of Virology and AIDS Research, First Hospital, Jilin University, Changchun, China
| | - Yanhang Gao
- Department of Hepatology, First Hospital, Jilin University, Changchun, China
| | - Junqi Niu
- Department of Hepatology, First Hospital, Jilin University, Changchun, China
| | - Wei Wei
- Institute of Virology and AIDS Research, First Hospital, Jilin University, Changchun, China.,Key Laboratory of Organ Regeneration and Transplantation of Ministry of Education, Institute of Translational Medicine, First Hospital, Jilin University, Changchun, China
| |
Collapse
|
12
|
Sudhindar PD, Wainwright D, Saha S, Howarth R, McCain M, Bury Y, Saha SS, McPherson S, Reeves H, Patel AH, Faulkner GJ, Lunec J, Shukla R. HCV Activates Somatic L1 Retrotransposition-A Potential Hepatocarcinogenesis Pathway. Cancers (Basel) 2021; 13:5079. [PMID: 34680227 PMCID: PMC8533982 DOI: 10.3390/cancers13205079] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Revised: 09/29/2021] [Accepted: 10/07/2021] [Indexed: 12/24/2022] Open
Abstract
Hepatitis C virus (HCV) is a common cause of hepatocellular carcinoma (HCC). The activation and mutagenic consequences of L1 retrotransposons in virus-associated-HCC have been documented. However, the direct influence of HCV upon L1 elements is unclear, and is the focus of the present study. L1 transcript expression was evaluated in a publicly available liver tissue RNA-seq dataset from patients with chronic HCV hepatitis (CHC), as well as healthy controls. L1 transcript expression was significantly higher in CHC than in controls. L1orf1p (a L1 encoded protein) expression was observed in six out of 11 CHC livers by immunohistochemistry. To evaluate the influence of HCV on retrotransposition efficiency, in vitro engineered-L1 retrotransposition assays were employed in Huh7 cells in the presence and absence of an HCV replicon. An increased retrotransposition rate was observed in the presence of replicating HCV RNA, and persisted in cells after viral clearance due to sofosbuvir (PSI7977) treatment. Increased retrotransposition could be due to dysregulation of the DNA-damage repair response, including homologous recombination, due to HCV infection. Altogether these data suggest that L1 expression can be activated before oncogenic transformation in CHC patients, with HCV-upregulated retrotransposition potentially contributing to HCC genomic instability and a risk of transformation that persists post-viral clearance.
Collapse
Affiliation(s)
- Praveen D. Sudhindar
- Newcastle University Centre for Cancer, Biosciences Institute, Faculty of Medical Sciences, The Medical School, Newcastle University, Newcastle upon Tyne NE2 4HH, UK; (P.D.S.); (D.W.); (R.H.); (J.L.)
| | - Daniel Wainwright
- Newcastle University Centre for Cancer, Biosciences Institute, Faculty of Medical Sciences, The Medical School, Newcastle University, Newcastle upon Tyne NE2 4HH, UK; (P.D.S.); (D.W.); (R.H.); (J.L.)
| | - Santu Saha
- Newcastle University Centre for Cancer, Translational and Clinical Research Institute, Faculty of Medical Sciences, The Medical School, Newcastle University, Newcastle upon Tyne NE2 4HH, UK; (S.S.); (M.M.); (S.S.S.); (H.R.)
| | - Rachel Howarth
- Newcastle University Centre for Cancer, Biosciences Institute, Faculty of Medical Sciences, The Medical School, Newcastle University, Newcastle upon Tyne NE2 4HH, UK; (P.D.S.); (D.W.); (R.H.); (J.L.)
| | - Misti McCain
- Newcastle University Centre for Cancer, Translational and Clinical Research Institute, Faculty of Medical Sciences, The Medical School, Newcastle University, Newcastle upon Tyne NE2 4HH, UK; (S.S.); (M.M.); (S.S.S.); (H.R.)
| | - Yvonne Bury
- Department of Cellular Pathology, Royal Victoria Infirmary, Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne NE1 4LP, UK;
| | - Sweta S. Saha
- Newcastle University Centre for Cancer, Translational and Clinical Research Institute, Faculty of Medical Sciences, The Medical School, Newcastle University, Newcastle upon Tyne NE2 4HH, UK; (S.S.); (M.M.); (S.S.S.); (H.R.)
| | - Stuart McPherson
- The Liver Unit, Freeman Hospital, Newcastle upon Tyne Hospitals NHS Foundation Trust, Heaton NE7 7DN, UK;
| | - Helen Reeves
- Newcastle University Centre for Cancer, Translational and Clinical Research Institute, Faculty of Medical Sciences, The Medical School, Newcastle University, Newcastle upon Tyne NE2 4HH, UK; (S.S.); (M.M.); (S.S.S.); (H.R.)
- The Liver Unit, Freeman Hospital, Newcastle upon Tyne Hospitals NHS Foundation Trust, Heaton NE7 7DN, UK;
| | - Arvind H. Patel
- MRC-University of Glasgow Centre for Virus Research, University of Glasgow, Glasgow G61 1QH, UK;
| | - Geoffrey J. Faulkner
- Mater Research Institute, University of Queensland, Woolloongabba, QLD 4102, Australia;
- Queensland Brain Institute, University of Queensland, Brisbane, QLD 4072, Australia
| | - John Lunec
- Newcastle University Centre for Cancer, Biosciences Institute, Faculty of Medical Sciences, The Medical School, Newcastle University, Newcastle upon Tyne NE2 4HH, UK; (P.D.S.); (D.W.); (R.H.); (J.L.)
| | - Ruchi Shukla
- Newcastle University Centre for Cancer, Biosciences Institute, Faculty of Medical Sciences, The Medical School, Newcastle University, Newcastle upon Tyne NE2 4HH, UK; (P.D.S.); (D.W.); (R.H.); (J.L.)
| |
Collapse
|
13
|
Factors Regulating the Activity of LINE1 Retrotransposons. Genes (Basel) 2021; 12:genes12101562. [PMID: 34680956 PMCID: PMC8535693 DOI: 10.3390/genes12101562] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Revised: 09/21/2021] [Accepted: 09/22/2021] [Indexed: 12/15/2022] Open
Abstract
LINE-1 (L1) is a class of autonomous mobile genetic elements that form somatic mosaicisms in various tissues of the organism. The activity of L1 retrotransposons is strictly controlled by many factors in somatic and germ cells at all stages of ontogenesis. Alteration of L1 activity was noted in a number of diseases: in neuropsychiatric and autoimmune diseases, as well as in various forms of cancer. Altered activity of L1 retrotransposons for some pathologies is associated with epigenetic changes and defects in the genes involved in their repression. This review discusses the molecular genetic mechanisms of the retrotransposition and regulation of the activity of L1 elements. The contribution of various factors controlling the expression and distribution of L1 elements in the genome occurs at all stages of the retrotransposition. The regulation of L1 elements at the transcriptional, post-transcriptional and integration into the genome stages is described in detail. Finally, this review also focuses on the evolutionary aspects of L1 accumulation and their interplay with the host regulation system.
Collapse
|